

TCG

TCG Storage Architecture
Core Specification

Specification Version 1.0
Revision 0.9 – draft –
May 24, 2007
Draft

Work In Progress
This document is an intermediate draft for comment only and is subject to
change without notice. Readers should not design products based on this
document.

Copyright © TCG 2007

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page ii of 265

Copyright © 2003-2007 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual
property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page iii of 265

Revision History
a Added Sections R. Thibadeau
b 8/25/04 Extensive Edits R. Thibadeau
c 8/31/2004 Lot of changes, particularly types J. Nestor
d 9/7/04 Added more explanation of SPs R. Thibadeau
e 9/16/04 Changed Intro, included example R Thibadeau
f-g 8/5/05 Numerous Edits, Filled out ACL Section R. Thibadeau, D. Philips, J. Cox
h 8/31/05 More ACL Section work R. Thibadeau, D. Philips, J. Cox
j 9/8/05 Slight ACL update, Session update R. Thibadeau, D. Philips, J. Cox
J 9/9/05 Secure Messaging R. Thibadeau, D. Philips, J. Cox
k-l 9/12/05 Misc. cleanup R. Thibadeau, D. Philips, J. Cox
m 9/14/05 Secure Messaging diagrams and cleanup. R. Thibadeau, D. Philips, J. Cox
n 9/22/05 Additional Secure Messaging diagrams. R. Thibadeau, D. Philips, J. Cox
o-q 10/11/05 Addt’l. core spec details & org. changes. R. Thibadeau, D. Philips, J. Cox
p 10-18-05 More small edits for clarity R. Thibadeau
r-s 11/04/05 Changes from October Orlando F2F R. Thibadeau, D. Philips, J. Cox
t 11/xx/05 Changes from post F2F conference calls R. Thibadeau, D. Philips, J. Cox
u-v 11/23/05 Changes from Working Group Core

Comments, and cleanup of text, small edits, etc.
R. Thibadeau, D. Philips, J. Cox

w 12/12/05 Removed SP->SP method calls, clarified
logging during a read session, etc., some updates
from the SF F2F in Dec ‘05

R. Thibadeau, D. Philips, J. Cox

0.2a-b 12/22/05 Moved up to 0.2 as we’re adding fewer
and fewer new issues.

R. Thibadeau, D. Philips, J. Cox

0.2c-d 1/5/06 Added Life Cycle (Section 10) R. Thibadeau
0.2e-i Numerous clarifying changes as per TCG comments R. Thibadeau, D. Philips, J. Cox
0.3 Numerous clarifying changes as per TCG

comments, updated EC tables, added curve choices
R. Thibadeau, D. Philips, J. Cox, D. Brown

0.4 4/7/06 Major Format & Section Changes.
Added Registry & Locking SP sections

D. Ybarra

0.5 Numerous small edits filling in gaps left in reformat R. Thibadeau
0.6 Fixed numerous doc bugs, added section on

ECMQV
J. Cox, D. Brown

0.7 Many changes, doc bug fixes, clarifications, and
updates based on WG comments and Triage

J. Cox

0.9 Significant modifications based on SWG document
review, multiple proposal submissions, etc. in
preparation for SWG vote

J. Cox and the rest of the SWG

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page iv of 265

TABLE OF CONTENTS

1 INTRODUCTION... 17
1.1 Scope and Audience..17
1.2 Key Words...17
1.3 References ..17
1.4 Terminology..18

1.4.1 Global Terminology...18

2 TRUSTED STORAGE DEVICE ARCHITECTURE ... 21
2.1 Trusted Storage Device Architecture Overview..21
2.2 Core Architecture Components..21

2.2.1 Multicomponent Trusted Platform (MCTP) ...21
2.2.2 Host...21

2.2.2.1 Host Applications (APPs) and Component Authentication Administrator (CAA)...............22
2.2.3 Trusted Peripheral (TPer) ...22

2.2.3.1 Security Providers (SP) ...22
2.3 Core Architecture Operations...23

2.3.1 Host <–> TPer Communication Infrastructure ..23
2.3.2 SP Issuance & Personalization Overview...24
2.3.3 Security Subsystem Classes Overview ..24

3 CORE ARCHITECTURE ELEMENTS .. 25
3.1 Core Architecture Elements Overview...25
3.2 Data Structure Descriptions..25

3.2.1 Document Data Formats...25
3.2.1.1 Tables – Example ..25
3.2.1.2 Methods – Example ...25

3.2.2 Data Types..25
3.2.2.1 Pseudo-code (Expository) ...26
3.2.2.2 Messaging Data Types ..26
3.2.2.3 Method Parameter/Column Value Typing and Encoding ..26

3.2.3 Stream Encoding...27
3.2.3.1 Data Types...27
3.2.3.2 Tokens ...28
3.2.3.3 Method Calls ..33
3.2.3.4 ComPackets, Packets & Subpackets ..37
3.2.3.5 Secure Messaging ...41
3.2.3.6 Method Invocation – Result Retrieval Protocol..43

3.2.4 Templates ...43
3.2.5 Tables - Details ...43

3.2.5.1 Kinds of Tables ..44
3.2.5.2 Objects...44
3.2.5.3 Unique Identifiers (UIDs) ...44

3.2.6 Common Methods...45
3.2.7 SP Tables & Method Summary...45

3.3 Interface Communications ..50
3.3.1 Communicating With the TPer Through the Interface Protocol ..50
3.3.2 The ComID..51
3.3.3 ComID Management...55

3.3.3.1 Extended ComID ...56

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page v of 265

3.3.4 Sessions..57
3.3.4.1 Regular Sessions...57
3.3.4.2 Control Sessions..57

3.3.5 Protocol Layers ...57
3.3.5.1 Transport Layer ...59
3.3.5.2 Interface Layer...59
3.3.5.3 TPer Layer ...59
3.3.5.4 Communication Layer..60
3.3.5.5 Communication Layer Protocol..60
3.3.5.6 Management Layer..62
3.3.5.7 Session Layer ..63

3.4 SP Operation Descriptions..63
3.4.1 General SP Guidelines ...63
3.4.2 Access Control ..63
3.4.3 SP Issuance, Personalization, and Operational State ..65

3.4.3.1 Example – Issuing an SP...66
3.4.4 Sessions, Methods, and Transactions..66

3.4.4.1 Method Calls ..67
3.4.4.2 Transactions ..67
3.4.4.3 Session Manager Protocol Layer...68
3.4.4.4 Ending Sessions ..68
3.4.4.5 Starting Sessions...69
3.4.4.6 Session Timeouts ..70
3.4.4.7 Signed Hashing During Session Startup ...71

3.4.5 Session Examples...71
3.4.5.1 No Authority Example ..72
3.4.5.2 Password Example ..72
3.4.5.3 Full Host & SP Session Key Example ...73
3.4.5.4 Host Public Key Authentication Example ..74
3.4.5.5 Full Public/Symmetric Key Examples ..75

3.4.6 Stream Flow Control: Host & TPer..77
3.4.6.1 Transmission Acknowledgement...78
3.4.6.2 Transmission Negative Acknowledgement..78
3.4.6.3 Transmission Timeouts..78
3.4.6.4 Buffer Management ...79
3.4.6.5 Closing a Session ..79

4 LIFE CYCLE OF SPS ... 81
4.1 Life Cycle of SPs Overview ...81
4.2 Life Cycle States...81
4.3 Defined Authorities ..87
4.4 State Behaviors ..88

4.4.1 Access Control ..88
4.4.2 Issued..88
4.4.3 Issued-Disabled ..88
4.4.4 Issued-Frozen ...88
4.4.5 Issued-Disabled-Frozen..89
4.4.6 Manufacturing ...89
4.4.7 Manufacturing-Disabled ..89
4.4.8 Manufacturing-Frozen...89
4.4.9 Manufacturing-Disabled-Frozen..89
4.4.10 Failed ..89
4.4.11 Miscellaneous ...89

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page vi of 265

5 SP REFERENCE .. 90
5.1 SP Globals ..90

5.1.1 Variable Types Overview ..90
5.1.2 Variable Types ..91
5.1.3 SP Method Status Codes..111

5.1.3.1 SUCCESS..112
5.1.3.2 NOT_AUTHORIZED..112
5.1.3.3 READ_ONLY ...112
5.1.3.4 SP_BUSY ..112
5.1.3.5 SP_FAILED..112
5.1.3.6 SP_DISABLED ..112
5.1.3.7 SP_FROZEN ...112
5.1.3.8 NO_SESSIONS_AVAILABLE..112
5.1.3.9 INDEX_CONFLICT..112
5.1.3.10 INSUFFICIENT_SPACE..113
5.1.3.11 INSUFFICIENT_ROWS...113
5.1.3.12 INVALID_COMMAND..113
5.1.3.13 INVALID_PARAMETER ..113
5.1.3.14 INVALID_REFERENCE...113
5.1.3.15 INVALID_SECMSG_PROPERTIES..113
5.1.3.16 TPER_MALFUNCTION ...113
5.1.3.17 TRANSACTION_FAILURE..113
5.1.3.18 RESPONSE_OVERFLOW ..113

5.2 Session Manager Methods..114
5.2.1 Overview ...114
5.2.2 TPer Properties Method..114

5.2.2.1 Properties (Method) ...114
5.2.3 Session Startup Methods..116

5.2.3.1 StartSession/SyncSession Methods..116
5.2.3.2 StartTrustedSession/SyncTrustedSession Methods ...118
5.2.3.3 CloseSession Method..119

5.3 Base Template ..119
5.3.1 Overview ...119

5.3.1.1 Base Template Tables and Methods Overview...119
5.3.2 Data Structures ...119

5.3.2.1 General Metadata Group - SPInfo (Array Table)...119
5.3.2.2 General Metadata Group - SPTemplates (Array Table)..120
5.3.2.3 Table and Method Metadata Group - Table (Object Table) ..121
5.3.2.4 Table and Method Metadata Group - Column (Array Table)...122
5.3.2.5 Table and Method Metadata Group - Type (Object Table) ...122
5.3.2.6 Table and Method Metadata Group - MethodID (Array Table)..123
5.3.2.7 Table and Method Metadata Group - Method (Array Table) ...124
5.3.2.8 Access Control Metadata Group - ACE (Object Table) ...126
5.3.2.9 Access Control Metadata Group - Authority (Object Table) ..127
5.3.2.10 Access Control Metadata Group - Certificates (Object Table) ..130
5.3.2.11 Credential Table Group - C_PIN (Object Table)..131
5.3.2.12 Credential Table Group - C_RSA_1024 (Object Table) ..132
5.3.2.13 Credential Table Group - C_RSA_2048 (Object Table) ..132
5.3.2.14 Credential Table Group - C_AES_128 (Object Table) ..133
5.3.2.15 Credential Table Group - C_AES_256 (Object Table) ..134
5.3.2.16 Credential Table Group - C_EC_160 (Object Table)...135
5.3.2.17 Credential Table Group - C_EC_192 (Object Table)...136
5.3.2.18 Credential Table Group - C_EC_224 (Object Table)...137
5.3.2.19 Credential Table Group - C_EC_256 (Object Table)...138
5.3.2.20 Credential Table Group - C_EC_384 (Object Table)...139
5.3.2.21 Credential Table Group - C_EC_521 (Object Table)...140

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page vii of 265

5.3.2.22 Credential Table Group - C_EC_163 (Object Table)...141
5.3.2.23 Credential Table Group - C_EC_233 (Object Table)...143
5.3.2.24 Credential Table Group - C_EC_283 (Object Table)...144
5.3.2.25 Credential Table Group – C_HMAC_160 (Object Table) ..145
5.3.2.26 Credential Table Group – C_HMAC_256 (Object Table) ..145
5.3.2.27 Credential Table Group – C_HMAC_384 (Object Table) ..146
5.3.2.28 Credential Table Group – C_HMAC_512 (Object Table) ..146

5.3.3 Methods ..146
5.3.3.1 SP Method Group - DeleteSP (Method) ..147
5.3.3.2 Basic Table Method Group - CreateTable (SP Method) ...147
5.3.3.3 Basic Table Method Group - Delete (Object Method) ...148
5.3.3.4 Basic Table Method Group - CreateRow (Table Method) ...148
5.3.3.5 Basic Table Method Group - DeleteRow (Table Method) ...149
5.3.3.6 Basic Table Method Group - Get (Table and Object Method)...149
5.3.3.7 Basic Table Method Group - Set (Table and Object Method) ...150
5.3.3.8 Basic Table Method Group - Next (Table Method)..150
5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)..151
5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method) ...151
5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)..151
5.3.3.12 Access Control Method Group - Authenticate (SP Method)..152
5.3.3.13 Access Control Method Group - GetACL (Meta-Method)..152
5.3.3.14 Access Control Method Group - AddACE (Meta-Method)...153
5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)..153
5.3.3.16 Key Related Method Group - GenKey (Object Method)..153

5.3.4 Description ..154
5.3.4.1 Authentication ..154
5.3.4.2 Table Management..162
5.3.4.3 Access Control...165
5.3.4.4 Default Logging Settings..166

5.3.5 Life Cycle ..167
5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions.................................167
5.3.5.2 Initial Access Control Settings ...167

5.3.6 Examples ..173
5.3.6.1 Session Startup Examples...173
5.3.6.2 CreateTable Example ..174
5.3.6.3 CreateRow Example..174
5.3.6.4 DeleteRow Example ..174
5.3.6.5 Delete Example ...175
5.3.6.6 Get Examples ..175
5.3.6.7 Set Examples...175
5.3.6.8 Next Examples...176
5.3.6.9 Authenticate Examples ..176
5.3.6.10 AddACE Example ..177
5.3.6.11 RemoveACE Example ...177
5.3.6.12 DeleteMethod Example ...177
5.3.6.13 Authority Table Example..177
5.3.6.14 Starting Sessions Using EC-MQV ...178
5.3.6.15 Starting Sessions Using EC-DH ..179

5.4 Admin Template ...180
5.4.1 Overview ...180
5.4.2 Data Structures ...180

5.4.2.1 TPer Metadata Group - TPerInfo (Array Table)...180
5.4.2.2 TPer Metadata Group - Serial Number Contents ..180
5.4.2.3 TPer Metadata Group - CryptoSuite (Array Table)..181
5.4.2.4 TPer Metadata Group – Properties (Byte Table)...181
5.4.2.5 SPs on the TPer Group - Template (Object Table) ...181

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page viii of 265

5.4.2.6 SPs on the TPer Group - SP (Object Table) ...182
5.4.3 Methods ..182

5.4.3.1 IssueSP (SP Method) ..182
5.4.4 Descriptions ..183

5.4.4.1 Templates and the Admin SP..183
5.4.4.2 Admin SP Sessions ...184
5.4.4.3 Authorities ..184
5.4.4.4 Default Logging Settings..185

5.4.5 Life Cycle ..185
5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions...............................185
5.4.5.2 Initial Access Control Settings ...185

5.4.6 Examples ..187
5.4.6.1 Example Values for Admin Template Authorities ..187
5.4.6.2 Typical Required CryptoSuite Values..188

5.5 Clock Template...191
5.5.1 Overview ...191
5.5.2 Terminology ..191
5.5.3 Data Structures ...191

5.5.3.1 ClockTime (Array Table)..191
5.5.4 Methods ..193

5.5.4.1 GetClock (Table Method)...193
5.5.4.2 ResetClock (Table Method) ...193
5.5.4.3 SetClockHigh/SetLagHigh (Table Methods)..194
5.5.4.4 SetClockLow/SetLagLow (Table Method) ...195
5.5.4.5 IncrementCounter (Table Method) ..196

5.5.5 Descriptions ..196
5.5.5.1 Setting the Time...196
5.5.5.2 High Trust vs. Low Trust..196
5.5.5.3 Monotonic Counter ..197
5.5.5.4 Incremental Clock ..197
5.5.5.5 Timer Mode..198
5.5.5.6 Storing Time...198
5.5.5.7 Storing LagTime ..198
5.5.5.8 Default Logging Settings..199

5.5.6 Life Cycle ..199
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions199
5.5.6.2 Initial Access Control Settings ...199

5.5.7 Examples ..200
5.5.7.1 Example ClockTime Tables ...200

5.6 Crypto Template ...202
5.6.1 Overview ...202
5.6.2 Terminology ..202
5.6.3 Data Structures ...202

5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table) ..202
5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table) ..203
5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table) ..204
5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table) ..204

5.6.4 Methods ..205
5.6.4.1 Key Related Method Group - Random (SP Method)...205
5.6.4.2 Crypto Related Method Group – Stir (SP Method) ..205
5.6.4.3 Decryption Method Group – DecryptInit (Object Method) ...206
5.6.4.4 Decryption Method Group - Decrypt (Object Method)...206
5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)..207
5.6.4.6 Encryption Method Group – EncryptInit (Object Method)..207
5.6.4.7 Encrytion Method Group - Encrypt (Object Method) ...207
5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method) ..208

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page ix of 265

5.6.4.9 Sign (Object Method)...208
5.6.4.10 Verify (Object Method)...209
5.6.4.11 Hash Method Group – HashInit (Object Method) ..210
5.6.4.12 Hash Method Group – HashCalc (Object Method)..210
5.6.4.13 Hash Method Group – HashFinalize (Object Method) ..211
5.6.4.14 HMAC Method Group – HMACInit (Object Method)..211
5.6.4.15 HMAC Method Group – HMACCalc (Object Method) ...211
5.6.4.16 HMAC Method Group – HMACFinalize (Object Method) ..212
5.6.4.17 XOR (SP Method)..213

5.6.5 Descriptions ..213
5.6.5.1 Cellblocks...213
5.6.5.2 Hashing..213
5.6.5.3 HMAC ..214
5.6.5.4 XOR ...215
5.6.5.5 Signing ...216
5.6.5.6 Verifying ...216
5.6.5.7 Encrypting..217
5.6.5.8 Decrypting..218
5.6.5.9 Default Logging Settings..219

5.6.6 Life Cycle ..220
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions220
5.6.6.2 Initial Access Control Settings ...220

5.6.7 Examples ..221
5.6.7.1 Example H_SHA_1 Table..221
5.6.7.2 Hash Example ...222
5.6.7.3 HMAC Example ...222
5.6.7.4 Sign Method Invocation Examples ..222
5.6.7.5 Verify Method Invocation Example ..223

5.7 Log Template ..224
5.7.1 Overview ...224

5.7.1.1 Terminology ...224
5.7.2 Data Structures ...224

5.7.2.1 Log (Array Table)...224
5.7.2.2 LogList (Object Table) ...225

5.7.3 Methods ..226
5.7.3.1 AddLog (Table Method) ...226
5.7.3.2 CreateLog (Table Method)...226
5.7.3.3 ClearLog (Table Method)...227
5.7.3.4 FlushLog (Table Method)...227

5.7.4 Descriptions ..227
5.7.4.1 Types of Logging ...227
5.7.4.2 Log Entries...228
5.7.4.3 Deleting a Log Table..228
5.7.4.4 Default Logging Settings..228

5.7.5 Life Cycle ..229
5.7.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions229
5.7.5.2 Initial Access Control Settings ...229

5.7.6 Examples ..230
5.7.6.1 Example LogList Table ..230

5.8 Locking Template...232
5.8.1 Overview ...232

5.8.1.1 Terminology ...232
5.8.2 Data Structures ...233

5.8.2.1 LockingInfo (Array Table) ..233
5.8.2.2 Locking (Object Table)...234
5.8.2.3 MBRControl (Array Table) ...239

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page x of 265

5.8.2.4 MBR (Byte Table) ..239
5.8.3 Methods ..240

5.8.3.1 GetPackage Method (Object Method) ...240
5.8.3.2 SetPackage Method (Object Method) ...240

5.8.4 Description ..241
5.8.4.1 Locking State Descriptions ..241
5.8.4.2 Re-encryption Overview ..247
5.8.4.3 Re-encryption State Descriptions ..248
5.8.4.4 Default Logging Settings..249

5.8.5 Life Cycle ..249
5.8.5.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions.............................249
5.8.5.2 Initial Access Control Settings ...249

5.8.6 Examples ..252
5.8.6.1 Re-encryption Functionality Examples ..252

6 APPENDIX 1 – REQUIRED UID ASSIGNMENTS.. 254
6.1 Required UID Assignments Overview..254
6.2 Reserved UIDs ..254
6.3 Assigned UIDs ..255

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page xi of 265

Figures

Figure 1 Diagram of the Core Architecture ... 21
Figure 2 Communications Infrastructure ... 23
Figure 3 Packet Construction.. 39
Figure 4 TPer-Host Communication.. 51
Figure 5 Single Host/TPer Interaction ... 52
Figure 6 Multiple Host/TPer Interaction... 53
Figure 7 Host Session Manager/TPer Interaction... 54
Figure 8 ComID State Transition Diagram.. 55
Figure 9 TPer-Host Communication Protocol Layers ... 58
Figure 10 Access Control .. 64
Figure 11 Issuance .. 66
Figure 12 No Authorities Used... 72
Figure 13 Pass Code Authentication ... 73
Figure 14 Host Session Key Encryption .. 74
Figure 15 Host Public Key Authentication ... 75
Figure 16 Full Public Key, Full Symmetric Key, and Public/Symmetric Key Authentication 77
Figure 17 Closing a Session.. 80
Figure 18 Life Cycle State Transitions... 81
Figure 19 Starting Sessions Using EC-MQV... 178
Figure 20 Starting Sessions Using EC-DH.. 179
Figure 21 Locking State Diagram .. 242
Figure 22 LBA Range Re-encryption State Diagram... 248

Tables

Table 01 Core Architecture Topics ... 17
Table 02 Global Terminology ... 18
Table 03 Foo Table Description ... 25
Table 04 Token Types.. 28
Table 05 Tiny Atom Description ... 29
Table 06 Tiny Atom Encoding .. 29
Table 07 Short Atom Description.. 29
Table 08 Short Atom Encoding... 29
Table 09 Medium Atom Description ... 30
Table 10 Medium Atom Encoding .. 30
Table 11 Long Atom Description .. 31
Table 12 Long Atom Encoding ... 31
Table 13 Medium Atom Encoding Example ... 31
Table 14 Medium Atom Header Encoding Example .. 32
Table 15 Named Value Encoding Example.. 32
Table 16 Named Value/Sequence Encoding Example .. 32
Table 17 List Value Encoding... 33
Table 18 Method Call Encoding ... 35
Table 19 Method Response Encoding ... 36
Table 20 Method Call Encoding with Transaction .. 36
Table 21 Method Response Encoding – with Transaction... 37
Table 22 SPs and Methods Covered in this Document.. 45

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page xii of 265

Table 23 Interface Command – Command Block .. 50
Table 24 GET_COMID Command Block.. 59
Table 25 GET_COMID Payload ... 59
Table 26 HANDLE_COMID_REQUEST Command Block ... 60
Table 27 Verify ComID Payload ... 61
Table 28 GET_COMID_RESPONSE Command Block.. 61
Table 29 Verify_ComID_Valid Command Response ... 61
Table 30 Default Type Table Values .. 92
Table 31 Status Codes ... 111
Table 32 Properties Method Response.. 115
Table 33 SPInfo Table Description... 120
Table 34 SPTemplates Table Description.. 120
Table 35 Table Table Description... 121
Table 36 Column Table Description ... 122
Table 37 Type Table Description.. 123
Table 38 MethodID Table Description .. 123
Table 39 Method Table Description.. 124
Table 40 ACE Table Description .. 126
Table 41 Authority Table Description ... 127
Table 42 Secure Column Values.. 128
Table 43 Certificates Table Description.. 130
Table 44 C_PIN Table Description ... 131
Table 45 C_RSA_1024 Table Description.. 132
Table 46 C_RSA_2048 Table Description.. 132
Table 47 C_AES_128 Table Description.. 133
Table 48 C_AES_128 ResidualData Column Values... 134
Table 49 C_AES_256 Table Description.. 134
Table 50 C_AES_256 ResidualData Column Values... 135
Table 51 C_EC_160 Table Description.. 135
Table 52 AACS Values for C_EC_160... 136
Table 53 C_EC_192 Table Description.. 136
Table 54 FIPS P-192 Values for C_EC_192 .. 137
Table 55 C_EC_224 Table Description.. 137
Table 56 FIPS P-224 Values for C_EC_224 .. 138
Table 57 C_EC_256 Table Description.. 138
Table 58 FIPS P-256 Values for C_EC_256 .. 139
Table 59 C_EC_384 Table Description.. 139
Table 60 FIPS P-384 Values for C_EC_384 .. 140
Table 61 C_EC_521 Table Description.. 140
Table 62 FIPS P-521 Values for C_EC_521 .. 141
Table 63 C_EC_163 Table Description.. 141
Table 64 FIPS K-163 Values for C_EC_163 .. 142
Table 65 C_EC_233 Table Description.. 143
Table 66 FIPS K-233 Values for C_EC_233 .. 143
Table 67 C_EC_283 Table Description.. 144
Table 68 FIPS K-283 Values for C_EC_283 .. 144
Table 69 C_HMAC_160 Table Description .. 145
Table 70 C_HMAC_256 Table Description .. 145
Table 71 C_HMAC_384 Table Description .. 146
Table 72 C_HMAC_512 Table Description .. 146
Table 73 Default Base Template Authorities.. 155

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page xiii of 265

Table 74 Base Template Default ACEs.. 165
Table 75 Base Template SP Method Default Access Control Settings.. 168
Table 76 SPInfo Table Default Access Control Settings .. 168
Table 77 SPTemplates Table Default Access Control Settings ... 168
Table 78 Table Table Default Access Control Settings.. 168
Table 79 Table Descriptor Objects Default Access Control Settings ... 168
Table 80 Column Table Default Access Control Settings .. 169
Table 81 MethodID Table Default Access Control Settings ... 169
Table 82 Method Table Default Access Control Settings... 169
Table 83 Type Table Default Access Control Settings... 169
Table 84 Type Object Default Access Control Settings ... 169
Table 85 ACE Table Default Access Control Settings ... 169
Table 86 ACE Object Default Access Control Settings .. 170
Table 87 Authority Table Default Access Control Settings... 170
Table 88 Authority Object Default Access Control Settings ... 170
Table 89 Certificates Table Default Access Control Settings... 170
Table 90 Certificates Object Default Access Control Settings ... 170
Table 91 C_PIN Table Default Access Control Settings .. 171
Table 92 C_PIN Object Default Access Control Settings... 171
Table 93 C_RSA_* Table Default Access Control Settings ... 171
Table 94 C_RSA_* Object Default Access Control Settings.. 171
Table 95 C_AES_* Table Default Access Control Settings.. 171
Table 96 C_AES_* Object Default Access Control Settings .. 172
Table 97 C_EC_* Table Default Access Control Settings.. 172
Table 98 C_EC_* Object Default Access Control Settings .. 172
Table 99 C_HMAC_* Table Default Access Control Settings .. 172
Table 100 C_HMAC_* Object Default Access Control Settings... 172
Table 101 Authority Table (Example) – Session Startup ... 173
Table 102 C_PIN Table (Example) – Session Startup ... 173
Table 103 Table Table (Example) – CreateTable .. 174
Table 104 Column Table (Example) – CreateTable... 174
Table 105 DemoTable Table (Example) – CreateTable... 174
Table 106 Demo Table (Example) – CreateRow ... 174
Table 107 Demo Table (Example) – DeleteRow.. 174
Table 108 Demo Table (Example) – Delete ... 175
Table 109 Demo Table (Example) – Set .. 175
Table 110 Demo Table (Example) – Set .. 176
Table 111 Authority Table (Example) – Authenticate... 176
Table 112 C_PIN Table (Example) – Authenticate .. 176
Table 113 Authority Table (Example) – Authenticate... 176
Table 114 Method Table (Example) – AddACE ... 177
Table 115 Method Table (Example) – AddACE Result .. 177
Table 116 Method Table (Example) – RemoveACE .. 177
Table 117 Method Table (Example) – DeleteMethod... 177
Table 118 Example Authority Table ... 177
Table 119 TPerInfo Table Description.. 180
Table 120 GUDID Column Contents Description ... 180
Table 121 CryptoSuite Table Description... 181
Table 122 Template Table Description... 182
Table 123 SP Table Description... 182
Table 124 Default Admin Template Authorities.. 184

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page xiv of 265

Table 125 Admin Template Added ACEs... 185
Table 126 Authority Table Default Access Control Settings... 186
Table 127 IssueSP Access Control Settings.. 186
Table 128 TPerInfo Table Default Access Control Settings ... 187
Table 129 CryptoSuite Table Default Access Control Settings.. 187
Table 130 Template Table Default Access Control Settings.. 187
Table 131 SP Table Default Access Control Settings .. 187
Table 132 SP Table Default Access Control Settings .. 187
Table 133 Example Authority Settings ... 188
Table 134 Typical Required CryptoSuite Values.. 188
Table 135 Clock Template Terminology... 191
Table 136 ClockTime Table Description... 192
Table 137 ClockTime Table Default Access Control.. 200
Table 138 Example ClockTime Table 1 – High Trust Time.. 200
Table 139 Example ClockTime Table 2 – Low Trust Time... 200
Table 140 Example ClockTime Table 3 – High and Low Trust Time ... 201
Table 141 Example ClockTime Table 3 – Timer .. 201
Table 142 Crypto Template Terminology ... 202
Table 143 H_SHA_1 Table Description.. 202
Table 144 H_SHA_256 Table Description.. 203
Table 145 H_SHA_384 Table Description.. 204
Table 146 H_SHA_512 Table Description.. 204
Table 147 C_RSA_* Objects Default Access Control Settings .. 220
Table 148 C_EC_* Objects Default Access Control Settings... 220
Table 149 C_AES_* Objects Default Access Control Settings .. 221
Table 150 H_SHA_* Tables Default Access Control Settings.. 221
Table 151 H_SHA_* Objects Default Access Control Settings .. 221
Table 152 Example H_SHA_1 Table.. 221
Table 153 Log Template Terminology.. 224
Table 154 Log Table Description.. 224
Table 155 LogList Table Description .. 225
Table 156 Log Template Added ACEs... 229
Table 157 LogList Table Default Access Control Settings ... 230
Table 158 LogList Objects Default Access Control Settings.. 230
Table 159 Initial LogList Object Default Access Control Settings .. 230
Table 160 Log Table Default Access Control Settings... 230
Table 161 Example LogList Table .. 230
Table 162 Locking Template Terminology ... 232
Table 163 LockingInfo Table Description ... 233
Table 164 Locking Table Description ... 234
Table 165 MBR_Control Table Description.. 239
Table 166 MBR Table Description.. 239
Table 167 Locking Template Added ACEs... 250
Table 168 LockingInfo Table Default Access Control Settings .. 250
Table 169 Locking Table Default Access Control Settings .. 250
Table 170 Locking Objects Default Access Control Settings ... 250
Table 171 MBR_Control Table Default Access Control Settings ... 251
Table 172 MBR Table Default Access Control Settings... 251
Table 173 C_RSA_* Objects Default Access Control Settings .. 251
Table 174 C_EC_* Objects Default Access Control Settings... 251
Table 175 C_AES_* Objects Default Access Control Settings .. 251

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page xv of 265

Table 176 MethodID Table and Table Table Reserved LSB Value Ranges.. 254
Table 177 Type Table Reserved LSB Value Ranges... 254
Table 178 Special Purpose UIDs ... 255
Table 179 Table UIDs... 256
Table 180 Session Manager Method UIDs... 257
Table 181 MethodID UIDs .. 257
Table 182 Authority UIDs.. 258
Table 183 ACE UIDs .. 259
Table 184 Single Row Table Row UIDs ... 259
Table 185 Table Default Rows ... 259
Table 186 Type UIDs.. 260
Table 187 Template Table UIDs... 265
Table 188 SPTemplates Table UIDs .. 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 16 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 17 of 265

1 Introduction

1.1 Scope and Audience
The Storage Workgroup specifications are intended to provide a comprehensive command architecture
for putting selected features of storage devices under policy-driven access control. The capabilities of
the storage device can be configured to conform to the policies of the trusted platform. In accord with
the Storage Workgroup Use Cases and Peripherals Workgroup Use Cases documents, the controlled
features include access to secure storage areas and the lifecycle state of the storage device as a
trusted peripheral (TPer). This document may also serve as a specification for TPers where that is
deemed appropriate.

