

TCG

TCG Infrastructure Working Group
Platform Trust Services Interface
Specification (IF-PTS)

Specification Version 1.0
Revision 1.0
17 November 2006
FINAL

Contact:

ned.smith@intel.com (Editor, IWG Co-Chair)
GregK@wavesys.com (Editor)
THardjono@SignaCert.com (IWG Co-Chair)
Shanna@juniper.net (TNC Co-Chair)
Paul_Sangster@symantec.com (TNC Co-Chair)

Public

Copyright © TCG 2006

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page iii of 91
 Public

Copyright © 2006 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppels or otherwise, to any TCG or TCG member intellectual
property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page iv of 91
 Public

IWG TNC Document Roadmap

Infrastructure
Architecture:

Part I:
Interoperability

Architecture

Backup &
Migration

IWG
Use Cases

SKAE

Certificates
Profile v1.0

Trust
Credentials

Other
Use Cases

.....

TNC
Use Case

Infrastructure
Architecture Part II:

Integrity
Management
Architecture

Platform
Trust

Services

Schemas

TNC
Architecture

TLS-
Attestations

TNC
Interface

Specifications

PTS
Interface
(IF-PTS)

Credential
Management

PTS
Protocol

Integrity
Report

Schema

Core
Integrity
Schema

Reference
Manifest
Schema

Security
Qualities
Schema

Executable
Image

Schema

Simple
Object

Schema

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page v of 91
 Public

Acknowledgement

The TCG wishes to thank all those who contributed to this specification. This document builds on
considerable work done in the various working groups in the TCG.

Special thanks to the members of the IWG contributing to this document:

Name Company

Malcolm Duncan CESG
Diana Arroyo IBM
Lee Terrell IBM
Markus Gueller Infineon
Ned Smith (Editor, Co-Chair) Intel Corporation
Mark Williams Microsoft
Thomas Hardjono (Co-Chair) Signacert
Jeff Nisewanger Sun
Wyllys Ingersoll Sun
Paul Sangster (TNC Co-Chair) Symantec
Greg Kazmierczak (Editor) Wave Systems
Len Veil Wave Systems

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page vi of 91
 Public

Table of Contents
1 Scope and Audience.. 10

1.1 Keywords ...10
2 Background .. 11

2.1 Purpose of IF-PTS ...11
2.2 Architecture ..11
2.3 Requirements of IF-PTS ..13
2.4 Interface Assumptions..13
2.5 Features Provided by IF-PTS ..14

2.5.1 Integrity Scan of Platform Components ..14
2.5.2 XML Formatting...14
2.5.3 Integrity Information Logging...14
2.5.4 Digital Signature ..14

3 IF-PTS Implementation Considerations ... 16
3.1 Platform Independence..16

3.1.1 Representation of Information ...16
3.2 PTS Deployment Model ...16
3.3 Extensibility ..16

3.3.1 Interface Versioning ..17
3.3.2 Vendor IDs...17
3.3.3 Vendor-Specific Functions ..17
3.3.4 XML Formatting...17

3.4 Naming Conventions..17
3.5 Threading, Reentrancy and Inter-Process Communication...18
3.6 Types of Messages ..18
3.7 IPC Resources ...18
3.8 Operational Profiles..18
3.9 TPM PCR Use..18

4 Constant Values ... 20
4.1 Result Codes..20
4.2 Component Status ...22
4.3 PTS Command Ordinals ..22
4.4 Snapshot Flags ..23
4.5 Miscellaneous Constants ...24

4.5.1 Version Numbers...24
5 Data Structures .. 25

5.1 Basic Types..25
5.2 Simple Derived Types..25

5.2.1 PTS_AlgorithmId ...25
5.2.2 PTS_ComponentStatus...25
5.2.3 PTS_Cookie ..25
5.2.4 PTS_Error..26
5.2.5 PTS_Handle ..26
5.2.6 PTS_PcrId ...26
5.2.7 PTS_SessionName ...26
5.2.8 PTS_SnapshotDescriptor..26
5.2.9 PTS_SnapshotFlags ...26
5.2.10 PTS_SnapshotId ...27
5.2.11 PTS_UUID...27
5.2.12 PTS_VariableLengthDataPtr ...27
5.2.13 PTS_Version ...27

5.3 Complex Data Types..27
5.3.1 PTS_AddByCollector...27
5.3.2 PTS_AddByComponent ..28
5.3.3 PTS_AddByOwner ..28

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page vii of 91
 Public

5.3.4 PTS_AddByPcr..29
5.3.5 PTS_AddByTrustChain ...29
5.3.6 PTS_AssertionsInfo...29
5.3.7 PTS_Capability..30
5.3.8 PTS_ComponentId..30
5.3.9 PTS_DateTime..31
5.3.10 PTS_IntegrityReport..31
5.3.11 PTS_Key ...31
5.3.12 PTS_MemSegment ...31
5.3.13 PTS_MemSegments ...32
5.3.14 PTS_PcrBitmask ...32
5.3.15 PTS_ReportProperties ..32
5.3.16 PTS_SignerInfo ...33
5.3.17 PTS_SnapshotProperties..33
5.3.18 PTS_String ..33
5.3.19 PTS_ValuesInfo ..34
5.3.20 PTS_VariableLengthDataArea..34
5.3.21 PTS_Vendor ..34

6 Commands ... 36
6.1 Request Message ..36
6.2 Response Message ...36
6.3 PTS Initialization Commands...37

6.3.1 PTS_Initialize...37
6.3.2 PTS_Terminate ...39

6.4 Integrity Measurement and Verification Commands..39
6.4.1 PTS_ComponentScan...39
6.4.2 PTS_ComponentScanComplete ...42
6.4.3 PTS_ComponentLocked ...43
6.4.4 PTS_ComponentUnlocked..43
6.4.5 PTS_SnapshotSync ..44
6.4.6 PTS_SnapshotSyncComplete...44
6.4.7 PTS_SnapshotVerify ...45
6.4.8 PTS_ReportVerify ...46

6.5 Snapshot Creation Commands..47
6.5.1 PTS_SnapshotCreate ...47
6.5.2 PTS_SnapshotDelete..48
6.5.3 PTS_SnapshotImport ..48
6.5.4 PTS_SnapshotExport..49
6.5.5 PTS_SnapshotGetProperties ..50
6.5.6 PTS_SnapshotOpen ...50
6.5.7 PTS_SnapshotClose ...51
6.5.8 PTS_SnapshotUpdateComponentId...51
6.5.9 PTS_SnapshotUpdateSubComponents..52
6.5.10 PTS_SnapshotUpdateAssertions..53
6.5.11 PTS_SnapshotUpdateIntegrityValues...53
6.5.12 PTS_SnapshotUpdateIntegrityValuesXml ..54
6.5.13 PTS_SnapshotUpdateCollector ..54

6.6 Reporting Commands ..55
6.6.1 PTS_ReportCreate..55
6.6.2 PTS_ReportDelete ..55
6.6.3 PTS_ReportSpecify...56
6.6.4 PTS_ReportGenerate..57
6.6.5 PTS_ReportGetProperties ..59
6.6.6 PTS_SnapshotSign ...59

6.7 PTS Configuration Commands ..60
6.7.1 PTS_RegisterRule...60

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page viii of 91
 Public

6.7.2 PTS_UnregisterRule ...62
6.7.3 PTS_ListRules...62
6.7.4 PTS_ConfigurePCR ..63
6.7.5 PTS_RegisterQuoteKey ..63
6.7.6 PTS_UnregisterQuoteKey...64
6.7.7 PTS_ListQuoteKeys ..65
6.7.8 PTS_RegisterSigningKey..65
6.7.9 PTS_UnregisterSigningKey...66
6.7.10 PTS_ListSigningKeys..67
6.7.11 PTS_GetCapabilities ...67
6.7.12 PTS_ListSupportedAlgorithms ..69
6.7.13 PTS_RegisterVerifyKey...70
6.7.14 PTS_UnregisterVerifyKey ...71
6.7.15 PTS_ListVerifyKeys...71
6.7.16 PTS_GetCookie...72

7 Platform Bindings .. 73
7.1 Minimum Platform ..73
7.2 32-Bit Platforms..73
7.3 64-Bit Platforms..73
7.4 Endian-ness ...73
7.5 Named Pipes..73

7.5.1 Windows Platform Configuration Details - Registry Key ...73
7.5.2 UNIX/Linux Platform Configuration Details ...74

8 Security and Privacy Considerations... 76
8.1 Security Considerations ...76
8.2 Privacy Considerations ..76

9 Sequence Diagrams... 77
9.1 Component Scan ...77
9.2 Snapshot Creation ...79
9.3 Report Specification and Generation ...80
9.4 Rule Evaluation ..82
9.5 Snapshot Synchronization ...83
9.6 Example Usage Scenarios...85

10 Usage Scenarios .. 86
10.1 Establishing TNC Subsystem Integrity ..86

10.1.1 Collection...87
10.1.2 Reporting ...88
10.1.3 Evaluation..89
10.1.4 Decision Making ..89
10.1.5 Remediation ..89

10.2 Anti-Virus Integrity Reporting...90
11 References.. 91

Table of Figures

Figure 1 - PTS End-to-End Architecture ...12
Figure 2 - PTS as a Measurement Agent ...12
Figure 3 - PTS Deployment Model..16
Figure 4 - Component Scan Sequence...78
Figure 5 - Snapshot Creation Sequence...79
Figure 6 - Report Generation Sequence...80
Figure 7 - Rule Evaluation Sequence ...82
Figure 8 - Snapshot Synchronization Sequence ..83

Platform Trust Services Interface Specification (IF-PTS)
 TCG Copyright
Specification Version 1.0

Revision 1.0 FINAL Page ix of 91
 Public

Figure 9 - Example Scenarios...85
Figure 10 - EFI BIOS Measurements and Tansitive-Trust..87

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 10 of 91
 Public

1 Scope and Audience
The Infrastructure Working Group (IWG) defines architecture and frameworks for interoperation of
the trusted computing capabilities of platforms and devices useful in improving the security and
assurance of computer systems. Endpoint integrity is critical to network connectivity where an
access control decision is made. The TCG defines architecture and specifications that enable
network operators to enforce endpoint integrity when granting access to a network infrastructure.
The TNC architecture incorporates the IF-PTS interface to leverage Platform Trust Services
(PTS) using TNC Integrity Measurement Collectors (IMC) and other system components that may
be involved whenever an evaluation of endpoint integrity factors into access control decisions.

This specification defines the IF-PTS interface at the protocol data unit (PDU)
level..Interoperability is achieved through compliance with PDU structure definition and proper
message passing semantics.

Architects, designers, developers and technologists who wish to implement, use, or understand
IF-PTS should read this document carefully. Before reading this document, the reader should
review and understand the TNC architecture specification as described in [1], the IWG
Architecture Part II specification and the IWG Integrity Schema family of specification.

1.1 Keywords
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [2].

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 11 of 91
 Public

2 Background

2.1 Purpose of IF-PTS
This document describes and specifies IF-PTS, a critical interface in the Trusted Computing
Group’s Trusted Network Connect (TNC) architecture and part of any other application framework
where establishment of endpoint integrity is needed. IF-PTS can be used by Integrity
Measurement Collectors (IMCs), TNC Client (TNCC) and Network Access Requester (NAR) and
other clients to report on endpoint integrity state.

IF-PTS can be used in several ways to improve trusted computing goals.

• PTS enables platform components to participate in Platform Transitive Trust chains.
• Computation and collection of integrity measurements over TNC and other

application components.
• Formatting of integrity measurements collected by TNC and other applications for

interoperability.
• Client side (local) verification of measurements.

PTS collects the integrity status of TNC components such that unauthorized modification to
component images can be detected. PTS constructs integrity reports and makes them available
to Integrity Measurement Collectors and Verifiers. The integrity state of the TNC framework is
combined with the platform’s pre-existing transitive-trust measurements such that a chain of trust
dependency can be determined and evaluated. Knowledge of TNC subsystem integrity state can
be an important precondition to trusting values reported by individual IMCs. Additional detail of
the features provided by the IF-PTS API is provided in section 2.5.

PTS produces an integrity report data structure1 suitable for use by a verification process running
on a remote system from the same or another vendor.

PTS may be used to evaluate measurements. By applying rules, locally evaluated measurements
can be an effective way to minimize communicating voluminous measurement data over a
network or low bandwidth channel. The result of a PTS applied rule is a new measurement value
that could be reported to a remote verifier (such as an IMV).

PTS facilitates decision making by the TNC system to both improve assurances of a properly
operating TNC and to lower the threshold for interoperation among IMCs and IMVs by
constructing integrity reports using a standardized format.

2.2 Architecture
PTS plays a primary role in the client-side architecture providing access to pre-computed integrity
values, integrity values computed directly by PTS and formatting of integrity values computed (or
provided by) an IMC. PTS may verify integrity values and produce in response, new integrity
values that capture the result of having applied a verification policy.

Additional background related to the Integrity Management and PTS architecture is found in the
IWG Architecture for Interoperability Part II v1.0.

PTS may play a supporting role in the server-side architecture by providing parsing and
verification capabilities as suggested by the dotted box by the IMV in Figure 1. This figure depicts
an end-to-end architecture where collection and verification originate and terminate respectively
with a Platform Trust Service. The Trusted Network Connect (TNC) infrastructure is used to
communicate integrity measurements from one platform to the other. The IMC / IMV pair defines
an application specific protocol for exchanging integrity measurements.

1 TCG Integrity Report Schema Specification v1.0

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 12 of 91
 Public

Figure 1 - PTS End-to-End Architecture

The system architecture for the Platform Trust Service (PTS) is depicted in Figure 2. The PTS
collects measurements from the TNC-Client plus IMCs, Network Access Requestor (NAR) and
possibly other Processes and platform components. PTS Measurements may be stored in an
Integrity Measurement Log where they may be retrieved for later use. The Measurement Log also
contains the platform’s Transitive-trust Chain created by the Root-of-Trust for Measurement
(RTM) and other measurement agents that may have executed prior to PTS execution (See
Figure 10). Transitive trust is a system for loading code into memory in a way that allows multiple
code modules to have cryptographically integrity protected linkages between the loaded code and
security components of the platform. Ideally part of the Trusted OS should compute a
measurement of the PTS and append it to the Transitive-trust chain prior to passing execution to
the PTS.

Figure 2 - PTS as a Measurement Agent

The PTS-IMC is a TNC Integrity Measurement Collector (IMC) that interfaces with the PTS to
obtain and report the Transitive-trust Chain measurements to a PTS-IMV (not shown). The PTS-
IMC and PTS-IMV define a suitable protocol for exchanging and ensuring the integrity of the
measurements collected by the client. It is expected that PTS-IMC, as well as other processes in
system, will use IF-PTS interfaces to interact with the PTS.

Reported measurements are evaluated by a verifier such as a PTS-IMV (Figure 1). A PTS Policy
Server provides rules describing acceptable and/or unacceptable transitive-trust chain
configurations via the IF-PTS interface. Policies provisioned into PTS should be authenticated to
an authorized Policy Server..

PTS can support intermediate verification operations by applying an integrity policy to collected
integrity measurements The result of an intermediate verification is a new integrity measurement
that captures the semantics of the verification result.

The functions defined in this specification are intended for client-side use but may be useful to
server-side verifications, however such use has not been considered in detail at the time of this
writing.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 13 of 91
 Public

The PTS is assumed to be integrity protected by other platform mechanisms including but not
limited to protections provided by the OS kernel, drivers, firmware and hardware.

Objects to be protected from unauthorized modification include the platform’s persistent image of
integrity protected components (configuration data and executables) and in-memory
representation of executing components.

2.3 Requirements of IF-PTS
IF-PTS API must meet the following requirements:

• Meet the needs of the TNC architecture

The API must support all the functions and use cases described in the TNC architecture as
they apply to the relationship between the TNCC, IMC and NAR components.

• Efficient

PTS and IMCs may exchange large messages at times in preparation for establishing a
trusted network connection. IF-PTS should support exchange of large PDUs and/or fast IPC
channel to minimize latency.

If PTS operations take a long time to complete, asynchronous interfaces are used to prevent
the caller from blocking.

• Interoperable

IF-PTS converts internal integrity measurement logs into a standard format defined by an
XML schema to achieve vendor interoperability. IF-PTS protocol data units are defined using
a platform independent PDU format to achieve interoperability between PTS services and
clients from different vendors.

• Extensible

IF-PTS is extensible to allow application specific customization.

• Easy to use and implement

IF-PTS should be easy to use and implement. It should allow implementers to enhance
existing products to support the integrity architecture and integrate legacy code without
requiring substantial changes. It should make operations easy for system administrators and
end-users. Components of the architecture should interoperate with minimal manual
configuration.

• Platform-independence

IF-PTS must be implementable on a wide variety of platforms. At a minimum Windows, Linux
UNIX variants should be supported.

2.4 Interface Assumptions
IF-PTS makes the following assumptions about other components in the system:

• Secure Message Transport

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 14 of 91
 Public

The privacy of PTS supplied integrity data is the responsibility of the caller. For example,
TNC Client and TNC Server are assumed to provide a communications tunnel that supports
confidentiality.

• Reliable Message Delivery

IF-PTS PDUs are communicated over an inter-process communications channel that is a
reliable byte stream.