The intended audience for this document is storage device and peripheral device manufacturers and
developers that may wish to tie storage devices and peripherals into trusted platforms.

The following table lists the primary topics contained in this specification:

Table 01 Core Architecture Topics
Component Function

Data definitions Basic data types

Templates Types of Security Providers (SPs) and their roles

Table definitions Table’s purpose (& Security Associations)

Methods Commands purpose & data structures

Access Control Authority model for Access Control

Sessions Command streams

Secure Messaging Authenticated Confidential Command Streams

SP Issuance and Personalization Creating and Deleting SPs for custom uses

Reference Manual Formal definitions for each SP, Table, and Method

Life Cycle Default Table States, State Transitions, and Access Controls

1.2 Key Words
Key words are used to signify the requirements in the specification. The key words “shall,” “should,”
“may,” and “optional” are used in this document. These words are a subset of the RFC-2119 key words
used by TCG, and have been chosen since they map to key words used in T10/T13 specifications.
These key words are to be interpreted as described in [RFC-2119].

1.3 References
TCG Storage Workgroup Use Cases

T10 SCSI SECURITY PROTOCOL IN/OUT Commands, SCSI Primary Commands draft SPC04r05 or
later

T13 ATA TRUSTED SEND/RECEIVE Commands, ATA8 Commands draft T13/1699-D Rev 3c or later

TCG Storage Certificates Specification

TCG Common Criteria Security Target – Note that the quality of random numbers and
cryptographic computations is the purview of the CC Security Target, not this specification.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 18 of 265

Serial ATA 2.6 (SATA-2). 15 February 2007 – Note that for information on the current status of
Serial ATA documents, see the Serial ATA International Organization at http://www.sata-io.org.

ISO/IEC 14776-871. AT Attachment – 8 ATA/ATAPI Command Set (ATA8-ACS)(ANSI INCITS
T13/1699D)

ISO/IEC 14776-151, Serial Attached SCSI 1.1 (SAS-1.1)(ANSI INCITS 417-2006)

ISO/IEC 14776-312, SCSI Primary Commands - 3 (SPC-3)(ANSI INCITS 408-2005)

Internet Engineering Task Force, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile (RFC 3280)

Internet Engineering Task Force, Character Mnemonics & Character Sets (RFC 1345)

National Institute of Standards and Technology (NIST), Security Requirements for Cryptographic
Modules, FIPS Publication 140-2, May 25 2001

National Institute of Standards and Technology (NIST), Secure Hash Standard, FIPS Publication 180-2,
August 1 2002

National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS), FIPS
Publication 186-2, January 27 2000

FIPS Publication 186-3 (Draft revision of FIPS 186-2)

National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS
Publication 197, November 26 2001

National Institute of Standards and Technology (NIST), The Keyed-Hash Message Authentication Code
(HMAC), FIPS Publication 198, March 6 2002

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation - Methods and Techniques, NIST Special Publication 800-38A, December 2001

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation –The CMAC Mode for Authentication, NIST Special Publication 800-38B, May 2005

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation – The CCM Mode for Authentication and Confidentiality, NIST Special Publication 800-38C,
May 2004

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) Mode for Confidentiality and Authentication, NIST Draft Special
Publication 800-38D, April 2006 (see http://csrc.nist.gov/publications/drafts/Draft-NIST_SP800-
38D_Public_Comment.pdf)

National Institute of Standards and Technology (NIST), Recommendation for Pair-Wise Key
Establishment Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A, March 2006

RSA Laboratories, PKCS #1: RSA Cryptography Standard (v 1.5), November 1 1993

RSA Laboratories, PKCS #1: RSA Cryptography Standard (v 2.1), June 14 2002

1.4 Terminology
1.4.1 Global Terminology

Table 02 Global Terminology
Term Definition

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 19 of 265

Term Definition

ACE

Access Control Element. Defined as Rows in an SP’s ACE Table.
This is a Boolean expression of Authorities and the associated Row
and Column Restrictions on the Method/Table, Method/Object, or
Method/SP combination to which the ACE is attached.

ACL
List of ACEs associated with a particular Method/SP, Method/Table,
or Method/Object combination.

Admin The predefined ‘superuser’ on any SP. The Transport Key given in
Issuance is an Admin by definition.

Admin SP
The SP that has the capability to issue other SPs, and provide
information about the state of SPs on the TPer as well as the TPer
itself.

Authority
Defined as a Row in the Authority Table. This is a security
association between an authentication Operation and a Credential,
such as a public-private key pair.

Data Types
Encoding format of data. Data is encoded in different ways
depending on the context in which the data is being used (stream
encoding, table encoding, etc.)

Full Disk Encryption (FDE)
Data written and read to storage is encrypted before it is written and
decrypted as it is read. Full Disk Encryption means that all user data
through the main read-write function may be encrypted.

Platform Host A collection of one or more Host Application resources that utilizes
or provides a specific service or set of services.

Host Application
A Trusted Component (software) that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL
IN/OUT commands.[C D1]

IF-SEND
An interface command, such as the ATA (T13) TRUSTED SEND or
SCSI (T10) SECURITY PROTOCOL IN command used to transmit
data from the host to the TPer.

IF-RECV
An interface command, such as the ATA (T13) TRUSTED RECEIVE
or SCSI (T10) SECURITY PROTOCOL OUT command used by the
host to retrieve data from TPer, or to acquire a ComID.

Issuance
The act of activating or instantiating an SP from one or more
Templates.

MAC Message Authentication Code

Messaging
Session communications are by messages defined by a messaging
protocol. Messages from a Host convey remote method calls on an
SP and other messages return the results.

Method A Method is a remote procedure call to an SP that initiates an action
on the SP.

Object Any row of an Object Table.

Personalization
The act of specializing an issued SP. Personalization requires a
Transport Key from Issuance to give secure access to
personalization.

PuK and PrK Convenient notation for Public Key and Private Key.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 20 of 265

Term Definition

Security Subsystem Class
(SSC)

For TCG Compliance and Conformance purposes a security
subsystem class identifies the components from the Core
specification that are Mandatory, Optional, or Excluded from a
particular class of security subsystem.

Session
All communications with a specific SP. A session holds
authorization state for all method invocations.

Security Provider (SP)
An atomic collection of Tables and Methods that can be issued on
behalf of a host software provider.

Security Identifier (SID)
25 character passcode made up of ALPHANUMERIC CAPS, where
0 (zero) is the same as O (the letter “oh”) and 1 (one) is the same as
I (the letter “eye”).

Storage Device
A Storage Device is any device that provides digital storage
services.

Storage Media
The Storage Media refers to the non-volatile or persistent storage in
a storage device.

Storage Working Group
(SWG)

One of the TCG working groups whose purpose is to define Security
building blocks for the Storage Device.

SymK Convenient notation for symmetric key (shared secret) cryptography.

T10 Specification SCSI CDB Specification that contains SECURITY PROTOCOL
IN/OUT Commands.

T13 Specification ATA Command Specification that contains TRUSTED
SEND/RECEIVE Commands.

Table
The basic data structures within an SP. Tables store persistent SP
state defined in this specification.

TPer A Trusted Peripheral as defined by the Peripheral’s Workgroup.

Transport Key Credential received by SP Owner during Issuance that enables the
SP Owner to authenticate as the Admin authority for that SP.

Trusted Commands
Interface protocol commands (i.e. T10 SECURITY PROTOCOL
IN/OUT or T13 TRUSTED SEND/RECEIVE) used to communicate
with an SP.

Unique Identifier (UID) Unique 8 byte identifier that identifies objects within tables, tables,
and the SP itself.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 21 of 265

2 Trusted Storage Device Architecture

2.1 Trusted Storage Device Architecture Overview
The Core Architecture supports all of the use cases and threat models developed for the TCG Storage
Use Cases. Peripherals based on this architecture are called Trusted Peripherals or TPers and reside
in the storage device. This section is only a summary of the Storage Core Architecture. Refer to Section
3 and 4 for details.

2.2 Core Architecture Components

Figure 1 Diagram of the Core Architecture

The core architecture is illustrated in Figure 1 . Figure 1 shows a single Multicomponent Trusted
Platform (MCTP) with one Trusted Peripheral (TPer). The MCTP supports 1 or more TPers.

2.2.1 Multicomponent Trusted Platform (MCTP)
The MCTP keeps track of the peripherals through the Component Authentication Administrator (CAA).
Various host applications (APPs) communicate with the TPer using an application client and through
a peripheral interface such as ATA or SCSI.

2.2.2 Host
For the purposes of this specification, a Host is the application client that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL IN/OUT commands under Security

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 22 of 265

Protocol 1-6. One example of such an initiator is a PC Client as defined by the PC Client workgroup of
TCG. Multiple Hosts are supported.

2.2.2.1 Host Applications (APPs) and Component Authentication Administrator (CAA)
APPs (including the CAA) can: 1) create, 2) query or 3) change the persistent state of the TPer data
structures. This communication is performed using sessions. See Section 2.3.1.

2.2.3 Trusted Peripheral (TPer)
The Trusted Peripheral (TPer) resides in the Storage Device. The TPer manages trusted storage-
related functions and data structures. Two main aspects to the TPer use cases as it pertains to the
Core are:

1. Data Confidentiality and Access Control over TPer features and capabilities: TPer
functions and capabilities are built upon: 1) an option for policy driven setup and 2) use of
cryptographic access control over TPer content. Such features and capabilities include access-
controlled readable and writeable data areas, and access-control to built-in firmware functions
or hardware functions in the TPer. Furthermore, it is possible for a single trusted host
application to gain exclusive access to subsets of these features and capabilities. Finally, the
protection extends to confidentiality of instructions and data in transit between the trusted Host
application (or a TPM it uses) and the TPer.

2. TPers & Hosts Bilateral Enrollment and Connection: Enrollment establishes the conditions
under which data/instruction Connections can be established between TPers and Hosts. The
access control conditions for enrollment may be different than those for connection. The
data/instruction consequences of a failure to be enrolled or connected may be different for
different TPers and Hosts. Finally, the permissions/authorities required for enrollment and
connection of a TPer with a Host may be different than the permissions/authorities required for
enrollment and connection of a Host with a TPer.

The Core Architecture provides for a system of tables where the content and meaning of the table
entries may be different for different types of storage devices with different features and capabilities.

This Core Architecture’s access control system scales with the available storage device resources.
Storage device resources include processor performance, memory space, and media capacity. TPer
data structures and operations may be fixed (and limited) or Host application-definable up to the limit of
the storage device’s available resources.

2.2.3.1 Security Providers (SP)
The TPer may contain one or more Security Providers (SPs).

A Security Provider (SP) is a set of tables and methods that control the persistent trust state of the SP
and may participate in control of the persistent trust state of the TPer.

A Security Provider (SP) supports specific TPer functionality. Each SP has its own storage, functional
scope, and security domain. SPs support functions such as authentication, secured attribute-value
storage, disk encryption/decryption, backup, time stamping, and event logging. SPs are created by: 1)
the manufacturer (during storage device creation) or 2) the Issuance process (see SP Issuance section
2.3.2).

A Security Provider provides a way for the Host to define: 1) which TCG functions are performed, 2)
who has access to these functions, 3) how the TPer & SPs communicate with the Host, 4) when these
events are permitted and 5) when the events are logged.

A Security Provider is made up of the following components:

• Tables are storage elements. The three table kinds are described in Section 3.2.5.1 Kinds of
Tables. Tables consist of rows and columns. Tables may contain one or more rows.

• Persistent State Information: Table content is also known as persistent state information. This
type of information remains active through power cycles, reset conditions, and spin up/down
cycles. This persistent state information shall not be part of the User Addressable Logical

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 23 of 265

Block Address space on the storage device and therefore is not affected by usual partitioning or
formatting of the storage device by the Host operating system.

• Methods are actions that are invoked on SPs, Tables, Table entries, or Objects. Method
operations include functions such as: table additions, table deletion, table read access, and
table backup.

• Authorities are authentication agents. Authorities specify passwords or cryptographic proofs
required to execute the methods in the SP.

• Access Control Lists (ACLs) are lists of approved Boolean expressions of Authorities. ACLs
bind methods to valid authorities.

2.3 Core Architecture Operations

2.3.1 Host <–> TPer Communication Infrastructure
The Host communicates with SPs using Trusted commands. Trusted commands are interface-specific
protocols (i.e. T10 SECURITY PROTOCOL IN/OUT Protocol 1-6, or T13 TRUSTED SEND/RECEIVE
Protocol 1-6). Methods are a communications protocol transported in the payload of the interface-
specific protocol.

General interface-specific protocols are defined by INCITS T10 and T13.

The SP communication protocol uses a layered communication system consisting of the following
elements:

1. Methods: Methods are “atomic” actions that invoke SP activity.

2. Transactions: A transaction is a series of one or more method invocations grouped to enable
state rollback to a pre-defined point if an error or abort occurs during execution of any of the
methods in the series. Methods are executed either within or outside of a transaction.

3. Sessions: A session is a communication channel between the Host and an SP. A session
requires a pair of events: 1) an “Open”, and 2) a “Close”. Transactions and method invocations
occurring both inside and outside of transactions occur within sessions.

Figure 2 Communications Infrastructure

The only way to communicate with an SP is via a session. Only the host may open a session. Methods
are executed within the session. Normally, when the methods and associated responses are
completed, the host closes the session. Other interface-specific commands (i.e. ATA/SCSI) can be
interleaved among ATA/SCSI TRUSTED/SECURITY PROTOCOL commands at any time.

A Single Session shall be Read-Only or Read-Write. If the device is capable, one or more read-only
sessions may be established simultaneously to a single SP. Typically, changes made to an SP during
a Read-Only session shall not persist past the end of that session. A case of a non-transient change
permitted in a Read-Only session is automatic forensic logging, if enabled.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 24 of 265

Read-Write Sessions may or may not alter persistent state information (table content). A Read-Write
session (one which has the capability of making non-transient changes to an SP) shall be unable to run
simultaneously with any other sessions to the same SP.

Secure Messaging provides session communications that support message confidentiality, message
integrity/authenticity, or both. Using previously-defined security attributes, the host and TPer may pass
encrypted or integrity protected messages (methods and their associated responses) during sessions.
Message encryption is recommended but not required. When secure messaging is in use, it is done
regardless of and in addition to any encryption done on the communications channel.

TPer-Host Attachment/Communication. In the simplest case the host is just the platform host to
which the TPer is directly attached or attached over a network. The host could be some other platform
host that communicates with the immediate platform host, which relays the session stream to the TPer
over a network. In another case, the TPer could be wirelessly connected to its host, or part of a SAN
and connected to multiple hosts.

2.3.2 SP Issuance & Personalization Overview
New SPs are created or modified using sessions and methods.

Issuance is the act of creating a new SP. When TPers are capable of SP issuance, special resources
called Templates are required. Templates define the initial tables and methods upon which new SPs
are based when issued. All SPs incorporate the Base Template’s tables and methods. Other
Templates are combined with the Base Template to extend its functionality. Some Templates that may
extend the Base Template are: Admin Template, Clock Template, Crypto Template, Locking Template,
and Log Template.

Personalization is the customization of a newly created SP. The primary purposes of Personalization
are modification of the SP’s initial table data and/or the administrative authority on that specific SP, as
well as customization of the default access control settings.

2.3.3 Security Subsystem Classes Overview
The Core Specification defines all possible TCG-related functions supported by a TPer. However, every
TPer is not required to support all functionality defined in this specification. There shall be multiple
“classes” of Core Specification compliance, called Security Subsystem Classes (or SSCs). Each
Security Subsystem Class specification is a companion document to the Core Specification.

Security Subsystem Classes explicitly define the minimum acceptable Core Specification capabilities of
a TPer in a specific “class”. A TPer in a specific class may have only some of the capabilities (tables,
methods, access controls) defined in this Core Specification and may include additional capabilities
through table definitions. No Security Subsystem Class shall replace a capability called out in the Core
Specification with the same capability implemented in different tables, methods, and access controls.

Security Subsystem Classes define only TCG-related functionality. TPer attributes such as host
interface type, storage capacity, data rates, and seek times are not key Security Subsystem Class
attributes, though TPer resources such as available memory, storage capacity, and processing power
influence which Security Subsystem Class(es) a TPer supports.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 25 of 265

3 Core Architecture Elements

3.1 Core Architecture Elements Overview
This section defines global TCG storage-related document format, data structures, and functional
behavior.

3.2 Data Structure Descriptions

3.2.1 Document Data Formats
This specification defines three distinct but closely related data models:

• Tables: Data stored in tables is of a maximum fixed size. When a table is created it is always
allocated with a fixed number of fixed-size columns. Some Security Subsystem Classes may
require that tables be created with a pre-allocated maximum number of rows.

• Messaging: Data moving across the interface is encoded into byte streams. These streams
carry encodings for method calls, parameters, and results, as well as some other control
information. There are no predefined limits on the size or length of these streams, but the TPer
may limit the maximum size of encoded values.

• Exposition Pseudo-code: This provides a C-like definition of Methods and Table contents.
The definition of the exposition pseudo-code is in next section 3.2.2.1.

3.2.1.1 Tables – Example
For the example in the following sections, a table named “Foo” is used. This specification documents
the “Foo” table in the following manner:

Table 03 Foo Table Description
Column Type Description
ID uid UID of the entry.
Username name Name of the user.
SerialNumber uinteger_4 Serial Number of item purchased.

3.2.1.2 Methods – Example
The value of row 2, column “Username” of table “Foo” will be set to “Alice”.

In the pseudo-code, the Method invocation is shown as:

Foo.Set[[startRow=2, startColumn=”Username”], “Alice”]

=>

[boolean]

“=>” is the separator between the method call specification and the return result
specification.

Note that since actual method invocation is performed using UIDs and not names, “Foo.Set” would be
replaced by the UIDs for “Foo” and “Set.”

3.2.2 Data Types
Data is encoded in different ways depending on the context in which the data is being used. One data
context is data stored in tables. Another data context is data crossing the interface in messaging – this
is called “Stream Encoding”.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 26 of 265

This section introduces the different data types, provides a brief introduction on how these types are
used, and shows how they are displayed in this document. See Section 3.2.3 for additional details
regarding data types and data type Stream Encoding.

3.2.2.1 Pseudo-code (Expository)
Pseudo-code is used to describe types, method parameters, and snippets of code without having to use
the byte encodings directly.

Method parameters are of two kinds: required and optional. Required parameters must come in the
order defined in this specification, must precede the optional parameters, and are not named values.
Optional parameters are passed as named values. Optional parameters are not required to be in order,
and are not required to be included in a method invocation.

In the pseudo-code, the required parameters are given expositional names for ease of reference, and
are formatted as: Expositional-Name : Parameter-type. Optional parameters are given in the form
of Named values, except the right hand side in the prototype is the type of the value, as in: tableName
= Parameter-type.

A method's result shall be contained in a list, and shall be followed by an End of Data token and a
status code list. Note that the return value(s) are annotated with the same convention as parameters,
and may contain optional parts that are also passed as named values. The result list of a failed method
invocation should be empty.

In this document

SP method calls are written as: SPUID.MethodName[<Parameters>]

Table method calls are written as: TableNameUID.MethodName[<Parameters>]

Object methods are written as: ObjectNameUID.MethodName[<Parameters>]

For example:

Calling an SP method: SPUID.Random[<Parameters>]

Adding an entry to a log table: SomeLogTableUID.AddLog[<Parameters>]

Encrypting host data: C_AES_128ObjectUID.Encrypt[<Parameters>]

SPUID always represents the UID reserved to refer to “this SP.” This reserved UID is 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x01. TableNameUID represents the UID of a particular table. In the case of
this example, the UID would be of the table named “TableName”. ObjectNameUID represents the UID
of a particular object. In the case of this example, the UID would be of the object named “ObjectName”
(see 3.2.5.3 for information on UIDs).

3.2.2.2 Messaging Data Types
There are two data types defined specifically for messaging.

• Named values. Named values are used to send the optional parameters in method calls.

• List values. List values are used to encode method parameter lists and return results.

Named values identify method parameters in the stream encoding. List values are used to group
method parameters or to separate the method signature from the method parameters in the stream
encoding. For more information on stream encoding, see 3.2.3.

3.2.2.3 Method Parameter/Column Value Typing and Encoding
All method parameter values and all column values are defined by types that appear in the Type table
of the Base Template (see Table 37). Each type has a UID associated with it. Types may be derived
from combinations of other types.

Types are divided into two categories: base types and derived types.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 27 of 265

Base types are the types from which all other types are built. The base types are:

o integer – a signed mathematical integer

o uinteger – an unsigned mathematical integer

o bytes

o bytes {max=n}

Derived types are built from other types in combination with a format identifier. The format identifier is
used to indicate the way in which the types are to be combined. A simple type is a type that is derived
directly from a base type. For more information on types, see 5.1.

To enable the TPer to identify the type used for each method parameter and correctly store that value
in a table, if necessary, and to allow the TPer to type check method parameter values, each method
parameter, when it is transmitted across the interface, is prefixed with the UID of the type of that
parameter.

In order to encode a parameter that is a simple, enumeration, reference, or name-value type, the UID of
that type is encoded, followed by the encoded parameter value.

For parameters that are list types, the type for the list need be encoded only once, and the list itself
then enclosed with the Start List and End List tokens (see 3.2.3 for token information), rather than
encoding the list type for each element of the list.

To encode a parameter that is an alternative type, the UID of that alternative type is encoded, followed
by the encoded UID of the type that was selected from among the alternatives, followed by the encoded
parameter value.

To encode a parameter that is a struct type, the UID of that struct type is encoded, followed by the
encoded type UID and value for each of the struct’s included components – the group of UIDs and
values of the struct's components shall be enclosed with the Start List and End List tokens.

To encode a parameter that is a set type, the UID of the set type is encoded, followed by the encoded
typ UID and value for each of the set's type – the group of UIDs and values for the set's components
shall be enclosed with the Start List and End List tokens.

For an example of encoding using this mechanism, see 3.2.3.3.2.

3.2.3 Stream Encoding
The messaging model provides for stream encoding of multiple remote procedure calls and multiple
responses in the same interface command payloads, with the purpose of permitting large data blocks to
be broken up and submitted in parts, for the parts to be acted on, and for the results to be returned in
parts. This streaming model permits results to be asynchronously returned before all the parts are
received.

This section details how values and control markers are encoded into byte sequences for transport over
session streams (byte streams).

3.2.3.1 Data Types
As introduced in Section 3.2.2, data is encoded using four basic types of values. These four types can
represent all of the basic and derived data types.

• Integers: Integer values are used to represent numbers, Booleans, and enumerations. In the
interface (session stream) and in tables they are big endian. The implementation is free to use
other representations in other circumstances, converting as necessary.

• Bytes: These are sequences of 8 bit bytes and are used to represent strings, cryptographic
keys, bit-vector encoded sets, blobs, etc.

• List: Zero or more values of any type, grouped into an ordered list ([3, "abc", false]).
• Named: The name (a byte-value) followed by its value (any messaging type). A named value

attaches a name to some other value (size=32).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 28 of 265

3.2.3.2 Tokens
Values of the four basic types are packaged into tokens, each of which is a (tag, length, value)
sequence of bits that specify a single data value.

Table 04 Token Types
Byte

0 1 2 3
Hex Acronym Meaning

0 S d<5..0> 00..7F Tiny atom
1 0 B S n<3..0> 80..BF Short atom
1 1 0 B S n<10..0> C0..DF Medium atom
1 1 1 0 0 0 B S n<23..16> n<15..8> n<7..0> E0..E3 Long atom
 E4..EF TCG Reserved
1 1 1 1 0 0 0 0 F0 SL Start List
1 1 1 1 0 0 0 1 F1 EL End List
1 1 1 1 0 0 1 0 F2 SN Start Name
1 1 1 1 0 0 1 1 F3 EN End Name
 F4..F7 TCG Reserved
1 1 1 1 1 0 0 0 F8 CALL Call
1 1 1 1 1 0 0 1 F9 EOD End of Data
1 1 1 1 1 0 1 0 FA EOS End of session
1 1 1 1 1 0 1 1 FB ST Start transaction
1 1 1 1 1 1 0 0 FC ET End of transaction
 FD..FF TCG Reserved

The Token Types identified in Table 04 are divided into 3 subgroups:

• Simple Tokens - Atoms: tiny, short, medium, and long atoms

• Token Sequences: Start List, End List, Start Name, and End Name

• Control Tokens: Call, End of Data, End of Session, Start Transaction, End Transaction

Additionally, tokens 0xE4-0xEF, 0xF4-0xF7 and 0xFD-0xFF are reserved for use by TCG.

3.2.3.2.1 Simple Tokens – Atoms Overview
Atoms can be tiny atoms, which are one byte in length; short atoms which have a 1-byte header and
can contain up to 15 bytes of data; medium atoms which have a 2-byte header and can contain up to
2047 bytes of data; and long atoms which have a 4-byte header and which can contain up to
16,777,215 bytes of data.

Integer values should be encoded using the shortest possible atom. Tiny atoms only represent
integers, whereas short, medium, and long atoms can be used to represent integers or bytes (with the
“B” bit set).

A continued value is used to represent a long byte sequence when the total length is not known in
advance. A continued value is represented by a sequence of two or more atoms. Each atom may be a
short atom, medium atom, or long atom. The BS bits are set to 11b for all atoms except the last atom,
for which the BS bits are set to 10b. All representations of continued values are considered equivalent

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 29 of 265

encodings of the same value. Thus a 100-byte value could be split up into ten 10-byte atoms; two 50-
byte atoms; or two 25-byte atoms, four 10-byte atoms, an 8-byte atom, and a 2-byte atom.

3.2.3.2.1.1 Tiny atoms
Tiny atom header and data are all contained in eight bits.

Table 05 Tiny Atom Description
Header+Data

Tiny atom sign data
0 S d d d d d d

The encoding is as follows:

Table 06 Tiny Atom Encoding
Tiny Atom
indicator This bit is set to 0b to indicate the atom is a tiny atom

Sign
indicator

Value Interpretation
0b The data is treated as unsigned integer data.
1b The data is treated as a signed integer.

Data bits These represent the data value, an unsigned value in the range of 0...63 or a signed
value in the range of –32...31. The interpretation will be based on the setting of the sign
bit.

3.2.3.2.1.2 Short atoms
Short atoms consist of a one-byte header and between 1 and 15 bytes of data.

Table 07 Short Atom Description
Header (1 byte) Data

Short Atom byte/
integer

sign/
continued length (1...15 bytes)

1 0 B S n n n n d ... d

The encoding is as follows:

Table 08 Short Atom Encoding
Short Atom
indicator These two bits are set to 10b to indicate the atom is a short atom.

Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 30 of 265

Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 15.

3.2.3.2.1.3 Medium atoms
Medium atoms consist of a two-byte header, and between 1 and 2047 bytes of data.

Table 09 Medium Atom Description
Header (2 bytes) Data

0 1 ...
Medium

Atom
byte/

integer
sign/

continued length (1..2047 bytes)

1 1 0 B S n n n n n n n n n n n d ... d

The encoding is as follows:

Table 10 Medium Atom Encoding
Medium Atom
indicator These three bits are set to 110b to indicate the atom is a medium atom.

Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.
Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 2047.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 31 of 265

3.2.3.2.1.4 Long atoms
Long atoms consist of a four-byte header, and between 1 and 16M bytes of data.

Table 11 Long Atom Description
Header (4 bytes) Data

0 1 2 3 ...
Long
Atom reserved byte/

integer
sign/

continued Length (1..16,777,215
bytes)

1 1 1 0 0 0 B S n d ... d

The encoding is as follows:

Table 12 Long Atom Encoding
Long Atom
indicator These four bits are set to 1110b to indicate the atom is a long atom.

reserved These bits are reserved and shall be set to 0b.
Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.
Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 16,777,215.

3.2.3.2.2 Encoding Example
An example encoding of a medium atom can be found in Table 13. The bit organization in the header
of the example in Table 13 can be found in Table 14.

Table 13 Medium Atom Encoding Example
D0 1C 54 48 49 53 49 53 41 4E 45 58 41 4D 50 4C 45 4F 46 41 4D 45 44 49 55 4D 41 54 4F 4D

Medium Atom Header T H I S I S A N E X A M P L E O F A M E D I U M A T O M

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 32 of 265

Table 14 Medium Atom Header Encoding Example
Byte 1 Byte 2

medium atom byte/integer sign/continued length
1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0

D0 1C

3.2.3.2.3 Token Sequences
Composite values are represented by a sequence of tokens.

3.2.3.2.3.1 Named
Named values have the form name=value and are used to represent an attribute-value pair. A named
value is a sequence of tokens: a Start Name token (SN), followed by a non-continued byte value that
specifies the name, followed by any value (including list or Named values), followed by an End Name
token (EN token).

For example, the named value foo=3 would be encoded may be encoded using a short atom for "foo"
and a tiny atom for 3 as shown in Table 15.

Table 15 Named Value Encoding Example
F2 A3 66 6F 6F 03 F3

short
atom "f" "o" "o" 3

SN
Name value

EN

Note that the value is not constrained to be a single integer as shown here, but could be anything,
including another named value or a sequence. Table 16 shows an encoding of "foo=bar=3" using a
short atom for "foo", a short atom for "bar", and a tiny atom for 3.

Table 16 Named Value/Sequence Encoding Example
F2 A3 66 6F 6F F2 A3 62 61 72 03 F3 F3

short
atom "f" "o" "o" short

atom "b" "a" "r" 3
SN

name value
EN

SN
Name

Value

EN

3.2.3.2.4 List
Lists are ordered sequences of elements of the form [e1,e2,...,ei]. List elements may be tokens,
token lists, or named tokens. A list is encoded as a Start List token (SL) followed by a sequence of
zero or more elements followed by an End List token (EL).

For example, the sequence [3, 4, [5, 6]] is a sequence of three tiny atoms encoded as shown in
Table 17.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 33 of 265

Table 17 List Value Encoding
F0 03 04 F0 05 06 F1 F1

SL 3 4 SL 5 6 EL EL

3.2.3.2.5 Control Tokens
Control tokens are single byte tokens that are used to specify special actions.

• Call. Used to start a method call.
• End of Data. Used to signal the end of the parameters, or the result, of a method call. This is

used in message streams by both the host and the SP.
• End of Session. Used to end a session.
• Start Transaction. Used to open a transaction. When the host begins a transaction, the Start

Transaction token is sent by the host to the SP and is immediately followed by the status
required for that transaction control token. When the SP delivers its response, its message
shall mirror that of the host by including Start Transaction tokens in the equivalent places in the
message stream, along with the actual status of the Start Transaction request. See example
encoding in 3.2.3.3.3.

• End Transaction. Used to commit or abort a transaction. When the host ends a transaction,
the End Transaction token is sent by the host to the SP and is immediately followed by the
status required for that transaction control token. When the SP delivers its response, its
message shall mirror that of the host by including End Transaction tokens in the equivalent
places in the message stream, along with the actual status of the End Transaction request.
Sending the End Transaction token and a status code of 0x01 aborts a transaction. See
example encoding in 3.2.3.3.3.

In cases where the host transmits unexpected or out of order control tokens the TPer should abort the
session. These cases include (but are not limited to):

• Multiple consecutive tokens of the same type
• Out of order tokens
• Tokens with undefined accompanying status codes

3.2.3.3 Method Calls
This section describes the encoding of method calls.

3.2.3.3.1 Syntax
A method call starts with a sequence of tokens that are sent from the application to the TPer as follows:

• Method. A call token followed by tokens for a value that identifies the method to call. This value
is:

o InvokingUID, MethodUID – This indicates the method invocation is a series of tokens
with two short atom elements. InvokingUID here is the UID of the table, object, or “this
SP” upon which the method is being invoked, and MethodUID is the UID of the method
as recorded in the MethodID table. The InvokingUID of an SP invoking a method shall
always be 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01, which is used to signify
“this SP”.

Session Manager layer methods follow this format as well. The host shall use the
reserved UID "SMUID" (0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF) as the
InvokingUID of Session Manager methods.

• Input Parameters. This is a token list of the method invocation’s parameters. Positional
parameters, those required by the method invocation, shall appear first, in the order in which

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 34 of 265

they are listed in this specification for that method, and are not named. Optional parameters
shall appear after all positional parameters. Optional parameters are named values. These
parameters may be listed in any order, but shall follow the list of all positional parameters for
that method.

Positional parameters shall be made up of the following parts:

o The UID of the row in the Type table that represents the value’s type.

• For certain types, the UID of the component value

o The appropriate Atom identifier for the value.

o The encoded value.

Optional parameters shall be made up of the following parts:

o The StartName token.

o The appropriate Atom identifier for the name.

o The encoded name.

o The UID of the row in the Type table that represents the value’s type.

• For certain types, the UID of the component value

o The appropriate Atom identifier for the value.

o The encoded value.

o The EndName token.

• EndOfData. An end of data token sequence.

• Status Code List. This is the status list that contains the status code expected from successful
invocation of the method. The first value in the list shall be 0x00 for a method that the host
expects to complete properly. For a method that the host wishes to abort, the host shall include
a value that is not 0x00 as the first value in the status list, which shall cause the TPer to abort
processing on that method and return that non-0x00 value as the first value in the status list.

The second and third values in the status list are reserved, and are defined in this specification
to be zeroes.

Each method call shall have a response that is a sequence of tokens that are sent from the TPer to the
host as follows.

• Output Results. This is a token list.

• EndOfData. An end of data token sequence.

• Status List. The status list returned for the method invocation. The first value in the status list
shall always be the status of the method, as described in 5.1.3. The second and third values in
the list are uintegers reserved for use by the TCG, and are defined in this specification to be
zeroes.

Additional values may be returned in the status list, as long as the first three values in the
status list are returned as required by this specification.

Method responses shall be returned for all method invocations or method invocation attempts within a
session, though responses for method invocation attempts of methods not recognized by the TPer or
that result in some other failure condition shall return an empty method result (the output result is an
empty list) and an error code. Unrecognized method invocation attempts outside of a session should
be ignored by the TPer – in these cases, no response is sent.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 35 of 265

Session Manager protocol layer method invocations that are recognized but fail shall receive the normal
response format for that method, accompanied by an error status code. Session startup methods that
fail in this way shall have returned the expected method response, but that method shall have only the
identifying parameters (Host, SP) and an error status code. If the identifying parameters (particularly
the Host parameter) are invalid (i.e. of the incorrect type), the TPer may ignore the method.

All message traffic to invalid/non-existent streams and/or sessions shall be ignored by the TPer.

The TPer may begin sending the response as soon as enough parameters have been received to
prepare a response.

3.2.3.3.2 Method Call Encoding Stream – Example
The method example in this section invokes the CreateRow method on the Authority table using the
following byte stream format. The encoded stream data for the example method invocation is can be
found shown in Table 18. For the result of the method as returned by the TPer, see Table 19.

Table 18 Method Call Encoding
Call token Authority token CreateRow
F8 A8 00 00 00 09 00 00 00 00 A8 00 00 00 06 00 00 00 04

[SN token Name token name token Alice EN
F0 F2 A4 4E 61 6D 65 A8 00 00 00 05 00 00 02 0B A5 41 6C 69 63 65 F3

SN token CommonName token name
F2 AA 43 6F 6D 6D 6F 6E 4E 61 6D 65 A8 00 00 00 05 00 00 02 0B

token AliceGroup EN
AA 41 6C 69 63 65 47 72 6F 75 70 F3

SN token IsClass token boolean F EN
F2 A7 49 73 43 6C 61 73 73 A8 00 00 00 05 00 00 04 01 0 F3

SN token Enabled token boolean_def_true T EN
F2 A7 45 6E 61 62 6C 65 64 A8 00 00 00 05 00 00 04 03 1 F3

SN token Secure token messaging_type 0 EN
F2 A6 53 65 63 75 72 65 A8 00 00 00 05 00 00 04 04 0 F3

SN token HashAndSign token hash_protocol 0 EN

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 36 of 265

SN token HashAndSign token hash_protocol 0 EN
F2 AB 48 61 73 68 41 6E 64 53 69 67 6E A8 00 00 00 05 00 00 04 0D 0 F3

SN token Operation token auth_method 1 EN
F2 A9 4F 70 65 72 61 74 69 6F 6E A8 00 00 00 05 00 00 04 08 1 F3

SN token Credential token cred_object_uidref token PinObjectUID EN
F2 AA 43 72 65 64 65 6E 74 69 61 6C A8 00 00 00 05 00 00 10 02 A8 00 00 00 0B 00 00 00 09 F3

] EOD [Status]

F1 F9 F0 00 00 00 F1

Which returns, upon success with:

[true]

Table 19 Method Response Encoding
[createrow_result uidref_list [New Authority Object]]

F0 00 00 00 05 00 00 06 07 00 00 00 05 00 00 08 09 F0 00 00 00 09 00 FF FF 01 F1 F1

EOD [Status]
F9 F0 00 00 00 F1

3.2.3.3.3 Method Encoding with Transactions – Example
This example displays the encoding of a series of methods that utilize transactions. The method
invocation is in Table 20. The response from the TPer is encoded in Table 21.

Table 20 Method Call Encoding with Transaction
Begin Transaction Status Call token Authority token CreateRow

FB 00 F8 A8 00 00 00 09 00 00 00 00 A8 00 00 00 06 00 00 00 04

[SN token Name token name token Alice EN
F0 F2 A4 4E 61 6D 65 A8 00 00 00 05 00 00 02 0B A5 41 6C 69 63 65 F3

SN token CommonName token name
F2 AA 43 6F 6D 6D 6F 6E 4E 61 6D 65 A8 00 00 00 05 00 00 02 0B

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 37 of 265

token AliceGroup EN
AA 41 6C 69 63 65 47 72 6F 75 70 F3

SN token IsClass token boolean F EN
F2 A7 49 73 43 6C 61 73 73 A8 00 00 00 05 00 00 04 01 0 F3

SN token Enabled token boolean_def_true T EN
F2 A7 45 6E 61 62 6C 65 64 A8 00 00 00 05 00 00 04 03 1 F3

SN token Secure token messaging_type 0 EN
F2 A6 53 65 63 75 72 65 A8 00 00 00 05 00 00 04 04 0 F3

SN token HashAndSign token hash_protocol 0 EN
F2 AB 48 61 73 68 41 6E 64 53 69 67 6E A8 00 00 00 05 00 00 04 0D 0 F3

SN token Operation token auth_method 1 EN
F2 A9 4F 70 65 72 61 74 69 6F 6E A8 00 00 00 05 00 00 04 08 1 F3

SN token Credential token cred_object_uidref token PinObjectUID EN
F2 AA 43 72 65 64 65 6E 74 69 61 6C A8 00 00 00 05 00 00 10 02 A8 00 00 00 0B 00 00 00 09 F3

] EOD [Status] EndTransaction Status
F1 F9 F0 00 00 00 F1 FC 00

Table 21 Method Response Encoding – with Transaction
Begin Transaction [createrow_result uidref_list [New Authority Object

FB F0 00 00 00 05 00 00 06 07 00 00 00 05 00 00 08 09 F0 00 00 00 09 00 FF FF 01

]] EOD [Status] End Transaction Status
F1 F1 F9 F0 00 00 00 F1 FC 00

3.2.3.4 ComPackets, Packets & Subpackets
Data crosses the Host/TPer interface in T10 SECURITY PROTOCOL IN/OUT or T13 TRUSTED
SEND/RECEIVE commands.

The low-level interface transport layer shall handle the retransmission of damaged or incomplete
commands. Secure messaging, detailed in later sections of this specification, permits the host

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 38 of 265

application to secure its data from malicious attack, not to address hardware and low-level transport
issues. (Similarly with the session start up protocol, hashing is intended to detect tampering.)

The payloads of the interface commands convey tokenized byte streams (method calls, their
parameters, their results, and status codes) and other control information, such as ACKs and NAKs.

3.2.3.4.1 Format
There are three levels of packetization on the host interface: ComPackets, Packets, and Subpackets.
A ComPacket is the unit of communication transmitted as the payload of an interface command. An
interface command payload shall hold only one ComPacket. A ComPacket shall not span multiple
interface commands. A ComPacket is able to hold multiple packets in its payload. A Packet is
associated with a particular session and may hold multiple subpackets. A Subpacket may hold multiple
Tokens. Tokens may span multiple subpackets and multiple packets. However, subpackets cannot
span multiple packets, and packets cannot span multiple ComPackets.

Figure 3 provides an overview of how ComPackets are constructed from packets; how packets are
constructed from subpackets; and how subpackets are constructed from the session byte stream.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 39 of 265

Figure 3 Packet Construction

3.2.3.4.2 ComPacket Format
• Header

• Reserved:uinteger_4 – must be all zeros.
• ExtendedComID:uinteger_4 – The ComID of this ComPacket
• OutstandingData:uinteger_4 – For ComPackets sent by the TPer to the Host, this field

contains the total number of bytes that the TPer has available for the host on this ComID.
This value is based on the data available in the TPer at the point in time when the
ComPacket is transmitted to the host by the TPer. This total shall not include the data

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 40 of 265

being transferred in the current ComPacket. This total shall include
Compacket/Packet/Subpacket overhead. If the TPer has no additional data for this ComID,
this value shall be 0x00 0x00 0x00 0x00. If the TPer has more than 0xFF 0xFF 0xFF
0xFF bytes for this ComID, this value shall be 0xFF 0xFF 0xFF 0xFF. For ComPackets
sent by the Host to the TPer, this field is reserved and shall contain 0x00 0x00 0x00
0x00.

• MinTransfer:uinteger_4 – For ComPackets sent by the TPer to the Host, this field
contains the minimum number of bytes that the host must request on this ComID in order to
transfer a packet for any session associated with this ComID. This value is based on the
data available in the TPer at the point in time when the ComPacket is sent by the TPer.
This value shall include Compacket/Packet/Subpacket overhead. If the TPer has no
additional data for this ComID, or if the TPer has no minimum requirement, this value shall
be 0x00 0x00 0x00 0x00. The host application that manages this ComID shall request at
least MinTransfer bytes on the next IF-RECV command that it sends for this ComID. For
ComPackets sent by the Host to the TPer, this field is reserved and shall contain 0x00
0x00 0x00 0x00.

• Length:uinteger_4 – The number of bytes in the payload
• Payload

• Data:bytes{length}. This contains a sequence of one or more packets.

3.2.3.4.3 Packet Format
Each packet will be made up of the fixed fields noted below, to allow acknowledgements, negative
acknowledgements, and/or data to be included in a single packet.

• Header
o Session: uinteger_8 – The session number associated with this packet. The session

number is composed of two uinteger_4 values – the TPer session number and the Host
session number (Session = TPerSN concatenated with the HostSN). The TPer
Session Number is sent first; the Host Session Number is second. Consequently, the
same session number is used for communications between both parties.

o SeqNumber: uinteger_4 – An incrementing counter that starts at 1 and increments
until 232-1, which identifies the number of the packet within the session and defines the
ordering of transmitted packets.

The message recipient shall ignore a packet with an equal or lower SeqNumber value
than any previously acted-upon packet. In addition, wrapping of the SeqNumber shall
result in the session being automatically aborted.

Each communicator shall maintain multiple SeqNumber counts, including that of the
last packet acknowledged, the next packet expected, and the last packet transmitted.

o AckType: uinteger_2 – This will be 0x00 0x01 if the Acknowledgement field is to
contain a packet acknowledgement. This will be 0x00 0x02 if the Acknowledgement
field is to contain a packet negative acknowledgement. This will be 0x00 0x00 if no
packets are being acknowledged or negative acknowledged, and the value of the
Acknowledgement field shall be zeroes.

o Acknowledgement: uinteger_4 – If the value of the AckType field is 0x00 0x01, then
this number shall be the SeqNumber of the last packet successfully received by the
receiver. If the value of the AckType field is 0x00 0x02, then this shall be the
SeqNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the last known good packet
received plus one. For AckType field value of 0x00 0x02, the communicator shall not
NAK a SeqNumber less than or equal to the last ACKed SeqNumber. If the AckType
field is 0x00 0x00, then the value of this field shall be zeroes.

o Length: uinteger_4 – The number of bytes in the Payload field.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 41 of 265

• Payload
o Data: bytes{length} – This contains a sequence of one or more subpackets.

3.2.3.4.4 Data Subpacket Format
A Data Subpacket consists of the following fields:

• Header
o Kind: uinteger_2 – This field is set to zeroes to identify this as a data subpacket.
o Reserved: uinteger_4 – These bytes are reserved. This specification requires these

bytes to be zeroes.
o Length: uinteger_4 – The number of bytes in the subpacket payload. This is equal to

the number of bytes in the subpacket payload.
• Payload

o Data: bytes{length} – This contains a series of bytes representing one, more than
one, or perhaps part of one token.

3.2.3.4.5 Credit Control Subpacket Format
A Credit Control Subpacket consists of the following fields. For more information on the use of Credit
Control Subpackets, see Flow Control in Section 3.4.6.

• Header
o Kind: uinteger_2. This is 0x80 0x01, and identifies this subpacket as a credit control

subpacket.
o Reserved: uinteger_4 – These bytes are reserved. This specification requires these

bytes to be zeroes.
o Length: uinteger_4. The number of bytes in the Credit Control subpacket payload.

This is always 0x00 0x00 0x00 0x02 for a subpacket of this type.
• Payload

o Credit: uinteger_2. The number of bytes to credit. It’s an additional number of bytes
that may be sent to the stream.

3.2.3.5 Secure Messaging
Secure messaging enables protection of the packet payload. Secure messaging comes in three types:

o Confidential Messaging – this provides encryption on the message being transmitted.
Confidential Messaging prevents the packet contents from being read by an intruder between
the packet source and destination.

o Integrity/Authenticity Checking – this provides the ability to detect tampering with packets in a
session.

o Confidential Messaging with Integrity/Authenticity Checking – this provides encryption on the
message being transmitted and the added ability to detect tampering with packets in a session.

3.2.3.5.1 Secure Messaging Packet Format
A secure messaging packet is used when encryption or integrity/authenticity checking (or both) is
enabled for a session. The secure messaging packet is composed of the following fields:

• Header
o Session: uinteger_8 – The session number associated with this packet. The session

number is composed of two uinteger_4 values – the TPer session number and the Host
session number (Session = TPerSN concatenated with the HostSN). The TPer
Session Number is sent first; the Host Session Number is second. Consequently, the
same session number is used for communications between both parties.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 42 of 265

o SeqNumber: uinteger_4 – An incrementing counter that starts at 1 and increments
until 232-1, which identifies the number of the packet within the session and defines the
ordering of transmitted packets.

The message recipient shall ignore a packet with an equal or lower SeqNumber value
than any previously acted-upon packet. In addition, wrapping of the SeqNumber shall
result in the session being automatically aborted.

Each communicator shall maintain multiple SeqNumber counts, including that of the
last packet acknowledged, the next packet expected, and the last packet transmitted.

o AckType: uinteger_2 – This will be 0x00 0x01 if the Acknowledgement field is a
packet acknowledgement. This will be 0x00 0x02 if the Acknowledgement field is a
packet negative acknowledgement. This will be 0x00 0x00 if no packets are being
acknowledged or negative acknowledged, and the value of the Acknowledgement field
shall be zeroes.

o Acknowledgement: uinteger_4 – If the value of the AckType field is 0x00 0x01, then
this number shall be the SeqNumber of the last packet successfully received by the
receiver. If the value of the AckType field is 0x00 0x02, then this shall be the
SeqNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the last known good packet
received plus one. For AckType field value of 0x00 0x02, the communicator shall not
NAK a SeqNumber less than or equal to the last ACKed SeqNumber. If the AckType
field is 0x00 0x00, then the value of this field shall be zeroes.

o Length: uinteger_4 – The number of bytes in the Payload field (made up of the IV
field, Secure Data field and the Message Authentication Code field).

• Payload
o Initialization Vector (IV): uinteger{0-16} – The IV input for the selected encryption or

integrity checking mode. For GCM, GMAC, and CCM, the IV is 8 bytes long and shall
contain a unique value with each encryption invocation. A simple algorithm is for the
sender to use the sequence number as the IV. For AES-CBC encryption, the IV shall
contain a random 16-byte integer. For all other modes, the IV shall have zero length.

o SecureData – This is the encrypted/integrity-protected data. The Secure payload field
s made up of the following parts (all of which are encrypted, if secure messaging
requires encryption:
� DataLength: uinteger_4 – Length of the Data field, in bytes.
� Data:{Data Length} – The encrypted or integrity-checked set of subpackets

and any necessary padding (dependent on encryption mode). This field is
made up of the following two parts:

• SubpacketData:{Data Length} – The encrypted or integrity-checked
subpackets.

• Pad: bytes: - Any necessary padding required to fulfill the alignment
constraints for the encryption mode in use. For AES-CBC encryption,
the length of the Pad field shall include a number of padding bytes
such that the total length of the Data field plus the Pad field is
congruent to zero mod 16. For GCM and CCM, there is no required
padding.

o Message Authentication Code (MAC): {size of MAC} – A message authentication
code that protects the integrity of the packet. The MAC covers the Session,
SeqNumber, AckType, Acknowledgement, Length, IV, and, for encrypted data, the
ciphertext (the value of the SecureData field, which is made up of the Data Length and
Data fields; note the Data field is made up of the SubpacketData field and the Pad
field), or, for unencrypted data, the unencrypted SecureData field.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 43 of 265

3.2.3.6 Method Invocation – Result Retrieval Protocol
A method is invoked by tokenizing the method call and its parameters as described in previous
sections, using the token encoding format and Subpacket-Packet-ComPacket format. The host sends
the ComPacket to the TPer in an IF-SEND command. Multiple IF-SEND commands may be required
to encompass the entirety of a method invocation or series of method invocations, and their related
data.

The host then polls the TPer by transmitting IF-RECV commands. When the TPer has packaged its
response, it transmits the tokenized results to the host in response to an IF-RECV command. Multiple
IF-RECV commands may be required to retrieve all of the results of a particular method invocation or
series of method invocations.

For additional information on the operation of the IF-RECV commands, see the descriptions for those
commands as detailed in the appropriate interface specifications.

3.2.4 Templates
Templates are sets of tables and methods, grouped by feature, from which SPs are created.

This document covers the following Templates:

• Base Template: Provides the tables and methods common for all SPs.

• Admin Template: Provides administrative control over other SPs and the TPer settings as a
whole, and control over Issuance of new SPs.

• Clock Template: Contains tables and methods specialized for forensic and cryptographic
clocks.

• Crypto Template: Contains functional extensions to the Base SP cryptographic and procedural
capabilities.

• Locking Template: Provides tables and methods for storage encryption/decryption and
read/write lock state control.

• Log Template: Contains tables and methods specialized to forensic logging.

3.2.5 Tables - Details
All persistent data for SPs are stored in tables – the only data for an SP that persists past the end of a
session is the data that is stored in tables. Tables survive operations on user-areas, such as
reformatting.

Tables are stored in SP-specific parts of the secure storage area of the TPer. The secure storage
area(s) of a TPer are only accessible by the T10 SECURITY PROTOCOL/T13 TRUSTED commands.

A table consists of a grid with named columns and addressable rows. At each column and row
intersection there is a cell. All the cells in a column have the same type. The column types are specified
at table creation. For some SSCs, the number of rows in a table is completely determined when it is
created (additional rows cannot be allocated), but other SSCs define tables with a dynamically allocable
number of rows. If an SSC permits additional rows to be added to a table, then the number of rows
specified at table creation is the initial number of rows allocated for that table.

A table name or table column name may be up to 32 bytes in length. By convention, the names
assigned in this document consist of ASCII characters, the first of which is a letter and others is a letter,
digit or underscore. Adjacent underscores do not occur. All names are case sensitive.

SPs may be issued and deleted. Within an SP, tables may be created and deleted. For each table,
rows may be created and deleted (except within a Byte table – see 3.2.5.1), but columns are created
only when the table is created. A specific Security Subsystem Class may disallow the creation of any of
these.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 44 of 265

Each SP has a set of metadata tables (such as the Table table, Column table, etc.) that describes all
the tables of the SP including the metadata tables themselves.

Access control provides a means to limit the methods that may be executed on tables, or particular
rows or cells of tables.

3.2.5.1 Kinds of Tables
There are three kinds of tables:

1. Byte table. A byte table has one unnamed column of type uinteger_1. Note: The rows of this
table cannot be allocated or freed. The address of the first row in a byte table is 1. Byte tables
provide raw data storage.

2. Array table. Unlike byte tables, array tables may have more than one column. Each array
table row is addressed by an unsigned integer that is stored in a column, named RowNumber,
which is only readable from the host – the host shall not specify or modify the value of this
column for a row in an array table. The first row in an array table has RowNumber column value
1, etc. Array tables provide storage for categorizable data.

3. Object table. When created, one or more columns are designated as the index. Each row of
the table has a value or combination of values in the indexed column(s) that is unique within the
table for those column values. When more than one column is marked for indexing, each
indexed column participates in the index ("multi-column index"). The TPer is not required to
keep rows of the table sorted by the index. Object tables provide storage for data that binds a
set of methods to that data.

For Object and Array tables:

• A newly created table is initially empty and rows must be created before they can be used.

• There is always a UID column of type UID. In object tables, rows are addressed by UID. In
array tables, rows are addressed by row number or UID.

3.2.5.2 Objects
An object is any row of an object table. The particular object type is defined by the object table in which
the object occurs. The columns of the object table define the contents of each object in it.

For example, object table Foo is the Foo object type. Each row in object table Foo is an instance of the
Foo object type.

An important aspect of an object type is the set of methods it defines. For a specific SP, there are
methods on the SP itself, methods that act on the tables and have the whole table as their possible
scope, and methods for each of the objects within the SP. In order to hide the information inside an
object, object-specific ACLs are applied to the methods capable of manipulating that object’s data.

3.2.5.3 Unique Identifiers (UIDs)
Each array and object table has a column named UID. This column contains an 8-byte unique identifier
for that row. Each row has an SP-wide unique value in this column. This value is never shared with
another row, and is never reused by that SP. The TPer shall guarantee that UIDs are unique across
the entire SP anytime that a UID is generated.

The UID column is present to provide anti-spoofing capability, and to provide a means to address these
rows. New UIDs are assigned when rows are created and old values are discarded when rows are
deleted. If all UIDs have been used, no more rows can be created.