• PTS Transitive Trust

The PTS is assumed to be trusted by other TNC components (IMCs, TNCC and NAR).

2.5 Features Provided by IF-PTS
This section documents the features provided by IF-PTS.

2.5.1 Integrity Scan of Platform Components
The IF-PTS interface supports PTS as an integrity scan agent for TNC components. It supports
integrity scanning of virtually any process. However, scans of the TNCC, IMC and NAR are
believed to be of particular importance given their role in establishing a trusted network
connection.

The PTS itself SHOULD be integrity scanned by an integrity measurement agent that extends the
transitive trust chain from the platform root of trust for measurement (RTM) to the PTS. IF-PTS
interface MUST NOT prevent a client from retrieving a transitive trust chain that includes
measurements of PTS, if the PTS service was scanned previously.

2.5.2 XML Formatting
IF-PTS implements interfaces for XML encoding of IMC integrity information in an interoperable,
vendor-neutral XML format consistent with TCG defined XML schemas.

2.5.3 Integrity Information Logging
When PTS performs scans of other system components or processes, integrity measurements
are stored in the PTS integrity measurement log. Log contents can be viewed externally in the
form of a snapshot structure. If the PTS implementation makes use of the TPM, PTS MUST
support viewing of PTS log entries in snapshot format.

A PTS client may create, update, delete and prepare integrity logs for transport over a network. A
PTS integrity log may be decomposed into multiple snapshots. Snapshots contain a sequence of
integrity values and a composite hash for calculating an overall integrity value.

Clients of PTS that generate their own integrity measurements can log them using the PTS by
supplying raw measurements as input to IF-PTS and IF-PTS will return them in snapshot format.

When a TPM exists on the platform, the pre-boot integrity log is imported into the PTS integrity
measurement log. The pre-boot log is made available externally using the snapshot format.

2.5.4 Digital Signature
Integrity measurements may be signed using a key supplied by the caller. If a TPM is available on
the platform, the Quoting Key SHOULD be an Attestation Identity Key, which can be used as part
of the Platform Authentication process and the Signing Key SHOULD be certified by an AIK. TPM
attestation identity keys can be used to certify (sign) other signing keys as this provides
attestation that the signing keys, if they are nonmigratable or certified migratable keys, reside in
the certifying TPM.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 15 of 91
 Public

If a TPM is available on the platform, then Integrity Reports MAY include TPM quote function
results.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 16 of 91
 Public

3 IF-PTS Implementation Considerations

3.1 Platform Independence
IF-PTS defines a set of messages (PDUs) that can be exchanged over a variety of IPC
mechanisms. Named-pipes is the minimum to implement.

3.1.1 Representation of Information
3.1.1.1 Structure Endian Conventions
The minimum to implement in support of this specification is big endian format. See section 7.4
for more detail.

3.1.1.2 Byte Packing
All structures MUST be packed on a byte boundary.

3.1.1.3 Lengths
The “Byte” is the unit of length when the length of a parameter is specified.

3.2 PTS Deployment Model
Interoperation with the PTS is achieved through an interface definition (IDL) that defines
messages that may be exchanged with the PTS. Processes interact with PTS over a platform
specific IPC mechanism. Client vendors can interoperate with any vendor’s PTS at the PDU layer
(Figure 3) using the PDU interface over named pipes. If other IPC mechanisms are implemented
the PTS_GetCapabilities interface can be used to discover the other IPC mechanisms. Section 7
contains platform specific details needed to setup the IPC channel for various operating systems.

It may be convenient for multiple IMCs operating in the same process address space to share a
common library (e.g. DLL) for access to PTS capabilities; see IF-PTS API in Figure 3. The IF-PTS
API can be employed in both client and server deployment models, however this specification
does not at this time attempt to define the IF-PTS API. PTS services can be exposed through the
PDU interface.

PTS
System

IF-PTS
PDU

IMC

IPC Interface IPC Interface

Channel

IF-PTS PDU

IMV
PTS

Service

Client Model Server Model

IF-PTS APIIF-PTS API

IF-PTS PDU

Figure 3 - PTS Deployment Model

3.3 Extensibility
To meet the extensibility requirement defined above, the IF-PTS includes extensibility
mechanisms including:

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 17 of 91
 Public

• Interface versioning
• Vendor IDs
• Vendor-specific functions
• XML formatting

3.3.1 Interface Versioning
This document defines version 0 of the IF-PTS API. Future versions may be incompatible due to
removing, adding, or changing functions, types, and constants. However, the PTS_Initialize
function and its associated types and constants will not change so that version incompatibilities
can be detected. A PTS can even support multiple versions of the IF-PTS API for maximum
compatibility. See section 6.3.1 for details.

3.3.2 Vendor IDs
The IF-PTS API supports several forms of vendor extensions. PTS vendors can define vendor-
specific functions and make them available. PTS vendors can define vendor-specific error codes.
And vendors of other TNC components can define vendor-specific message types (for the
messages sent between them).

In each of these cases, SMI Private Enterprise Numbers are used to provide a separate identifier
space for each vendor. IANA provides a registry for SMI Private Enterprise Numbers at
http://www.iana.org/assignments/enterprise-numbers. Any organization (including non-profit
organizations, governmental bodies, etc.) can obtain one of these numbers. Within this
document, SMI Private Enterprise Numbers are known as “vendor IDs”. Vendor ID zero (0) is
reserved for identifiers defined by the TNC. For details of how vendor IDs are used to support
vendor-specific functions, error codes, and message types, see sections 3.3.3, 5.2.3, 6.1 and 6.2.

3.3.3 Vendor-Specific Functions
The IMC and TNC client MAY extend the IF-PTS API by defining vendor-specific functions that go
beyond those described here. A PTS MUST work properly if a vendor-specific function is not
implemented by the other party and MUST ignore vendor-specific functions that it does not
understand.

Vendor-specific functions MUST specify a vendor ID (see 3.3.2) in the request and response
message headers.

The VendorId of zero is used in the normal case for standard ordinals as defined by this
specification.

3.3.4 XML Formatting
IF-PTS formats snapshots and integrity reports based on TCG specified XML schemas. For more
information see:

• IWG Core Integrity Manifest Schema Specification v1.0
• IWG Snapshot Schema Specification v1.0
• IWG Integrity Report Schema Specification v1.0

3.4 Naming Conventions
To avoid name conflicts, all identifiers in the IF-PTS API have a name that begins with “PTS_”.

Functions described in this document that are to be implemented by a PTS have a name that
begins with “PTS_”.

Data structures begin with “PTS_”.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 18 of 91
 Public

3.5 Threading, Reentrancy and Inter-Process Communication
The PTS is required to be reentrant (able to receive and process a function call even when one is
already underway) and should be in a separate process address space from other TNC
components.

TNC components will communicate with the PTS through a local inter-process communications
(IPC) interface. The default IPC mechanism uses named pipes.

3.6 Types of Messages
Commands are passed between the PTS and other system processes using named pipes. Data
structure marshalling is platform specific and therefore intentionally left undefined.

Calling semantics are of two varieties, a request-response or request-response with
asynchronous notification. Request commands consist of a request message containing the
command ordinal and extensible parameter structure. The request command is followed by a
response message flowing in the opposite direction as the request. The response message
contains the command ordinal, return value and extensible parameter structure. Asynchronous
commands contain a command ordinal and extensible parameter structure with no expectation of
an immediate response.

3.7 IPC Resources
Different IPC mechanisms have different conventions for allocating, freeing and recovering IPC
resources. This specification intends for PTS implementations to follow such conventions. For
example, if a PTS or PTS-IMC process abnormally terminates, the IPC resources are returned to
the operating system and PTS / PTS-IMC must recover inconsistent internal state.

Session identifiers negotiated as part of session establishment are temporal. These resources
are discarded upon normal and abnormal session termination.

Cookies, allocated as part of asynchronous command invocation, do not persist outside of the
session context in which the command was issued. Pending asynchronous events and any
associated resources are discarded when the session context is lost. If PTS is holding locks or
other system resources pending delivery of an asynchronous notification, these resources are
returned to the OS.

Handle resources are freed (not guaranteed to be available) immediately following completion of
the final (or terminating) command that used the handle resource and upon termination of the
session.

Only values found in snapshot, RIMM and policy structures (such as UUID and ComponentId) will
persist between sessions, reset and failures.

3.8 Operational Profiles
IF-PTS is a core specification which defines the capabilities that may be offered in a variety of
operational environments. Examples of these environments include a PC client or server where a
TPM may or may not be present, a client or server environment which may or may not have a
Trusted OS, a mobile phone with or without a TPM, or a secure storage device with trusted
computing capabilities. As such, each of these environments will have different security
capabilities and PTS requirements. TCG will address these diverse operating environments with
PTS-specific profiles which define mandatory and optional capabilities for these corresponding
environments.

3.9 TPM PCR Use
When a TPM is present and used as part of the measurement process, PTS requires the use of
one resetable TPM PCR for maintaining the integrity of application measurement. A second PCR,

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 19 of 91
 Public

non-resetable by PTS is needed to contain a measurements of the PTS image that becomes part
of the platform transitive trust chain that is tied to the platform RTM.

If multiple instances of PTS are created, then each MUST use a different resetable TPM PCR. ,
or some mechanism must be provided to ensure that PTS measurements have exclusive use of
the resetable PCR during application measurement. The code that measures PTS images may
extend into a single PCR even when multiple instances of PTS processes are loaded.

IF-PTS RECOMMENDS the use of PCR#22 for measurement of PTS itself. Although PCR#22
SHOULD NOT be resetable, but observe that in the current PC Client Platform Specific
specification it is resetable. PCR#23 is used for measurements taken by PTS and SHOULD be
resetable by PTS. We observe however that it is resetable by non-PTS parties.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 20 of 91
 Public

4 Constant Values
This section describes the constants defined in the abstract IF-PTS API.

4.1 Result Codes
Each function in the IF-PTS API returns an error code of type PTS_Error to indicate success or
reason for failure. Here is the set of standard error codes defined by this specification. Vendor-
specific error codes are always permissible using the vendor ID in the command request /
response structure. Additional standard error codes may be defined subsequent to the publishing
of this specification that would not constitute a change to the negotiated version number at
session initialization. The callers of PTS functions MUST be prepared for any function to return
any error code. Vendor-specific error codes MUST specify a vendor ID in the response message
headers.

If a function returns PTS_FATAL, then the TNC component has encountered an unrecoverable
error. The PTS SHOULD call PTS_ Terminate as soon as possible. The PTS should then take
the appropriate action to reset the platform environment if appropriate.

Code Value

PTS_SUCCESS 0

PTS_FATAL 1

PTS_NOT_INITIALIZED 2

PTS_NO_COMMON_VERSION 3

PTS_UNRECOGNIZED_VENDOR 4

PTS_UNRECOGNIZED_COMMAND 5

PTS_INVALID_COMMAND 6

PTS_INVALID_OPCODE 7

PTS_OPCODE_NOT_DEFINED 8

PTS_COMMAND_NOT_IMPLEMENTED 9

PTS_FEATURE_NOT_IMPLEMENTED 10

PTS_INVALID_SESSION 11

PTS_SESSION_NAME_NOT_FOUND 12

PTS_INVALID_HANDLE 13

PTS_HANDLE_EXIST 14

PTS_PARAMETER_SIZE_MISMATCH 15

PTS_INVALID_TTCHAIN 16

PTS_INVALID_COLLECTOR 17

PTS_UNKNOWN_OWNER 18

PTS_INVALID_PARAMETER 19

PTS_COMPONENT_NOT_FOUND 20

PTS_COMPONENT_REF_EXISTS 21

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 21 of 91
 Public

PTS_REGISTRY_KEY_NOT_FOUND 22

PTS_INVALID_INTERVAL_VALUE 23

PTS_INVALID_ADDRESS 24

PTS_INVALID_SNAPSHOT 25

PTS_SCAN_ABORTED 26

PTS_FILE_SYSTEM_ERROR 27

PTS_SNAPSHOT_NOT_FOUND 28

PTS_DUPLICATE_SNAPSHOT 29

PTS_SNAPSHOT_ACCESS_DENIED 30

PTS_SYNC_SNAPSHOT_NOT_FOUND 31

PTS_INVALID_DESCRIPTOR 32

PTS_REPORT_NOT_FOUND 33

PTS_VERIFY_FAILED 34

PTS_RULE_NOT_FOUND 35

PTS_INVALID_RULE 36

PTS_RULE_NOT_AUTHORIZED 37

PTS_QUOTE_FAILED 38

PTS_SIGN_FAILED 39

PTS_ALREADY_SIGNED 40

PTS_INVALID_PCR_SELECTION 41

PTS_INVALID_KEY 42

PTS_KEY_LENGTH_UNSUPPORTED 43

PTS_CORRUPT_KEY 44

PTS_KEY_NOT_FOUND 45

PTS_UUID_REUSED 46

PTS_INVALID_TPM_LOG 47

PTS_TPM_NOT_FOUND 48

PTS_TPM_OTHER_ERROR 49

PTS_INVALID_XML 50

PTS_INSUFFICIENT_RESOURCES 51

PTS_INVALID_CANONICALIZATION 52

PTS_INVALID_CONFIDENCE 53

PTS_INVALID_PASS_PHRASE 54

PTS_INVALID_FLAGS 55

PTS_DENIED 56

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 22 of 91
 Public

PTS_OS_ERROR 57

PTS_INTERNAL_ERROR 58

PTS_OTHER 59

PTS_DUPLICATE_COOKIE 60

PTS_AUTHENTICATION_FAILURE 61

PTS_INVALID_DIGEST_METHOD 62

4.2 Component Status
This is the set of permissible values for the PTS_ComponentStatus type in this version of the
IF-PTS API.

Component Status Value Value Definition

PTS_COMPONENT_STATUS_INSTALLED 1 A system component (e.g.
TNCC, IMC or other) has been
installed.

PTS_COMPONENT_STATUS_UNINSTALLED 2 A system component has not
been installed successfully.

4.3 PTS Command Ordinals
The PTS uses an IPC style interface where each function consists of a command having both a
request and response message. Input parameters are passed over the request message. Output
parameters including the result code are passed over the response message. Each command
has a unique command ordinal.

Name Value Description

PTS_INITIALIZE 0

PTS_TERMINATE 1

PTS_COMPONENT_SCAN 2

PTS_COMPONENT_SCAN_COMPLETE 3 Asynchronous

PTS_COMPONENT_LOCKED 4

PTS_COMPONENT_UNLOCKED 5 Asynchronous

PTS_SNAPSHOT_SYNC 6

PTS_SNAPSHOT_SYNC_COMPLETE 7 Asynchronous

PTS_SNAPSHOT_VERIFY 8

PTS_SNAPSHOT_SIGN 9

PTS_SNAPSHOT_CREATE 10

PTS_SNAPSHOT_DELETE 11

PTS_SNAPSHOT_IMPORT 12

PTS_SNAPSHOT_EXPORT 13

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 23 of 91
 Public

PTS_SNAPSHOT_GET_PROPERTIES 14

PTS_SNAPSHOT_OPEN 15

PTS_SNAPSHOT_CLOSE 16

PTS_SNAPSHOT_UPDATE_COMPONENTID 17

PTS_SNAPSHOT_UPDATE_SUBCOMPONENTS 18

PTS_SNAPSHOT_UPDATE_ASSERTIONS 19

PTS_SNAPSHOT_UPDATE_INTEGRITY_VALUES 20

PTS_SNAPSHOT_UPDATE_COLLECTOR 21

PTS_REPORT_CREATE 22

PTS_REPORT_DELETE 23

PTS_REPORT_SPECIFY 24

PTS_REPORT_GENERATE 25

PTS_REPORT_GET_PROPERTIES 26

PTS_REPORT_VERIFY 27

PTS_REGISTER_RULE 28

PTS_UNREGISTER_RULE 29

PTS_LIST_RULE 30

PTS_CONFIGURE_PCR 31

PTS_REGISTER_QUOTE_KEY 32

PTS_UNREGISTER_QUOTE_KEY 33

PTS_LIST_QUOTE_KEYS 34

PTS_REGISTER_SIGNING_KEY 35

PTS_UNREGISTER_SIGNING_KEY 36

PTS_LIST_SIGNING_KEYS 37

PTS_GET_CAPABILITIES 38

PTS_LIST_SUPPORTED_ALGORITHMS 39

PTS_REGISTER_VERIFY_KEY 40

PTS_DEREGISTER_VERIFY_KEY 41

PTS_LIST_VERIFY_KEYS 42

PTS_GET_COOKIE 43

4.4 Snapshot Flags
These are bit values that represent the modes in which a snapshot can be opened.

Access Flag Value Description
PTS_ACCESS_WRITE 0x0001 Open for write access

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 24 of 91
 Public

Share Flag Value Description

PTS_EXCLUSIVE 0x0000 access in exclusive mode (no
sharing)

PTS_SHARE 0x0001 Allow others to write.