Each table is also represented by a UID. A table’s UID is derived from the UID of that table in the
Table table. The Table table is an object table in which each row is a table descriptor object that
stores metadata about the associated table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 45 of 265

The bytes in a UID shall be utilized as follows:

o The first four bytes of a table row’s UID shall be the “containing table” id and the last four bytes
will be assigned in a TPer-specific manner.

o UIDs of tables shall be assigned as follows:

o The UIDs of table descriptor objects (the table’s row in the Table table) shall be 0x00
0x00 0x00 0x01 XX XX XX XX, where XX XX XX XX represents the values assigned
by the TPer to that object’s UID. For example, The Table table’s UID shall be 0x00
0x00 0x00 0x01 0x00 0x00 0x00 0x01

o The UID used to reference the actual table (rather than that table’s row in the Table
table) shall be XX XX XX XX 0x00 0x00 0x00 0x00, where XX XX XX XX are the last
four bytes of that table’s UID in the Table table. Four 0x00’s as the last four bytes of a
UID that does not have four 0x00’s at the beginning are references to a table. This is
the UID that is returned by a successful invocation of the CreateTable method.

o All non-table UIDs shall have their high four bytes be the low four bytes of the
containing table’s UID. So, references to rows in a table are assigned UIDs based on
the UID of the containing table. For instance, references to the rows in table XX XX XX
XX 0x00 0x00 0x00 0x00 are assigned UIDs XX XX XX XX yy yy yy yy where the
first four bytes of the containing table UID and of the row are the same.

All UIDs with their first four bytes equal to 0x00 0x00 0x00 0x00 are reserved for use by the TCG and
shall never be assigned by the TPer. When necessary to refer to the SP with a UID, a UID of 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x01 is reserved to signify “this SP”.

For each table defined in this specification, UIDs with last four bytes between 0x00 0x00 0x00 0x00
and 0x00 0x01 0x00 0x00 shall be reserved for use by the TCG.

A Null UID reference is all zeroes (0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00).

3.2.6 Common Methods
Each table and each object has these methods:

• Get: Used to access the values of one or more table cells.

• Set: Used to modify the values of one or more table cells.

Object and array tables also have these methods

• CreateRow: Used to insert a new row into the table.

• DeleteRow: Used to delete one or more rows of a table.

• Next: Used to iterate over all the rows of a table.

The CreateRow, DeleteRow, and Next methods are not defined for byte tables or for objects.

3.2.7 SP Tables & Method Summary
The SPs, Tables, and Methods are presented in overview in Table 22 below.

Table 22 SPs and Methods Covered in this Document
Template Grouping

Concepts
Tables Table

Type
Comments Grouping

Concepts
Methods Comments

All SPs Have Base

SPInfo Array Details of SP

Base

Version,
Size, Etc. SPTemplates Array SP

Components
 Basic SP

DeleteSP SP Deletion

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 46 of 265

Table Object Tables in SP CreateTable Table
Creation

Column Array Cols in Tables Delete Object
Deletion

Type Object SP Types CreateRow Row
Creation

MethodID Array Methods in SP DeleteRow Row
Deletion

Tables and
Methods

Method Array Access Control
Associations

 Get Read Cells

ACE Object Access Control
on Methods

 Set Write Cells

Authority Object Authorities in
SP

Basic
Table/Object

Next Next Row

 Basic
Method

DeleteMethod Method
Deletion

Access
Control Certificates Object Certs for Public

Key Credentials

 Authenticate Authenticate
Authority

C_PIN Object Credential GetACL Set ACEs
on Method

C_RSA_1024 Object Credential AddACE Create
ACEs

C_RSA_2048 Object Credential

Access
Control

RemoveACE Delete
ACEs

C_AES_128 Object Credential Misc GenKey Generate
Keys

C_AES_256 Object Credential

C_EC_160 Object Credential

C_EC_192 Object Credential

C_EC_224 Object Credential

C_EC_256 Object Credential

C_EC_384 Object Credential

C_EC_521 Object Credential

C_EC_163 Object Credential

C_EC_233 Object Credential

C_EC_283 Object Credential

C_HMAC_160 Object Credential

C_HMAC_256 Object Credential

C_HMAC_384 Object Credential

Credentials

C_HMAC_512 Object Credential

Template Grouping
Concepts

Tables Table
Type

Comments Grouping
Concepts

Methods Comments

Stores TPer/SP Info

CryptoSuite Array Crypto
Capability

 IssueSP Issue SP

TPerInfo Array Details of TPer Basic Info
about TPer Properties Byte TPer

communications
details

Admin

SPs on TPer Template Object SP Templates

Issuance

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 47 of 265

 SP Object Issued SPs

Template Grouping
Concepts

Tables Table
Type

Comments Grouping
Concepts

Methods Comments

Keeps date/time

ClockTime Array Holds all clock
info

 GetClock Reading
Clock

 ResetClock Managing
Clock

 SetClockHigh Sets time
from high

trust source

 SetLagHigh Sets lag
time from
high trust
source

 SetClockLow Sets time
from low

trust source

 SetLagLow Sets lag
time from
low trust
source

Clock

Clock
Information

Clock
Management

IncrementCounter Reading
Monotic
Counter

Template Grouping
Concepts

Tables Table
Type

Comments Grouping
Concepts

Methods Comments

Enable Hidden CSP

H_SHA_1 Object Credential Random Gen
Random
Number

H_SHA_256 Object Credential DecryptInit Public or
Symmetric

Key
Decryption

H_SHA_384 Object Credential Decrypt Public or
Symmetric

Key
Decryption

H_SHA_512 Object Credential DecryptFinalize Public or
Symmetric

Key
Decryption

 EncryptInit Public or
Symmetric

Key
Encryption

Crypto

Hash
Functionality

Crypto
Operations

Encrypt Public or
Symmetric

Key
Encryption

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 48 of 265

 EncryptFinalize Public or
Symmetric

Key
Encryption

 HashInit Hash

 HashCalc Hash

 HashFinalize Hash

 HMACInit HMAC

 HMACCalc HMAC

 HMACFinalize HMAC

 Sign Public Key
Sign

 Verify Public Key

Verify

XOR For Key
Derivation

Template Grouping
Concepts

Tables Table
Type

Comments Grouping
Concepts

Methods Comments

Forensic Logging

Log Array Stores logs AddLog Add record
to Log Table

LogList Object Contains Log
table metadata

 CreateLog Create a
new Log

Table

 ClearLog Removes all
entries in a
Log Table

Log

Logging

Log
Management

FlushLog Commits log
entries in

main
memory

Template Grouping
Concepts

Tables Table
Type

Comments Grouping
Concepts

Methods Comments

Encryption/Key Management/Read-Write Lock State
Control

LockingInfo Array Device
capability

 GetPackage Wrapped
Key

Retrieval
Device

Management Locking Object LBA Ranges
definitions

 SetPackage Wrapped
Key

Retrieval

MBRControl Array Boot Control

Locking

Boot Control MBR Byte Boot Control
Code

Key
Management

Template Grouping
Concepts

Methods Comments

None

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 49 of 265

 Properties Channel
information

 StartSession Session
Startup

SyncSession Session
Startup

StartTrustedSession Secure
Session
Startup

SyncTrustedSession Secure
Session
Startup

Session Manager Layer Methods - These methods
are not associated with a particular Template or SP.

These methods provide the host the capabilities
required to start sessions with SPs.

Session
Management

CloseSession Session
Termination
by the TPer

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 50 of 265

3.3 Interface Communications
The TCG Core Specification describes the architecture and main command set in an interface protocol-
independent way. The Core Specification is not, however, agnostic to the interface protocols. It
recognizes the limitations and characteristics of the main targeted interface protocols. In particular the
TCG has targeted the INCITS T13/ATA and INCITS T10/SCSI protocols. Accordingly, the TCG has
secured a set of command codes from these standards bodies that will allow the current specification to
be implemented. These commands are the T10 SECURITY PROTOCOL IN/OUT and the T13
TRUSTED SEND/RECEIVE.

This section abstracts out the common features of these commands that will serve as a requirement for
an interface protocol to implement the present specification.

The following assumptions are made regarding the interface commands:

• The interface commands have two parts: (1) a command block and (2) a data block or payload.
The data blocks for a particular interface protocol are of a fixed size, called BLK-SIZE. BLK-
SIZE must be at least 512 bytes. The data block size for a particular interface protocol is
assumed to be fixed and therefore the parameter BLK-SIZE is not part of the command block.

• There is at least one command in the interface protocol that transfers data from the host to the
storage device. These commands are called IF-SEND.

• There is at least one reserved command in the interface protocol that transfers data from the
storage device to the host. These commands are called IF-RECV.

• The command blocks for these two commands shall have the following fields

o Protocol ID: with at least 6 values that can be mapped into 1 to 6.

o Transfer Length: 2 bytes, indicating the number of blocks to be transferred.

o ComID: 2 bytes, the ComID to be used.

• The interface protocol shall preserve the order for IF-SEND and IF-RECV. That is, the
commands sent from a particular host will arrive at the TPer in the order in which they were
sent from that host.

The command block of the interface commands are described in the format defined in Table 23.

Table 23 Interface Command – Command Block
Command Either IF-SEND or IF-RECV.

Protocol ID Between 1 and 6

Transfer Length: 2 bytes The number of blocks to be
transferred.

ComID: 2 bytes The ComID to be used.

The mapping of the IF-SEND and IF-RECV commands to specific interface protocol commands are
described in the TCG documents related to the particular protocol.

3.3.1 Communicating With the TPer Through the Interface Protocol
The communication between the Host and the TPer take place through the use of IF-SEND and IF-
RECV as illustrated in Figure 4 below.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 51 of 265

Figure 4 TPer-Host Communication

Most of the useful communication is encapsulated in the payload of these commands. However, there
will be some interaction with the command block as well, particularly for the lower level commands used
to start a session.

The payload of these commands shall be of one of two types

o Packetized payloads: The data block has a single ComPacket. The ComPacket contains one
or more packets. Each packet contains one or more subpackets. Details of how the packets
are specified in section 3.2.3.4.

o Byte field payloads: This is a simple type of payload that is used in the more rudimentary
layers of the protocol stack defined in this section.

The packetized payloads are used when the Protocol ID of the command block is set to 1, and the byte
field payloads are used when the Protocol ID is set to 2. The transfer length varies depending on the
commands.

The ComID are used to allow the TPer to identify the caller of the IF-RECV command and appropriately
populate the payload for the command.

3.3.2 The ComID
The ComID is used to enable the correct communication of response data to the host. The ComID
allows the TPer to identify the caller of the IF-RECV command and appropriately populate the payload
for the command.

In order to open a session with a particular SP on a TPer, the host application must start by requesting
a ComID from the TPer. The TPer issues a ComID to the host application. The ComID is transmitted
in the Security Protocol Specific field of the interface command. Once the host application has a unique

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 52 of 265

ComID, the host is able to initiate the process of starting a session. An example of this interaction can
be found in Figure 5 .

Figure 5 Single Host/TPer Interaction

Once the session is started, the TPer associates the session number with the ComID. In this way,
when an IF-RECV is sent to the TPer using Protocol ID of 1, the TPer is able to respond with a payload
containing only the packets for the session number associated with the ComID. This allows for multiple
applications to be simultaneously communicating with the TPer without interfering with one another, as
displayed in Figure 6 .

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 53 of 265

Figure 6 Multiple Host/TPer Interaction

In some situations it might be useful to allow for a single entity, called the Host Session Manager, to
manage the TPer communications for a set of different applications running on the host. To enable
this, multiple sessions are permitted to be opened with a single ComID. All the sessions opened with a
given ComID shall be associated with it. An example of this behavior is displayed in Figure 7 .

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 54 of 265

Figure 7 Host Session Manager/TPer Interaction

Note that to the TPer, communication with a single application is no different than communication with a
Session Manager that may act as an intermediary for multiple applications with which the TPer is
communicating. An application may open a single session to the TPer for itself, multiple sessions for
itself, multiple sessions for one or more other applications, multiple sessions for itself and one or more
other applications, or any other combination.

When an IF-RECV is sent to the TPer using a particular ComID, the TPer shall respond by putting
packets from the sessions associated with the ComID into the response. If there are more pending
responses from the various sessions associated with the ComID than fits the IF-RECV, it is up to the
TPer to determine which packets to include.

The number of packets/subpackets that are included in the response is a function of the amount of
available responses, the transfer length of the command, and the flow control mechanism. The amount
of data still remaining to be retrieved and the minimum transfer length required to retrieve at least one
packet, at the time the ComPacket was generated, is reported in the ComPacket header.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 55 of 265

3.3.3 ComID Management
A mechanism is required to manage the ComIDs so as to minimize the chances of two host
applications using the same ComID in the rare occasions in which there are ComID conflicts.

ComIDs may be of two types: reserved and normal. The reserved ComIDs are used to allow for
rudimentary commands to be defined at lower levels of the protocol stack. One example is the
GET_COMID command (see definition below). The lower 4096 out of the possible ComIDs shall be
reserved – 0-2047 are reserved for TCG use/assignment, and 2048-4095 are reserved as vendor-
unique. The other, non-reserved ComIDs shall be used for multiplexing the TPer responses to IF-
RECVs.

A ComID may be in one of the following three states:

1. Inactive: The ComID has not been assigned to anyone since the last hardware reset or power
cycle; ComIDs may also be in the Inactive state due to circumstances other than reset/power
cycle.

2. Issued: The ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using this ComID.

3. Associated: One or more open sessions are associated with the ComID.

ComIDs that are either in the Issued state or the Associated state are said to be Active. The state
diagram in Figure 8 shows these states and the possible transitions among them.

Note that support for ComID management commands is SSC-dependent.

Figure 8 ComID State Transition Diagram

The possible state transitions are:

o Inactive to Issued: A ComID transitions from the Inactive state to the Issued state when it is
returned to the host during a successful execution of the GET_COMID command.

o Issued to Associated: A ComID transitions from the Issued state to the Associated state once
a session is open using that ComID. This occurs when at the point when session startup has
successfully completed.

o Issued to Inactive: A ComID transitions from Issued to Inactive when any one of the following
conditions hold

o There is a hardware reset or power cycle.
o The host issues MAX_COMID_CMD commands using the ComID before starting a

session. MAX_COMID_CMD defines a limit on the number of commands that a TPer
will accept for a given ComID before the TPer transitions an Issued ComID to Inactive.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 56 of 265

A TPer's MAX_COMID_CMD value is retrieved using the Properties method.
Support for MAX_COMID_CMD is SSC-dependent.

o The host does not start a session using the ComID within MAX_COMID_TIME from the
ComID being issued. MAX_COMID_TIME defines a limit on the amount of time a
ComID can exist in the Issued state without an active session. A TPer's
MAX_COMID_TIME value is retrieved using the Properties method.

o Associated to Inactive: A ComID transitions from Associated to Inactive when any of the
following conditions are met:

o There is a hardware reset or power cycle.
o After all sessions associated with the ComID are closed.

In order to minimize the possibility of conflict, the ComID issuance mechanism shall have the following
two characteristics:

o A ComID that is in an active state shall not be issued again. That is, only ComIDs that are in
either the inactive or issued states shall be returned to the host as a response to the
Get_COMID command.

o The TPer shall issue ComIDs in a sequential manner (wrapping around cyclically as needed),
keeping a record in non-volatile memory that is a pointer to a ComID not yet allocated.

In addition to the above transitions, the TPer may transition a ComID to the Inactive state at any time
for any reason.

3.3.3.1 Extended ComID
Despite all the mechanisms put in place, there is always the possibility that some application will hold
on to its ComID for an extended period of time and not recognize that the ComID has become Inactive
and (possibly) subsequently been issued to another application. Since there are only 61440 normal
non-reserved ComIDs, the probability of this occurring is not small enough to be neglected.

To help deal with this issue the TPer makes use of Extended ComIDs. Extended ComIDs are 4 bytes
long and have the first 2 bytes equal to the ComID. The MSB of the ComID is the first byte of the
Extended ComID, and the LSB of the ComID is the second byte of the Extended ComID. The TPer
arbitrarily generates the remaining 2 bytes every time a ComID is issued. The GET_COMID command
will return the 4-byte Extended ComID to the host. Note that there may have been many Extended
ComIDs associated with the same ComID over the life of the TPer. Extended ComIDs associated with
reserved ComIDs (0-4095) shall always be 0.

The Extended ComID can be in one of the following states

1. Inactive: The associated ComID is in the inactive state.

2. Issued: The Extended ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using the
associated ComID.

3. Associated: One or more open sessions were open with the ComID. These sessions are said
to be associated with the Extended ComID.

4. Invalid: The Extended ComID has not been issued since the last power cycle/reset, or has
become inactive and there exists another Extended ComID with the same associated ComID in
one of the active states (Issued or Associated).

The Extended ComID can be used to determine if an application is using a stale, conflicting ComID, i.e.,
if the ComID the application is using has become inactive and subsequently assigned to another
application. When this happens, the application’s Extended ComID shall be invalid. When the
application makes an inquiry to the TPer using the Extended ComID, the TPer shall respond with an
indication that the Extended ComID is invalid.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 57 of 265

3.3.4 Sessions
There are currently two types of sessions:

• Regular Sessions (or just Sessions): These are communication channels between a host
application and an SP.

• Control Sessions: These are between the TPer Session Manager (TSM) and the Host
Session Manager (HSM).

The Host Session Manager is an abstract entity that represents the peer, on the host side, of the TPer
Session Manager. The HSM could be an application that is routing traffic to several applications on the
host or it could simply be a module in a given application that deals with establishing sessions with the
TPer.

3.3.4.1 Regular Sessions
Each Regular Session is identified by a distinct Session Number (SN). The SN is an 8-byte quantity
composed of two subparts: the TPer Session Number (TSN) and the Host Session Number (HSN),
each of which has 4 bytes.

SN = (TSN, HSN)

The HSN is assigned by the HSM and can be any value. Typically the HSM will assign HSNs in such a
way as to make them unique for all of its communications with one or more TPers, though this is not
required.

The TSN is assigned by the TSM. The TSM shall guarantee that all Regular Sessions associated with
a particular ComID are assigned a different TSN. In addition, the TSM shall not assign any TSN in the
range 0 to 4097 to a regular session. These TSNs are reserved by TCG for special sessions, of which
the control session is the only one currently defined.

Additional details regarding session startup can be found in 3.4.4.5.

3.3.4.2 Control Sessions
Each Control Session is identified by a distinct ComID and a TPer Session Number of zeroes (TSN =
0x00 0x00 0x00 0x00). There is exactly one Control Session associated with each ComID. The
Control Session is between the TSM, identified by TSN=0x00 0x00 0x00 0x00 and the HSM, identified
by the ComID. The HSN is not used to identify the session in a Control Session. It is used simply as a
“routing aid” for the cases in which multiple sessions are simultaneously started using the same ComID.
However, the HSN will become active once the Regular Session is started.

The life cycle of the Control Session is tied to the life cycle of the ComID in that the Control Session
associated with a particular ComID starts as soon as the ComID is issued and it starts with the default
credits. When the ComID is retired, the Control Session is terminated. The flow control for the Control
Session is performed in the same manner as the flow control for Regular Sessions, with the difference
that the communication is between the TSM and the HSM and these entities are responsible for the
flow control.

The packet headers for communications in the case where several different sessions are
simultaneously started on the same ComID will have different SNs because the HSNs will be different.
As far as flow control is concerned, only the TSN matters since the Control Sessions are identified by
the TSN=0x00 0x00 0x00 0x00 and the ComID.

3.3.5 Protocol Layers
In order to describe the overall process for establishing communication with the TPer and initiating a
session to an SP, it is necessary to partition the protocol stack into layers. The commands in each

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 58 of 265

layer differ in the amount of functionality available. The lower level allows only one-way communication
(TPer to host) and shall only use simplistic byte field responses. The higher layers have two-way
communication and use packets and methods.

Figure 9 below depicts the protocol layers.

Figure 9 TPer-Host Communication Protocol Layers

• Session layer: This layer is entered when a session is successfully established between the
host application and an SP in the TPer. Most of the commands and functionality specified in
the TCG Core Specification operate in this layer. Payloads in this layer are packetized and
tokenized.

• Management layer: This layer deals with establishing a session between an SP and a host
application. Payloads in this layer are packetized and tokenized.

• Communication (Com) layer: In this layer the host application already has an assigned
ComID that is used for establishing two-way communication. It is a bidirectional
communication/control layer. This layer is used for management of ComIDs and dealing with
error conditions and other storage device management issues.

• TPer layer: This is the first entry point to the TPer. This is a “one-way” communication layer.
That is, only IF-RECV commands are dealt with in this layer. The host application does not
have a ComID yet. There is a set of reserved ComIDs that can be used to execute special
commands at this layer.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 59 of 265

• Interface layer: This portion of the stack contains the protocol for allowing the host to control a
specific storage device. The interface protocol must support IF-SEND and IF-RECV, i.e., have
commands with the properties that are required for these TCG commands.

• Transport layer: This portion of the stack is responsible for transporting the data from one
particular host to one particular storage device and vice-versa. An example is Fibre Channel.

3.3.5.1 Transport Layer
This layer of the protocol stack is responsible for transmitting the data from one particular host to one
particular storage device and vice-versa. There are no specific interactions with this layer described in
the TCG Core Specification. The only requirement is that this layer interact with the Interface layer in
such a way as to guarantee that the order of commands sent from a single host to a single storage
device are preserved.

3.3.5.2 Interface Layer
The commands at this layer are the IF-SEND and the IF-RECV commands. The interface controller on
the storage device shall identify these commands and send them to the TPer level.

All commands that map to IF-SEND and all the commands that map to IF-RECV that have the protocol
ID field in the set {1, 2, 3, 4, 5, 6} shall be sent to the TPer.

For an IF-SEND, the interface controller retrieves the data from the host to the storage device, sends
the command block parameters (Command, Protocol ID, Transfer Length, ComID) to the TPer, waits for
all data to be transferred, and then returns the IF-SEND command status at the interface protocol level.

For an IF-RECV, the interface controller sends the command block parameters (Command, Protocol ID,
Transfer Length, ComID) to the TPer, waits for data to be generated from the TPer, and starts transfer
to the host. Once all the data has been transferred, the IF-RECV command status is returned at the
interface protocol level.

3.3.5.3 TPer Layer
This is the entry point into the TPer. This layer has very limited functionality. Commands at this layer
are designed to be used without ComIDs. In particular, the command used to request a ComID,
GET_COMID, is dealt with in this layer.

The only commands dealt with in this layer are IF-RECV commands with some specific reserved
ComIDs and protocol ID settings. All other commands are passed up to the Communication Layer.
The commands specified in this layer and in the communication layer will have Protocol ID = 02h.

3.3.5.3.1 GET_COMID
The command block for the GET_COMID command is defined in Table 24. The payload of the
GET_COMID command is defined in Table 25.

Table 24 GET_COMID Command Block
FIELD VALUE

Command IF-RECV

Protocol ID 02

Transfer Length 00 01

ComID 00 00

Table 25 GET_COMID Payload
BYTE FIELD VALUE

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 60 of 265

BYTE FIELD VALUE

0 – 3 Extended ComID Allocated ComID

4 – (BLK-SIZE-
1) Reserved zero

o The first 4 bytes of the payload shall be the Extended ComID. The first two bytes of the
Extended ComID are the ComID. If the TPer is not able to assign a new ComID for any reason
it will return all zeroes in the Extended ComID field.

o The remaining BLK-SIZE - 4 bytes of the single transferred data block shall be reserved and set
to zero.

3.3.5.4 Communication Layer
The Communcation Layer provides a mechanism for two-way communication between the host
application and the TPer. The primary purpose of the communication at this layer is to manage the
allocated ComID and to verify the validity of the allocated ComID.

Communication at this layer occurs using IF-SEND and IF-RECV commands using Trusted Protocol ID
02h. The host must have a ComID that has been assigned by the TPer using the GET_COMID
command available at the TPer Layer.

If the host application uses a ComID that is not valid or has become invalid since its last usage, the
protocol at this layer has the ability to signal the error to the host application without raising exceptions
on lower layers such as the Interface or TPer layers. This allows host applications to verify validity of
ComIDs without disturbing the operation of the TPer.

3.3.5.5 Communication Layer Protocol
The commands for communication with the TPer at this layer are as follows:

• HANDLE_COMID_REQUEST: IF-SEND to ComIDs with the caller’s Extended ComID
passed as the first 4 bytes of the payload.

• GET_COMID_RESPONSE: IF-RECVs on ComIDs previously allocated by the TPer.

For any given ComID, the host is expected to issue request and response commands in pairs.
Consecutive response commands return data corresponding to the last request received from the TPer.
The response may be regenerated by the TPer at the time of receipt of the command.

3.3.5.5.1 HANDLE_COMID_REQUEST
This command is used to inquire about or manage the state of the ComID previously allocated by the
TPer. The command block for the HANDLE_COMID_REQUEST command is defined in Table 26.

Table 26 HANDLE_COMID_REQUEST Command Block
FIELD VALUE

Command IF-SEND

Protocol ID 02

Transfer Length nn nn

ComID Allocated ComID

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 61 of 265

The payload sent by the host to the TPer, at the minimum, consists of the 4-byte Extended ComID and
a Request code. Additional fields may be required for some request codes. Currently only one Request
code is defined: Verify ComID Valid. The payload required for this request is defined in Table 27.

Table 27 Verify ComID Payload
BYTES FIELD VALUE

0 – 3 Extended ComID Allocated ComID

4 – 7 Request Code 00 00 00 01

8 – n*BLK-Size Reserved zero

On receiving this request, the TPer checks if the ComID sent in the payload matches any of the
ComIDs currently active in the TPer. The response is reported in the payload of the next
GET_COMID_RESPONSE command sent to the requested ComID.

3.3.5.5.2 GET_COMID_RESPONSE
This command is used to pick up the response of the TPer to a previous HANDLE_COMID_REQUEST
command. The command is sent to the ComID for which the status is requested. The command block
for the GET_COMID_RESPONSE command is defined in Table 28

Table 28 GET_COMID_RESPONSE Command Block
FIELD VALUE

Command IF-RECV

Protocol ID 02

Transfer Length nn nn

ComID Request_ComID

The transfer length is the maximum length in blocks that the TPer may send in response to the
command. If the actual length of the response data is smaller, then the TPer shall pad the data with
zeros. If the actual length of the response data is larger, then the TPer shall only send the requested
amount of data.

The payload of the response data always contains the maximum available length of the response data
in byte 8-9. The host may use this information to repeat the response command with a transfer length
that fits the available data.

Currently, only the response to the Verify_ComID_Valid request code is defined. The payload built by
the TPer in response to the Verify_ComID_Valid command is defined in Table 29.

Table 29 Verify_ComID_Valid Command Response
BYTE FIELD VALUE

0 – 3 Extended ComID Allocated ComID

4 – 7 Request Code 00 00 00 01

8 – 9 Available Data Length in blocks 00 01

10 – 11 Reserved 00 00

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 62 of 265

BYTE FIELD VALUE

12 – 15 Current state of Extended
ComID

Enum {Invalid, Inactive, Issued,
Associated}

16 – 25 Time of Allocation of ComID 10 byte format

26 – 35 Time of Expirty of ComID 10 byte format

36 – 45 Time since last reset of TPer 10 byte format

46 – BLK-SIZE Reserved zero

If the TPer does not support a real-time clock, the Time values in the Verify_ComID_Valid response
shall be all zeroes. If the TPer supports a real-time clock, the fields that report the time shall use the
following format:

Year (4 digits) – uinteger_2

Month (2 digits, 1-12) – uinteger_1

Day (2 digits, 1-31) – uinteger_1

Hour (2 digits, 0-23) – uinteger_1

Minute (2 digits, 0-59) – uinteger_1

Second (2 digits, 0-59) – uinteger_1

Fraction (number of milliseconds, 0-999) – uinteger_2

Reserved – uinteger_1 – 0x00

If the current state of the ComID is reported as unknown, only the current time or time since last reset of
the TPer is valid in the data payload. If the ComID state is reported as valid, the time of expiry will be
less than the current time.

3.3.5.6 Management Layer
Commands dealt with in this layer will be IF-SEND and IF-RECV with Protocol ID = 1 and with a valid
active ComID.

This is the first layer that makes use of tokenized and packetized payloads. Communications in this
layer occur between the TPer Session Manager (TSM) and the Host Session Manager (HSM). All
communications happen within Control Sessions. There is exactly one Control Session for each
ComID.

The Control Session associated with a particular ComID starts as soon as the ComID is issued, with a
default amount of flow control credits. When the ComID is retired, the Control Session is terminated.
The flow control for the Control Session is performed in the same manner as the flow control for
Regular Sessions, with the difference that the communication is between the TSM and the HSM and
these entities are responsible for the flow control.

In the case where several different sessions are simultaneously started on the same ComID, the packet
headers for communications will have different SNs because the HSNs will be different. As far as flow
control is concerned, only the TSN matters since the Control Sessions are identified by the TSN=0x00
0x00 0x00 0x00 and the ComID.

One of the main tasks of this layer is to manage the startup of Regular Sessions. During this process,
the TSM and the HSM will assign the TSN and the HSN that will compose the SN for the Session to be
created.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 63 of 265

When the process is initiated the HSM assigns an HSN (i.e. newHSN). The HSM has the opportunity to
make sure newHSN is different from any other HSNs in use by other sessions managed by it, though
this is not required.