4.5 Miscellaneous Constants
Constant Definition Value Definition
PTS_VERSION_0 0 The version of IF-PTS API defined

here

MAXINT 0xFFFFFFFF Maximum value for a PTS_UInt32

UUIDSIZE 16 A UUID is a 128 bit object

4.5.1 Version Numbers
As noted in section 3.3.1, this specification defines version 0 of the TNC IF-PTS API. Future
versions of this specification will define other version numbers. See section 6.3.1 for a description
of how version numbers are handled.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 25 of 91
 Public

5 Data Structures
This section describes the data types defined and used in the abstract IF-PTS API.

5.1 Basic Types
These are the basic data types used by the IF-PTS API. They are defined in a platform-
independent and language-independent manner to meet the requirements described in this
section. Consult section 7 to see how these types are defined for a particular platform and
language.

Type Definition

PTS_Byte 8 bit octet

PTS_UInt16 Unsigned integer of 16 bits

PTS_UInt32 Unsigned integer of 32 bits

PTS_UInt64 Unsigned integer of 64 bits

PTS_UINT Interpreted as PTS_UIntX and is specified in
the Platform specific section 7. Unsigned
integer of X bits. (This is used as a last
resort when it isn’t possible to define word
size explicitly).

PTS_Bool Octet sized enumeration where 0=FALSE and
1=TRUE

PTS_VoidPtr Unsigned pointer to void – the size of this
pointer is defined by a platform specific
specification. E.g. on a 16-bit platform, it is
an unsigned integer of 16 bits; on a 32-bit
platform, it is an unsigned integer of 32 bits;
on a 64-bit platform, it is an unsigned integer
of 64 bits.

To declare an array of structures, this document uses the convention of appending brackets “[]” to
a structure. For example, an array of rules is declared as follows: “rules[]”.

5.2 Simple Derived Types
These types are defined in terms of the more basic ones defined in section 5.1 they are described
in the following subsections.

5.2.1 PTS_AlgorithmId
typedef PTS_String PTS_AlgorithmId; // Algorithm URI

PTS_AlgorithmId holds a URI identifying a particular algorithm.

5.2.2 PTS_ComponentStatus
typedef PTS_UInt32 PTS_ComponentStatus;

PTS_ComponentStatus hold a bit flag of component measurement status values.

5.2.3 PTS_Cookie
typedef PTS_UInt64 PTS_Cookie;

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 26 of 91
 Public

A cookie is used by clients to correlate asynchronous function calls.

5.2.4 PTS_Error
typedef PTS_UInt32 PTS_Error;

Each function in the IF-PTS API returns an error code of type PTS_Error to indicate success or
the reason for failure.

Clients MUST be prepared for any function to return vendor specific error codes. The VendorId
must be checked before checking the error code. Vendor-specific error codes are always
permissible and new standard error codes may be defined without changing the version number
of the IF-PTS interface.

5.2.5 PTS_Handle
typedef PTS_UInt64 PTS_Handle;

A handle is used to identify the context for report generation.

5.2.6 PTS_PcrId
typedef PTS_UInt32 PTS_PcrId;

An identifier corresponding to a PCR register.

5.2.7 PTS_SessionName
typedef PTS_String PTS_SessionName;

For each client IPC instance that interacts with the PTS, a unique session is created. The session
name is used by the client to maintain session context with the PTS. Session names are opaque
to the client. Client code MUST NOT anticipate any particular naming convention will be followed.
SessionName is only used for testing uniqueness.

5.2.8 PTS_SnapshotDescriptor
typedef PTS_UInt32 PTS_SnapshotDescriptor;

Descriptor to a snapshot that is open for reading or update. Descriptor values are allocated by
PTS and are opaque to the client.

5.2.9 PTS_SnapshotFlags
typedef struct
{
 PTS_UInt16 access;
 PTS_UInt16 share;
}PTS_SnapshotFlags;

A snapshot can be opened with different modes.

 See Section 4.4 for more description.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 27 of 91
 Public

5.2.10 PTS_SnapshotId
typedef PTS_UUID SnapshotId;

A unique identifier of a snapshot structure.

5.2.11 PTS_UUID
typedef struct {
 PTS_Byte[UUIDSIZE] idVal;
} PTS_UUID;

Description
Name Description

idVal The octets containing a universally unique identifier formatted in
accordance with RFC 4122.

Unique vendor identifiers expressed as a Universal Unique Identifier (UUID) formatted in
accordance with RFC4122. Conversion from UUID string format to UUID binary representation
SHOULD be carried out according to RFC4122.

5.2.12 PTS_VariableLengthDataPtr
typedef struct {

PTS_UInt32 offset;
PTS_UInt32 length;

}PTS_VariableLengthDataPtr;

PTS_VariableLengthDataPtr is a 32-bit offset that points to a buffer containing strings.

5.2.13 PTS_Version
typedef PTS_UInt32 PTS_Version;

The PTS_Version describes the API version. See sections 3.3.1 and 6.3.1.

5.3 Complex Data Types
5.3.1 PTS_AddByCollector
typedef struct {
 PTS_ComponentId collector;
 PTS_UInt32 treeDepth;
} PTS_AddByCollector;

Description
Name Description

collector The snapshot is selected if its collector componentId matches collector.

treeDepth If non-zero, the sub tree for each selected snapshot is included to the
depth specified by treeDepth.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 28 of 91
 Public

A depth of MAXINT will select the entire tree regardless of depth.

This structure is used to add components to an integrity report. Tree depth refers to the number
of layers of sub-components that may be nested under the given snapshot. Refer to the IWG
Reference Architecture Part II and the IWG Core Integrity Manifest Schema specifications for
additional details regarding Snapshot construction and architecture.

5.3.2 PTS_AddByComponent
typedef struct {
 PTS_ComponentId componentId;
 PTS_Bool partialMatchFlag;
 PTS_UInt32 treeDepth;
} PTS_AddByComponent;

Description
Name Description

componentId The component identifier used to locate a snapshot. ComponentId
defined in section 5.3.8.

partialMatchFlag If TRUE, any element/attribute of the componentId that matches
corresponding element/attribute in a collection of snapshots will be
selected. I.e. logical OR is applied to matching fields to select the
snapshot. E.g. if componentId.ModelName=”XYZ” and
componentId.VersionString=”123” and snapshot1.ModelName=”XYZ”
and snapshot1.VersionString=”789”; then snapshot1 will be selected.

 If FALSE, each element in componentId must exactly match
corresponding elements/attributes in a snapshot in order to be selected.
I.e. logical AND is applied to matching fields to select the snapshot. E.g.
if componentId.ModelName=”XYZ” and
componentId.VersionString=”123” and snapshot1.ModelName=”XYZ”
and snapshot1.VersionString=”789”; then snapshot1 will NOT be
selected.

treeDepth If non-zero, the component subtree, identified by componentId will be
used to select snapshots for inclusion in the report. The depth specified
by treeDepth is used to terminate selection of nested sub-components
at treeDepth layer.

A depth of MAXINT will select the entire tree regardless of depth.

This structure is used to add components to an integrity report.

5.3.3 PTS_AddByOwner
typedef struct {
 PTS_UUID ownerId;
 PTS_UInt32 treeDepth;
} PTS_AddbyOwner;

Description
Name Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 29 of 91
 Public

ownerId The snapshot is selected if its owner ID matches ownerId.

treeDepth If non-zero, the subtree for each selected snapshot is included to the
depth specified by treeDepth.

A depth of MAXINT will select the entire tree regardless of depth.

This structure is used to add components to an integrity report.

5.3.4 PTS_AddByPcr
typedef struct {
 PTS_PcrBitmask pcrSelection;
 PTS_UInt32 treeDepth;
} PTS_AddByPcr;

Description
Name Description

pcrSelection The snapshot is selected if it corresponds to a TPM PCR specified in
pcrSelection. PTS_PcrBitmask defined in section 5.3.14.

treeDepth If non-zero, the subtree for each selected snapshot is included to the
depth specified by treeDepth.

A depth of MAXINT will select the entire tree regardless of depth.

This structure is used to add components to an integrity report.

5.3.5 PTS_AddByTrustChain
typedef struct {
 PTS_UInt32 treeDepth;
 PTS_SnapshotId pathTerminator;
} PTS_AddByTrustChain;

Description
Name Description

pathTerminator The snapshotId for the terminating link in a transitive trust chain leading
to the Root-of-trust for Measurement (RTM).

treeDepth If non-zero, the subtree for each snapshot of the transitive trust chain is
included to the depth specified by treeDepth.

A depth of MAXINT will select the entire tree regardless of depth.

This structure is used to add components to an integrity report.

5.3.6 PTS_AssertionsInfo
typedef struct {
 PTS_UInt32 numAssertions; // number of assertions
in the list
 PTS_VariableLengthDataPtr assertionList; // the first assertion in
the list – each assertion is of type PTS_String
 PTS_VariableLengthDataArea assertionData; // variable length data
} PTS_AssertionsInfo;

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 30 of 91
 Public

Description
A list of text blobs containing XML formatted assertions. numAssertions indicates the number of
entries in the assertionsList. The PTS_String structure contains XML formatted assertionInfo.
PTS treats assertionList values as opaque data. The assertionList entries are offsets into
assertionData that contains an array of variable length strings.

PTS copies the assertion text into a snapshot assertionInfo field.

5.3.7 PTS_Capability
typedef struct {
 PTS_UInt32 vendorId;
 PTS_UInt32 commandOrdinal;
 PTS_UInt32 implementationStatus; // feature bitmask
} PTS_Capability;

A tuple identifying a vendorId, a command ordinal and the implementation status for the specified
commandOrdinal.

5.3.8 PTS_ComponentId
typedef struct {
 PTS_VariableLengthDataPtr vendor; // PTS_Vendor: vendor
 or manufacturer
 PTS_VariableLengthDataPtr simpleName; // PTS_String: simple
 name
 PTS_VariableLengthDataPtr modelName; // PTS_String: model
 name
 PTS_VariableLengthDataPtr modelNumber; // PTS_String: model #
 PTS_VariableLengthDataPtr modelSerialNumber;// PTS_String: model
 serial number
 PTS_VariableLengthDataPtr modelSystemClass; // PTS_String: model
 System class
 PTS_Version majorVersion; // PTS_Version: major
 version
 PTS_Version minorVersion; // PTS_Version: minor
 version
 PTS_UInt32 buildNumber; // build or series
 number
 PTS_VariableLengthDataPtr versionString; // PTS_String: string-
 ified version
 PTS_VariableLengthDataPtr patchLevel; // PTS_String: patch
 level
 PTS_VariableLengthDataPtr discretePatches; // PTS_String: white
 space delimited
 discrete patch names
 PTS_DateTime buildDate; // date and time of
 release
 PTS_VariableLengthDataArea dataBlock; // variable length data
} PTS_ComponentId;

Description
The component ID is a collection of attributes that identifies a software or hardware release.
There may be multiple instances of the same component identifier.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 31 of 91
 Public

5.3.9 PTS_DateTime
typedef struct {
 PTS_UInt32 sec; // seconds range: 0-59
 PTS_UInt32 min; // minutes range: 0-59
 PTS_UInt32 hour; // hour range: 0-23
 PTS_UInt32 mday; // day of the month range: 1-31
 PTS_UInt32 mon; // month range: 1-12
 PTS_UInt32 year; // year range: 0-MAXINT
 PTS_UInt32 wday; // day of the week range: 0-6 (0=Sun, 6=Sat)
 PTS_UInt32 yday; // day of the year range: 0-365
 PTS_Bool isDst; // true if daylight savings
} PTS_DateTime;

Description
The date and time expressed in GMT time zone.

5.3.10 PTS_IntegrityReport
typedef struct {
 PTS_UInt32 reportSize;
 PTS_Byte reportData;
} PTS_IntegrityReport;

Description
Structure containing XML formatted snapshots.

5.3.11 PTS_Key
typedef struct {
 PTS_UInt32 keyLength;
 PTS_UUID keyId;
} PTS_Key;

Description
A UUID that identifies a keys held in a key storage token or device (e.g. TPM). PTS_Keys are
used for signing / verifying or encrypting / decrypting (e.g. sealing / binding). A NIL / NULL key
conforms to RFC 4122 definition for “nil” keys (e.g. 00000000-0000-0000-0000-000000000000)

5.3.12 PTS_MemSegment
typedef struct {
 PTS_UINT size;
 PTS_VoidPtr addr;
} PTS_MemSegment;

Description
Name Description

size The size in bytes of a memory segment starting at addr memory
address. Interpreted as UIntX where X is defined in a platform specific
binding.

addr A memory address.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 32 of 91
 Public

The beginning of a memory segment is identified by addr and the size of the memory segment is
contained in size. This structure can be used to identify a memory segment to be scanned.

5.3.13 PTS_MemSegments
typedef struct {
 PTS_UInt32 numSegments; // number of PTS_MemSegment structures
 PTS_UInt64 offset; // VariableLengthDataArea of first structure
 PTS_UInt32 length; // in bytes of all PTS_MemSegment structures
}PTS_MemSegments;

Points to a list of PTS_MemSegment structures contained in a PTS_VariableLengthDataArea.

5.3.14 PTS_PcrBitmask
typedef struct {
 PTS_UInt32 sizeOfSelect;
 PTS_UInt8 pcrSelect[]; //variable length array of octets
} PTS_PcrBitmask;

Description
Name Description

sizeOfSelect The size in bytes of the pcrSelect array

pcrSelect A bitmask of PCR selections where a non-zero bit indicates selection

pcrSelect is a contiguous bit map that shows which PCRs are selected. Each byte is a bitmask
representing 8 PCRs. Byte 0 indicates PCRs 0-7, byte 1 (8-15) and so on.

When an individual bit is 1 the indicated PCR is selected. If 0 the PCR is not selected.

 Byte 0

7 6 5 4 3 2 1 0

 Byte 1

F E D C B A 9 8

 Byte 2

17 16 15 14 13 12 11 10

 Etc…

5.3.15 PTS_ReportProperties
typedef struct {
 PTS_UInt64 size; // in bytes
 PTS_Bool isSigned; // true if digital signature exists
 PTS_Bool isQuoted; // true if TPM Quote exists
 PTS_PcrBitmask pcrs; // pcr(s) used in the integrity report
} PTS_SnapshotProperties;

Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 33 of 91
 Public

This structure contains properties of an integrity report.

5.3.16 PTS_SignerInfo
typedef struct {
 PTS_VariableLengthDataPtr canonicalizationAlg;
 // PTS_AlgorithmId
 PTS_UInt32 confidenceValue;
 PTS_UInt32 confidenceBase;
 PTS_VariableLengthDataPtr confidenceUri;
 PTS_Key signingKey;
 PTS_VariableLengthDataArea data;
} PTS_SignerInfo;

Description
Name Description

canonicalizationAlg Specifies the algorithm in SignerInfo used to remove whitespace prior to
signing.

confidenceValue Confidence level that collected measurements are accurate

confidenceBase Divisor applied to confidenceValue; Must be greater than 0.

confidenceUri URI describing confidence value calculation method

signingKey Reference to the signing key

5.3.17 PTS_SnapshotProperties
typedef struct {
 PTS_UUID owner;
 PTS_UInt64 size; // in bytes
 PTS_Bool isSigned; // true if digital signature exists
 PTS_Bool isSynced; // true if synced to a TPM PCR
 PTS_PcrId syncPCR; // pcr number to which snapshot is synced
} PTS_SnapshotProperties;

Description
This structure contains properties of a snapshot.

5.3.18 PTS_String
typedef struct {
 PTS_UInt32 size;
 PTS_Byte stringData;
} PTS_String;

Description
PTS_String is used for variable length strings that do not contain external pointer references. The
size value indicates the number of UTF8 characters in the stringData. Strings do not require
NULL termination.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 34 of 91
 Public

5.3.19 PTS_ValuesInfo
typedef struct {
 PTS_VariableLengthDataPtr id; // PTS_UInt32
 PTS_VariableLengthDataPtr name; // PTS_String
 PTS_VariableLengthDataPtr objectRef; // PTS_String
 PTS_VariableLengthDataPtr type; // PTS_String
 PTS_VariableLengthDataPtr digestMethod // PTS_AlgorithmId
 PTS_VariableLengthDataPtr transformMethod; // PTS_AlgorithmId
 PTS_VariableLengthDataPtr dataToHash; // PTS_String
 PTS_VariableLengthDataPtr digest; // PTS_String
 PTS_VariableLengthDataArea data;
} PTS_ValuesInfo;

Description
Name Description

id Supplied Identifier for this integrity value – if the value is nil, then no Id
is supplied (Id is an optional input). In the Simple Object Schema, this is
the Object.Id.

name Name of the integrity value – as Name is optional, if it is nil, then the
size will be 0 bytes.

objectRef Reference to the raw data – this is a URI. As ObjectRef is optional, if it
is nil, then the size will be 0 bytes.

type Type of integrity value – As Type is optional, if it is nil, then the size will
be 0 bytes.

digestMethod The URI of the Digest Method. If Data to Hash is used, then this is the
digest method to be used by the TPM to calculate the digest over the
raw data to hash. The caller should call GetCapabilites to ensure a
Digest Method supported by PTS is input.

transformMethod The URI of the Transform Method applied to the data prior to input to
PTS. If nil, then the size will be 0 bytes.

dataToHash The opaque data to hash – if this is not nil, then digest is nil

digest The actual digest value – if this is not nil, then DataToHash is nil

data The data buffer containing packed parameters.

This defines a structure that contains integrity measurements. See also TCG Core Integrity
Schema.