This HSN is used in the header of the packets containing the StartSession method, and the SN for
this packet would be SN = (TSN=0x00 0x00 0x00 0x00, HSN=myHSN). Once the TSM receives the
StartSession method it assigns a TSN to the session. The TSM shall assign the TSN, newTSN, in
such a way as to guarantee that TSNs are unique per ComID. The TSN assignment is returned to the
application through the packet containing the SyncSession method invocation. At this point the
Session Number for the new session has been established – newSN = (newTSN, newHSN).

Once the TSM processes the StartSession method and returns the SyncSession response, the
Regular Session will be open for the case of sessions that do not require challenge-response. For
sessions that require challenge-response, the Regular Session will be open when the TSM finishes
processing the StartTrustedSession and sends out the SyncTrustedSession response.

3.3.5.7 Session Layer
In this layer all communications occur within a Regular Session.

3.4 SP Operation Descriptions
The following section highlights how tables and methods are managed.

3.4.1 General SP Guidelines
The Admin SP manages Templates, creates other SPs under issuance control, and maintains
information about other SPs and the TPer as a whole. There shall be exactly one Admin SP on every
TPer that has SPs or that can have SPs issued. If present, the Admin SP cannot be deleted or
disabled.

Each SP is created by mixing one or more of the Templates identified in the Admin SP.

A Template includes the following:

1. Its name. Each Template must have a different name. The TCG shall never define a Template
whose name begins with an underscore. Any templates defined by a manufacturer that are not
TCG specified Templates shall have a name that begins with an underscore.

2. A set of table and method definitions. These definitions will be used to define the initial tables
and methods of any instance of that Template. Any tables added by a manufacturer to a TCG
defined Template shall begin with an underscore.

3. Optionally, a maximum instance count. At any time there can be no more than this number of
SPs based on this Template instantiated within the TPer.

An SP includes the following:

1. Its name. Each SP must have a different name. The Admin SP has the reserved name Admin.

2. Its tables. Tables are stored in the access-protected, non-volatile storage area on the TPer.

3. A set of methods.

All SPs must be created from at least the Base Template. The Base Template may be combined with
any other Template(s) to create an SP, though the number of SPs that instantiate a particular Template
may be limited.

3.4.2 Access Control
Access Control limits the methods that can be executed on an SP, a table, or on specific rows and
columns of a table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 64 of 265

Permission to execute a method is governed by which secrets the method’s invoker has proven that it
knows. The secrets and their public parts are called Credentials. The operation for proving knowledge
of a secret is called an Authentication Operation. The actual proving of knowledge of a secret is
called Authentication.

Authentication in this document may be described as either Explicit Authentication, which occurs as a
result of challenge/response, for example; and Implicit Authentication, which occurs as a result of
implicitly proving knowledge of a secret, such as during session key exchange. An authority is
considered authenticated in either type of scenario - the terms Explicit and Implicit are descriptive and
do not limit the authentication or capabilities of an authority.

In addition to authentication, credentials may also be used for Encryption.

The Authority table on an SP associates specific Credential-Operation pairs together in Authority
objects. For example, one authority may include a credential that contains the secret password with
retry and hiding specification and the stipulated proof-of-knowledge operation of password
authentication.

An authority can be used by the host application to represent a person, a role, a program agent, etc.
These are distinctions of meaning to the application, not to the SP.

Certain authorities are defined by this specification. The AdminExch authority, of the class Admins, is
one such pre-defined authority. Every SP has an AdminExch authority at time of issuance. Security
Subsystem Classes may specify authorities in addition to these, or may restrict the use of some of
these. For details regarding the Admin authority and other pre-defined authorities, refer to 5.3.4.1.2.

Access Control is specified in layers. The top layer of the mechanism is Access Control Lists (ACLs).
ACLs are lists of Access Control Elements (ACEs). This layering gives the host a way in which it can
delegate control of an ACL, via control of its ACEs, to various independent entities.

ACEs are Boolean combinations of authorities. This permits the ACE to express cross-certification or
other forms of restriction. When an Authority is authenticated, it is True in the Boolean expression, and
False otherwise.

Figure 10 Access Control

An authority may be one of two kinds: Individual and Class. Each Individual Authority may be a member
of one Class Authority. A Class Authority may also be a member of one Class Authority. A Class
Authority is identified only by its Authority UID and Class Name. A Class Authority does not refer
directly to a Credential. An Individual Authority specifies one Credential and one Operation on the
Credential.

A Credential is an object in a Credential Table. All credential tables have a name that starts with
"C_". A credential table must have at least one column for a secret. It may also have “public” parts,

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 65 of 265

such as public keys and certificates. A particular credential need not have all its columns filled in. For
example, if only a public key and certificates validating that public key are known, then the private key
columns may be unused (zeroes in these columns indicate that this information is not present).

A Credential Table must also have internal implementation for using the secrets and the “public” parts
of each credential and must handle all optional parts.

The operation is selected, as appropriate for the credential, from:

• Password or PIN or Passcode

• Signing:

o Public Key Challenge/Response Sign/Verify

o Symmetric Key Challenge/Response Sign/Verify

o HMAC Challenge/Response Sign/Verify

• Key Exchange (Certificates or other methods provide implicit Authentication)

o Public Key Encrypt/Decrypt

o Symmetric Key Encrypt/Decrypt

• None or ““ This operation will always succeed and therefore the authority will always
Authenticate.

A Class Authority is authenticated when an Individual Authority that is a member of that Class Authority
is authenticated. Class Authorities cannot be directly authenticated. Class Authorities are a convenient
way to allow an ACE to be set on a method without enumerating all the Individual Authorities that may
authorize that method. This means that the Individual Authorities that belong to that Class Authority can
be changed without having to change any of the ACEs that refer to the Class Authority.

Access control is permitted in that ACEs can apply to methods on an SP, on a particular table in an SP,
or on arbitrary parts of a particular table in an SP, down to the granularity of a single table cell. Note
that access control over reading the columns that participate in an object table’s index gate whether or
not that object may be read.

With ACEs as the building blocks of ACLs, each ACE can have separate managerial control. For
example, one authority might create a table and give another authority control of some of the ACEs on
that table. This allows flexible, fine-grained management of access.

The simplest ACL is one ACE of one authority. The minimum and maximum number of ACEs in an
ACL and the minimum and maximum number of authorities in an ACE is Security Subsystem Class-
specific. Every Security Subsystem Class shall at least stipulate the minimum.

Authentication to an authority occurs within a session (or during session startup) and applies only to
that session. All authorities that participate in successful session startup are authenticated for that
session. During a session the host may make any number of Authenticate method invocations.
There may be Security Subsystem Class-defined TPer and per session limits on the maximum number
of authorities that may be authenticated at any one time.

Security is enhanced by logging events that are related to ACLs. Authorities determine when attempts
to use them are to be logged (authentication failures, etc.).

3.4.3 SP Issuance, Personalization, and Operational State
Issuance is the cryptographically controlled creation of SPs from Templates. Issuance occurs within a
session to a TPer's Admin SP, and is achieved by demonstrating knowledge of the secrets required to
authorize the creation of new SPs and then, for each new SP, creating a unique credential for the
Admin authority on that SP. Issuance is not considered complete until the Issuance session to the

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 66 of 265

Admin SP successfully closes. Templates can not be included in an SP except during the initial
issuance of that SP.

Personalization follows Issuance. The Admin authority on the new SP can accomplish personalization
by opening a session to the issued SP, creating new tables and methods (in addition to the tables and
methods that were provided by the Templates), provisioning those tables, and, finally, setting the
access controls on the SP’s methods. Personalization will not be considered complete until the session
is successfully closed.

Operational State is reached once personalization is complete. The result of the Issuance and
Personalization process is an SP both usable by and useful to a host application.

3.4.3.1 Example – Issuing an SP
Issuing an SP is similar to building a train (see Figure 11 below). Every train (SP) must have an engine
(Base Template). Additional cars (other Templates) providing additional capabilities may be added at
the time of issuance. In the simplest case, an SP is issued from just the Base Template (see part ‘a’). In
more complex cases several Templates can be used.

Figure 11 Issuance

3.4.4 Sessions, Methods, and Transactions
All communications with an SP occur within sessions. A session is always started by a host.

Normally the host application will end a session when it has finished its communication, but either the
SP or the host may abort a session at any time for any reason. For a specific SP there may be any
number of Read-Only sessions active simultaneously, but only one Read-Write session. Read-Only and
Read-Write sessions are mutually exclusive. The existence of Read-Only sessions, the maximum
number of simultaneous Read-Only sessions that may be opened to any SP, and/or limit the total
number of open sessions available to a TPer shall be defined by Security Subsystem Class.

Except as noted in the SP Reference, no explicit changes to an SP made during a Read-Only session
are made permanent, even when the session closes successfully. Indirect changes, such as PIN
blocking, log updates, etc. will remain persistent.

Methods are procedures that operate on tables or SPs, and are called within a session to an SP. The
caller passes a list of parameter values to the method and the method returns a list of result values
followed by a status list, the first value of which is the status code response to the method invocation.
Status code 0 (OK) means the method call completed successfully. Failure conditions are assigned
specific non-zero status codes (see Status Codes in 5.1.3 for details). Within a given session at most
one method shall be active at a time.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 67 of 265

Method calls, their parameters, and their results are all sent and received over session streams. Each
session to an SP has at least two streams of bytes onto which data is encoded. One stream goes from
the host to the SP, and the other comes from the SP to the host. Each stream operates asynchronously
from all other streams.

Typical host method calls will send all their parameters/data to the SP before trying to read any of the
results, but the SP is free to generate results incrementally as it consumes its parameters. The host is
similarly free to try to read SP results while sending parameters. The SP implementation decides how
synchronous or asynchronous to be, so long as the semantics of the method call(s) are not
compromised.

Transactions are used to provide a clean model for how changes to an SP are to take effect. They also
provide an easy way for host applications to handle error recovery. If a session is aborted, any open
transactions are aborted.

Changes are successfully committed and made persistent (to the media, made visible to subsequent
sessions on the same SP, etc.) in 2 ways:

1. When a method is invoked outside of a transaction, and resolves successfully, changes
made by that method are committed and made persistent immediately.

2. When a method is invoked inside of a transaction or set of nested transactions, changes
made by that method are committed and made persistent when the top-level transaction
closes.

Effects on other aspects of the TPer (i.e. hardware settings) occur when associated changes are
successfully committed. Note that some changes occur as exceptions to transactional control (i.e.
logging), and commit immediately even if they occur inside of a transaction or following a method
invocation that has failed.

3.4.4.1 Method Calls
A method call consists of the following steps:

1 The host tells the SP the method it wants to call.
2 The host sends a list of parameters to the SP.
3 The body of the method is executed in the SP.
4 The method results are returned from the SP to the host.
5 Steps 2-4 may be repeated when input and output are incrementally streamed.

3.4.4.2 Transactions
In addition to method calls, a session may include nested transactions. The maximum number of
transactions that can be nested is Security Subsystem Class-specific, and will be specified in response
to the Properties method invocation. There are tokens in the session stream that are transaction start
and end tokens (defined in the 3.2.3). The host is free to start a transaction on a session between
method invocations, and may subsequently open nested transactions. All transactions consist of the
following steps:

1. The transaction is opened.

2. A set of method calls is made.

3. The transaction is either aborted or committed.

If a transaction is aborted all SP state is reset ("rolled-back") to its value at the time the transaction was
opened.

Nested transactions abort or commit relative to their parent transaction. In the case of an aborted
transaction, the SP state is rolled back to the point where the transaction was started. (This is true
whether or not the transaction is nested.) In the case of a commit, the nested transaction’s changes

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 68 of 265

become part of its parent transaction, as if the nested transaction boundaries had never been
established.

A commit of a nested transaction does not make a commit that necessarily persists since the parent
transaction is not yet ended. All transactions must be closed before data is written to the SP.

The TPer must guarantee that a transaction completely commits to media (persists) or completely
aborts. This means that the TPer must arrange that if a power cycle, reset, or other event, occurs in the
middle of a commit, that when the TPer comes back up the commit is either finished or all the changes
are aborted. This guarantees SP consistency and prevents power-off or reset attacks.

3.4.4.3 Session Manager Protocol Layer
The Session Manager is a special protocol layer session on any TPer with SPs. It is used by host
applications to start and stop sessions with SPs and to inquire about overall TPer communication
characteristics. The Session Manager protocol layer does not provide a session “to” any SP – it is a
communications control session. This session is always open and attempts to close it will always fail.
The method calls available on the Session Manager layer are identified in section 5.2, and include
Properties, StartSession and so on.

Although method invocations on the Session Manager layer cannot change permanent state on the
TPer, some method invocations may have side effects that occur outside of the normal method
invocation process, such as logging or PIN retry counts. In cases where these changes should occur –
for example, logging a StartSession method call success or failure – the change occurs on the SP to
which the method call was attempted.

Method calls on the Session Manager layer are formatted/encoded the same as on any other session.
Due to the asynchronous nature of session startup and TPer communications, all of Session Manager
layer methods’ responses are formatted as method calls, so that the host may identify responses to
methods it has invoked.

For more information on protocol layers, and the Session Manager layer in particular, reference section
3.3.4

3.4.4.4 Ending Sessions
The Host or TPer is free at any time to end a session in which it is participating, but only the host shall
end the session successfully.

The session is not considered successfully closed until the party receiving the end of session request
has responded indicating whether or not it was able to comply with the session ending request. Thus, a
session is successfully ended when the TPer receives an End of Session token (see section 3.2.3.2)
from the host and responds with an End of Session token, and when flow control for ending the session
has been performed as noted in Section 3.4.6.5.

When a session closes, TPer resources that had been reserved for use with that session are released.
The release of resources is not dependent on whether the session closed successfully or
unsuccessfully – the end of the session releases the resources.

Sessions may end unsuccessfully (abort) in a number of ways. These include (but are not limited to):

• If the TPer detects any violation of flow control.

• The host sends an End of Session token, but does not receive a response from the TPer
within the host's timeout period. In this example, the TPer would also time out while waiting
from some response from the host.

• If the host does not (or can not) send an End of Session token to the TPer, and sends no
other communications, the TPer would time out while waiting for the communication from
the host.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 69 of 265

• If a timeout by one or both of the communicators in a session timeout before flow control
acknowledgements are received.

• If a negative acknowledgement is received by a communicator on one of the End of
Session subpackets. This session has not yet ended, and may still end successfully
through retransmission of the End of Session token. Alternatively, the communicators may
timeout waiting for communications.

If a session is ended in the middle of the transmission of a method call or its parameters, then the
method call is aborted in addition to the session being aborted. This is considered a fatal session error
indicating a communication synchronization error (or worse).

When a session is aborted, open transactions within that session are also aborted.

The TPer may send a CloseSession method on the Session Manager layer when it aborts a session.
This is done by the TPer to notify the host that the TPer is ending the session.

Hardware resets and power cycles cause all open sessions to abort.

3.4.4.5 Starting Sessions
Starting a session depends upon three independent requirements:

1. The TPer and the requested SP having sufficient resources.

2. Negotiating symmetric keys if secure messaging is required.

3. Authenticating requirements (one of the following):

a. Host must authenticate to SP

b. SP must authenticate to Host

c. Both of the above

d. None of the above (No authentication)

The first requirement, sufficient resources, is often time-dependent, so if a session fails to start for this
reason a short delay may be necessary before retrying.

The host sets the second and third requirements when it attempts to start the session, as described
below.

Sessions are started with either a two or four method exchange on the Session Manager protocol layer:
 StartSession
 SyncSession
 StartTrustedSession (optional)
 SyncTrustedSession (required if StartTrustedSession is used)

Note: Because of the asynchronous nature of session startup and other Session Manager layer traffic,
the StartSession/StartTrustedSession responses (SyncSession/SyncTrustedSession,
respectively) are formatted as a method call back to the host. Host and SP are the relevant side’s
session numbers (if the session successfully starts).

The Host application starting the session determines the secure messaging and authentication
requirements to be satisfied by specifying up to four authorities:

• HostExchangeAuthority: Host’s Exchange Key – used for exchange of session keys, provides
implicit authentication

• HostSigningAuthority: Host’s Signing Key – used for authenticating the host to the SP and
session startup method integrity, provides explicit authentication

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 70 of 265

• SPExchangeAuthority: SP’s Exchange Key – used for exchange of session keys, provides
implicit authentication

• SPSigningAuthority: SP’s Signing Key – used for authenticating the SP to the host and session
startup method integrity, provides explicit authentication

Note: These authorities are already known to the SP.

Host authorities, if used, are passed in the StartSession method call. SP authorities are bilateral
authorities called out in the Host authorities’ Authority table rows. The ability to specify authorities in
the StartSession method call, coupled with the linking of authorities in the Authority table, provides
a large and diverse set of possible session protocols, including secure messaging. It is the initial
selection of authorities by the host that determines which protocol is to be followed.

Note: When the host makes the StartSession method call it knows which SPExchangeAuthority and
SPSigningAuthority (if any) the SP will use. Those may be the root authorities in a certificate chain
whose ultimate effective authority the host does not know. This is why the SP may return certificates to
the host as part of SyncSession.

If a HostSigningAuthority or SPSigningAuthority requires a Challenge-Response, as is the case for all
PuK, SymK, and HMAC authorities, or if secure messaging is to be used (or both), then the
StartSession and SyncSession methods will be followed immediately by the StartTrustedSession
and SyncTrustedSession methods.

An authority (HostExchangeAuthority, SPExchangeAuthority, HostSigningAuthority, or
SPSigningAuthority) that is also a Public Key Authority (an Authority with public key credentials--PuK)
may have additional information supplied for it in the form of a certificate or certificate chain. In this
case the Effective Authority (the one responding to the challenge) will be the tail PuK of that chain. The
effective authority is transient to the session. When an effective authority is transmitted to the SP, the
full contents of its certificate chain will be available only during the session. It is necessary to create a
new authority on the SP (in a Read-Write session) if the host wants that authority to persist on the SP
past the end of that session.

All authorities that participate in the successful startup of a session are authenticated for that session.

3.4.4.6 Session Timeouts
A session timeout is associated with every session and is specified in milliseconds. The session timeout
can be used to limit the lifetime of a session. A value of zero indicates that the timeout value is infinite,
in effect disabling the timeout feature.

The session timeout is a property of the session and is derived from three sources.

1. DefaultSessionTimeout : A mandatory value in the Properties method response.

2. SPSessionTimeout : A mandatory column in the SPInfo table.

3. SessionTimeout : An optional parameter in the StartSession method call used to open the
session to the SP.

The TPer may impose further conditions on maximum and minimum timeouts supported by the device
depending on hardware and other design considerations. These will be indicated in the Properties
method response values MaxSessionTimeout and MinSessionTimeout. These limits will apply to all of
the three timeouts listed above.

The actual timeout value used by the TPer device for connection will be the one that corresponds to the
shortest of the above three timeout values.

A row in the SPInfo table contains the SP suggested default timeout SPSessionTimeout and can be
modified by the host if it has appropriate authority. This value will take effect immediately on all
sessions open on the SP including the session that made the change itself.

The TPer and the Host both maintain a timer associated with every allocated active session. The timer
starts when a session is successfully opened to an SP. Depending on the type of session started, this

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 71 of 265

would be when the tokens for the SyncSession or the SyncTrustedSession method call is built by the
TPer and made available to the host.

The timeout does not apply to the Session Manager layer since it is always open. The time taken to
complete the Session Manager layer exchange to successfully start a session is not in the scope of this
feature.

If, at the end of the timeout, the session has not been terminated, the TPer shall abort the session. The
session is considered to have been closed / terminated when the last status token sent by the TPer is
picked out from the output buffer by the host, or when the TPer releases all the resources (including the
output buffer) for the session.

3.4.4.7 Signed Hashing During Session Startup
If a Signing Authority is invoked in a session startup method (for either the Host or the SP), and the
authority’s HashAndSign column indicates that hashing is required, the signing Credential referenced
in that Signing Authority’s row of the Authority table and the hash protocol identified in the Hash
column of the associated credential are used for the hash/sign operation on the session startup
methods.

Session startup shall fail if an authority indicates that hashing and signing the session startup methods
are required and does not include the signed hash as a parameter of the method invocation.

If a Signing Authority requires the hash/sign operation to be performed, that Authority’s row of the
Authority table shall indicate an Operation/Credential pair of Signing/Private Key, SymK/Symmetric
Key, or HMAC/Symmetric Key.

The signed hash is sent as the last parameter of the method call and hashes the entire method call
(except the hash).

Note that the HostSigningAuthority and SPSigningAuthority provide separate controls for
hashing/signing method invocations from the host to the SP and from the SP to the host, respectively.
This means that hashing and signing may be performed in one of the two communications directions, in
both directions, or in neither direction, depending on the HashAndSign column values of the
HostSigningAuthority and SPSigningAuthority.

3.4.5 Session Examples
Seven examples from among the many possible ways to start a session:

(Protocol diagrams for each one are provided below)

• None. No Authorities are used. This is a non-authenticated, non-secure messaging session.
(Reminder: The Anybody Authority is always authenticated.)

• Host PIN. This is the rudimentary case of passcode authentication, where the passcode is
passed in the clear. Secure messaging is not an option in this case.

• SP Symmetric Key Exchange. The simplest case that provides for full Host & SP session key
encryption. The SP needs to perform only symmetric encryption.

• Full Public Key. This uses public keys for signing and key exchange, for both the Host
application and the SP. With a proper certificate chain or other validation proof for the
exchange key, this is also authenticated. SP Issuance is an example where Full Public Key is
used.

• Full Symmetric Key. This uses symmetric keys for signing and key exchange, for both the
Host application and the SP.

• Host Public Key Authentication. This is a simple, strong enabler that does not start up
secure messaging. An example use case might be a TCG TPM that authenticates a session in
order to unlock the read/write functions of a disk drive and, because of the nonce and the
private key, does not need a secure channel.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 72 of 265

• Host Public Key – SP Symmetric Key. This is a case where it is desired that the SP sign, but
that public key signing, and indeed all the private key operations of public key cryptography, are
deemed too computationally expensive for the SP. The Host application is allowed to perform
private key signing and the SP to perform public key verification and public key to encrypt a
session key. The SP only symmetric key signs, and does symmetric session key receipt.

Descriptions of the usage of these authorities and protocols are found in section 5.3.4.

NOTE: For clarity, only the security related parameters are shown in these diagrams.

3.4.5.1 No Authority Example
For this example, no authorities are invoked during session startup. This session startup protocol
results in startup of a session that permits only actions by the Anybody authority.

Figure 12 No Authorities Used

3.4.5.2 Password Example
This example displays the use of a Host Signing Authority to perform session startup. The referenced
Host Signing Authority has an Operation column value of Password. The StartSession method
invocation transmits a PIN as the value of the HostChallenge parameter. The TPer validates the value
of the HostChallenge parameter to the value of the Password column of the C_PIN credential object
referenced by the Host Signing Authority. Successful session startup results in authentication of the
Host Signing Authority.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 73 of 265

Figure 13 Pass Code Authentication

3.4.5.3 Full Host & SP Session Key Example
The session startup example detailed in this section involves invocation of the StartSession method
by the host with an authority referenced in the HostSigningAuthority parameter.

The Operation column value of the authority referenced as the HostSigningAuthority is None. This
indicates that this authority will not perform a challenge-response for this session startup method
exchange.

The value of the Secure column of the HostSigningAuthority defines the type of secure messaging
required. In this case, the HostSigningAuthority’s Secure column identifies that only confidential
messaging is required.

In this example, the authority invoked by the host as the HostSigningAuthority references an SP
Exchange Authority in the HostSigningAuthority’s RespExch column. This authority’s credential will be
used to encrypt the session key used for confidential messaging. This credential could be either a
public key or a symmetric key. In this example, the credential is a symmetric key.

The SP Exchange Authority does not require secure messaging in this example (i.e., the SP Exchange
Authority’s Secure column value is None), so only messages sent from the host to the SP will be
encrypted.

Successful session startup results in implicit authentication of the Host and the SP.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 74 of 265

Figure 14 Host Session Key Encryption

3.4.5.4 Host Public Key Authentication Example
The example in this section identifies a session startup protocol wherein the host invokes the
StartSession method with an authority value in the HostSigningAuthority parameter. For this
example, the invoked HostSigningAuthority has an Operation column value of Sign. This indicates
that the authority references a public-private key pair.

The TPer responds to the StartSession invocation with a SyncSession method invocation that
includes a value in the SPChallenge parameter. The host signs the SPChallenge parameter using the
private key of the public-private key pair it is using for this session. The host then invokes the
StartTrustedSession method and passes the signed SPChallenge value as the
StartTrustedSession’s HostResponse parameter value.

The TPer validates the signed response using the HostSigningAuthority’s public key. If the validation is
successful, the session starts.

Successful session startup results in explicit authentication of the HostSigningAuthority (through the
challenge-response mechanism).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 75 of 265

Figure 15 Host Public Key Authentication

3.4.5.5 Full Public/Symmetric Key Examples
In this example, the host invokes the StartSession method with authorities referenced in both the
HostSigningAuthority and HostExchangeAuthority parameters. The HostSigningAuthority references
authorities in its RespSign and RespExch column values, which are used as the SP Signing Authority
and SP Exchange Authority respectively.

The host also includes in the StartSession method invocation a value in the HostChallenge
parameter.

Upon receipt of the StartSession method, the TPer returns the SyncSession method with a random
value in the SyncSession method’s SPChallenge parameter.

The host signs the SPChallenge parameter with the HostSigningAuthority’s referenced credential – this
could be an HMAC if the HostSigningAuthority has an Operation column value of "HMAC" and
references an HMAC credential or a private key encryption if the HostSigningAuthority has an
Operation column value of "Sign" references a public-private key pair.

In addition, in this example the HostSigningAuthority’s Secure column value requires confidential
messaging. The host generates a session key for encryption of the messages the host will be sending
to the TPer. The host encrypts this key with the SPExchangeAuthority’s credential (this could either by

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 76 of 265

a symmetric encryption or a public key encryption, depending on the type of credential referenced by
the SPExchangeAuthority).

The host then invokes the StartTrustedSession method, passing the encrypted session key and the
signed SPChallenge as parameters.

The TPer verifies the signed SPChallenge, signs the HostChallenge value, and generates a session
key and encrypts it with the HostExchangeAuthority’s credential.

The TPer returns the SyncTrustedSession method with the encrypted session key and the signed
HostChallenge as parameters.

Upon verification of the signed challenge by the host, the session may begin. The successful session
startup results in explicit authentication of both the HostSigningAuthority and the SPSigningAuthority,
and the implicit authentication of the HostExchangeAuthority and SPExchangeAuthority. All messages
sent by each communicator will be encrypted.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 77 of 265

Figure 16 Full Public Key, Full Symmetric Key, and Public/Symmetric Key
Authentication

3.4.6 Stream Flow Control: Host & TPer
Flow control ensures that when data is sent from a source to a destination that the destination has
enough buffer space to receive it. There are two kinds of flow control: Interface and Stream data.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 78 of 265

Interface flow control is involved in moving T10 SECURITY PROTOCOL IN/OUT or T13 TRUSTED
SEND/RECEIVE commands across an interface between a host and TPer, and is outside the scope of
this document.

Stream data flow control is used to keep a Host or TPer from overwhelming the other party with data
during a session. All session streams have flow control. Flow control violation is one reason either
communicator may abort a session.

3.4.6.1 Transmission Acknowledgement
For an SSC that supports transmission acknowledgement, each packet sent from the TPer to the Host
(or vice-versa) for a given session has a sequence number (SeqNumber) that corresponds to the
number of packets that have been sent by that communicator since the start of the session. The first
packet in a session shall have a SeqNumber value of 1.

If transmission acknowledgement is supported, each packet with SeqNumber N must be acknowledged
by the receiver. Once the sender receives an acknowledgement for data contained in packets up to
packet N, the sender may safely discard the data for packets with SeqNumber N and lower.

Packets that contain only ACK or NAK information, and no session data, shall not require an ACK/NAK
response from the receiver. These packets shall still have an appropriate SeqNumber field value.
Packets for sessions that are not protected by secure messaging that do not require ACK/NAK shall be
those packets with a Length field value of zero and a corresponding empty Data field value. For
packets that are protected by secure messaging that do not require ACK/NAK shall be those packets
with a DataLength field value of zero and an empty Data field (The IV and MAC fields may still contain
values).

3.4.6.2 Transmission Negative Acknowledgement
If the receiver detects missing or invalid data, the receiver shall send a negative-acknowledgement
packet (NAK) with the SeqNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the SeqNumber of the last known good
packet (N) received plus one (this automatically acknowledges all previous packets with SeqNumbers
less than equal to N). The communicator shall not NAK a SeqNumber less than or equal to the last
ACKed SeqNumber. Negative acknowledgement serves to notify the sender that a retransmission of
packet N+1, etc. is needed.

[ms2]Upon dispatch of the NAK, the sender of the NAK shall discard all packets with SeqNumbers N+ 1
and higher, since the sender will retransmit these. After the first NAK is sent for packet N+1, all further
data shall be discarded until packet N[ms3] is received. Retransmission of the NAK is dependent on the
transmission timeout value for the session, not on subsequent receipt of additional data.

3.4.6.3 Transmission Timeouts
The flow control timeout is set during the exchange of session startup methods StartSession and
SyncSession. The flow control timeout for a session takes effect after session startup has
successfully completed. Both communicators share the same transmission timeout value.

The sender may provide, in the StartSession method, a value for the TransTimeout parameter. The
communicator that transmits the SyncSession method may include a value for the TransTimeout
parameter. If so, that communicator's timeout value shall be larger than the StartSession
TransTimeout value. In either case, the TransTimeout value shall be greater than or equal to the
MinTransTimeout value and smaller than or equal to the MaxTransTimeout parameter reported in the
Properties method response. If neither communicator includes a value for the TransTimeout
parameter, the DefTransTimeout value, as reported in the Properties method response, shall be
used.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 79 of 265

If the sender detects a missing acknowledgment by means of a timeout, the sender shall retransmit the
data from the last valid acknowledgment. If the sender still receives no acknowledgement after a
timeout period, the sender shall re-transmit the same packet or the same packet with added data if
more data is available. This retransmission will repeat up to an implementation-specific number of
times. Thereafter, the sender shall terminate the session, i.e. no more data can be transmitted for this
session (the session will timeout at some point and be closed by the receiver).

3.4.6.4 Buffer Management
Flow control is used to keep a Host or TPer from overwhelming the other party with data during a
session. Violating flow control is one reason either side may abort a session.

Before session data can be sent, the destination needs to notify the source that it is ready to receive
data and how much data it is able to receive. This is done by sending a Credit Control Subpacket in the
direction opposite that of the data.

The InitialCredit parameters of the StartSession and SyncSession methods provide each
communicator in a session the opportunity to provide an initial amount of credits for use when the
session successfully starts. If either of these values is omitted, then once a session has been
successfully started, the communicator that omitted the value from the InitialCredit parameter of its
session startup method shall send to the other communicator a credit subpacket announcing its
available session buffer space.

The exchange of credits permits data to be moved from one communicator to the other. As data in the
receive buffers of the communicators is consumed and space released, additional credit control
subpackets may be sent.

The sender shall not send more data than it has credits from the receiver. As the sender transmits
data, the amount of transmitted data is subtracted from the total credits that had been provided to the
sender. This identifies the amount of data that may still be sent without receiving additional buffer
credits.

As the receiver consumes data, the receiver may notify the sender that additional data may be sent.
This is done by transmitting a credit control subpacket identifying how much additional buffer space the
sender may utilize. The data sender can then calculate how much more data may be sent. That is, the
number of bytes of data that can be sent to that session will be increased by the value of each credit
received. When a communicator transmits data, the amount of data sent is subtracted from the credit
total.

For SSCs that support flow control, credit subpackets are required after ComID acquisition, so that the
host and TPer may exchange methods/responses on the Session Manager Layer. This credit only
applies to the Session Manager Layer for that ComID. Credit subpackets are also required immediately
after session startup (unless values are posted in the InitialCredit parameters, in which case additional
credit subpackets are optional at this time).

Otherwise, credit control subpackets should be sent infrequently and be bundled with other traffic, in
order to minimize interface overhead. Either communicator in a session may send credit subpackets as
frequently as in every packet, or when a threshold is reached (e.g. the unreported credit is more than
some percentage of the buffer size).

Credit values are byte counts for data only. They do not include packet or subpacket
headers/overheads.

3.4.6.5 Closing a Session
When the sender transmits a packet that contains a close session control subpacket (which is a
subpacket in which there is an End of Session token), the sender shall not immediately assume the
session is closed, but shall wait for the receiver to both transmit its own response packet with a close

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 80 of 265

session control subpacket (which the original sender must ACK) and to ACK the original sender’s
packet containing a close session control subpacket.

However, once the receiver has received the packet containing the close session control subpacket;
responded with a packet containing its own close session control subpacket; and acknowledged the
packet with the close session control subpacket, the receiver still cannot assume the session to be
closed. The receiver shall wait at least double the timeout before considering the session to be closed.
This guarantees that if the ACK packet was lost, the sender will try to retransmit the packet with the
close session control subpacket and the receiver will have a chance to retransmit the ACK. See Figure
17

Figure 17 Closing a Session

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 81 of 265

4 Life Cycle of SPs

4.1 Life Cycle of SPs Overview
Each SP in a TPer is associated with an attribute called the life cycle state. The access control settings
on the SP are derived in part from its life cycle state. This section defines the various life cycle states
and transitions that an SP may make between them.

Life cycle applies to each individual SP. The life cycle state of the TPer as a whole emerges from life
cycle states of individual SPs.

Life cycle in this specification describes the default access control settings of an SP at issuance. The
access control settings of an issued SP are out of scope of the specification. An issued SP is
operational and may be personalized, and may be participating in life cycle states that are wholly within
the control of the SP owner of the issued SP.

Exceptions to this rule, where limitations are placed on personalization or where SP capabilities are
frozen, are within the scope of this and any Security Subsystem Class-specific specification.

Template-related exceptions are specified in the related Template-specific life cycle sections of this
document.

4.2 Life Cycle States

Figure 18 Life Cycle State Transitions

The following list details the states depicted in Figure 18 and reviews the requirements for each
transition between states, including the entry and exit conditions for each state, and the conditions that
apply to each of these transitions.

1. Nonexistent:

a. Definition: The Nonexistent state is a theoretical state that describes the condition of
an SP before it has been instantiated, or after it has been deleted.

b. Entry: This state is “entered” by an SP when that SP is deleted.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 82 of 265

c. Exit: This state is “exited” when an SP is successfully created, either during the
manufacturing process or via successful invocation of the IssueSP method from within
a session to the Admin SP. An SP may “exit” the Nonexistent state into the following
other states:

• Issued – successful invocation of the IssueSP method causes an SP to be
created. The SP shall be created in this state if the SP is operational and if
the value of the IssueSP method parameter “Enabled” was True.

• Issued-Disabled – successful invocation of the IssueSP method causes an
SP to be created. The SP shall be created in this state if the SP is
operational and if the value of the IssueSP method parameter “Enabled” was
False.

• Manufacturing – an SP created during the manufacturing process causes
an SP to move from the Nonexistent state to the Manufacturing state.

2. Issued:

a. Definition: The Issued state is the standard operational state of an SP, and defines
the initial required access control settings of an SP based on the Templates
incorporated into the SP, prior to personalization. SPs created in Manufacturing enter
the Issued state at an implementation-specific point and at that point in time shall have
initial access controls settings as defined in this specification.

b. Entry: Initial entry to this state is gated by the access control settings on the IssueSP
method of the Admin SP. An SP may enter the Issued state from the following states:

• Nonexistent – Successful invocation of the IssueSP method.

• Manufacturing – SPs created during the Manufacturing process shall
transition to the Issued state prior to personalization and regular SP
operation.

• Issued-Disabled – may be transitioned into the Issued state by setting the
value of the Enabled column of the SP’s SPInfo table to True.

• Issued-Frozen – may be transitioned into the Issued state by setting the
value of the Frozen column of the Admin SP’s SP table to False.

c. Exit: An SP in the Issued state can exit into the following states:

• Nonexistent – The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

• Manufacturing – SPs created during the manufacturing process may be
transitioned from the Issued state to the Manufacturing state through
implementation-specific means.

• Issued-Disabled – an SP may be transitioned into the Issued-Disabled state
by setting the value of the Enabled column of the SP’s SPInfo table to False.

• Issued-Frozen – an SP may be transitioned into the Issued-Frozen state by
setting the value of the Frozen column of the Admin SP’s SP table to True.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

3. Issued-Disabled:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 83 of 265

a. Definition: This state occurs after an SP has been issued, when the value of the
Enabled column of the SP’s SPInfo table is False.

b. Entry: An SP may enter the Issued-Disabled state from the following states:

• Nonexistent - successful invocation of the IssueSP method causes an SP to
be created. The SP shall be created in this state if the SP is operational and
if the value of the IssueSP method parameter Enabled was False.

• Issued - an SP may be transitioned from the Issued state into the Issued-
Disabled state by setting the value of the Enabled column of the SP’s
SPInfo table to False.

• Issued-Disabled-Frozen – an SP may be transitioned from the Issued-
Disabled-Frozen state by setting the value of the Frozen column of the
Admin SP’s SP table to False.

• Manufacturing-Disabled – an SP that had previously entered the
Manufacturing-Disabled state may be capable of returning to the Issued-
Disabled state. Control of this transition is implementation-specific.

c. Exit: An SP may exit the Issued-Disabled state into the following states:

• Nonexistent – The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

• Issued – an SP may be transitioned from the Issued-Disabled state into the
Issued state by setting the value of the Enabled column of the SP’s SPInfo
table to True.

• Issued-Disabled-Frozen – an SP may be transitioned from the Issued-
Disabled state into the Issued-Disabled-Frozen state by setting the value of
the Frozen column of the Admin SP’s SP table to True.

• Manufacturing-Disabled – an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled state from
the Issued-Disabled state. Control of this transition is implementation-
specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

4. Issued-Frozen:

a. Definition: This state occurs after an SP has been issued, when the value of the
Frozen column of the Admin SP’s SP table is True.

b. Entry: An SP may enter the Issued-Frozen state from the following states:

• Issued - an SP may be transitioned from the Issued state into the Issued-
Frozen state by setting the value of the Frozen column of the Admin SP’s SP
table to True.

• Issued-Disabled-Frozen – an SP may be transitioned from the Issued-
Disabled-Frozen state into the Issued-Frozen state by setting the value of the
Enabled column of the SP’s SPInfo table to True.

• Manufacturing-Frozen – an SP that had previously entered the
Manufacturing-Frozen state may be capable of returning to the Issued-
Frozen state. Control of this transition is implementation-specific.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 84 of 265

c. Exit: An SP may exit the Issued-Frozen state into the following states:

• Nonexistent – The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

• Issued – an SP may be transitioned from the Issued-Frozen state into the
Issued state by setting the value of the Frozen column of the Admin SP’s SP
table to False.

• Issued-Disabled-Frozen – an SP may be transitioned from the Issued-
Frozen state into the Issued-Disabled-Frozen state by setting the value of the
Enabled column of the SP’s SPInfo table to False.

• Manufacturing-Frozen – an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Frozen state from the
Issued-Frozen state. Control of this transition is implementation-specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

5. Issued-Disabled-Frozen:

a. Definition: This state occurs after an SP has been issued, when both the value of the
Frozen column of the Admin SP’s SP table is True and the value of the Enabled
column of the SP’s SPInfo table is False.

b. Entry: An SP may enter the Issued-Disabled-Frozen state from the following states:

• Issued-Disabled – an SP may be transitioned from the Issued-Disabled
state to the Issued-Disabled-Frozen state by setting the value of the Frozen
column of the Admin SP’s SP table to True.

• Issued-Frozen – an SP may be transitioned from the Issued-Frozen state to
the Issued-Disabled-Frozen state by setting the value of the Enabled column
of the SP’s SPInfo table to False.

• Manufacturing-Disabled-Frozen – an SP in the Manufacturing-Disabled-
Frozen state may be able to enter the Issued-Disabled-Frozen state. Control
of this transition is implementation specific.

c. Exit: An SP may exit the Issued-Disabled-Frozen state into the following states:

• Issued-Disabled – an SP may be transitioned from the Issued-Disabled-
Frozen state into the Issued-Disabled state by setting the value of the
Frozen column of the Admin SP’s SP table to False.

• Issued-Frozen – an SP may be transitioned from the Issued-Disabled-
Frozen state into the Issued-Frozen state by setting the value of the Enabled
column of the SP’s SPInfo table to True.

• Manufacturing-Disabled-Frozen – an SP that was created during the
manufacturing process may be capable of entering the Manufacturing-
Disabled-Frozen state from the Issued-Disabled-Frozen state. Control of this
transition is implementation-specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

6. Manufacturing:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 85 of 265

a. Definition: The Manufacturing state is an implementation-specific state used for
diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing state is to insure data protection for, for instance, device redeployment.
Only SPs that were created in Manufacturing can re-enter the manufacturing state. An
SP that is not created in manufacturing, but created using the IssueSP method, cannot
transition into the Manufacturing state.

b. Entry: The mechanism that causes entrance to the Manufacturing state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing
state, SPs (other than the Admin SP) must be securely erased. When the Admin SP
enters the Manufacturing state from the Issued state, the value of the SID (the
associated C_PIN credential's Password column value) shall revert to the original value
(as printed on the drive). An SP may enter the Manufacturing state from the following
states:

• Nonexistent – an SP created during the manufacturing process causes an
SP to move from the Nonexistent state to the Manufacturing state.

• Issued - SPs created in the manufacturing may be transitioned from the
Issued state to the Manufacturing state through implementation-specific
means.

c. Exit: The mechanism that causes exit from the Manufacturing state is implementation
specific. An SP may exit from the Manufacturing state into the following states:

• Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means.

• Issued – SPs created during the Manufacturing process shall transition to
the Issued state prior to personalization and regular SP operation.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

7. Manufacturing-Disabled:

a. Definition: The Manufacturing-Disabled state is an implementation-specific state used
for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing-Disabled state is to insure data protection for, for instance, device
redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Disabled state. An SP that is not created in manufacturing, but created
using the IssueSP method, cannot transition into the Manufacturing-Disabled state.

b. Entry: The mechanism that causes entrance to the Manufacturing-Disabled state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing-
Disabled state, SPs (other than the Admin SP) must be securely erased. An SP may
enter the Manufacturing-Disabled state from the following states:

• Issued-Disabled – an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled state from
the Issued-Disabled state. Control of this transition is implementation-
specific.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 86 of 265

c. Exit: The mechanism that causes exit from the Manufacturing-Disabled state is
implementation specific. An SP may exit from the Manufacturing-Disabled state into the
following states:

• Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

• Issued-Disabled – an SP in the Manufacturing-Disabled state may be
capable of returning to the Issued-Disabled state. Control of this transition is
implementation-specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

8. Manufacturing-Frozen:

a. Definition: The Manufacturing-Frozen state is an implementation-specific state used
for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing-Frozen state is to insure data protection for, for instance, device
redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Frozen state. An SP that is not created in manufacturing, but created
using the IssueSP method, cannot transition into the Manufacturing-Frozen state.

b. Entry: The mechanism that causes entrance to the Manufacturing-Frozen state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing-
Frozen state, SPs (other than the Admin SP) must be securely erased. An SP may
enter the Manufacturing-Frozen state from the following states:

• Issued-Frozen – an SP that was created during the manufacturing process
may be capable of entering the Manufacturing-Frozen state from the Issued-
Frozen state. Control of this transition is implementation-specific.

c. Exit: The mechanism that causes exit from the Manufacturing-Frozen state is
implementation specific. An SP may exit from the Manufacturing-Frozen state into the
following states:

• Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

• Issued-Frozen – an SP in the Manufacturing-Frozen state may be capable
of returning to the Issued-Frozen state. Control of this transition is
implementation-specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

9. Manufacturing-Disabled-Frozen:

a. Definition: The Manufacturing-Disabled-Frozen state is an implementation-specific
state used for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose
of the Manufacturing-Disabled-Frozen state is to insure data protection for, for instance,
device redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Disabled-Frozen state. An SP that is not created in manufacturing, but
created using the IssueSP method, cannot transition into the Manufacturing-Disabled-
Frozen state.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 87 of 265

b. Entry: The mechanism that causes entrance to the Manufacturing-Disabled-Frozen
state is implementation-specific. Whatever mechanism is used to enter the
manufacturing state should be gated by access controls that require both a
manufacturing authority and the SID authority to be authenticated. Prior to/upon
entrance to the Manufacturing-Disabled-Frozen state, SPs (other than the Admin SP)
must be securely erased. An SP may enter the Manufacturing-Frozen state from the
following states:

• Issued-Disabled-Frozen – an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled-Frozen
state from the Issued-Disabled-Frozen state. Control of this transition is
implementation-specific.

c. Exit: The mechanism that causes exit from the Manufacturing-Disabled-Frozen state
is implementation specific. An SP may exit from the Manufacturing-Disabled-Frozen
state into the following states:

• Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

• Issued-Disabled-Frozen – an SP in the Manufacturing-Disabled-Frozen
state may be capable of returning to the Issued-Disabled-Frozen state.
Control of this transition is implementation-specific.

• Failed – an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

10. Failed:

a. Definition: The Failed state describes the condition where the SP has experienced an
unrecoverable write failure; physical read error for the hidden (SP) space; or other
unrecoverable failure that prevents access to TCG related functionality and data
structures (i.e. the SP is unable to accept method invocations).

b. Entry: Entry to this state and access to the SP in this state is controlled by an
unrecoverable write failure or other unrecoverable failure. The TPer controls entry to
this state. An SP may enter the failed state from any other existent state.

c. Exit: The Failed state is a terminal state. The only exit available from the Failed state
is to the theoretical Nonexistent state.

Life cycle states are recorded in the LifeCycleState column of the Admin SP’s SP table. This column
identifies the state in which the SP currently is. The value of this column shall be changed by the TPer
whenever an SP's life cycle state changes.

Access control on reading the SPs available in a TPer, and the life cycle states of those SPs, shall be
readable by the Anybody authority on the Admin SP.

4.3 Defined Authorities
The initial authorities that can affect the life cycle states are defined for:

1. Base Template (Table 73) – the Admins Authority (SP owner) and Makers Authority.

2. Admin Template (Table 124) – In addition to the Base Template Authorities, the Issuing (and
related) authorities, and the SID (TPer Owner) authority.

These are the only Authorities that are within the scope of the specification. Additional authorities may
be defined during SP personalization and operational use, as required and permitted by the access
control settings defined here.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 88 of 265

4.4 State Behaviors
4.4.1 Access Control
Access rights to method invocations on tables are a function of life cycle. Capabilities enabled by
access control may change with transitions between life cycle states. The class authority mechanism is
the most basic mechanism associated with changes in life cycle state.

Initial required access control settings for each Template are found in the related Template reference
sections.

Life cycle state changes related to access control include:

1. Default access controls associated with the creation of a new table or new rows of a table.

2. Changing settings between life cycle states. The change of the life cycle assertion in the SP
Table (in the Admin SP) is a case of changing a setting when changing a life cycle state.

3. Changing readability and write-ability conditions.

4.4.2 Issued
Behavior of an SP in the Issued state is described in the Template Reference sections, and specifically
in the sections of the Templates of which the SP has been constructed. Access control settings in
those sections apply at the point when an SP has been Issued and before personalization occurs.

4.4.3 Issued-Disabled
If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the successful use of the disabling and enabling functions, any failed session attempts, and failed
attempts to invoke the DeleteSP method, dependant on personalization.

Template-specific information related to disabling of an SP that includes that Template is found in the
Template’s reference section in this document.

In the Issued-Disabled state, only a host application that is able to authenticate to the necessary access
controls shall have the ability to re-enable the SP. Only method invocations related directly to re-
enabling the SP are successful (access control requirements shall still be fulfilled).

Only the following method invocations to the disabled SP will function (fulfilling appropriate access
control requirements shall be required):

o Authenticate

o Set on the Enabled column of the SPInfo table. Access control requirements must be met as
normal. That can be accomplished either during session startup or using the Authenticate
method.

o DeleteSP – Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the disabled state does not affect Session Manager protocol layer methods, and session
startup methods shall operate as normal.

The TPer owner or an authorized authority shall still have the ability to invoke the Delete method within
a session to the Admin SP in order to delete the disabled SP.

4.4.4 Issued-Frozen
If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the any failed session attempts, authentications, or attempts to invoke the DeleteSP method,
dependant on personalization.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 89 of 265

Only the following method invocations to the SP will function (fulfilling appropriate access control
requirements shall be required):

o Authenticate

o DeleteSP – Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the Issued-Frozen state does not affect the Session Manager protocol layer methods, and
session startup methods shall operate as normal.

4.4.5 Issued-Disabled-Frozen
If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the successful use of the disabling and enabling functions, any failed session attempts, and failed
attempts to invoke the DeleteSP method, dependant on personalization.

Only the following method invocations to the disabled-frozen SP will function (fulfilling appropriate
access control requirements shall be required):

o Authenticate

o Set on the Enabled column of the SPInfo table. Access control requirements must be met as
normal. That can be accomplished either during session startup or using the Authenticate
method.

o DeleteSP – Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the Issued-Disabled-Frozen state does not affect Session Manager protocol layer methods,
and session startup methods shall operate as normal.

4.4.6 Manufacturing
Behavior of an SP in the Manufacturing state is implementation-specific.

4.4.7 Manufacturing-Disabled
Behavior of an SP in the Manufacturing-Disabled state is implementation-specific.

4.4.8 Manufacturing-Frozen
Behavior of an SP in the Manufacturing-Frozen state is implementation-specific.

4.4.9 Manufacturing-Disabled-Frozen
Behavior of an SP in the Manufacturing-Disabled-Frozen state is implementation-specific.

4.4.10 Failed
When an SP is in the Failed state, session startup methods to the SP shall respond with an error status
and session startup shall not be able to complete.

The TPer owner or an authorized authority may invoke the Delete method within a session to the
Admin SP in order to delete the failed SP.

4.4.11 Miscellaneous
For life cycle requirements of the cryptographic module that supports the Crypto Template and other
TPer cryptographic capabilities, see FIPS 140-2. Requirements for operation of the cryptographic
module as cited in that document affect only the cryptographic functionality provided by the TPer – not
the data stored in the SPs themselves – though cryptographic module failures may affect the TPer’s
authentication, session startup, and secure messaging capabilities.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 90 of 265

5 SP Reference

5.1 SP Globals
The following sections define variables, functions, constants, or any system attribute that applies to all
SPs.

5.1.1 Variable Types Overview
This section provides the definitions of the types used in the rest of this document.

The following are the primitive data types (Base_Types) defined by the specification. How these
primitive values are stored in a table cell is implementation dependent. Additional information on these
types can be found in 3.2.2.

• integer. Signed integer. To differentiate among the type sizes, a size identifier is specified with
the type, i.e., a one-byte integer is denoted as integer_1, etc.

• uinteger. Unsigned integer. To differentiate among the type sizes, a size identifier is specified
with the type, i.e. a one-byte integer is denoted as uinteger_1, etc.

• bytes. A fixed size sequence of bytes that can be used to represent any type of data such as
strings, blobs, bit vectors, time/dates, etc.

• bytes{max=n}. A variable size sequence of bytes. Invocation of the Get method on a table cell
with this type of value shall return the exact sequence of bytes as was originally set.

Types are specified using the following format (BNF specification):
Type := Base_Type | Simple_Type | Enumeration_Type | Alternative_Type | List_Type
| Restricted_Reference_Type | General_Reference_Type | Name_Value_Type |
Struct_Type | Set_Type

Base_Type := 0
Simple_Type := 1 uidref{Type} size
Enumeration_Type := 2 uinteger uinteger
Alternative_Type := 3 uinteger uidref{Type}*
List_Type := 4 uinteger uidref{Type}
Restricted_Reference_Type := 5|6 uidref{Table}
General_Reference_Type := 7|8|9
Name_Value_Type := 10 name value
Struct_Type := 11 uinteger uidref{Type}*
Set_Type := 12 uinteger uinteger

• Base Type. The Base_Type format describes the pre-installed types. All other types are
created using the Base Types as building blocks. The Base Types, except for Null, shall not be
used directly. Base Types shall always have a Size column value of 0 in the Type table.

• Simple Type. The Simple_Type format defines an instance of one of the Base_Type types.
The Simple_Type always includes a size in the format column, which defines the size for that
instance of that Simple_Type.

• Enumeration. An unsigned integer in a specific range. The Enumeration_Type format defines
the range of the enumeration, where the first integer specified in the format description is the
start value of the enumeration, and the second integer specified is the end value. For example,
a range of 0 to 2 inclusive, in plaintext:

o Pseudo-code example: enum{0..2}
• Alternative. A value that may be an element of one of the specified types. The

Alternative_Type format defines a union with the uinteger specifying the number of member
types and followed by that many uidref{TypeObjectUID} references to the member types. The
type of the value is stored with the value in the cell. For example:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 91 of 265

o Pseudo-code example: typeOr{boolean,uinteger_4,bytes{7}}
• List. A sequence of values of the same type. The maximum number of elements is specified,

and the actual number of elements in the list is stored in the cell. The List_Type defines with
the first integer the maximal number of elements, while the second uidref{Type} specifies the
type of the elements. The elements of the list are not required to be provided in any specified
order. However, the elements of the list shall be stored in a cell and returned to the host (with
the Get method, for example) in the order in which they were received by the TPer.

o Pseudo-code example: list[10]{boolean}
is a list of boolean values, with a maximum of 10 elements.

• Restricted Reference. A reference to a row of a specific table. The
Restricted_Reference_Type defines to which table (uidref{TableUID}) the reference values
refer. The reference is to a physical row number (5) or a UID (6) within the table. In this
example, TNAME is the name of the referenced table:

o Pseudo-code example: uidref{TNAME}
o Pseudo-code example: ref{TNAME}

The value of a ref is the uinteger row number for an array or byte table. The value of a
uidref is a UID from the UID column of a non-byte table. A ref value of 0 or uidref value of 00s
serves as a “null pointer”.

• General Reference. A reference to a row of some table, to the UID of some object, or to the
UID of some table. The General_Reference_Type format defines a physical row number (7), a
uid of some object (8), or a uid of some table (9). The UID reserved to represent “this SP” is
encompassed by a General_Reference_Type of 8.

o Pseudo-code example: uidref{*}
o Pseudo-code example: ref{*}

• Name-Value. This is a name-value pair. The Name-Value_Type format indicator is followed by
the name and then the value for the type, where name is a uidref to the name type and value is
a uidref to the required type of the value.

• Struct. This is a combination of different types. The Struct_Type format indicator is followed
by the number of elements and then uidrefs to the rows in the Type table that represent each of
those elements. Name-value pairs in structs represent optional components. These may be
excluded when passing that struct as a method parameter. When used as a column type, the
size must account for inclusion of all of a struct's components.

• Set. An unsigned integer in a specific range. The Set_Type format defines the range of the
enumeration, where the first integer is the start value of the enumeration, while the second
integer is the end value. The type itself is not limited to only a single selection from among the
choices defined, as in the Enumeration_Type. The Set_Type provides the host the ability to
select more than one of the options. Each shall appear only once in the Set. The Set may hold
any amount of selections, from zero to the number of selections.

o Pseudo-code example: Set{0..2} – Valid values for this set are made up of the
following = {}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.

The Type table entries that shall represent the built-in types, and additional system types that are
predefined entries of the Type table are all types specified in Table 30.

5.1.2 Variable Types
Table 30 describes all of the default column types described in the Template Reference sections of the
Core Specification. The UID, Name, Format, Size, and Default columns identify the column values of
the Type table. These values shall comprise the Type table for every SP, prior to any personalization.
These types shall not be able to be changed or deleted.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 92 of 265

The UID column shall be the UID for the associated type. The value in the Size column, which
represents the width of the column required to store a value of that type, is implementation dependent,
as the overhead required to differentiate or identify the type or size of the type stored is not defined in
this document, except for base types, whose Size column value shall be 0. For instance, in the case of
a max_bytes value, it is necessary to store with the max_bytes value the size of that value. This means
that a max_bytes type with a size of 18 bytes requires a column width of 19 or more bytes.

In the case of List types and Struct types, ordering is not important, but the TPer shall return the data to
a Get method in the same order in which it had been received or set initially.

The Default column defines the default value for the associated type. Rows with no Default column
value in the descriptive table are types that shall have a value specified whenever a column of that type
is used in a CreateRow (or other similar) method invocation, or that method invocation shall fail. Other
rows, those with values, shall have a uidref in the Type table to a byte table that stores the default value
for that type (without the “”). See the Type table description in 5.3.2.5 for information on default column
values.

The Description column in the table below is informative only, and is not intended to be part of the Type
table implementation.

Note: * in the table below indicates SSC-dependent or implantation-dependent values.

Table 30 Default Type Table Values
ID Name Format Size Default Description
00 00 00 05
00 00 00 01

NULL 0 0 Base installed type, used to
represent a null value. The null
value for a particular column is
dependent on that column's type.
In order to define a legal Null
value for a particular type, it is
necessary to construct an
alternative type where Null is one
of the options.

00 00 00 05
00 00 00 02

bytes 0 0 Base installed type, used to
represent a value made up of a
fixed-size sequence of bytes.

00 00 00 05
00 00 00 03

max_bytes 0 0 Base installed type, used to
represent a bytes value that is
equal to or less than the size
specified for the type instance.

00 00 00 05
00 00 00 04

integer 0 0 Base installed type, used to
represent a signed integer.

00 00 00 05
00 00 00 05

uinteger 0 0 Base installed type, used to
represent an unsigned integer.