5.3.20 PTS_VariableLengthDataArea
typedef struct {
 PTS_UInt32 blockSize; // size in bytes of dataBlock
 PTS_Byte dataBlock; // blob containing variable length data
} PTS_VariableLengthDataArea;

Description
A variable size block of data in octets.

5.3.21 PTS_Vendor
typedef struct {

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 35 of 91
 Public

 PTS_UInt32 tcgVendorId;
 PTS_UInt32 smiVendorId;
 PTS_UUID vendorGUID; // Vendor supplied UUID
 PTS_String vendorName;
} PTS_Vendor;

Description
Name Description

tcgVendorId Vendor ID supplied by TCG

smiVendorId SMI Private Enterprise Number

vendorGUID UUID that identifies the vendor if the vendor lacks SMI or TCG vendor
IDs

nameLen Length of the vendorName

vendorName Vendor Name string

Unique vendor identifiers

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 36 of 91
 Public

6 Commands
PTS functions are realized as messages communicated over an inter-process communications
channel. Nevertheless a functional definition is provided for clarity and consistency across IPC
mechanisms and marshalling techniques.

6.1 Request Message
All request messages are constructed using a PTS_Message_Request structure. The command
ordinal and size are used to parse the data portion of the message. The ordinal determines which
data type should be used to perform a cast operation over the byte array.

typedef struct {
 PTS_UInt32 vendorId; // SMI Private Enterprise Number
 PTS_UInt32 command; // command ordinal value
 PTS_UInt32 size; // total size of request “data”
 PTS_Byte params; // first byte of the parameter list
}PTS_Message_Request;

Description
Parameter Description

vendorId SMI private enterprise number indicates a vendor specific
extension. Zero (0x0) indicates command ordinals defined by this
specification. This is the PTS VendorId – for vendor-specific
commands.

command Command ordinal for a particular request message. Command
ordinals may be reused in response messages (see 6.2).

size The size in bytes of the remaining message structure.

params The first byte in the remainder of the request message. The
command ordinal indicates which data structures are used to
interpret the remaining bytes and offsets.

6.2 Response Message
Response messages are constructed using a PTS_Message_Response structure. The command
ordinal is the same as that used for the request. Response messages include the result code
resulting from execution of the request. If there is an error in the Response Message, there is no
mechanism for the calling application to communicate the error condition to PTS. The error codes
defined in this generic Response Message apply to all Response Messages and are not explicitly
listed as error codes in the subsequent commands.

typedef struct {
 PTS_UInt32 vendorId; // SMI Private Enterprise Number
 PTS_UInt32 command; // command ordinal value
 PTS_Error errCode; // result code
 PTS_UInt32 size; // total size of response “data”
 PTS_Byte params; // first byte of the parameter list
}PTS_Message_Response;

Description
Parameter Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 37 of 91
 Public

vendorId SMI private enterprise number indicates a vendor specific
extension. Zero (0x0) indicates command ordinals defined by this
specification.

command Command ordinal.

errCode The result code from execution of a previous request.

size The size in bytes of the remaining message structure.

params The first byte in the remainder of the request message. The
command ordinal indicates which data structures are used to
interpret the remaining bytes and offsets.

Result Codes Description

PTS_SUCCESS Success

PTS_OTHER Unspecified non-fatal error

PTS_FATAL Unspecified fatal error

PTS_INVALID_COMMAND Invalid Command Sequence / Illegal Command
State

PTS_COMMAND_NOT_IMPLEMENTED Requested command not implemented

PTS_PARAMETER_SIZE_MISMATCH Parameter size is incorrect

PTS_UNRECOGNIZED_VENDOR Vendor not recognized by PTS

PTS_UNRECOGNIZED_COMMAND Command does not exist

PTS_INVALID_PARAMETER Relating to the Parameter List

PTS_INSUFFICIENT_RESOURCES Insufficient resources to service request

PTS_OS_ERROR Operating system error

Asynchronous response messages are messages created by PTS in response to an earlier
message request that required processing time to complete. In this case PTS responds to the
original message request with an immediate message response, performs any requisite
processing, and then responds with an appropriate asynchronous message response.
Asynchronous response messages are also constructed using a PTS_Message_Response
structure. The command ordinal is not the same as that used in the request, but rather the
command ordinal of the PTS asynchronous command. Asynchronous response messages
include the result code resulting from execution of the asynchronous command request. If there is
an error in the Response Message, there is no mechanism for the calling application to
communicate the error condition to PTS. The error codes defined in this generic Response
Message apply to all Response Messages and are not explicitly listed as error codes in the
subsequent commands.

6.3 PTS Initialization Commands
6.3.1 PTS_Initialize
typedef struct {
 PTS_UUID clientId, // caller supplied owner info

PTS_Version minVersion, // min supported interface
PTS_Version maxVersion // max supported interface

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 38 of 91
 Public

} PTS_Initialize_Request;

typedef struct {

PTS_Version actualVersion, // selected interface version
 PTS_SessionName sessionName // name of this session
} PTS_Initialize_Response;

Description
This function is implemented by the PTS and called by client processes seeking PTS services.

A platform component calls this function to initialize the PTS and agree on the API version
number to be used.

A well-known IPC channel (e.g. named pipe) is used to send the PTS_Initialize command.
Thereafter all other PTS commands will use IPC resources that are associated with a PTS
session identified by sessionName. Unless it is clear from the context of sessionName then the
same IPC mechanism SHOULD be used.

The sessionName SHOULD be used when constructing an IPC channel, for example naming
pipe resources in addition to the default named pipe. The session name is composed of the
clientId and a unique session identifier chosen by the PTS. The algorithm for composing
sessionName is unspecified.

If clientId has already been used to initialize a concurrent session, PTS_Initialize will fail and the
caller should select a different value for clientId.

Input Parameters Description

clientId A caller defined unique identifier (e.g. UUID). PTS
will use clientId to establish a snapshot owner. The
clientId may persist beyond command session
lifetimes and system reset allowing snapshots to be
re-associated with the caller across multiple
command sessions. ClientId = OwnerId

minVersion Minimum version supported by the calling local
process

maxVersion Maximum version supported by the calling local
process

Output Parameters Description

actualVersion Actual version selected by PTS

sessionName A session identifier

Error Codes Condition

PTS_NO_COMMON_VERSION No common IF-PTS API version between PTS and
other TNC components

PTS_NOT_INITIALIZED PTS_Initialize failure

PTS_UUID_REUSED The supplied UUID has already been used to
uniquely identify another PTS structure

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 39 of 91
 Public

6.3.2 PTS_Terminate
typedef struct {
 // the current session
} PTS_Terminate_Request;

Description
This function is implemented by the PTS and is called by a client process.

This function requests the PTS to terminate the current session and to free allocated resources.

Error Codes Condition

PTS_INVALID_SESSION Invalid session ID or session name

6.4 Integrity Measurement and Verification Commands
6.4.1 PTS_ComponentScan
typedef struct {
 PTS_Cookie cookie;
 PTS_VariableLengthDataPtr componentId; //PTS_ComponentId
 PTS_String processName;
 PTS_MemSegments segments;
 PTS_VariableLengthDataPtr componentRegistryPath; //PTS_String
 PTS_UInt32 interval;
 PTS_Uint32 scanDepth;
 PTS_Bool doVerify;
 PTS_Bool includeMeasValues; // if doVerify
 PTS_SnapshotId snapshotId;
 PTS_Uint32 numRules;
 PTS_UUID rules[];
 PTS_VariableLengthDataArea data;
} PTS_ComponentScan_Request;

typedef struct {

PTS_SnapshotId outputSnapshotId;
} PTS_ComponentScan_Response;

Description
This command is implemented by the PTS and is called by the client process.

PTS_ComponentScan can be used to scan software components found on the file system AND
to scan the memory of a component as a running process.

If processName is specified, the component identified by componentId will be scanned in
memory. Memory segments are used to identify specific code segments that are to be scanned.

If componentRegistryKey is specified, the component image on disk is scanned. PTS is expected
to read system registry information to identify and locate images that are included in the scan.
The componentRegistryPath is used to help locate where the component files were installed.

PTS will also use Reference Integrity Measurement Manifest (RIMM) structures to guide the
measurement process and in constructing a list of objects included in scans.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 40 of 91
 Public

The PTS_RegisterRule command may be used to provision PTS with RIMM structures and policy
statements that are applied during a verification check. Identifiers for registered rules are
provided via the command interface to indicate applicable rules.

If the doVerify flag is TRUE. This command will also verify measurements collected by PTS
according to reference measurements contained in RIMM structures.

PTS checks the image using componentId to locate applicable RIMMs.

An integrity check (or verification) differs from an integrity scan in that integrity checking applies
rules that allow PTS to determine whether a computed integrity value is acceptable. The results
of the check in the outputSnapshotId include:

• Scan result (e.g. success / failure)
• Rule or policy that was applied

If a memory image scan is requested, then after responding with a
PTS_ComponentScan_Response message, PTS will subsequently send a
PTS_ComponentScanComplete_Async_Response message after the scan has finished.

If a component disk image scan is requested, then after responding with a
PTS_ComponentScan_Response message, PTS will subsequently send a
PTS_ComponentLocked_Response message and a
PTS_ComponentUnlocked_Async_Response message.

If n in-memory image scan and a component disk image scan are both requested, then after
responding with a PTS_ComponentScan_Response message PTS will subsequently send a
PTS_ComponentScanComplete_Async_Response message, a
PTS_ComponentLocked_Response message and a
PTS_ComponentUnlocked_Async_Response message.

The client application is able to find valid componentIds by referencing RIMM structures or a
configuration database that is RIMM aware.

Input Parameters Description

Cookie A caller supplied cookie for coordination of
component scan context responses

componentId Identifies the component to be scanned

processName Text process identifier that is used to find running
process(es) included in the memory scan

Segments segments are the memory addresses of memory
sections to be scanned. If
MemSegments.NumSegments = 0, no component
memory scan is requested.

componentRegistryPath If non-NULL, componentRegistryPath contains a
registry pathname where objects associated with
ComponentId can be found. This may be a RPM in
Linux or a package database in SysV Unix or a
registry database in Windows.

Interval If non-zero, the scan operation is repeated after
interval seconds has expired. If interval is zero, the
scan is performed once. Otherwise the scan will be
repeated indefinitely as long as the session exists.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 41 of 91
 Public

scanDepth ScanDepth specifies the number of layers of
Components to be traversed in the scan. A
scanDept of zero (0) does not traverse a lower
layer. Lower layer snapshot structures may be
generated as needed to contain scan results. A
scanDepth value of MAXINT will traverse to
component leaf nodes.

doVerify If TRUE, scan results are compared with reference
measurements, contained in RIMM structures
identified by ComponentId, and against XACML
policies. The evaluates reference measurements
and XACML policies referenced by rules. PTS will
include in the snapshot structure AssertionInfo the
result of the verification, scan depth and identify the
RIMM/policy structure that was applied (e.g.
RIMM.xs:ID).

includeMeasValues The includeMeasValues flag is only evaluated if
doVerify is TRUE. If includeMeasValues is TRUE,
include all measurements values in the
outputSnapshotId in addition to the verification
results. If includeMeasValues is FALSE, include the
verification results in the outputSnapshotId, but do
not include the measurement values.

snapshotId Identifies snapshot used to store scan results. PTS
will be the measuring entity. If snapshotId is an
RFC 4122 “nil”, the PTS will create a snapshot
structure. If scanDepth is >0 then sub-components
identified by componentId will be scanned to
scanDepth level of nesting and sub-snapshots will
be generated as needed to contain scan results. If
verification is also performed then the verification
results are captured as snapshot assertions.

rules Identifies a particular reference measurements /
rules to be applied when computing measurements
and verifying them. (e.g. RIMM.xs:ID).

If numRules is 0 and doVerify is TRUE, a best
effort attempt will be made to locate an applicable
rule using ComponentId.

If numRules is 0 and doVerify is FALSE, then no
integrity check is requested.

If numRules is non-zero and doVerify is TRUE,
then only the specified rules are used during
verification.

If numRules is non-zero and doVerify is FALSE,
then rules are ignored.

Output Parameters Description

outputSnapshotId Snapshot ID of the snapshot containing the results
of the measurement process. If the doVerify flag is
TRUE, it contains a record of the verification

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 42 of 91
 Public

actions. The snapshot assertions contain the
results values. The contents schema selected is
PTS implementation specific.

Error Codes Condition

PTS_COMPONENT_NOT_FOUND The component specified by ComponentId or
Registry Key could not be found

PTS_SNAPSHOT_NOT_FOUND A snapshot corresponding to the supplied
snapshotId could not be found

PTS_REGISTRY_KEY_NOT_FOUND Registry objects not found

PTS_FEATURE_NOT_IMPLEMENTED Memory scan not supported

PTS_ILLEGAL_ADDRESS Component address is illegal

PTS_INVALID_INTERVAL_VALUE Interval value not supported

PTS_VERIFY_FAILED If doVerify flag and the measured values differ from
reference measurements.

PTS_RULE_NOT_FOUND The referenced rule or RIMM could not be found

PTS_INVALID_DIGEST_METHOD The digest method used in the RIMM is not
supported

PTS_VERIFY_NOT_SUPPORTED Integrity check functionality is not supported in the
PTS implementation

6.4.2 PTS_ComponentScanComplete
typedef struct {
 PTS_Cookie cookie,

PTS_ComponentStatus componentStatus,
 PTS_SnapshotId snapshotId
} PTS_ComponentScanComplete_Async_Response;

Description
This command is originated by the PTS in response to the client call to PTS_ComponentScan.

This command notifies the completion of a PTS in-memory scan of a component (e.g. IMC,
TNCC etc…). A snapshot structure updated with the scan results is referenced by snapshotId.

This command will be issued following a PTS_ComponentScan.

Output Parameters Description

cookie A cookie to a component scan context

componentStatus The status of the component according to the PTS

snapshotId The snapshot identifier of the scan results

Error Codes Condition

PTS_SCAN_ABORTED Memory scan aborted prior to completion

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 43 of 91
 Public

PTS_SNAPSHOT_NOT_FOUND A snapshot corresponding to the supplied
snapshotId could not be found

PTS_VERIFY_FAILED Scan did not verify against RIMM

PTS_SNAPSHOT_NOT_FOUND Snapshot ID does not exist

6.4.3 PTS_ComponentLocked
typedef struct {

PTS_Cookie cookie
} PTS_ComponentLocked_AsyncResponse;

Description
This command is originated by the PTS in response to the client call to PTS_ComponentScan.

This function notifies the intent of the PTS to do a file scan of a component (see 6.4.1). Files
SHOULD be locked by the PTS prior to performing a file scan operation. The PTS will perform the
scan subsequent to notification of the caller using this function.

Output Parameters Description

cookie A cookie to a file scan context

Error Codes Condition

PTS_SCAN_ABORTED File scan aborted prior to completion

PTS_COMPONENT_NOT_FOUND The component specified by ComponentId could
not be found

PTS_SNAPSHOT_NOT_FOUND A snapshot corresponding to the supplied
snapshotId could not be found

PTS_REGISTRY_KEY_NOT_FOUND Registry objects not found

6.4.4 PTS_ComponentUnlocked
typedef struct {

PTS_Cookie cookie;
PTS_ComponentStatus componentStatus;

 PTS_SnapshotId snapshotId;
} PTS_ComponentUnlocked_Async_Response;

Description
This command is originated by the PTS in response to the client call to PTS_ComponentScan.

This function notifies the completion of a PTS file scan of a component (see 6.4.1). A snapshot
structure, if supplied, is updated with the scan results.

Output Parameters Description

cookie A cookie to a file scan context

componentStatus The status of the component according to the PTS

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 44 of 91
 Public

snapshotId The snapshot identifier of the scan results

Error Codes Condition

PTS_SCAN_ABORTED File scan aborted prior to completion

PTS_VERIFY_FAILED Scan did not verify against RIMM

PTS_SNAPSHOT_NOT_FOUND Snapshot ID does not exist

6.4.5 PTS_SnapshotSync
typedef struct {
 PTS_SnapshotId snapshotId;
} PTS_SnapshotSync_Request;

-Generic Response-

Description
This function synchronizes the snapshot identified by snapshotId with a TPM PCR by calling
TPM_Extend calls. A snapshot containing a history of extended values called a synchronization
snapshot may be created.

This function is invoked by the PTS client.

Input Parameters Description

snapshotId Identifies a snapshot to be synchronized. The snapshot is
extended into a TPM PCR

Error Codes Condition

PTS_INSUFFICIENT_RESOURCES If creating a new sync snapshot – may encounter

PTS_FILE_SYSTEM_ERROR If creating a new sync snapshot – may encounter

PTS_SNAPSHOT_NOT_FOUND Snapshot ID does not exist

6.4.6 PTS_SnapshotSyncComplete
typedef struct {
 PTS_SnapshotId snapshotId;
 PTS_SnapshotId syncId;
} PTS_SnapshotSyncComplete_Async_Response;

Description
This command is originated by the PTS in response to the client call to PTS_SnapshotSync.

This function confirms the synchronization of the snapshot identified by snapshotId. PTS
maintains an internal snapshot structure containing a history of extended values called a synch-
snapshot. The sync-snapshot is identified by syncId.