00 00 00 05
00 00 02 01

bytes_12 1
0000000500000002
12

00 00 00 05
00 00 02 02

bytes_16 1
0000000500000002
16

00 00 00 05
00 00 02 03

bytes_20_def_00 1
0000000500000002
20

 "00s"

00 00 00 05
00 00 02 04

bytes_32_def_00 1
0000000500000002
32

 "00s"

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 93 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 02 05

bytes_32 1
0000000500000002
32

 This bytes type is used for, among
other things, the Key column of
the C_HMAC_256 table.

00 00 00 05
00 00 02 06

version_bytes_4 1
0000000500000002
4

 "00 00 00 01"

00 00 00 05
00 00 02 07

bytes_48_def_00 1
0000000500000002
48

 "00s"

00 00 00 05
00 00 02 08

bytes_64_def_00 1
0000000500000002
64

 "00s"

00 00 00 05
00 00 02 09

uid 1
0000000500000002
8

 Used for UIDs

00 00 00 05
00 00 02 0A

certificate 1
0000000500000003 *

 Max bytes type used to represent
a certificate. The limit on the size
of this type is SSC-specific.

00 00 00 05
00 00 02 0B

name 1
0000000500000003
32

 Name that generically describes
bytes{max=32}, which is used for
name columns and method
parameters. This type is also
used in the Name_Value_Type
format.

00 00 00 05
00 00 02 0C

password 1
0000000500000003
32

 Max {bytes = 32}, used for PINs

00 00 00 05
00 00 02 0D

max_bytes_32 1
0000000500000003
32

00 00 00 05
00 00 02 0E

max_bytes_64 1
0000000500000003
64

 Generic Max Bytes type, used for
logging.

00 00 00 05
00 00 02 0F

int_1_def_0 1
0000000500000004
1

 "0" integer_1 with default of 0

00 00 00 05
00 00 02 10

integer_1 1
0000000500000004
1

00 00 00 05
00 00 02 11

uinteger_1 1
0000000500000005
1

00 00 00 05
00 00 02 12

uinteger_128 1
0000000500000005
128

00 00 00 05
00 00 02 13

uinteger_16 1
0000000500000005
16

00 00 00 05
00 00 02 14

feedback_size 1
0000000500000005
2

 Feedback sizes for AES used in
CFB or OFB mode. If AES Mode
is CFB, this shall be between 1
and the block length. If AES Mode

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 94 of 265

ID Name Format Size Default Description
is OFB, this shall be the block
size.

00 00 00 05
00 00 02 15

uinteger_2 1
0000000500000005
2

00 00 00 05
00 00 02 16

uinteger_20 1
0000000500000005
20

00 00 00 05
00 00 02 17

uinteger_21 1
0000000500000005
21

00 00 00 05
00 00 02 18

uinteger_24 1
0000000500000005
24

00 00 00 05
00 00 02 19

uinteger_256 1
0000000500000005
256

00 00 00 05
00 00 02 1A

uinteger_28 1
0000000500000005
28

00 00 00 05
00 00 02 1B

uinteger_30 1
0000000500000005
30

00 00 00 05
00 00 02 1C

challenge_bytes 1
0000000500000005 *

 This max bytes type is used to
represent a random number in a
challenge/response protocol. The
max number of bytes in this type
are SSC/implementation-
dependent, and are based on the
cryptographic and
communications capability of the
TPer.

00 00 00 05
00 00 02 1D

uinteger_32 1
0000000500000005
32

00 00 00 05
00 00 02 1E

max_bytes_get 1
0000000500000003
*

 This is the max bytes type used in
the get method to represent data
retrieved from a byte table. The
actual number of bytes that can be
retrieved with a single Get
invocation is SSC/implementation
dependent, but shall be less than
or equal to 4294967295 (the
maximum number of bytes that
may be stored in a byte table)

00 00 00 05
00 00 02 1F

uinteger_36 1
0000000500000005
36

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 95 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 02 20

uinteger_4 1
0000000500000005
4

00 00 00 05
00 00 02 21

uint_4_def_0 1
0000000500000005
4

 "0" Uinteger_4 with default of 0

00 00 00 05
00 00 02 22

max_bytes_set 1
0000000500000003
*

 This is the max bytes type used in
the get method to represent data
retrieved from a byte table. The
actual number of bytes that can be
retrieved with a single Get
invocation is SSC/implementation
dependent, but shall be less than
or equal to 4294967295 (the
maximum number of bytes that
may be stored in a byte table)

00 00 00 05
00 00 02 23

uinteger_48 1
0000000500000005
48

00 00 00 05
00 00 02 24

uinteger_64 1
0000000500000005
64

00 00 00 05
00 00 02 25

uinteger_8 1
0000000500000005
8

00 00 00 05
00 00 02 26

common_name 1
0000000500000003
32

 "Host_Application" This type is used for the
CommonName column. Many
tables have values defined for the
CommonName column for rows
created at issuance. This type
defines the default value of rows
for user-defined objects.

00 00 00 05
00 00 02 27

uinteger_66 1
0000000500000005
66

00 00 00 05
00 00 02 28

signed_hash 1
0000000500000003 *

 This max_bytes type is used to
represent a signed hash. The size
limit of this type is based on the
TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest signed
hash output the TPer is capable of
supporting.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 96 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 02 29

response 1
0000000500000003 *

 This max_bytes type is used to
represent a response to a
cryptographic challenge. The size
limit of this type is based on the
TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest response
output the TPer is capable of
generating and receiving.

00 00 00 05
00 00 02 2A

session_key_encrypt 1
0000000500000003 *

 This max_bytes type is used to
represent a session key to be
used to encrypt communications in
secure messaging. The size limit
of this type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest encryption key size the
TPer is capable of supporting for
secure messaging.

00 00 00 05
00 00 02 2B

session_key_integrity 1
0000000500000003 *

 This max_bytes type is used to
represent a session key to be
used to generate a message
authentication code in secure
messaging. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest MAC key size the TPer is
capable of supporting for secure
messaging.

00 00 00 05
00 00 02 2C

proof 1
0000000500000003
64

 This max_bytes type is used to
represent a proof supplied to the
TPer for verification or generated
by the TPer through cryptographic
signing of a hash.

00 00 00 05
00 00 02 2D

exchange_key 1
0000000500000003 *

 This max_bytes type is used to
represent the exchange key
supplied to the TPer upon
invocation of the IssueSP method.
The size limit of this type is based
on the TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest exchange
key the TPer is capable of
supporting for secure messaging.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 97 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 02 2E

iv 1
0000000500000003 *

 This max_bytes type is used to
represent an Initialization Vector
(IV) used for cryptographic
operations. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest IV required by host-
requested on-TPer encryption and
decryption operations.

00 00 00 05
00 00 02 2F

encrypt_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer encryption
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05
00 00 02 30

decrypt_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer decryption
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05
00 00 02 31

sign_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer signing
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05
00 00 02 32

hash_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer hash
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05
00 00 02 33

hmac_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer hmac
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05
00 00 02 34

xor_result 1
0000000500000003 *

 This max_bytes type is used to
represent the result of a host-
requested on-TPer XOR
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 98 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 02 35

max_bytes_256 1
0000000500000003
256

 This max_bytes type is used to
represent the return result from
invocation of the Random method.

00 00 00 05
00 00 02 36

bytes_20 1
0000000500000002
20

 This bytes type is used for the Key
column of the C_HMAC_160
table.

00 00 00 05
00 00 02 37

bytes_48 1
0000000500000002
48

 This bytes type is used for the Key
column of the C_HMAC_384
table.

00 00 00 05
00 00 02 38

bytes_64 1
0000000500000002
64

 This bytes type is used for the Key
column of the C_HMAC_512
table.

00 00 00 05
00 00 02 39

encrypt_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the Encrypt
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Encrypt
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3A

decrypt_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the Decrypt
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Decrypt
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3B

sign_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the Sign method.
The size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each Sign invocation) may be
SSC-dependent and is based on
the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3C

verify_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the Verify method,
and is the data to be verified. The
size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each Verify invocation) may be
SSC-dependent and is based on

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 99 of 265

ID Name Format Size Default Description
the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3D

verify_max_bytes_proof 1
0000000500000003 *

 This max_bytes type is used to
represent the proof input (across
the interface) to the Verify method,
and is the data to be verified
against. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Verify invocation)
may be SSC-dependent and is
based on the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3E

hash_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the HashCalc
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each HashCalc
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3F

hmac_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the HMACCalc
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each HMACCalc
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 40

xor_max_bytes_input 1
0000000500000003 *

 This max_bytes type is used to
represent the data input (across
the interface) to the XOR method.
The size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each XOR invocation) may be
SSC-dependent and is based on
the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 41

stir_integer 1
0000000500000004 *

 This represents the integer
parameter used with the Stir
method. The size of the integer
may be SSC-dependent, and is
based on the TPer's cryptographic
capabilities.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 100 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 04 01

boolean 2 0 1 Derived type, used to represent
True (1) or False (0).

00 00 00 05
00 00 04 02

boolean_def_false 2 0 1 "0"

00 00 00 05
00 00 04 03

boolean_def_true 2 0 1 "1"

00 00 00 05
00 00 04 04

messaging_type 2 0 128 This enumeration describes the
options for selecting secure
messaging. The options for this
value are defined in Table 42. 27-
128 are reserved values.

00 00 00 05
00 00 04 05

life_cycle_state 2 0 15 Used to represent the current life
cycle state. The valid values are:
0 = issued, 1 = issued-disabled, 2
= issued-frozen, 3 = issued-
disabled-frozen, 4 =
manufacturing, 5 = manufacturing-
disabled, 6 = manufacturing-
frozen, 7 = manufacturing-
disabled-frozen, 8 = failed, 9-15 =
reserved

00 00 00 05
00 00 04 06

padding_type 2 0 15 Defines the type of padding used
with RSA encryption. '0' identifies
the value as None or Null, '1'
identifies the padding as that
described in PKCS #1 v 1.5, and
'2' identifies the padding as that
described in PKCS #1 v 2.1.
Values 3-15 are reserved for
future use.

00 00 00 05
00 00 04 08

auth_method 2 0 23 This describes the enumeration
used to represent authentications
methods that may be used to
authenticate authorities. The valid
entries are: 0 = None 1 =
Password, 2 = Exhange, 3 = Sign,
4 = SymK, 5 = HMAC, 6 =
TPerSign, 7 = TPerExchange, 8-
23 = reserved for future use

00 00 00 05
00 00 04 09

log_kind 2 0 23 Used to represent the predefined
log messages used in the default
Log table. The valid values are: 0
= available, 1 = methodFail,2 =
methodSuccess, 3 =
authenticateFail,4 =
authenticateSuccess,5 =
transactOpen,6 = transactCommit,
7 = transactAbort,8 = sessionEnd,
9 = user, 10 = system, 11-23 =

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 101 of 265

ID Name Format Size Default Description
reserved

00 00 00 05
00 00 04 0A

symmetric_mode 2 0 23 Defines the mode to be used with
this AES credential. The valid
values are: 0 = ECB, 1 = CBC, 2
= CFB, 3 = OFB, 4 = GCM, 5 =
CTR, 6 = CCM, 23 =
MediaEncryption, 7-22 reserved
for future use.

00 00 00 05
00 00 04 0B

clock_kind 2 0 3 Defines the type of clock currently
active. The valid values are: 0 =
Timer, 1 = Low, 2 = High, 3 =
LowAndHigh

00 00 00 05
00 00 04 0C

log_select 2 0 3 Identifies the scope of the logging
for an access control association
or authority. The valid values are:
0 = None,1 = LogSuccess,2 =
LogFail,3 = LogAlways

00 00 00 05
00 00 04 0D

hash_protocol 2 0 15 Selects which hash algorithm
should be used to create a digital
signature. Options are: 0 = none,
1 = SHA 1, 2 = SHA 256, 3 = SHA
384, 4 = SHA 512, 5-15 =
reserved

00 00 00 05
00 00 04 0E

boolean_ACE 2 0 7 Used to identify "And" and "Or",
where "And" is 0, "Or" is 1, and
“Not” is 2, and 3-7 are reserved for
future use - used to construct ACE
Expression

00 00 00 05
00 00 04 0F

adv_key_mode 2 0 7 This enumeration defines when
the NextKey is moved to the
ActiveKey. 0 = wait for
ADVKey_Req, 1 = auto-advance
keys

00 00 00 05
00 00 04 10

keys_avail_conds 2 0 7 This enumeration describes the
conditions required to assert
KeysAvailable in the Locking
Template. 0 = None, 1 =
Authentication of the authority with
Set access to read/write locked
columns for the LBA Range

00 00 00 05
00 00 04 11

last_reenc_stat 2 0 7 This enumeration identifies the
last attempted re-encryption step.
0 = success, 1 = Read error, 2 =
Write Error, 3 = Verify Error

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 102 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 04 12

verify_mode 2 0 7 This enumeration defines the
verification operation to perform
after a sector has been written
with a new encryption key. 0 = no
verify, 1 = verify enabled, 2-7 =
reserved

00 00 00 05
00 00 04 13

reencrypt_request 2 1 16 This enumeration identifies a host
re-encryption request value. See
section 5.8.2.2 for values.

00 00 00 05
00 00 04 14

reencrypt_state 2 1 16 This enumeration identifies the
present Re-encryption state for an
LBA range. 1 = Idle, 2 = Pending,
3 = Active, 4= Completed, 5 =
Paused, 6-16 = Reserved

00 00 00 05
00 00 04 15

table_kind 2 1 3 Defines the kind of table. The
valid values are: 1 = Object, 2 =
Array, 3 = Byte

00 00 00 05
00 00 04 16

package_purpose 2 1 32 This enumeration describes the
purpose for package creation. 1 =
Issuance, 2 = Key Wrapping, 3 =
Backup, 4-32 = reserved

00 00 00 05
00 00 06 01

ACE_expression 3 2
0000000500000C04
000000050000040E

 This is an alternative type where
the options are either a uidref to
an ACE object or one of the
boolean_ACE options

00 00 00 05
00 00 06 02

row_selection 3 2
0000000500000F01
0000000500001001

 This type is used to provide a
selection between a uidref to an
object table row or a ref to an
array table row

00 00 00 05
00 00 06 03

columns 3 2
0000000500000805
0000000500001603

 This type represents the
alternative type used to define the
columns in a table in the
CreateRow method. The first
selection is used if the table does
not have an indexed column(s).
The second selection is used if the
table does have an indexed
column(s).

00 00 00 05
00 00 06 04

uint_ref 3 2
0000000500000211
0000000500000C02

 Alternative type with selections for
a uinteger_1 or a uidref to an
object in the Type table

00 00 00 05
00 00 06 05

row 3 20
0000000500001402
0000000500001403

 Used to provide a mechanism to
select between a name-value pair
where the value is the uidref of an
object and a name-value pair
where the value is the ref of a
table row.

00 00 00 05
00 00 06 06

table_object_ref 3 2
0000000500001001
0000000500001201

 This type defines a reference to
the uid of a table or the uid of
some object.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 103 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 06 07

createrow_result 3 2
0000000500000808
0000000500000809

 This alternative type offers 2
options – either a list of ref/uidref
pairs (to represent the result of
invoking CreateRow on an array
table), or a list of uidrefs (to
represent the result of invoking
CreateRow on an object table).

00 00 00 05
00 00 06 08

next_result 3 2
000000050000080A
000000050000080B

 This alternative type offers 2
options – either a list of ref/uidref
pairs (to represent the result of
invoking Next on an array table),
or a list of uidrefs (to represent the
result of invoking Next on an
object table).

00 00 00 05
00 00 06 09

get_result 3 2
000000050000021E
000000050000080E

 This alternative type offers 2
options – either a max bytes type
that is to be used to represent the
retrieved data from a byte table, or
a list of lists of column name/value
pairs that is the retrieved data
from a non-byte table.

00 00 00 05
00 00 06 0A

set_values 3 2
0000000500000222
0000000500000810

 This alternative type offers 2
options – either a max bytes type
that is used for data to be set to a
byte table, or a list of lists of
column name/value pairs, where
the name is the name of a column
in the non-byte table and the value
is the value to be stored in that
column.

00 00 00 05
00 00 06 0B

encrypt_input 3 2
0000000500000239
0000000500001607

 This alternative type, used for data
input to the Encrypt method, offers
2 options – either a max bytes
type that is used to transmit
across the interface as a method
parameter the data to be
encrypted, or a cell_block that
identifies the location of the data
to be encrypted, where this data
exists in a table within the SP.

00 00 00 05
00 00 06 0C

decrypt_input 3 2
000000050000023A
0000000500001607

 This alternative type, used for data
input to the Decrypt method, offers
2 options – either a max bytes
type that is used to transmit
across the interface as a method
parameter the data to be
decrypted, or a cell_block that
identifies the location of the data
to be decrypted, where this data
exists in a table within the SP.

00 00 00 05
00 00 06 0D

sign_input 3 2
000000050000023B
0000000500001607

 This alternative type, used for data
input to the Sign method, offers 2
options – either a max bytes type
that is used to transmit across the

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 104 of 265

ID Name Format Size Default Description
interface as a method parameter
the data to be signed, or a
cell_block that identifies the
location of the data to be signed,
where this data exists in a table
within the SP.

00 00 00 05
00 00 06 0E

verify_input 3 2
000000050000023C
0000000500001607

 This alternative type, used for data
input to the Verify method of the
data to be verified, offers 2 options
– either a max bytes type that is
used to transmit across the
interface as a method parameter
the data to be verified, or a
cell_block that identifies the
location of the data to be verified,
where this data exists in a table
within the SP.

00 00 00 05
00 00 06 0F

verify_proof 3 2
000000050000023D
0000000500001607

 This alternative type, used for data
input to the Verify method of the
data to be verified against, offers 2
options – either a max bytes type
that is used to transmit across the
interface as a method parameter
the data to be verified against, or a
cell_block that identifies the
location of the data to be verified
against, where this data exists in a
table within the SP.

00 00 00 05
00 00 06 10

hash_input 3 2
000000050000023E
0000000500001607

 This alternative type, used for data
input to the HashCalc method,
offers 2 options – either a max
bytes type that is used to transmit
across the interface as a method
parameter the data to be hashed,
or a cell_block that identifies the
location of the data to be hashed,
where this data exists in a table
within the SP.

00 00 00 05
00 00 06 11

hmac_input 3 2
000000050000023F
0000000500001607

 This alternative type, used for data
input to the HMACCalc method,
offers 2 options – either a max
bytes type that is used to transmit
across the interface as a method
parameter the data to be
HMACed, or a cell_block that
identifies the location of the data
to be HMACed, where this data
exists in a table within the SP.

00 00 00 05
00 00 06 12

xor_input 3 2
0000000500000240
0000000500001607

 This alternative type, used for data
input to the XOR method, offers 2
options – either a max bytes type
that is used to transmit across the
interface as a method parameter
the data to be XORed, or a

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 105 of 265

ID Name Format Size Default Description
cell_block that identifies the
location of the data to be XORed,
where this data exists in a table
within the SP.

00 00 00 05
00 00 06 13

stir_input 3 2
0000000500000241
0000000500000401

 This alternative type, used for the
input to the Stir method, offers 2
options – either an integer type
that is used to seed the Random
method upon its next invocation,
or a boolean that, if True, indicates
that the TPer should seed the
Random method internally.

00 00 00 05
00 00 06 14

challenge 3 2
000000050000021C
000000050000020C

 This alternative type is used to
represent a challenge supplied by
one communicator to another, and
encompasses both nonces for
verification and passwords. This
type is made up of a max bytes
type that represents a challenge,
and a max bytes type that is a
password.

00 00 00 05
00 00 08 01

AC_element 4 *
0000000500000601

 An AC_Element is a list of
ACE_Expressions forming a
postfix Authority expression. For
example: [32 24 0 8273 1 7728 0
] is the list representing the infix
ACE Expression:((32 AND 24) OR
8273) AND 7728

00 00 00 05
00 00 08 02

ACL 4 *
0000000500000801

 An ACL is represented as a list of
uidrefs to ACE objects. The
length of the list is SSC-
dependant.

00 00 00 05
00 00 08 03

type_ref_list 4 *
0000000500000C02

 A list of an SSC-dependent
number of uidrefs to objects in the
Type table

00 00 00 05
00 00 08 04

row_data 4 *
0000000500001405

 Used to provide row data when
creating a new row. This is a list
of SSC-defined length of name-
value pairs.

00 00 00 05
00 00 08 05

columns_list 4 *
0000000500001601

 This type defines a list of the
column type. The number of
elements in the list is SSC-specific

00 00 00 05
00 00 08 06

uint_ref_list 4 2
0000000500000604

 List of the Alternative type that
contains selections for a
uinteger_1 or a uidref to an object
in the Type table

00 00 00 05
00 00 08 07

template_list 4 *
0000000500000C08

 This type defines a list of uidrefs to
objects that appear in the Admin
SP's Template table. The number
of items in this list is SSC-specific.

00 00 00 05
00 00 08 08

ref_uidref_createrow_list 4 *
0000000500001609

 This type defines a list of the struct
type that is used to represent a
ref-uidref pair, and is for use with
the CreateRow method. The

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 106 of 265

ID Name Format Size Default Description
number of items in this list is
SSC/implementation-specific.

00 00 00 05
00 00 08 09

uidref_createrow_list 4 *
0000000500001001

 This type defines a list of uidrefs,
for use with the CreateRow
method.

00 00 00 05
00 00 08 0A

ref_uidref_next_list 4 *
0000000500001609

 This type defines a list of the struct
type that is used to represent a
ref-uidref pair, and is for use with
the Next method. The number of
items in this list is
SSC/implementation-specific.

00 00 00 05
00 00 08 0B

uidref_next_list 4 *
0000000500001001

 This type defines a list of uidrefs,
for use with the Next method.

00 00 00 05
00 00 08 0C

Table_ref_rows_list 4 *
000000050000080C

 This type defines a list of Table
object descriptor uids and
uintegers, and is used with the
GetFreeSpace method. The
number of members of this list is
limited by the
SSC/implementation, but shall be
less than or equal to 4294967295,
the total number of tables that are
creatable on an SP (the number of
actually creatable tablesis also
SSC/implementation-dependent).

00 00 00 05
00 00 08 0D

get_column_sub_list 4 *
0000000500001601

 This type defines a list of column
name/value pairs. The number of
of members of this list is limited by
the SSC/implementation, but shall
be less than or equal to
4294967295, the total number of
columns that are creatable in a
table (the number of actually
creatable columns is also
SSC/implementation-dependent).

00 00 00 05
00 00 08 0E

get_column_list 4 *
000000050000080D

 This type defines a list of a list of
column name/value pairs. This is
used in the Get method to return
the requested values. Each list
contained in this list represents a
different row. The number of
elements that may be contained in
this list shall be less than or equal
to 4294967295, which is the total
number of rows that are creatable
in a table (the number of actually
creatable rows is also
SSC/implementation-dependent).

00 00 00 05
00 00 08 0F

set_column_sub_list 4 *
0000000500001601

 This type defines a list of column
name/value pairs. The number of
of members of this list is limited by

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 107 of 265

ID Name Format Size Default Description
the SSC/implementation, but shall
be less than or equal to
4294967295, the total number of
columns that are creatable in a
table (the number of actually
creatable columns is also
SSC/implementation-dependent).

00 00 00 05
00 00 08 10

set_column_list 4 *
000000050000080F

 This type defines a list of a list of
column name/value pairs. This is
used as a parameter of the Set
method. Each list contained in
this list represents a different row.
The number of elements that may
be contained in this list shall be
less than or equal to 4294967295,
which is the total number of rows
that are creatable in a table (the
number of actually creatable rows
is also SSC/implementation-
dependent).

00 00 00 05
00 00 0A 01

column_ref 5
0000000400000000

 Reference to a row number that
must exist in the Column table

00 00 00 05
00 00 0C 01

SPTemplates_ref 6
0000000300000000

00 00 00 05
00 00 0C 02

Type_ref 6
0000000500000000

 Reference to a uid that must exist
in the Type table.

00 00 00 05
00 00 0C 03

MethodID_ref 6
0000000500000000

 Reference to a uid that must exist
in the MethodID table

00 00 00 05
00 00 0C 04

ACE_table_ref 6
0000000800000000

 This is a
Restricted_Reference_Type,
which indicates that the uidref
used in this type must be to a uid
contained in the ACE table.

00 00 00 05
00 00 0C 05

Authority_ref 6
0000000900000000

 Reference to a uid that must exist
in the Authority table

00 00 00 05
00 00 0C 06

Certificates_ref 6
0000000A00000000

 Reference to a uid that must exist
in the Certificates table

00 00 00 05
00 00 0C 07

SP_ref 6
0000020500000000

 Reference to a uid that must exist
in the Admin SP's SP table

00 00 00 05
00 00 0C 08

Template_ref 6
0000020400000000

 Reference to a uid that must exist
in the Admin SP's Template table.

00 00 00 05
00 00 0C 09

Table_ref 6
0000000100000000

 Reference to a uid that must exist
in the SP's Table table.

00 00 00 05
00 00 0F 01

row_ref 7

00 00 00 05
00 00 0F 02

log_row_ref 7 This is a reference type that shall
be used specifically for rows in
Log tables. When performing type
checking, as part of that type
checking the TPer shall validate

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 108 of 265

ID Name Format Size Default Description
that this is a ref to a row in a Log
table.

00 00 00 05
00 00 10 01

row_uidref 8

00 00 00 05
00 00 10 02

cred_object_uidref 8 This is a reference type that shall
be used specifically for uidrefs to
credential objects. When
performing type checking, as part
of that type checking the TPer
shall validate that this uidref is to
an object in a credential (C_*)
table.

00 00 00 05
00 00 12 01

table_ref 9 This type is used to represent a
uidref to a Table that is one of the
set of all tables in the SP.

00 00 00 05
00 00 12 02

ref_def_00 9 "00 00 00 00 00
00 00 00"

This table ref is to a byte table that
defines the default value for this
column

00 00 00 05
00 00 12 03

byte_table_ref 9 This is a reference type that shall
be used specifically for uidrefs to
byte tables. When performing
type checking, as part of that type
checking the TPer shall validate
that this uidref is to a table that is
a byte table.

00 00 00 05
00 00 14 01

column-name 10
000000050000020B
000000050000020B

 Name-value pair that takes a
name as the value. The "Name"
in the "Name-value" pair shall be
"Name", so that use of this type
shall be "Name=<name>".

00 00 00 05
00 00 14 02

row_uidref-name 10
000000050000020B
0000000500001001

 Used to identify a name-value pair
where the value is the uidref of an
object. The name to be used with
this type is "UID".

00 00 00 05
00 00 14 03

row_ref-name 10
000000050000020B
0000000500000F01

 Used to idenfiy a name-value pair
where the value is the ref of a
table row. The name to be used
with this type is "Ref".

00 00 00 05
00 00 14 04

table_ref-name 10
000000050000020B
0000000500001201

 This type is used to represent a
name-value pair where the value
is a uidref to a Table that is one of
the set of all tables in the SP. The
name in this type shall be "Name".

00 00 00 05
00 00 14 05

type_ref-name 10
000000050000020B
0000000500000C02

 Name-value pair that takes as a
value a reference to a uid that
must exist in the Type table. The
Name in this Name-value pair
shall always be "Type".

00 00 00 05
00 00 14 06

name-uinteger_2 10
000000050000020B
0000000500000215

 Name-value pair that takes a
uinteger_ as the value.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 109 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 14 07

name-uinteger_1 10
000000050000020B
0000000500000211

 Name-value pair that takes a
uinteger_1 as the value.

00 00 00 05
00 00 14 08

name-startColumn 10
000000050000020B
000000050000020B

 Name-value pair used for the
cell_block type. The name portion
of this type shall be "startColumn".

00 00 00 05
00 00 14 09

name-endColumn 10
000000050000020B
000000050000020B

 Name-value pair used for the
cell_block type. The name portion
of this type shall be "endColumn".

00 00 00 05
00 00 14 0A

name-startRow 10
000000050000020B
0000000500000605

 Name-value pair used for the
cell_block type. The name portion
of this type shall be "startRow".

00 00 00 05
00 00 14 0B

name-endRow 10
000000050000020B
0000000500000605

 Name-value pair used for the
cell_block type. The name portion
of this type shall be "endRow".

00 00 00 05
00 00 16 01

column 11 2
0000000500001401
0000000500001405

 This type defines a column name
and its associated type.

00 00 00 05
00 00 16 02

lag 11 2
0000000500001406
0000000500001406

 A struct made up of 2 uinteger_2
name-value types, used to define
the lag when setting time. The 2
types represent seconds and
fraction of seconds. The names
required are "Seconds" for the first
value and "Fraction" for the
second. The "Fraction" value is a
number of milliseconds.

00 00 00 05
00 00 16 03

columns_struct 11 2
0000000500000805
0000000500000805

 This type is a struct made up of
two Columns_list types. The first
list is the indexed columns of a
table, and the second list is the
rest of the columns in the table.
This is used in table creation.