This function is invoked by the PTS.

Input Parameters Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 45 of 91
 Public

snapshotId Identifies the snapshot synchronized to a TPM
PCR.

syncId Identifies the snapshot consisting of hash results of
other snapshots where these values have been
extended into a TPM PCR.

Error Codes Condition

PTS_INSUFFICIENT_RESOURCES If creating a new sync snapshot – may encounter

PTS_FILE_SYSTEM_ERROR If creating a new sync snapshot – may encounter

PTS_SNAPSHOT_NOT_FOUND Snapshot ID does not exist

PTS_SYNC_SNAPSHOT_NOT_FOUND If PTS doesn’t provide access control to sync
snapshot + lots of other ways to delete it

6.4.7 PTS_SnapshotVerify
typedef struct {
 PTS_SnapshotId snapshot;
 PTS_UInt32 verifyDepth;
 PTS_Bool verboseOutputFlag;
 PTS_UInt32 numRules;
 PTS_UUID rules[];
} PTS_SnapshotVerify_Request;

typedef struct {

PTS_SnapshotId result;
} PTS_SnapshotVerify_Response;

Description
This command is implemented by the PTS and is called by the client process.

The snapshot structure is verified according to the rules specified in rules.

A new snapshot is generated by PTS. The resultant snapshotId is returned in the response
message. If verboseOutputFlag is TRUE, then in addition to the verification results the result
snapshot also includes all values and assertions contained in the input snapshot.

The purpose of this command is to verify a snapshot’s contents against a rule so that the result of
the verify process can be reported rather than the full detail of the original snapshot if
verboseOutputFlag is FALSE.

Input Parameters Description

Snapshot Identifies the layer 0 snapshots to be verified. If
verifyDepth is >0 then lower layer snapshot
structures will be verified accordingly.

verifyDepth Specifies the number of layers of sub-components
to be traversed. A verifyDepth of MAXINT will
traverse to component leaf nodes.

verboseOutputFlag If TRUE, the result snapshot includes all
measurement values and assertions from

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 46 of 91
 Public

contained in the input snapshot in addition to the
verification results populated in AssertionInfo.

If FALSE, the result snapshot only contains the
verification results, but no measurement values or
assertions from the input snapshot.

numRules The number of rule identifiers in rules

Rules Identifies particular reference measurements / rules
to be applied when computing measurements and
verifying them. (e.g. RIMM.xs:ID). If numRules is 0,
a best effort attempt will be made to locate an
applicable RIMM / rule given ComponentId.

Output Parameters Description

Result Snapshot ID of the snapshot containing the results
of the verification actions.

Error Codes Condition

PTS_SNAPSHOT_NOT_FOUND A snapshot corresponding to the supplied
snapshotId could not be found

PTS_VERIFY_FAILED If the measured values differ from reference
measurements.

PTS_RULE_NOT_FOUND The rules could not be found.

PTS_INVALID_RULE Can’t parse or process rule

PTS_RULE_NOT_AUTHORIZED Rule password protected or password not accepted

6.4.8 PTS_ReportVerify
typedef struct {
 PTS_Bool verboseOutputFlag;
 PTS_UInt32 numRules;
 PTS_UUID rules[];
 PTS_IntegrityReport report;
} PTS_ReportVerify_Request;

typedef struct {
PTS_SnapshotId result;

 PTS_Handle handle;
} PTS_ReportVerify_Response;

Description
This command is implemented by the PTS and is called by the client process.

The report structure is verified according to the rules specified in rules.

A new snapshot is generated by PTS. The resultant snapshotId is returned in the response
message. If verboseOutputFlag is TRUE, the snapshot containing the verification results will be

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 47 of 91
 Public

appended to the existing integrity report and assigned a new report identier returned as handle. If
verboseOutputFlag is FALSE, then handle is nil.

Input Parameters Description

verboseOutputFlag If TRUE, the snapshot containing the verification
results is appended to the integrity report identified
by report. A handle to the resulting integrity report
is returned in handle.

If FALSE, the returned handle is nil.

numRules The number of rule identifiers in rules

rules Identifies a particular reference measurement / rule
to be applied when computing measurements and
verifying them. (e.g. RIMM.xs:ID). If numRules is 0,
a best effort attempt will be made to locate an
applicable RIMM / rule given ComponentId.

report Identifies the integrity report to be verified.

Output Parameters Description

result Snapshot Id of the snapshot containing the results
of the verfication actions.

handle If verboseOutputFlag is TRUE, handle references a
new report that contains all of the data of the
original report and the new snapshot containing the
verification results. Handle is nil if
verboseOutputFlag is FALSE.

Error Codes Condition

PTS_VERIFY_FAILED If the measured values differ from reference
measurements.

PTS_RULE_NOT_FOUND The rules could not be found.

PTS_INVALID_RULE Can’t parse or process rule

PTS_RULE_NOT_AUTHORIZED Rule password protected or password not accepted

6.5 Snapshot Creation Commands
Integrity logging and reporting functions render integrity values in a vendor neutral interoperable
format. The format used is specified by the IWG Core Integrity Schema [6].

All functions in this section are implemented by the PTS and called by a local process.

6.5.1 PTS_SnapshotCreate
typedef struct {
 PTS_UUID ownerId;
} PTS_SnapshotCreate_Request;

typedef struct {

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 48 of 91
 Public

 PTS_SnapshotId newSnapshotId;
} PTS_SnapshotCreate_Response;

Description
This function creates a snapshot resource and returns a unique identifier.

Input Parameters Description

ownerId The snapshot owner other than the creator. If
ownerId is Nil, i.e. the UUID 00000000-0000-0000-
0000-000000000000 (see RFC 4122 section 4.1.7),
then the session clientId is used as the snapshot
ownerId. PTS associates ownerId persistently with
the snapshot until the snapshot is deleted.

Output Parameters Description

newSnapshotId The snapshot identifier is generated by PTS. The
identifier is a globally unique UUID.

6.5.2 PTS_SnapshotDelete
typedef struct {
 PTS_SnapshotId snapshotId
} PTS_SnapshotDelete_Request;

-Generic Response-

Description
This function deletes the snapshot record from the PTS integrity log.

Input Parameters Description

snapshotId A snapshot identifier

Error Codes Condition

PTS_SNAPSHOT_NOT_FOUND The identified snapshot cannot be found.

PTS_DENIED The identified snapshot may not be deleted.

6.5.3 PTS_SnapshotImport
typedef struct {
 PTS_UUID ownerId;
 PTS_UInt32 size;
 PTS_Byte snapshotXml;
} PTS_SnapshotImport_Request;

typedef struct {
 PTS_SnapshotId newSnapshotId;
} PTS_SnapshotImport_Response;

Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 49 of 91
 Public

This function imports a snapshot in XML format and returns the snapshot identifier.

The snapshot identifier is taken from the snapshot xs:ID attribute. If there is another snapshot
with the same ID already in PTS an error is returned.

Input Parameters Description

ownerId The snapshot owner other than the creator. If
ownerId is Nil i.e. the UUID 00000000-0000-0000-
0000-000000000000 (see RFC 4122, section
4.1.7), then the session clientId is used as the
snapshot ownerId. PTS associates ownerId
persistently with the snapshot until the snapshot is
deleted.

size Size in bytes of snapshotXML

snapshotXml The snapshot rendered in XML format

Output Parameters Description

newSnapshotId The snapshot identifier is generated by PTS. The
identifier is a globally unique UUID.

Error Codes Condition

PTS_DUPLICATE_SNAPSHOT A snapshot with the same Id already exists in PTS

PTS_UUID_REUSED The supplied UUID has already been used to
uniquely identify another (non-clientId) PTS
structure

PTS_INVALID_XML The supplied XML snapshot is invalid

6.5.4 PTS_SnapshotExport
typedef struct {
 PTS_SnapshotId snapshotId;
} PTS_SnapshotImport_Request;

typedef struct {
 PTS_UInt32 size;
 PTS_Byte snapshotXml;
} PTS_SnapshotImport_Response;

Description
This function exports a copy of the snapshot identified by snapshotId in XML format. An original
copy is retained in PTS.

Input Parameters Description

snapshotId The snapshot identifier is used to lookup the
snapshot.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 50 of 91
 Public

Output Parameters Description

size Size in bytes of snapshotXML

snapshotXml The snapshot rendered in XML format.

Error Codes Condition

PTS_SNAPSHOT_NOT_FOUND The identified snapshot cannot be found

6.5.5 PTS_SnapshotGetProperties
typedef struct {
 PTS_SnapshotId snapshotId;
} PTS_SnapshotGetProperties_Request;

typedef struct {
 PTS_SnapshotProperties properties;
} PTS_SnapshotGetProperties_Response;

Description
This command returns the properties of a snapshot.

Input Parameters Description

snapshotId A snapshot identifier

Output Parameters Description

properties Temporal properties of the snapshot

Error Codes Condition

PTS_SNAPSHOT_NOT_FOUND The identified snapshot cannot be found

6.5.6 PTS_SnapshotOpen
typedef struct {
 PTS_SnapshotFlags flags;
 PTS_SnapshotId snapshotId;
} PTS_SnapshotOpen_Request;

typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
} PTS_SnapshotOpen_Response;

Description
This command prepares as snapshot for update. The PTS allocates a descriptor resource that is
meaningful in the context of the current session and snapshot manipulation commands.
Descriptors are automatically recycled when the session ends.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 51 of 91
 Public

Input Parameters Description

snapshotFlags Specifies the mode of access and sharing

snapshotId A snapshot identifier

Output Parameters Description

snapshotDescriptor Descriptor for accessing a snapshot.

Error Codes Condition

PTS_SNAPSHOT_NOT_FOUND Snapshot ID does not exist

PTS_INVALID_FLAGS Illegal or illogical flag combination.

PTS_SNAPSHOT_ACCESS_DENIED Snapshot not available for requested mode of
access and sharing.

6.5.7 PTS_SnapshotClose
typedef struct {
 PTS_snapshotDescriptor;
} PTS_SnapshotClose_Request;

-Generic Response-

Description
This command closes the snapshot for update.

Input Parameters Description

snapshotDescriptor Descriptor for accessing a snapshot.

Error Codes Condition

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

6.5.8 PTS_SnapshotUpdateComponentId
typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_ComponentId newComponentId;
} PTS_SnapshotUpdateComponentId_Request;

-Generic Response-

Description
This function writes values to the ComponentId element in the snapshot.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 52 of 91
 Public

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

newComponentId ComponentId data that replaces any previous
ComponentId values.

Error Codes Condition

PTS_INVALID_PARAMETER The ComponentId structure in invalid

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

6.5.9 PTS_SnapshotUpdateSubComponents
#define PTS_SN_OPCODE_ADD 0
#define PTS_SN_OPCODE_DEL 1

typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_UInt32 opcode;
 PTS_VariableLengthDataPtr cid; //PTS_ComponentId
 PTS_VariableLengthDataPtr uri; //PTS_String
 PTS_VariableLengthDataArea Data;
} PTS_SnapshotUpdateSubComponents_Request;

-Generic Response-

Description
This function adds or removes entries in the snapshot’s list of subcomponents.

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

opcode If operation is PTS_SN_OPCODE_ADD then cid is
added to the list of snapshot subcomponents. If
PTS_SN_OPCODE_DEL then the matching entry
is deleted.

cid Component ID for a sub-component of this
snapshot.

uri If uri is non-null and operation is
PTS_SN_OPCODE_ADD then the location of the
subcomponent – its URI - is included in the
subcomponent entry.

Error Codes Condition

PTS_INVALID_OPCODE The opcode specified does not support the input
parameters

PTS_OPCODE_NOT_DEFINED The specified opcode is not defined

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 53 of 91
 Public

PTS_INVALID_PARAMETER The ComponentId structure in invalid

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

PTS_COMPONENT_REF_EXISTS The specified component ID already exists. The
previous entry remains unchanged. May be
returned in response to PTS_SN_OPCODE_ADD.

PTS_COMPONENT_NOT_FOUND The specified component ID does not exist. May be
returned in response to PTS_SN_OPCODE_DEL.

6.5.10 PTS_SnapshotUpdateAssertions
typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_AssertionInfo newAssertions;
} PTS_SnapshotUpdateAssertions_Request;

-Generic Response-

Description
This function includes the XML assertions into the Assertions element in the snapshot. The PTS
may incorporate these assertions through schema extension. The assertions are formatted XML
that PTS may parse to locate schemas for constructing the appropriate XML based on extension
of TCG schemas for reporting assertions.

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

newAssertions A list of assertions that replaces any previous list of
assertions. Assertions are expressed in XML

Error Codes Condition

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

PTS_INVALID_PARAMETER The assertions are not expressed in XML

6.5.11 PTS_SnapshotUpdateIntegrityValues
typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_UInt32 numValues;
 PTS_ValuesInfo newValues[];
} PTS_SnapshotUpdateIntegrityValues_Request;

-Generic Response-

Description
This function writes integrity measurement values into the snapshot.

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 54 of 91
 Public

numValues The number of newValues in the array.

newValues A list of integrity measurement values that replaces
any previous list of values. Values are expressed
as message digests or optionally as opaque (I.e.
not interpreted) structures.

Error Codes Condition

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

PTS_INVALID_PARAMETER One or more of the PTS_ValuesInfo parameters is
invalid

6.5.12 PTS_SnapshotUpdateIntegrityValuesXml
typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_UInt32 numValues;
 PTS_String newXmlValues[];
} PTS_SnapshotUpdateIntegrityValuesXml_Request;

-Generic Response-

Description
This function writes XML integrity measurement values into the snapshot.

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

numValues The number of newValues in the array.

newXmlValues A list of XML integrity measurement values that
replaces any previous list of values.

Error Codes Condition

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

PTS_INVALID_PARAMETER One or more of the PTS_ValuesInfo parameters is
invalid

6.5.13 PTS_SnapshotUpdateCollector
typedef struct {
 PTS_SnapshotDescriptor snapshotDescriptor;
 PTS_ComponentId newCollector;
} PTS_SnapshotUpdateCollector_Request;

-Generic Response-

Description
This function writes the collector ComponentId into the snapshot’s Collector element.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 55 of 91
 Public

Input Parameters Description

snapshotDescriptor Descriptor for writing to a snapshot structure

newCollector A ComponentId of the collector

Error Codes Condition

PTS_INVALID_DESCRIPTOR The descriptor does not refer to a valid snapshot

PTS_INVALID_PARAMETER One or more of the Component ID paramters is
invalid

6.6 Reporting Commands
6.6.1 PTS_ReportCreate
- Generic Request -

typedef struct {
 PTS_Handle reportHandle;
} PTS_ReportCreate_Response;

Description
This function creates a context within PTS for an integrity report.

Output Parameters Description

reportHandle A handle used to reference an integrity report
context.

Error Codes Condition

PTS_INVALID_HANDLE Invalid handle

PTS_HANDLE_EXIST Attempt to create context using an existing handle

6.6.2 PTS_ReportDelete
typedef struct {
 PTS_Handle reportHandle;
} PTS_ReportDelete_Request;

- generic response –

Description
This function deletes the integrity report context identified by reportHandle.

Input Parameters Description

reportHandle A handle used to reference an integrity report
context.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 56 of 91
 Public

Error Codes Condition

PTS_REPORT_NOT_FOUND The specified reportHandle does not reference a
valid integrity report.

PTS_DENIED The context idenfied by the handle may not be
deleted

6.6.3 PTS_ReportSpecify
typedef struct (
 PTS_Handle handle;
 PTS_UInt32 flags;
 PTS_UInt32 numComponents;
 PTS_VariableLengthDataPtr componentSelectors[];
 // PTS_AddByComponent
 PTS_AddByTrustChain chainSelector;
 PTS_VariableLengthDataPtr collectorSelector; //PTS_AddByCollector
 PTS_AddByOwner ownerSelector;
 PTS_VariableLengthDataPtr pcrSelector;
 PTS_VariableLengthDataArea data;
} PTS_ReportSpecify_Request;

- generic response –

Description
An integrity report is populated according to the constraints specified. Boolean flags are used to
control the scope of the report. Snapshots are included according to various criteria:

• Component – where the component ID of the subsystem of interest is known
• Component subtree – where the subsystem of interest is comprised of subordinate

components
• Trust Chain – where a component is part of a transitive trust chain
• Collector – where the component that is performing measurement collection is

specified in the snapshot
• Owner – for a report concerning the entity that created snapshots

By specifying the same componentId for each dimension, the intersection of criteria can be
achieved.

By specifying the partialMatch flag in PTS_AddByComponent a componentId, (e.g. where only
VendorId is specified), can be used to select a range of snapshots that have a common
dimension for the report.

Input Parameters Description

handle The handle to a report context.

flags IF bit-0 = TRUE, componentSelectors is evaluated.

IF bit-1 = TRUE, chainSelector is evaluated.

IF bit-2 = TRUE, collectorSelector is evaluated.

IF bit-3 = TRUE, ownerSelector is evaluated.

IF bit-4 = TRUE, pcrSelector is evaluated.

numComponents The number of PTS_AddByComponent structures.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 57 of 91
 Public

componentSelectors Selects snapshots to be included in an integrity
report based on the snapshot ComponentId.

chainSelector Selects snapshots to be included in an integrity
report based on Transitive Trust Chain.

collectorSelector Selects snapshots to be included in an integrity
report based on the component that performed the
measurement and collection operations.

ownerSelector Selects snapshots to be included in an integrity
report based on the snapshot owner. Owner =
ClientId

pcrSelector Selects snapshots to be included in an integrity
report if they correspond to the PCRs indicated in
pcrSelctor

Error Codes Condition

PTS_INVALID_HANDLE Supplied handle does not match internal context

PTS_INVALID_PARAMETER A input parameter is malformed or wrong number
of components

PTS_SNAPSHOT_NOT_FOUND The specified component selector does not match
any snapshot

PTS_INVALID_TTCHAIN The transitive trust chain does not exist or is
malformed

PTS_INVALID_COLLECTOR The specified collector is invalid.

PTS_UNKNOWN_OWNER The no such owner.

PTS_INVALID_PCR_SELECTION The PCR selection does not correspond to physical
PCRs

6.6.4 PTS_ReportGenerate
typedef struct (
 PTS_Handle handle;
 PTS_UInt32 flags;
 PTS_VariableLengthDataPtr pcrs; // PTS_PcrBitmask
 PTS_UInt64 pdpNonce;
 PTS_VariableLengthDataPtr canonicalizationAlg; // PTS_AlgorithmId
 PTS_UInt32 confidenceValue;
 PTS_UInt32 confidenceBase;
 PTS_VariableLengthDataPtr signerInfo; // PTS_SignerInfo
 PTS_Key quoteKey;
 PTS_VariableLengthDataArea data;
} PTS_ReportGenerate_Request;

typedef struct {
 PTS_IntegrityReport xmlReport;
} PTS_ReportGenerate_Response;

Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 58 of 91
 Public

This function renders the integrity report corresponding to that specified by PTS_ReportSpecify
and by pcrs in PTS_ReportGenerate in XML format.

The component signing the report is PTS. The PTS componentId is used to populate the
SigningComponent element in the XML schema.

Input Parameters Description

handle Report handle.

flags

Bit 0: If TRUE, a TPM Quote operation will be
performed using the PCR selection in pcrs.

Bit 1: If TRUE, a TPM Sign operation will be
performed.

pcrs A list of PCR numbers associated with the TPM. IF
pcrs.sizeOfSelect = 0, THEN all snapshots
corresponding to PCR values in pcrs are included
in the report. If FALSE the pcrs parameter is
ignored.

pdpNonce A nonce supplied by the entity receiving this
integrity report. The same nonce is used for both
the Quote and the Signature operations. The
current TPM specification requires 20-byte nonces.
The PTS implementer is responsible for
transforming pdpNonce into the appropriate length
to support TPM structures.

IF pdpNonce is supplied then the report SHOULD
be signed. I.e. flags.Bit-1 SHOULD be TRUE.

signerInfo The key used to sign the report. PTS uses the
signKey to obtain signing algorithm, key size and
other attributes in the report.

IF flags.Bit-1 is FALSE and flags.Bit-0 is TRUE,
THEN signerInfo.signingKey value is ignored.

quoteKey The key used to perform a TPM_Quote operation.

Output Parameters Description

xmlReport All snapshot structures that have been measured
are returned as an XML formatted structure.

Error Codes Condition

PTS_INVALID_HANDLE The report handle is invalid

PTS_TPM_NOT_FOUND If no TPM is installed and doQuote is specified, a
TPM NOT FOUND error is returned.

PTS_INVALID_TPM_LOG The TPM log is unavailable or cannot be converted
to a snapshot structure

PTS_QUOTE_FAILED Quote operation failed

PTS_ALREADY_SIGNED The object to be signed already contains a

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 59 of 91
 Public

signature.

PTS_SIGN_FAILED Signing operation failed

PTS_KEY_NOT_FOUND The desired key could not be found

PTS_TPM_OTHER_ERROR TPM generic failure

PTS_INVALID_CANONICALIZATION The specified canonicalization function is
malformed or cannot be applied.

PTS_INVALID_CONFIDENCE The confidenceBase is zero

6.6.5 PTS_ReportGetProperties
typedef struct {
 PTS_Handle reportHandle;
} PTS_ReportDelete_Request;

typedef struct {
 PTS_reportProperties;
} PTS_ReportGetProperties_Response;

Description
This command returns the properties of a report.

Input Parameters Description

reportHandle A handle used to reference an integrity report
context.

Output Parameters Description

reportProperties Temporal properties of the integrity report

Error Codes Condition

PTS_REPORT_NOT_FOUND The specified reportHandle does not reference a
valid integrity report.

6.6.6 PTS_SnapshotSign
typedef struct {
 PTS_SnapshotId snapshotId;
 PTS_UInt64 pdpNonce;
 PTS_Bool forceSign;
 PTS_SignerInfo signerInfo;
} PTS_SnapshotSign_Request;

-Generic response-

Description
This function digitally signs a snapshot.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 60 of 91
 Public

The component signing the report is PTS. The PTS componentId is used to populate the
SigningComponent element in the XML schema.

PTS_SnapshotSign does not provide a means to specify a Transform Method. PTS will utilize its
default transform method. PTS implementers are free to provide a means to configure the default
signing transform method at installation time or via a vendor-specific extension.

Input Parameters Description

snapshotId Identifies a snapshot

pdpNonce A nonce supplied by the entity receiving this
integrity report. The current TPM specification
requires 20-byte nonces. The PTS implementer is
responsible for transforming pdpNonce into the
appropriate length to support TPM structures.

forceSign Normally the signature operation will fail if the
snapshot is already signed. If forceSign flag is
TRUE, the existing signature is replaced with a new
one.

signerInfo

The key used to sign the snapshot. PTS uses the
signingKey to obtain signing algorithm, key size
and other attributes necessary to populate the
signature elements in the snapshot.

Specifies the algorithm used to remove whitespace
prior to signing XML structures.

Signer’s confidence level that collected
measurements are accurate

Divisor applied to confidenceValue

Error Codes Condition

PTS_INVALID_SNAPSHOT The specified snapshot is malformed

PTS_SNAPSHOT_NOT_FOUND The specified snapshot cannot be located

PTS_ALREADY_SIGNED The object to be signed already contains a
signature.

PTS_SIGN_FAILED Signing operation failed

PTS_KEY_NOT_FOUND The desired signing key could not be found

PTS_INVALID_CANONICALIZATION The specified canonicalization function is
malformed or cannot be applied.

PTS_INVALID_CONFIDENCE The confidenceBase is zero

6.7 PTS Configuration Commands
6.7.1 PTS_RegisterRule
#define ENCODING_UNDEFINED 0
#define ENCODING_XML 1

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 61 of 91
 Public

typedef struct {
 PTS_Key unsealKey;
 PTS_VariableLengthDataPtr passPhrase; // PTS_String passPhrase
 PTS_UInt32 ruleEncoding;
 PTS_VariableLengthDataPtr rule; // PTS_Byte ruleXML
 PTS_VariableLengthDataArea data;
} PTS_RegisterRule_Request;

typedef struct {
 PTS_UUID ruleId;
} PTS_RegisterRule_Response;

Description
This command is implemented by the PTS and is called by a management process.

The caller provisions PTS with a collection of rules that can be used to validate scan results.

If the platform contains a TPM, it is possible that rules have been encrypted using a TPM seal or
bind operation. If sealed a TPM_Unseal / TPM_Unbind must be used to obtain cleartext
representation of the rules. Sealing can ensure that PTS does not perform checks while in an
untrustworthy state.

Rules are expressions that can be used by PTS to verify collected measurements. Typically, rules
are expressed in XML (hence, they are self-describing). TCG Reference Integrity Measurement
Manifest (RIMM) structures may be supplied as rules. A RIMM rule instructs PTS to verify a
snapshot using the RIMM for reference measurements.

More sophisticated rules expressions may be supplied instructing PTS to perform more
sophisticated verification actions. It is anticipated that PTS extensibility features may be needed
to fully apply the dictates of the rule.

It is assumed the unseal / unbind key was created by another process / application.

Input Parameters Description

unsealKey Identifies the key used to unseal/unbind rules for
PTS use. If unsealKey.keyLength is 0, then rules
are in cleartext.

passPhraseSize Length (in bytes) of pass phrase string

passPhrase Passphrase string

ruleEncoding A tag indicating the format in which rules.rule is
encoded.

Rule An XML rule expression. The XML rule MUST
contain a URI.

Data A buffer containing the pass phrase and the rule

Output Parameters Description

ruleId A UUID for the registered rule. (The UUID is
typically obtained from the UUID or xs:ID of an
XML expression.) If the rule is a Reference
Manifest, the ruleID MUST be the Reference
Manifest UUID.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 62 of 91
 Public

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find unseal key

PTS_KEY_LENGTH_UNSUPPORTED Unseal key length not supported

PTS_CORRUPT_KEY Key blob is corrupt

PTS_INVALID_PASS_PHRASE Incorrect unseal key pass phrase

PTS_INVALID_XML Invalid rule encoding, rule not in XML, or rule XML
invalid

PTS_INSUFFICIENT_RESOURCES Not enough memory or persistent storage; or data
structure limitation reached.

6.7.2 PTS_UnregisterRule
 typedef struct {
 PTS_UUID ruleId;
} PTS_UnregisterRule_Request;

- generic response -

Description
This command is implemented by the PTS and is called by a management process.

The rule specified by ruleId is removed from the working set of rules.

Input Parameters Description

ruleId A UUID for the registered rule.

Error Codes Condition

PTS_RULE_NOT_FOUND Rule not found

6.7.3 PTS_ListRules
- generic request -

typedef struct {
 PTS_UInt32 size;
 PTS_Bytes rulesXML; // rules rendered in XML
} PTS_ListRules_Response;

Description
This command is implemented by the PTS and is called by a management process.

The set of all rules currently registered with PTS is output rendered in XML format.

Output Parameters Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 63 of 91
 Public

size Length (in bytes) of rulesXML

rulesXML The currently registered rules rendered in XML
format.

Error Codes Condition

6.7.4 PTS_ConfigurePCR
typedef struct {

PTS_PcrId Pcr;
} PTS_ConfigurePCR_Request;

-Generic Response-
Description:

This command is implemented by the PTS and is called by a management process.

The PTS_ConfigurePCR command is used to choose the PCR that PTS may use.

Input Parameters Description

Pcr The PCR number that PTS may use to extend
snapshot data

Error Codes Condition

PTS_INVALID_PCR_SELECTION Specified PCR already reserved or does not exist

6.7.5 PTS_RegisterQuoteKey
typedef struct {

PTS_Key quoteKey;
 PTS_UInt16 passPhraseSize;
 PTS_Byte passPhrase; // First byte of pass phrase
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value
} PTS_RegisterQuoteKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

The caller provisions PTS with a UUID of a key that will be used for quoting TPM PCRs.

authDataSk is used to access a protected storage system or to access a storage key identified by
storeKey which can be used for integrity protecting the quoteKey. PTS should use the TPM key
storage or TPM Non-Volatile storage capabilities if a TPM is available on the platform.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 64 of 91
 Public

Input Parameters Description

quoteKey.keyLength Length (in bytes) of the key

quoteKey.keyId UUID of the signing key

passPhraseSize Length (in bytes) of the pass phrase string

passPhrase Pass phrase string

storeKey.keyLength Length (in bytes) of the key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find quote key

PTS_KEY_LENGTH_UNSUPPORTED Quote key length not supported

PTS_CORRUPT_KEY Key object is corrupted

PTS_INVALID_PASS_PHRASE Incorrect quote key pass phrase

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

PTS_INSUFFICIENT_RESOURCES Not enough memory or persistent storage; or data
structure limitation reached.

6.7.6 PTS_UnregisterQuoteKey
typedef struct {

PTS_Key quoteKey;
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value
} PTS_UnregisterQuoteKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

The caller specifies a key to be removed from the PTS list of registered quote keys.

Input Parameters Description

quoteKey.keyLength Length (in bytes) of the key

quoteKey.keyId UUID of the signing key

storeKey.keyLength Length (in bytes) of the key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 65 of 91
 Public

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find quote key

PTS_KEY_LENGTH_UNSUPPORTED Quote key length not supported

PTS_CORRUPT_KEY Key object is corrupted

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

6.7.7 PTS_ListQuoteKeys
- generic request -

typedef struct {
 PTS_UInt32 numKeys;
 PTS_Key quoteKeys; // list of registerd keys
} PTS_ListQuoteKeys_Response;

Description
This command is implemented by the PTS and is called by a client.

The set of currently registered quote keys is returned.

Output Parameters Description

numKeys The number of quoteKeys

quoteKeys The currently registered list of quote keys

Error Codes Condition

PTS_CORRUPT_KEY A key object is corrupted

6.7.8 PTS_RegisterSigningKey
typedef struct {

PTS_Key signingKey;
 PTS_UInt16 passPhraseSize;
 PTS_Byte passPhrase; // First byte of pass phrase
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value
} PTS_RegisterSigningKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 66 of 91
 Public

The caller provisions PTS with an ID of a key that will be used by the PTS to sign snapshot
structures that are created and managed by the PTS (e.g. the “sync” snapshot).

authDataSk is used to access a protected storage system or to access a storage key identified by
storeKey which can be used for integrity protecting the signingKey. PTS should use the TPM key
storage or TPM Non-Volatile storage capabilities if a TPM is available on the platform.

Input Parameters Description

Key.keyLength Length (in bytes) of the key

Key.keyId Identifier of the signing key. Contents of which is
implementation specific. Normally this is a UUID.

passPhraseSize Length (in bytes) of pass phrase string

passPhrase Pass phrase string

storeKey.keyLength Length (in bytes) of the key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find signing key

PTS_KEY_LENGTH_UNSUPPORTED Singing key length not supported

PTS_CORRUPT_KEY Key blob is corrupt

PTS_INVALID_PASS_PHRASE Incorrect signing key pass phrase

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

PTS_INSUFFICIENT_RESOURCES Not enough memory or persistent storage; or data
structure limitation reached.

6.7.9 PTS_UnregisterSigningKey
typedef struct {

PTS_Key quoteKey;
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value
} PTS_UnregisterSigningKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

The caller specifies a key to be removed from the PTS list of registered signing keys.

Input Parameters Description

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 67 of 91
 Public

signingKey.keyLength Length (in bytes) of the key

signingKey.keyId UUID of the signing key

storeKey.keyLength Length (in bytes) of the key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find key

PTS_KEY_LENGTH_UNSUPPORTED Key length not supported

PTS_CORRUPT_KEY Key object is corrupted

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

6.7.10 PTS_ListSigningKeys
- generic request -

typedef struct {
 PTS_UInt32 numKeys;
 PTS_Key signingKeys; // list of registerd keys
} PTS_ListSigningKeys_Response;

Description
This command is implemented by the PTS and is called by a client.

The set of currently registered signing keys is returned.

Output Parameters Description

numKeys The number of signingKeys

signingKeys The currently registered list of signing keys

Error Codes Condition

PTS_CORRUPT_KEY A key object is corrupted

6.7.11 PTS_GetCapabilities
typedef struct {
 PTS_UInt32 vendorId;

PTS_UInt32 commandOrdinal;
} PTS_GetCapabilities_Request;

typedef struct {

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 68 of 91
 Public

 PTS_VariableLengthDataArea capabilityList[]; // an array of
 PTS_Capability
} PTS_GetCapabilities_Response;

Description
This function is implemented by the PTS and called by client processes seeking to query the PTS
on supported functionality.

The caller identifies the vendorId and the command ordinal for which implementation status
information is required.

The vendorId 0x00000000 identifies commands specified in this specification.

The vendorId 0xffffffff indicates all vendorIds.

The command ordinal 0xffffffff is used to indicate all commands.

A request with the command ordinal 0xffffffff SHOULD return a list of all commands
supported for the indicated vendorId. A request with the vendorId 0xffffffff and the
commandOrdinal 0xffffffff SHOULD return a list of all commands supported by the PTS
implementation.

The implementationStatus field specifies whether capabilities information exists for the command.
A value of zero indicates that the command identified in the request has not been implemented.
A value of one indicates that the command has been implemented. An implementation may
indicate partial implementation of the command by setting bit 0 to one and setting appropriate bits
in the mask to zero or one. A feature mask is not defined for all commands.

A vendor may indicate lack of support for the PTS_GetCapabilities command by returning the
status result PTS_COMMAND_NOT_IMPLEMENTED.

Name Description

PTS_ComponentScan bit 1: in memory scan support

bit 2: persistent storage (file scan) support

bit 3: verification support

bit 4: interval scanning support

bit 5: depth support

PTS_ReportSpecify bit 1: addByComponent supported

bit 2: addByComponent partial match supported

bit 3: addByTrustchain supported

bit 4: addByCollector supported

bit 5: addByOwner supported

bit 6: addByPCR supported

PTS_GetCapabilities bit 1: Persistent snapshots

bit 2: Persistent reports

bit 3: TPM utilized

bit 4: Report Generation

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 69 of 91
 Public

PTS_ReportGenerate bit 1: sign support

bit 2: TPM quote support

PTS_RegisterRule bit 1: RIMM support

bit 2: non-RIMM rule support

bit 3: seal support

bit 4: pass phrase support

PTS_ConfigureQuoteKey bit 1: pass phrase support

PTS_ConfigureSigningKey bit 1: pass phrase support

Input Parameters Description

vendorId SMI private enterprise number indicates a vendor
specific extension. Zero (0x0) indicates command
ordinals defined by this specification. This is the
PTS VendorId – for vendor-specific commands.

The value 0x00000000 is used to indicate IF-PTS
commands defined in this specification.

The value 0xffffffff is used to indicate all vendorIds.

commandOrdinal Ordinal of the command being queried. If the
ordinal is 0xffffffff, then a list of all of the supported
ordinals SHOULD be returned for the specified
vendorId.

Output Parameters Description

capabilityList An array of PTS_Capability items.. Each Capability
indicates the vendorId, the command ordinal and
the implementation status for the requested
commands.

6.7.12 PTS_ListSupportedAlgorithms
- generic request -

typedef struct {
 PTS_UInt32 cAlgs; // count of supportedAlg returned
 PTS_AlgorithmId algorithms[]; // array of PTS_AlgorithmId
} PTS_ListSupportedAlgorithms_Response

Description
This command is implemented by the PTS and is called by clients seeking to determine the
algorithms supported by a PTS implementation.

The response lists the algorithms supported and currently usable by PTS.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 70 of 91
 Public

Output Parameters Description

cAlgs Number of algorithms supported by the PTS
implementation

algorithms[] An array of PTS_AlgorithmId.

Error Codes Condition

6.7.13 PTS_RegisterVerifyKey
typedef struct {

PTS_Key verifyKey; // verification key
 PTS_UInt32 authSizeVk;
 PTS_Byte authDataVk;
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value
} PTS_RegisterVerifyKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

The caller provisions PTS with an ID of a key that will be used by the PTS to verify signed
objects.

authDataSk is used to access a protected storage system or to access a storage key identified by
storeKey which can be used for integrity protecting the verifyKey. PTS should use the TPM key
storage or TPM Non-Volatile storage capabilities if a TPM is available on the platform.

Verification keys are used by PTS to verify signatures on RIMM structures and policies.

Input Parameters Description

verifyKey.keyLength Length (in bytes) of the key

verifyKey.keyId Identifier of the verify key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeVk Length (in bytes) of authorization data for verifyKey

authDataVk Authorization data for verifyKey

storeKey.keyLength Length (in bytes) of the key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 71 of 91
 Public

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find verify key

PTS_KEY_LENGTH_UNSUPPORTED Singing key length not supported

PTS_CORRUPT_KEY Key blob is corrupt

PTS_INVALID_PASS_PHRASE Invalid pass phrase

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

PTS_INSUFFICIENT_RESOURCES Not enough memory or persistent storage; or data
structure limitation reached.

6.7.14 PTS_UnregisterVerifyKey
typedef struct {

PTS_Key quoteKey;
 PTS_Key storeKey; // storage key
 PTS_UInt32 authSizeSk;
 PTS_Byte authDataSk; // storage auth value

} PTS_UnregisterVerifyKey_Request;

-Generic Response-

Description
This command is implemented by the PTS and is called by a management process.

The caller specifies a key to be removed from the PTS list of registered verification keys.

Input Parameters Description

verifyKey.keyLength Length (in bytes) of the key

verifyKey.keyId UUID of the verify key

storeKey.keyLength Length (in bytes) of the storage key

storeKey.keyId Identifier of the storage key. Contents of which is
implementation specific. Normally this is a UUID.

authSizeSk Length (in bytes) of authorization data

authDataSk Authorization data for accessing storage system

Error Codes Condition

PTS_KEY_NOT_FOUND Unable to find key

PTS_KEY_LENGTH_UNSUPPORTED Key length not supported

PTS_CORRUPT_KEY Key object is corrupted

PTS_AUTHENTICATION_FAILURE Unable to authenticate to key storage device

6.7.15 PTS_ListVerifyKeys
- generic request -

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 72 of 91
 Public

typedef struct {
 PTS_UInt32 numKeys;
 PTS_Key verifyKeys; // list of registerd keys
} PTS_ListVerifyKeys_Response;

Description
This command is implemented by the PTS and is called by a client.

The set of currently registered verification keys is returned.

Output Parameters Description

numKeys The number of verifyKeys

verifyKeys The currently registered list of verification keys

Error Codes Condition

PTS_CORRUPT_KEY A key object is corrupted

6.7.16 PTS_GetCookie
- generic request -

typedef struct {
 PTS_Cookie cookie; // PTS generated cookie value
} PTS_GetCookie_Response

Description
This command is implemented by the PTS and is called by clients to obtain a PTS_Cookie value
that is unlikely to be in use by another session or thread. It is used to coordinate asynchronous
responses to command invocations that support unsolicited command responses.

The client may call this command to be assured that a duplicate cookie value is not already in-
use.

Identical cookie values MAY NOT be reissued within the same session.

Output Parameters Description

cookie A value that is highly unlikely to be in use by
another command (thread)

Error Codes Condition

PTS_DUPLICATE_COOKIE No more cookie values can be supplied for the
current session

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 73 of 91
 Public

7 Platform Bindings
As noted above, IF-PTS is a platform-independent interface. It is designed to support almost any
platform. In order to ensure compatibility within a single platform, this section defines how IF-PTS
is implemented on specific platforms.

7.1 Minimum Platform
This specification and these bindings do not support 16-bit platforms. Only 32-bit and higher
platforms are supported.

7.2 32-Bit Platforms
PTS_UINT MUST be an unsigned integer of 32 bits length; PTS_UINT is assigned to be
PTS_UInt32.

7.3 64-Bit Platforms
PTS_UINT MUST be an unsigned integer of 64 bits length; PTS_UINT is assigned to be
PTS_UInt64.

7.4 Endian-ness
All data structures defined for use with PTS utilize big endian format. Big endian bit ordering
follows the Internet standard and requires that the low-order bit appear to the far right of a word,
buffer, wire format, or other area and the high-order bit appear to the far left.

 PTS vendors have 3 implementation options with respect to endian-ness:

1) PTS utilizes big endian format only. This option is the minimum to implement. This option
is the most simple, but has potential performance considerations on little endian
platforms due to endian conversion.

2) PTS endian-ness is chosen at install time.

3) PTS vendor provides an extension to negotiate endian-ness.

7.5 Named Pipes
7.5.1 Windows Platform Configuration Details - Registry Key
A well-known registry key is used by the PTS to load configuration details. For Windows
platforms, this key is defined within the HKEY_LOCAL_MACHINE hive as follows.

• HKEY_LOCAL_MACHINE

 Software

 Trusted Computing Group

 PTS

 COMMPIPE

 P, 0..n

[HKEY_LOCAL_MACHINE\SOFTWARE\Trusted Computing Group\PTS]

[HKEY_LOCAL_MACHINE\SOFTWARE\Trusted Computing Group\PTS\COMMPIPE]

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 74 of 91
 Public

"P0"="PTS-pipe-P0"

[HKEY_LOCAL_MACHINE\SOFTWARE\Trusted Computing Group\PTS\COMMPIPE\P0]

"pipename"="PTS-pipe-P0"

Each configuration key in PTS\COMMPIPE identifies an instance of PTS. I.e. P0 is the first PTS,
P1 the second, etc.

Then, the actual pipe name (minus \\pipe\) is an attribute in each Pn. Additional attributes could
then be added for each Pn.

Each configuration key contains an (unordered) set of values, as follows:

• the value “Path” is a REG_SZ String which contains the pathname of the component

• the optional value “Description” is a REG_SZ String which contains a vendor-specific human-
readable description of the IMC DLL

The name and description are for ease of administration and may be ignored by PTS, except for
human interface purposes; only the Path data matters. Additional values or keys may be present
within the keys listed above. PTS MUST ignore unrecognized values and keys.

An extension mechanism has been defined so that vendors can place vendor-specific keys or
values in the PTS key or any subkey without risking name collisions. The name of such a vendor-
specific key or value must begin with the vendor ID of the vendor who defined this extension. The
vendor ID must be immediately followed in the name by an underscore which may be followed by
any string.

7.5.2 UNIX/Linux Platform Configuration Details
Implementations of PTS on UNIX and Linux operating systems will need access to configuration
details specifying the location of some data (such as named pipes for communication) and other
details that are not easily specified in a document such as this in a way that will be consistent with
the platform's own rules or administrator's preferences. Any configurable information that the PTS
needs to find should be put into /etc/pts_config.

7.5.2.1 Format of /etc/pts_config
The /etc/pts_config file specifies configurable information that a PTS may need to access. This
file is only required if the PTS needs to access configuration details that are not already known by
other means (hard-coded, command-line arguments, etc).

The /etc/pts_config file is a UTF-8 file. If a PTS encounters a character that is not US-ASCII and
the PTS can not process UTF-8 properly, the PTS SHOULD indicate an error and not load the file
at all. In fact, the PTS SHOULD respond to any problem with the file by indicating an error and
not loading the file at all. All characters specified here are specified in standard Unicode notation
(U+nnnn where nnnn are hexadecimal characters indicating the code points).

The /etc/pts_config file is composed of one or more lines. Each line ends in U+000A. No other
control characters (characters with the Unicode category Cc) are permitted in the file. A line that
begins with U+0023 is a comment. All other characters on the line should be ignored. A line that
does not contain any characters should also be ignored.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 75 of 91
 Public

The /etc/pts_config file MUST not contain more than one attribute with the same human-readable
name. A PTS that encounters such a file SHOULD indicate the error and MAY not load the file at
all.

Here is a specification of the file format using ABNF as defined in RFC 2234 [1]:

pts_config = *line
line = *(comment / empty / pipedef / avpair) CRLF comment = %x23 *(VCHAR / WSP) empty =
""
pipedef = commpipe 1*WSP *WSP value
commpipe = %0x43.4F.4D.4D.50.49.50.45 ; COMMPIPE in caps avpair = name 1*WSP *WSP
value name = *(DIGIT / ALPHA / “-”) value = *(%0x24-7E) ; '$' - '~'

Here is a sample file specifying the “COMMPIPE” value which is defined as /var/tmp/PTS-
pipes/P0:

Simple PTS config file
COMMPIPE /var/tmp/PTS-pipes/P0

7.5.2.2 Required Entries
A PTS configuration file MUST include the “COMMPIPE” attribute and an associated value
appropriate for the platform. The value associated with this attribute may vary depending on the
platform or administrator preferences for that platform.

7.5.2.3 Other Entries
PST implementers MAY choose to support additional attribute-value pairs in the PTS
configuration file. These additional parameters MUST follow the format rules defined above

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 76 of 91
 Public

8 Security and Privacy Considerations

8.1 Security Considerations
IF-PTS defines the interface to a security service, PTS. PTS is used to provide a trust service for
other components. Architectural assumptions for PTS are defined in §6.3 and §6.4 of the TNC
Architecture, ref [1]. The trust service provided by PTS is dependant on a Root-of-Trust
mechanism and a transitive trust mechanism for the platform.

PTS services and functionality is exposed to host processes through the IF-PTS interface. PTS
requirements are documented in §2.3.2 of this document and PTS assumptions are detailed in
§2.4 of this document.

PTS is dependant on the underlying platform-specific IPC mechanism to secure the interface.

If clientId has already been used to initialize a concurrent session, PTS_Initialize will fail and the
caller should select a different value for clientId. It may be possible for a rogue to guess clientId
and sessionName by testing for namespace collisions.

8.2 Privacy Considerations
The TPM supports privacy mechanisms to protect EK (Endorsement) Public keys from disclosure.

The PTS relies on the IMC collecting its information to vet the data collected to determine which
data are disclosed.

In addition, the TPM automatically takes some measurements itself upon initialization without
requests via IF-PTS. These measurements are either built into the PTS implementation and / or
configured by the PTS administrator. The PTS vendor SHOULD state what is measured and
reported automatically by PTS without configuration.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 77 of 91
 Public

9 Sequence Diagrams
The sequence diagrams in this section describe typical usage of PTS interfaces. Sequence
messages are exchanged between the following Objects:

• PTS – Platform Trust Service – a system service that implements PTS functionality.
• PTS-IMC – a process interacts with the PTS service specifically to report

measurements taken directly by PTS.
• IMC – a dynamic library that plugs into the TNC-Client and may interact with the PTS

service.
• Component – a generic process on which PTS computes integrity measurements, but

does not open a session with PTS.
• TPM – Trusted Platform Module – a trusted device that maintains integrity state in a

Platform Configuration Register (PCR) and protects integrity measurements for
remote consumption using digital signatures.

• TNCC -TNC Client – a process that exchanges integrity measurements with a TNC
Server.

• System – the operating system or operating environment.
• PTS Log – a.k.a. Integrity Measurement Log which is the logging mechanism used by

the PTS.
• NAR - Network Access Requestor – a service or driver that maintains a connection to

network access equipment.

9.1 Component Scan
The following sequence diagram assumes a RIMM structure for the component to be measured
has previously been registered with PTS.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 78 of 91
 Public

Figure 4 - Component Scan Sequence

The component scan sequence shows two types of integrity anomaly detection techniques; a
scan of a binary image on disk and a scan of a binary image in memory. Control of the scan
behavior is directed by an IMC process where the target of the scan is a passive participant.

Steps:

a. The IMC opens a session with the PTS.

b. The IMC instructs PTS to perform a scan of a Component in the system.

c. PTS locks the Component binary files on disk to prevent inadvertent update while
the files are scanned. Note: if only a memory scan is performed it is not
necessary.

d. PTS notifies the IMC when files are locked to synchronize IMC actions on the
Component.

e. PTS performs either a disk or memory scan or both as determined by the IMC.
Note: If a scan of the on-disk image fails unexpectedly, it is recommended that
remediation action be taken regardless of a successful memory scan.

f. PTS notifies the IMC when the scan has completed. Note: It is not necessary to
return the PTS_ComponentLocked or PTS_ComponentUnlocked asynchronous
messages if only memory scan is employed.

g. PTS creates a snapshot and updates internal state and log files as needed.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 79 of 91
 Public

h. IMC instructs PTS to protect the integrity of the scan result by extending the hash
of the scan result into a TPM PCR.

i. PTS extends the hash of the scan result into a TPM PCR.

j. PTS removes file locks and notifies the IMC that the component is available for
loading or possible remediation.

k. IMC may issue additional PTS commands or terminate the session.

When doing component scans the PTS must compute measurements that match reference
measurements. PTS may use RIMM structures as a guide to identifying relevant elements and to
identify components using ComponentID. PTS must be able to locate component element
installation locations. The RIMM may provide relative pathnames, but fully qualified pathnames
requires consultation with the system configuration database.

In particular, PTS may be configured to automatically check TNC components upon system
startup. This can be achieved using a variety of vendor specific techniques ranging from vendor
extensions for registering the check or through PTS configuration settings.

9.2 Snapshot Creation

PTS PTS IMCTPM

PTS_SnapshotCreate()

Collect integrity data

PTS_SnapshotUpdateXXX()

PTS_SnapshotOpen()

PTS_SnapshotSign ()

PTS_Terminate()

PTS_Initialize ()

PTS_SnapshotClose()

PTS_Configure_SigningKey()

PTS_SnapshotSyncTPM_Extend

Figure 5 - Snapshot Creation Sequence

Snapshot structures are the building block elements of an Integrity Report. Each component of a
subsystem is described by a snapshot having a component ID corresponding to the component
for which an IMC has collected integrity data. The PTS Client may use PTS to format integrity
data for use by remote entities such as an IMV. PTS may also be used to affix a digital signature
to a snapshot, make a snapshot persistent and to synchronize the snapshot integrity state with a
TPM protected integrity log.

A typical sequence of operations is described in the following steps.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 80 of 91
 Public

Steps:

1) The IMC opens a session with the PTS.

2) At some time prior to the use of PTS_SnapshotSign, a signing key should be
configured into PTS using PTS_Configure_SigningKey.

3) A blank (unpopulated) snapshot structure is created using PTS_SnapshotCreate.
The snapshot is given a unique identifier that disambiguates snapshot instances.

4) The snapshot can be opened for update using PTS_SnapshotOpen. A descriptor
to the snapshot context is returned.

5) An open snapshot descriptor is used to update various elements of a snapshot
using the PTS_SnapshotUpdateXXX interfaces. Several interfaces are defined
for each section of the snapshot.

6) To close the snapshot to updates use PTS_SnapshotClose.

7) A snapshot can be digitally signed using PTS_SnapshotSign. A key supplied by
PTS_Configure_SigningKey is used to add a signature.

8) An existing (closed) snapshot can be synchronized to protect the integrity of the
snapshot by extending the snapshot composite hash into a TPM PCR using
TPM_Extend.

9) PTS Client may issue additional PTS commands or terminate the session.

9.3 Report Specification and Generation

PTS PTS IMCTPM

PTS_ReportCreate() Create snapshots

PTS_ReportGenerate()

PTS_ReportSpecify()

TPM_Quote()

PTS_Terminate()

PTS_Initialize ()

PTS_ReportDelete()

PTS_Configure_SigningKey()

Return report

PTS_Configure_QuoteKey()

Figure 6 - Report Generation Sequence

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 81 of 91
 Public

An integrity report can be generated by PTS containing multiple snapshot structures. TPM
integrity protections may be included also. An integrity report is useful for capturing the integrity
state of more complex structures such as the platform’s transitive trust path, a collection of
related components or a series of measurements taken over a period of time.

A typical sequence of commands follows.

Steps:

1) The PTS Client opens a session with the PTS.

2) PTS_ConfugureSigningKey and PTS_ConfigureQuoteKey are called anytime
prior to PTS_ReportGenerate to configure keys for signing and for TPM quote
commands.

3) Integrity reports primarily consist of snapshots. Therefore, the snapshots
intended for the report must be generated or imported into PTS.

4) PTS_ReportCreate generates an empty report context. A report identifier is used
to refer to the report.

5) The contents of the integrity report are specified using PTS_ReportSpecify. Many
report dimensions are possible.

6) Report contents although marked for inclusion, are not committed to the report
until PTS_ReportGenerate is called.

7) If a TPM is used, the report may include TPM PCR values and TPM applied
digital signature using TPM_Quote command.

8) The signature is applied prior to completing PTS_ReportGenerate computation.
The report is returned to the PTS Client.

9) PTS Client may issue additional PTS commands or terminate the session.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 82 of 91
 Public

9.4 Rule Evaluation

PTS PTS IMC

PTS_ReportVerify() obtain reports

PTS_SnapshotVerify()

PTS_Terminate()

PTS_Initialize ()

PTS_Register_Rule()

Return verify result <snapshot>

Return verify result <snapshot>

obtain snapshots

Figure 7 - Rule Evaluation Sequence

The PTS process can aid in verification of collected measurements if formatted as a snapshot or
integrity report. PTS verification applies a verification policy as specified by rule structures that
are configured into PTS prior to invocation of PTS_ReportVerify or PTS_SnapshotVerify. The rule
provides reference integrity values and other logic necessary to compare a snapshot or integrity
report to expected values.

Verification will generate a new snapshot containing the results of an applied rule. The new
snapshot could be reported in place of an otherwise unevaluated snapshot or report. Verification
by PTS allows larger data sets to be evaluated locally and helps reduce bandwidth requirements
for remote verification.

Steps:

1) The PTS Client opens a session with the PTS.

2) A repository of rules that the PTS may use is configured sometime prior to
PTS_SnapshotVerify or PTS_ReportVerify using PTS_Register_Rule. PTS will
make verification rules persistent for later use. Rules should be cryptographically
bound to the PTS service to prevent rogue insertion of unauthorized rules.

3) Prior to verification, the snapshots to be verified must be available to PTS.

4) Verification operations are applied when PTS_SnapshotVerify is called.

5) Results of the verification are placed into a snapshot that is generated by PTS
and reported in the form of a snapshot.

6) Verification policy is applied when PTS_ReportVerify is called.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 83 of 91
 Public

If the rule is bound or sealed to the PTS, TPM_UnBind or TPM_Unseal is used to
obtain a decryption

7) PTS Client may issue additional PTS commands or terminate the session.

9.5 Snapshot Synchronization

Figure 8 - Snapshot Synchronization Sequence

The PTS service can protect collected measurements using a TPM by extending the composite
hash of a snapshot into a TPM PCR. PTS can coordinate synchronization of multiple snapshots
through a special snapshot known as the sync snapshot. The SyncSnapshot captures a
composite hash of all snapshots that are extended into a TPM PCR.

PTS is responsible for maintaining a persistent log of collected integrity values. The sync-
snapshot can be used to maintain history of TPM PCRs that have been reset.

One possible approach for synchronization of snapshots with a TPM is described below.

Steps:

1) The PTS Client opens a session with the PTS.

2) As a prerequisite, snapshots must be made available to PTS through
PTS_SnapshotCreate or PTS_SnapshotImport.

3) PTS may make snapshots persistent according to internal policy.

4) The PTS Client schedules a snapshot for synchronization through PTS using the
PTS_SnapshotSync command.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 84 of 91
 Public

5) PTS computes a composite hash of a sync-snapshot and includes the snapshot
composite hash supplied by PTS Client.

6) The supplied snapshot composite hash is extended into a TPM PCR such that
the resulting value exactly matches the resultant composite hash of the sync-
snapshot.

7) The sync-snapshot is stored for later use.

8) The PTS Client is notified of the status of synchronization request
asynchronously using PTS_SnapshotSyncComplete.

9) PTS Client may issue additional PTS commands or terminate the session.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 85 of 91
 Public

9.6 Example Usage Scenarios

System IMC NAR

Start PTS Service

PTS startup processing

File scan of TNCC

Start, Re-start TNCC

PTS_Initialize()

Discover IMC

Memory scan of TNCC

Load IMC

{Ring 0}

Discover NAR

File and memory
scans produce

entries in the PTS log.

{Optional}

Setup IPC chanel Setup IPC channel

Memory scan of IMC components requested by IMC

Redo
Periodically

reload / restart NAR

Memory scan of IMC

File scan of IMC requested by TNCC

Redo
PeriodicallySnapshot Synchronization

Snapshot Synchronization

Snapshot Synchronization

PTS

Snapshot Synchronization

Snapshot Synchronization

Memory Scan

PTS_Terminate()

TNCC

PTS_Terminate()

PTS_Initialize()

PTS_Terminate()

PTS_Initialize()

PTS_Terminate()

PTS_Initialize()

Memory scan of NAR by TNCC

File scan of NAR requested by TNCC

Figure 9 - Example Scenarios

The sequence diagram in the above diagram shows several possible scenarios involving PTS. In
this diagram, the “System” entity combines both the TPM and the operating system of the
platform. These entities were combined purely due to lack of space in the diagram and does not
imply any logical or physical combination of the two. The operating system starts the PTS service.
Snapshot synchronization occurs via a call to TPM Extend. These examples are provided as a
reference for typical deployment and usage.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 86 of 91
 Public

10 Usage Scenarios

10.1 Establishing TNC Subsystem Integrity
In this scenario the integrity of the TNC subsystem (IMC, IMV, TNC-Client, TNC-Server and the
PTS itself) are integrity scanned. A subsystem integrity report is prepared by a PTS-specific IMC
hereafter referred to as the PTS-IMC. The integrity report is communicated to a verifier, hereafter
referred to as the PTS-IMV to be evaluated and factored into the network access control decision.

The primary motivation of this use case is to improve the degree of assurance that the TNC
mechanism itself has not been compromised. Compromise of collectors, TNC-Client, network
access components or the PTS itself could cause a network access control decision to be called
into question.

The methodology for determining integrity calls for an initial calculation of a baseline
measurement (cryptographic hash) of TNC subsystem components. The initial calculation is
called the baseline measurement and should be computed by a trusted process (such as a
manufacturers build process). The baseline measurement is stored in a secure location and is
consulted by a verifier such as the PTS-IMV.

One or more integrity measurements of TNC subsystem components are calculated at critical
points during the operation of the subsystem. This scenario identifies three critical points of
operation when an integrity measurement should be calculated. Other points of operation may be
reasonably considered, this usage considers the following:

• Program Load – If a program is modified on disk the change may be considered benign
up to the point that the program code is loaded into memory. Computing a measurement at
load time establishes the integrity of the on-disk image before being subject to threats
associated with the runtime environment.
• Service Invocation – Services typically startup automatically and stay running as long as
the system is up. Clients of the service may want to have the integrity state of the service
calculated prior to using the service. It makes most sense to perform the calculation just prior
to client use to minimize the window between possible compromise and client use.
• IMC Reporting – The point when an IMC is ready to report is the point in which the most
current state may be reported. Collecting subsystem integrity measurements of reporting
IMCs allow a verifier to assess the condition of the reporting infrastructure upon which the
IMC report is prefaced.

Calculation of integrity measurements at the intended point involves some logistics. The
component being scanned must be identified and accessed. The scan result must be stored
and/or prepared for transfer. The platform trust service (PTS) helps with those logistics. The PTS
performs the integrity measurement calculations for executable files on a storage device. A
sequential byte-by-byte digest computation may be sufficient. The PTS may calculate a digest of
program code resident in memory or in paged memory. A naïve hash calculation of a single
monolithic code segment may not be possible in most environments. Typically code relocations
result in many discrete code segments being created out of a single binary image on disk. This
use case presumes memory resident code can be measured, but does not attempt to describe
what might otherwise be considered state-of-the-art consistency checking techniques for
executing code.

The PTS interacts with TNC components as a system service. TNC components can control
when integrity checks are performed on it or other components, but they do give permission to
PTS to perform scanning operations.

Trust of the PTS depends on other integrity protection mechanisms built into the platform. For the
purposes of this use case the PTS anticipates system firmware and or kernel extension exists
that will scan the PTS code. Therefore a “transitive trust” path can be derived from the TPM root-
of-trust-for-measurement and can be included in the PTS-IMC integrity report.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 87 of 91
 Public

The PTS-IMC performs several duties. It retrieves integrity values collected by the PTS. It
assembles evidence of a transitive-trust chain and ensures the evidence is expressed in an
interoperable format. PTS-IMC anticipates the verification steps of a PTS-IMV.

10.1.1 Collection
An objective of collection is to construct a model of the environment in which TNC components
operate. The completeness of the model and the veracity of evidence establish the level of
assurance that may be associated with reports of other IMCs and the level of trust in the channel.

10.1.1.1 Pre-OS Boot
Antecedents of platform integrity may begin before an operating system is loaded and even
before firmware executes. Measurement code that is interwoven into the pre-OS environment can
describe the boot state and store it in registers that are made available after OS initialization. If a
history of pre-OS states cannot be recorded in a log, the measurement values themselves will
become well-known values that are integrated into verification policies.

One important measurement performed during the pre-OS operation is the measurement of the
initial program loader or boot image. This measurement allows a transitive-trust link to be
extended across the pre-OS environment into the OS environment.

10.1.1.1.1 Example of Pre-OS Measurements
Consider an EFI-based personal computer containing a TPM (see Figure 10). There is code in
the BIOS boot block called the Root-of-Trust for Measurement (RTM) that runs before other code.
The RTM uses the TPM to extend a hash of the POST code into a TPM Platform Configuration
Register (PCR). The RTM is trusted code because no other code measures it and execution
begins with the RTM.

Figure 10 - EFI BIOS Measurements and Tansitive-Trust

The RTM computes the hash of the next code to run, POST code and extends a TPM PCR. The
execution thread jumps to the POST code. POST code measures optional ROMs and executes
them. In this example option ROM(3) can be decompressed and measured by another segment
of the option ROM(3). Theoretically, any number of option ROM segments may be
decompressed, measured and executed. Eventually program flow returns to the POST code and
other data such as PCI configuration, CMOS, certificates etc… can be measured. Prior to POST
code completing it measures the Initial Program Loader (IPL), extends a PCR and transfers

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 88 of 91
 Public

execution to the IPL. The IPL determines an appropriate OS to load, measures it, loads it and
then allows the OS code to take control.

A record of the pre-OS boot sequence may be stored in an ACPI table for later review. The PCRs
can be used to validate that a measurement log (in the ACPI table) is consistent. The execution
path (sequence of jumps) is called the transitive-trust chain.

10.1.1.2 Pre-PTS Startup
Prior to the PTS service starting the operating system will have control of system resources
including disk and memory. The PTS service is measured by a trustworthy measurement thread
active in the post-OS environment. This may be a protected system management thread, virtual
machine monitor or other form of isolated execution.

The PTS (drivers and program code) are digested. The digest result along with other identifying
information such as its manufacturer, version and patch level may be extended into a TPM PCR
and accompanying log may be used for verification at a later time. Tampering of the log is
detected by comparing the PCR value to a similar value computed using the log entries. Other
protection mechanisms may be applied but are out of scope for this use case.

10.1.1.3 PTS Operation
The PTS computes measurements for TNC components and records a history of measurements
for later review. The PTS may apply multiple strategies to detect and prevent tampering. Two
techniques for tamper detection are computing a message digest of the program image while on
disk and computing a message digest of the program image after it is loaded into system
memory.

The PTS is responsible for collecting and maintaining measurements for all TNC components.
These include IMCs, TNC-Clients and other components that may play a role in network access
control collection and reporting infrastructure.

The PTS can render measurements into an interoperable format suitable for any IMC / IMV to
consume.

10.1.1.4 PTS-IMC Collection
The PTS-IMC constructs the transitive-trust chain of evidence and reports it to a corresponding
PTS-IMV. The PTS is its primary resource for obtaining the chain of evidence. It may implement
protocols for reporting and synchronizing with an IMV, the collected transitive-trust and TNC
subsystem state information.

10.1.1.5 Collection at the Time-of-Manufacture
Some attributes of the platform cannot be collected directly from the platform. For example,
knowledge that a motherboard may support memory, disk or CPU virtualization may not be
assessed directly from a platform. Furthermore, quality measures intrinsic to a manufacturing
process are not directly observable. For this class of information an out-of-band collection facility
is employed. Out-of-band implies an alternate infrastructure (other than that provided by TNC
defined components) is needed. These measurements are made available to the PTS-IMV
through a PTS-IMV backend service.

10.1.2 Reporting
The PTS-IMC and PTS-IMV cooperate in the execution of protocols for requesting and reporting
measurements. Protocols may range in complexity and may be vendor specific or standard. In
this usage a protocol that reports the transitive trust chain is assumed. The PTS-IMV may request
the PTS-IMC to send the transitive-trust chain of elements in a single message or may
incrementally request the elements. The PTS-IMC may supply the transitive-trust chain without
solicitation from the PTS-IMV.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 89 of 91
 Public

10.1.2.1 Followup Reports
The PTS-IMV and PTS-IMC may further define a protocol that authenticates PTS-IMC messages.
This protocol is targeted for use as a “watch-dog” process that alerts the PTS-IMV of
configuration change without reporting significant details about the transitive-trust chain.

10.1.3 Evaluation
The PTS-IMV evaluates messages sent by PTS-IMC. PTS-IMV also receives measurements
from one or more services in the network or Internet regarding assertions of integrity or quality
that are not observed by the PTS or some other agent on the client platform.

The PTS-IMV also receives policy statements from the network administrator. The policy
describes acceptable and unacceptable transitive-trust configurations. The policies may be
expressed in proprietary formats or in industry accepted formats such as XACML2, SAML3 or
XRML4.

If a watch-dog protocol is used, the PTS-IMV evaluates the result by verifying watch-dog packets
in accordance with the decryption keys and expected values.

A determination is made recommending a course of action. Possible actions may be deny
access, allow access or allow access with restrictions. In the case of denied access or in the case
of allowed access with restrictions, it may be appropriate to recommend a remediation action. In
the case of any result to allow, a weighted value may be included that indicates non-binary
confidence of operational consistency of the client platform.

The evaluation results are communicated to the TNC-Server or alternate for further evaluation.

10.1.4 Decision Making
Decision making follows the model established by IF-IMV and IF-TNCCS. The PTS-IMV provides
its evaluation result (along with all other IMVs) to the TNC-Server (or appropriate other decision
making service) to be factored together to arrive at a singular decision. The decision could be to
allow access, deny access or allow access with restrictions.

10.1.5 Remediation
In cases where the PTS-IMV recommends a remediation action, the PTS-IMC responds by
starting a remediation protocol with an appropriate service. Examples of possible remediation
actions for PTS-IMC include the following:

• Registration of a public key used to authenticate measurement reports
• Registration with local services, drivers or subsystems upon which the PTS depends for

its position in the transitive-trust chain
• Update of PTS or PTS-IMC binaries and configuration files
• Update of any measurement agent in the transitive-trust chain
• Update of policies used in the formation of a watch-dog event
• Download of credentials or other out-of-band measurements for inclusion in PTS reports

The PTS-IMC may solicit the aid of the PTS or other platform services to perform remediation
actions. If remediation support exists in the PTS-IMV and restrictions of the underlying network
access control channel permit; the PTS-IMC may engage in a remediation protocols with PTS-
IMV.

2 http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
3 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20
4 http://www.xrml.org/

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 90 of 91
 Public

10.2 Anti-Virus Integrity Reporting
This scenario follows a collection process performed by an "AV-IMC" that collects details about
an AV engine and its attributes. The AV-IMC interacts with the PTS service to render the AV
integrity values in an interoperable format and to save the collected values in a log. The log is
protected from tampering using the TPM. The "AV-IMC" interacts with an AV-IMV (through the
TNCC/TNCS) who evaluates the collected values and makes an access control recommendation.
It may be necessary for the AV-IMV to consult a server-side PTS service that parses formatted
integrity values.

Platform Trust Services Interface Specification (IF-PTS) TCG Copyrig
Specification Version 1.0

Revision 1.0 FINAL Page 91 of 91
 Public

11 References
[1] Trusted Computing Group, TNC Architecture for Interoperability, Specification Version

1.1, Revision 1.0, April 2006.

[2] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, Internet
Engineering Task Force RFC 2119, March 1997.

[3] ISO, ISO/IEC 9899:1999, Programming Languages – C, 1999.

[4] XML Schema Specification, http://www.w3.org/XML/Schema.

[5] Crocker, D., P. Overell, “Augmented BNF for Syntax Specifications: ABNF”, Internet
Engineering Task Force RFC 2234, November 1997.

[6] Trusted Computing Group, IWG Core Integrity Manifest Schema Specification v1.0, 2006.