00 00 00 05
00 00 16 04

date 11 3
0000000500001406
0000000500001407
0000000500001407

 The date type represents the date
portion of the time from the system
clock. This is a set of name-value
pairs, with the following names:
"Year" (uinteger_2), "Month"
(uinteger_1), and "Day"
(uinteger_1) (see 5.5.5.6)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 110 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 16 05

clock_time 11 3
0000000500001406
0000000500001608
0000000500001406

 Type made up of name-value
pairs used to represent time. Any
value not supplied is treated as 0.
Time comes from the Clock SP. If
the host has supplied a trusted
time since powerup, that time is
used; otherwise a monotonic
counter is used. The Clock_time
type can be used to represent
times in either Generalized Time
or UTC Time. Using this type to
represent UTC Time requires 0’s
(zeroes) in fields where
Generalized time requires a value
but UTC Time does not (i.e. 2006
in UTC Time would be
represented as 0006). The names
for these name-value types are
"Year", "Month", "Day", "Hour",
"Minute", "Second", "Fraction"
(see 5.5.5.6)

00 00 00 05
00 00 16 06

type_def 11 3 uinteger_*
0000000500000806
0000000500000803

 A struct made up of a Uinteger of
SSC-dependent size and a list of
uidrefs to objects in the Type table

00 00 00 05
00 00 16 07

cell_block 11 5
0000000500001404
000000050000140A
000000050000140B
0000000500001408
0000000500001409

 Struct type that is used to
represent a rectangular range of a
table. An area between the whole
table and a single cell can be
selected. NOTE: The parts are
optional types. The Table defaults
to the table being operated on, if
there is one (Get, for example).
The rows and columns default to
the first or last, as appropriate.For
example:[Table="MyTable"]
refers to the entire table.[
Table="MyTable", startRow=2,
endRow=5], refers to all columns
of rows 2 through 5, inclusive, of
table "MyTable". When
referencing an object table row
from within a method, startRow
and endRow are the ID of the
object (and must be the same).
The name-values for these are,
“Table=uid”, “startRow=uid”,
“endRow=uid”,
“startColumn=name”,
“endColumn=name” (as indicated
in the individual types that make
up this struct)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 111 of 265

ID Name Format Size Default Description
00 00 00 05
00 00 16 08

struct-name-uinteger_1 11 5
0000000500001407
0000000500001407
0000000500001407
0000000500001407
0000000500001407

 Struct composed of 5 Name-
uinteger_1 types, used to
construct the clock_time type.
The names required are "Month",
"Day", "Hour", ”Minute", "Second"
(see 5.5.5.6)

00 00 00 05
00 00 16 09

struct-ref_uidref 11 2
0000000500000F01
0000000500001001

 This is a struct composed of 2
types – a row_ref (value of an
Array tables RowNumber column)
and a row_uidref (value of a non-
Byte table's UID column)

00 00 00 05
00 00 16 0A

struct-Table_ref_uint_4 11 2
0000000500000C09
0000000500000220

 This is a struct composed of 2
types – a reference by uid to a
Table descriptor object, and a
uinteger 4 value.

00 00 00 05
00 00 18 01

reset_types 12 0 31 This Set type is used to identify
TCG reset types that map to
interface specific behaviors. The
set values are: 0 = Power Cycle,
1 = Hardware, 2 = HotPlug, 3-
15=reserved for TCG use, 16-31
reserved for vendor-specific reset
behaviors.

00 00 00 05
00 00 18 02

gen_status 12 0 63 This set type is used to identify the
general status of the re-encryption
process. See section 5.8.2.2 for
values.

00 00 00 05
00 00 18 03

enc_supported 12 0 15 This set describes the types of
user data encryption supported by
the TPer. 0 = None, 1 = Media
Encryption, 2-15 are reserved.

5.1.3 SP Method Status Codes
SP method calls invoke specific operations and receive associated status. The following sections
identify and define the status codes that may be received in response to method invocations and other
operations. Table 31 identifies the value associated with each of these status codes.

Table 31 Status Codes
Name Value
SUCCESS 0
NOT_AUTHORIZED 1
READ_ONLY 2
SP_BUSY 3
SP_FAILED 4
SP_DISABLED 5
SP_FROZEN 6
NO_SESSIONS_AVAILABLE 7

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 112 of 265

Name Value
INDEX_CONFLICT 8
INSUFFICIENT_SPACE 9
INSUFFICIENT_ROWS 10
INVALID_COMMAND 11
INVALID_PARAMETER 12
INVALID_REFERENCE 13
INVALID_SECMSG_PROPERTIES 14
TPER_MALFUNCTION 15
TRANSACTION_FAILURE 16
RESPONSE_OVERFLOW 17

5.1.3.1 SUCCESS
This status is returned when a method executes without error.

5.1.3.2 NOT_AUTHORIZED
This response is returned whenever an attempt is made to invoke a method for which the host does not
have authorization.

5.1.3.3 READ_ONLY
This response is returned if a method that requires invocation from within a Read-Write session is
invoked from within a Read-Only session. DeleteSP is an example of a method that may return this
status.

5.1.3.4 SP_BUSY
This status shall be returned if an attempt is made to open a Read-Write session to an SP when any
other session to that SP is already open, or when an attempt is made to open a Read-Only session to
an SP with which a Read-Write session is already open.

5.1.3.5 SP_FAILED
This status may be returned if an attempt is made to open a session to an SP that is in the Failed life
cycle state.

5.1.3.6 SP_DISABLED
This status may be returned if a method is invoked from within a session to an SP that is in the Issued-
Disabled or Issued-Disabled-Frozen state, and the method is not permitted because of the limitations
placed on SP operation by the state behavior.

5.1.3.7 SP_FROZEN
This status may be returned if a method is invoked from within a session to an SP that is in the Issued-
Frozen or Issued-Disabled-Frozen state, and the method is not permitted because of the limitations
placed on SP operation by the state behavior.

5.1.3.8 NO_SESSIONS_AVAILABLE
This status is returned if an attempt is made to open a session on a TPer on which the maximum
number of concurrent sessions available for use are already being used.

5.1.3.9 INDEX_CONFLICT
This occurs when a conflict between objects is created due to the attempt to create a second object
with a unique index that is already in use by another object. For instance, this status may be received
when attempting to create a table, when a table already exists with the name submitted in the
CreateTable invocation.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 113 of 265

5.1.3.10 INSUFFICIENT_SPACE
This status is returned if an attempt is made to:

• Create an SP and there is insufficient space on the TPer to create the new SP
• Create a table and there is insufficient space in the SP to create the new table
• Create more rows in a table than is permitted by the TPer or by the table’s size settings.

Note that it is possible that re-invoking the method and requesting a smaller size for the SP or table
may enable the method to then complete properly.

5.1.3.11 INSUFFICIENT_ROWS
This command may be returned if an attempt is made to create a table or object, but the associated
metadata or support table rows (i.e., the Table, Column, Method, or ACE tables) cannot be created to
support the new object or table.

5.1.3.12 INVALID_COMMAND
This status is returned if a method call cannot execute due to attempted invocation of an invalid or
nonexistent method.

5.1.3.13 INVALID_PARAMETER
This status is returned if a method invocation has any invalid parameters. There are many situations in
which this error could be returned. Some of the specific situations where this could occur are:

• Columns specified in the CreateRow method invocation are not part of the table definition.
• If an attempt is made to set a cell to a value larger (or smaller) than that cell’s type allows.
• If a specified cell_block parameter value is not a valid cell_block for the method.
• If an incorrect credential type is parameterized.

5.1.3.14 INVALID_REFERENCE
This status is returned if a parameter (of either the invoking, i.e., table or object, parameter or the
invoked parameters) is to a table row that includes an invalid or incorrect reference to an object, SP,
table, or other table row.

5.1.3.15 INVALID_SECMSG_PROPERTIES
This status is returned if the host attempts to explicitly authenticate an authority for which the session
properties are not appropriate, for instance if the host requires secure messaging but secure messaging
is not in operation for the session, or if a different secure messaging type than is required by the
authority is in operation for the session.

5.1.3.16 TPER_MALFUNCTION
This status is returned when some operational failure has occurred within the TPer that has caused the
method invocation to fail.

5.1.3.17 TRANSACTION_FAILURE
This status is returned when a method fails due to a failure of the method due to the transactional
context in which it was invoked. An example of this is if a TPer is unable to process within the
transaction the amount of data supplied as a parameter of the method, which under other
circumstances the TPer would be able to process. The TPer in this case would return this status code
to indicate that the method failed due to the transactional context, not due to a problem with the method
invocation itself.

5.1.3.18 RESPONSE_OVERFLOW
This status is returned when a method fails if the method response and associated protocol overhead
do not fit entirely within the response buffer.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 114 of 265

5.2 Session Manager Methods
5.2.1 Overview
Session Manager protocol layer methods permit a host to retrieve information about a TPer without
having to start a session, and provide the methods required to enable session startup.

Due to the nature of the Session Manager protocol layer methods, the responses to methods at this
protocol layer are formatted as methods from the TPer to the host. In the case of multiple method
invocations by a host to a TPer on the Session Manager layer, this mechanism allows the host to
identify the method to which a response is directed.

Session Manager methods are always invoked using an InvokingUID of SMUID, which is the reserved
UID 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF. Session Manager methods may be listed in the
MethodID table for each SP, but this is not required.

5.2.2 TPer Properties Method
5.2.2.1 Properties (Method)
The Properties method pertains to the exchange of session-related metadata and settings between
the host and the TPer prior to session start-up.

SMUID.Properties[HostProperties = list{name, value}]
=>
SMUID.Properties[Properties : list{name, value}, HostProperties = list{name, value}
]

This Session Manager layer method is used by the host to provide its communication properties to the
TPer and retrieve the communication properties of the TPer.

A list of name/value pairs may be provided as arguments when invoking the Properties method.

If the method is successfully invoked with an empty list of arguments, then the response is a list of
property names and values from the TPer. All property name/value pairs defined in this specification
shall be returned in the response, in addition to any other name/value pairs that the TPer may have.
The host application shall ignore any that it does not understand. The TPer shall return values for the
names described in Table 32 or in the associated SSC (the values in the SSC have precedence). The
values returned shall apply to all sessions started with the currently associated ComID.

The properties to be returned are stored in the Properties table in the Admin SP. The format of this
table is defined in the Admin Template section of this specification (section 5.4.2.4). All of the property
name/value pairs, both specified and implementation-defined, shall be stored in the Properties table.

If the method is invoked with a list of parameters, the list of name/value pairs that the TPer shall
recognize are MaxPacketSize, MaxComPacketSize, MaxResponseComPacketSize,
MaxIndTokenSize, and MaxAggTokenSize as described in Table 32. These parameters are used to
describe the communications capabilities that the host possesses, and apply to any sessions started
using the ComID associated with this Properties method invocation.

The TPer shall use these host properties when it is constructing responses to be transmitted to the
host. The host may omit properties as necessary, depending on the host’s communications
capabilities. If the host specifies a value for a property that does not meet the minimum requirement as
defined in Table 32, then the TPer shall use the minimum value defined in Table 32 in place of the
value supplied by the host.

If the host includes property parameters to the Properties method invocation, then the TPer’s
response shall include the communication property value settings it will use during the session (both for
its communications and the host's). These settings shall apply to all sessions started with the currently
associated ComID.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 115 of 265

If a host includes property parameters to the Properties method invocation that the TPer does not
recognize or comprehend, the TPer shall ignore those parameters, and not return them in its response.

Because of the asynchronous nature of the Session Manager protocol layer and the possible different
ordering of responses to Session Manager layer methods, the response to this method is formatted as
a Properties method invocation so as to be identifiable as the response to the Properties method.

Table 32 Properties Method Response
Property Type Description
SessionVersion version The version number of the TPer firmware.
MaxPacketSize uinteger_4 The maximum size of a packet (including both data and

header), in bytes, that the communicator is able to receive.
This value shall be at least 256. A value of 0 indicates no
limit.

MaxComPacketSize uinteger_4 The maximum size of an IF Command payload (includes
both the ComPacket header and payload) that the
communicator is able to receive. A value of 0 indicates no
limit.

MaxResponseComPacketSize uinteger_4 The maximum length of an IF Command payload that the
communicator is able to generate. A value of 0 indicates
no limit.

MaxSessions uinteger_2 The maximum number of simultaneous sessions
supported by the TPer. A value of 0 indicates no limit.

MaxReadSessions uinteger_2 The maximum number of simultaneous Read-Only
sessions to any one SP supported by the TPer. A value of
0 indicates no limit.

MaxIndTokenSize uinteger_4 The maximum size of a token (in bytes) in a single
subpacket that the communicator is able to accept. This
value shall be at least 256. A value of 0 indicates no limit.

MaxAggTokenSize uinteger_4 The maximum aggregate size of a token spanning multiple
subpackets that the communicator is able to accept. This
value shall be at least 256. A value of 0 indicates no limit.

MaxAuthentications uinteger_2 The maximum number of simultaneously authenticated
individual authorities per session that the TPer is able to
support. A value of 0 indicates no limit.

MaxTransactionLimit uinteger_2 The maximum number of concurrently open transactions
that the TPer is able to support in a single session. A
value of 0 indicates no limit.

DefSessionTimeout uinteger_8 The session timeout length (in milliseconds) used by the
TPer by default. A value of 0 indicates no limit.

MaxSessionTimeout uinteger_8 The longest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

MinSessionTimeout uinteger_8 The shortest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

DefTransTimeout uinteger_4 The transmission timeout length (in milliseconds) used by
the TPer by default. A value of 0 indicates no limit.

MaxTransTimeout uinteger_4 The longest transmission timeout length (in milliseconds)
permitted by the TPer. A value of 0 indicates no limit.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 116 of 265

Property Type Description
MinTransTimeout uinteger_4 The shortest transmission timeout length (in milliseconds)

permitted by the TPer. A value of 0 indicates no limit.
MaxComIDTime uinteger_8 The timeout length (in milliseconds) used by the TPer after

it has assigned a ComID. A session using the associated
ComID shall be started within this interval or the ComID
shall transition from Issued to Inactive. . A value of 0
indicates no limit.

MaxComIDCMD uinteger_4 SSC-dependent limit on the number of interface
commands that may be issued using a specific ComID. A
value of 0 indicates no limit. . A value of 0 indicates no
limit.

RealTimeClock boolean Identifies if a real time clock is present on the TPer

5.2.3 Session Startup Methods
5.2.3.1 StartSession/SyncSession Methods
SMUID.StartSession[
HostSessionID : uinteger_4,
SPID : SP_ref,
Write : boolean,
HostChallenge = challenge,
HostExchangeAuthority = Authority_ref,
HostExchangeCert = certificate,
HostSigningAuthority = Authority_ref,
HostSigningCert = certificate,
SessionTimeout = uinteger_8,
TransTimeout = uinteger_4,
InitialCredit = uinteger_2,
SignedHash = signed_hash]
=>
SMUID.SyncSession[
HostSessionID : uinteger_4,
SPSessionID : uinteger_4,
SPChallenge = challenge,
SPExchangeCert = certificate,
SPSigningCert = certificate,
TransTimeout = uinteger_4,
InitialCredit = uinteger_2,
SignedHash = signed_hash]

The HostSessionID parameter in the StartSession invocation is the host-side session number
assigned and used by the host to identify this session. All further invocations in this series of method
invocations and responses will use this host-assigned session number in the HostSessionID parameter.

The SPID parameter in the StartSession invocation is the uid of the SP with which the host is
attempting to start a session. This is the uid of the SP in the Admin SP’s SP table.

The Write parameter determines the type of session that is being started. This value is True when a
Read-Write session is requested and False when a Read-Only session is requested.

If the Signing Authority (identified in the HostSigningAuthority parameter) calls out a C_PIN credential,
then the HostChallenge parameter is used by the host to submit a password for authentication.
Otherwise, this parameter is used to submit a nonce to the SP that, during secure session startup, will
return a response that will be based on the HostChallenge value and the authentication requirements of
the Signing Authority.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 117 of 265

The HostExchangeAuthority identifies the authority whose credential will be used to exchange keys
with the SP.

The optional HostExchangeCert parameter provides the certificate associated with the credential to be
used with the HostExchangeAuthority.

The HostSigningAuthority's credential is used to formulate a response to the SP's challenge, and is
used to sign the method hash.

See section 5.3.4.1.4 for more information on how authorities interact during session startup.

The optional HostSigningCert parameter provides attestation to the HostSigningAuthority's credential.

The SessionTimeout parameter is used to allow the host to provide a requested timeout value for the
session. The value, in milliseconds, shall be less than the TPer’s MaxSessionTimeout property and
greater than the TPer’s MinSessionTimeout property (see Table 32), as well as less than the value of
the SPSessionTimeout column in the SP’s SPInfo table. If no value is specified for this parameter,
then the SP's default value, stored in the SPInfo table's SPSeessionTimeout column, shall be used. If
no value exists as an SP default (i.e. the SPSessionTimeout column value is zero), then the TPer
default (as reported in the Properties method response, DefSessionTimeout) shall be used.

The TransTimeout parameter is used to allow the host to provide a requested timeout value for
acknowledgement. The value, in milliseconds, shall be less than the TPer's MaxTransTimeout property
and greater than the TPer's MinTransTimeout property (these values are reported as the results of the
Properties method – see Table 32).

If this capability is supported and no value is specified for this parameter, then the TPer's default value
(identified as the DefTransTimeout response to the Properties mehod), shall be used as the
transmission timeout value. For more information on the transmission timeout mechanism, see 3.4.6.3.

The InitialCredit parameter enables the host to provide an amount of credits to the TPer for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.4.6.4.

The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see section 3.4.4.7). This is a signed hash of all the
other parameters to the method, other than the SignedHash parameter. The purpose of this MAC is to
provide integrity during session startup, prior to the point when secure messaging begins.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the Host to the SP. The SP Control Authority, if referenced by the Host Control
Authority, identifies the hash type and signing type if hashing has been called out on messages from
the SP to the host (see section 3.4.4.7).

The HostSessionID parameter in the SyncSession invocation is the same as that in the StartSession
invocation.

The SPSessionID parameter in the SyncSession invocation is the TPer side session number, which is
assigned by the TPer.

The SPChallenge parameter is required if the StartSession invocation includes a
HostSigningAuthority that directly invokes a signing credential. Otherwise, this parameter will be
omitted.

The SPExchangeCert and SPSigningCert are the certificates for the credentials referenced by the
authorities that may be called out by the HostSigningAuthority specified in the StartSession
invocation.

The TransTimeout parameter in the SyncSession method is used by the TPer to report the Timeout
value it will use. This optional parameter shall be larger than the value of the TransTimeout parameter
of the StartSession method. This parameter is used to allow the TPer to provide a transmission
timeout value for acknowledgement larger than that requested by the host.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 118 of 265

The TransTimeout parameter value (measured in milliseconds) shall be less than the TPer's
MaxTransTimeout property and greater than the TPer's MinTransTimeout property (see Table 32).

If this capability is supported and no value is specified for this parameter in either the StartSession or
SyncSession methods, then the TPer's default value (identified as the DefTransTimeout response to
the Properties mehod), shall be used as the transmission timeout value. For more information on the
transmission timeout mechanism, see 3.4.6.3.

The InitialCredit parameter enables the TPer to provide an amount of credits to the host for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.4.6.4.

The SignedHash of the SyncSession method, if present, is the hash of the method’s parameter’s
signed by the response signing credential that is the credential referred to by the SPSigningAuthority.

5.2.3.2 StartTrustedSession/SyncTrustedSession Methods

SMUID.StartTrustedSession[
HostSessionID : uinteger_4,
SPSessionID : uinteger_4,
HostResponse = response,
HostEncryptSessionKey = session_key_encrypt,
HostIntegritySessionKey = session_key_integrity,
SignedHash = signed_hash]
=>
SMUID.SyncTrustedSession[
HostSessionID : uinteger_4,
SPSessionID : uinteger_4,
SPResponse = response,
SPEncryptSessionKey = session_key_encrypt,
SPIntegritySessionKey = session_key_integrity,
SignedHash = signed_hash]

Note: The StartTrustedSession/SyncTrustedSession method exchange, if needed, can only occur
directly after the StartSession/SyncSession method exchange. If called any other time, the attempted
method invocation shall return an error result.

The HostResponse is included if the SyncSession method contained an SPChallenge argument. The
response is dictated by the credential of the HostSigningAuthority.

The HostEncryptSessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the host to the SP.

The HostIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP. This session keyset is used to create a MAC of the transmitted data (if
required) to aid in integrity assurance.

The SPResponse argument is included if the StartSession method contained a HostChallenge
argument. The response is dictated by the Operation column value and credential of the
SPSigningAuthority.

The SPEncryptSessionKey is the session keyset generated by the SP and encrypted with the key
used for exchange with the host (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the SP to the host.

The SPIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the host. This session keyset is used to create a MAC of the transmitted data
(if required) to aid in integrity assurance.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 119 of 265

For details on using the session startup methods with Elliptic Curve parameters and EC-DH or EC-
MQV, see section 5.3.6.14 and 5.3.6.15 respectively.

5.2.3.3 CloseSession Method
SMUID.CloseSession[
RemoteSessionNumber : uinteger_4,
LocalSessionNumber : uinteger_4]

CloseSession is a Session Manager protocol layer method. The parameters are two unsigned integers:
the first parameter, RemoteSessionNumber, is the session number that was used by the
remote/receiving entity, and the second parameter, LocalSessionNumber, is the session number that
was used by the local/sending entity.

This method shall only be able to be transmitted by the TPer. If the session is currently active, the TPer
transmits this method to notify the host that it is aborting the session and all open un-committed
transactions. The host shall end a session by including an End of Session token in a tokenized
message to the TPer (see section 3.2.3.2.5 and 3.4.4.4).

5.3 Base Template
5.3.1 Overview
The Base Template defines the tables and methods that shall be incorporated into all SPs.

5.3.1.1 Base Template Tables and Methods Overview
Base Template tables can be categorically divided into the following groups:

• General Metadata tables – store an SP’s self-descriptive information, such as SP identification,
size, and version numbers.

• Table and Method Metadata tables – store data about the tables and methods that make up
this SP.

• Access Control tables – define which authorities have access to which table/method,
object/method, or SP/method combinations, and the secrets and authentication methods those
authorities require.

• Credential tables – define available encryption/decryption algorithms and authentication
mechanisms, and also store associated secrets or keys. Rows with a gray background in the
credential table description tables describe columns in tables that may be hidden in an
implementation-specific manner.

Base Template methods are divided into the following groups:

• Basic Table – enable creation of tables, addition and deletion of rows to tables, and
modification of table cell values.

• Access Control – define which authorities may execute which methods, request authentication,
and modify ACLs.

5.3.2 Data Structures
5.3.2.1 General Metadata Group - SPInfo (Array Table)
The table in this section describes the data that the SP keeps about itself.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 120 of 265

Table 33 SPInfo Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned and

maintained by the TPer. (Read-only)
UID uid Unique identifier of this row of the SPInfo table (Read-only)
SPID uid Unique identifier of this SP as assigned in the Admin SP’s SP table.

(Read-only)
Name name Name of the SP. This shall be the same as the name recorded for this

SP in the Admin SP’s SP table. (Read-only)
Size uinteger_8 Total space allocated for the SP at issuance, in bytes. This value will

be the same as the value of the Bytes column in the Admin SP’s SP
table. (Read-only)

SizeInUse uinteger_8 In bytes, the amount of the allocated space that is in use (for tables).
(Read-only)

SPSessionTimeout uinteger_4 Length of timeout interval (in milliseconds) that this SP uses. (Read-
only)

Enabled boolean True if the SP is Enabled, False if SP is Disabled. Initial access control
over modification of this column permits only the SP Owner (i.e. the
Admins class authority) to disable or reenable this SP. When the value
of this column is False, the operation of the SP is modified according to
5.3.5.1.

The SPInfo table of each SP contains information about the SP, and a copy of some relevant
information from the Admin SP. This table has exactly one row.

The SPID of the SPInfo table and the GUDID of the TPerInfo table in the Admin SP form an
sp_guid that uniquely identifies the SP.

5.3.2.2 General Metadata Group - SPTemplates (Array Table)
The table in this section describes the data that the SP keeps about itself.

Table 34 SPTemplates Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned and

maintained by the TPer. (Read-only)
UID uid The unique identifier of this row of the SPTemplates table (Read-only)
TemplateID Template_ref The UID of the template as assigned in the Template table of the Admin

SP. (Read-only)
Name name Name of the Template used as a component in the creation of this SP –

this will be the same as the Name recorded in the Admin SP’s Template
table for the associated template. (Read-only)

Version version_bytes_4 Initially the 4-byte values will be 0x00 0x00 0x00 0x01. The values in
this table identiy the format of all other tables. The formats documented
here in this specification are all version 0x00 0x00 0x00 0x01 formats.
(Read-only)

The SPTemplates table is an array table that identifies the component templates used to form the SP.
There is one row for each Template used to create the SP, including a row for the Base Template for all
SPs, and one for the Admin Template in the Admin SP’s SPTemplates table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 121 of 265

The value of the TemplateID column is the UID assigned to this template in the Admin SP’s
Template table.

The value of the Name column is the same as the value of the Name column of the Admin SP’s
Template table for this template.

The value of the Version column refers to TCG defined versions of templates.

5.3.2.3 Table and Method Metadata Group - Table (Object Table)
The table in this section describes the metadata that the SP keeps about all of its tables.

Table 35 Table Table Description
Column IsIndex Type Description
UID uid The UID of this row in the Table table. (Read-only)
Name Yes name The name of the table. (Read-only for pre-personalization

tables)
CommonName Yes name A name that may be shared among multiple table descriptor

objects. (Read-only for pre-personalization tables)
TemplateID Yes SPTemplates_ref This is this Template’s UID in the SPTemplates table. This

may be zeroes in the Admin SP. (Read-only)
Kind table_kind The table type. (Read-only)
Column column_ref This is a reference to the Column table row of this table’s

first column. For byte tables this value will be 0. (Read-
only)

NumColumns uinteger_4 Number of columns in the table. For byte tables this will be
1. (Read-only)

Rows uinteger_4 Number of rows allocated for the table. (Read-only)
RowsFree uinteger_4 Number of free rows in the table. (Read-only)
RowBytes uinteger_4 Number of bytes in each row of the table. This includes

bytes devoted to overhead for system columns, type
identification, etc. (Read-only)

LastID uid UID for non-byte tables, this is the last uid assigned for that
table. (Read-only)

MinSize uinteger_4 Number of rows initially requested for this table. The table
can have the CreateRow method invoked on it this many
times. This column is user-settable (access control
permitting).

MaxSize uint_4_def_0 Host-defined maximum number of rows for this table. The
table will never have more than this many rows (though
there are cases in which the created table will not be
permitted by the system to have MaxSize rows). This
column is user-settable (access control permitting), but the
TPer may prevent the value in this column from being
changed. A value of 0 indicates no host-defined limit of
rows that may be created in this table.

The Table table contains one row for each table descriptor object, which store metadata about each of
the tables in the SP.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 122 of 265

In the Table table of every SP, there shall be a row for each table that is issued into that SP. Each of
these rows shall have a CommonName column value. Each table at issuance shall have a CommonName
column value of the Template from which it was issued – this is the name of the Template from the
Admin SP’s SPTemplates table.

In issued SPs (SPs other than the Admin SP), the TemplateID column value shall always be zeroes (a
Null UID reference). In the Admin SP, the value of the TemplateID column may be zeroes. A value of
zeroes in the TemplateID column of the Admin SP’s Table table indicates that that row is active in the
SP. Otherwise, the value of the TemplateID column in a row of the Admin SPs Table table shall be the
uid of the row of the SPTemplates table to which that table belongs.

The Name-CommonName-TemplateID column value combination shall be unique for each row in the table.

5.3.2.4 Table and Method Metadata Group - Column (Array Table)
The table in this section describes the Metadata that the SP keeps about all of its tables.

Table 36 Column Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned

and maintained by the TPer. (Read-only)
UID uid UID of this row in the Column table. (Read-only)
Name name Name of the column. (Read-only)
CommonName name A name that may be shared among multiple columns. (Read-only)
Type Type_ref Type of the column’s data. (Read-only)
IsIndex boolean_def_false The value of this column is True if this column is, or is part of, the

unique index for the table. If the value of this column is False, this
column is not a part of the table’s index. (Read-only)

Byte uinteger_4 Offset of column from start of row. (Read-only)
Transactional boolean_def_true Identifies if the column is subject to transactional rollback.

(Read-only)
Next Column_ref Reference to the row of the Column table that represents the next

column in this column’s table. If this is the last column in the
containing table, then the value of this column is 0. (Read-only)

The Column table has one row for every column of every table except byte tables.

If the value of the Transactional column is False, then modifications to this column take effect
immediately, even if the method invocation that modifies the column is included in a transaction that
has not yet resolved. Changes to the column are not rolled back if the transaction containing the
modification is aborted. The value of this column for user-created table columns is True.

The value of the CommonName column for rows that exist upon issuance is the name of the Template
(from the SPTemplates table) to which that column belongs.

The SP implementation is free to have hidden system columns in any table, as long as those columns
do not interfere with host operations, including the operation of any methods invoked on that table.
These columns shall not be recorded in the Column table.

5.3.2.5 Table and Method Metadata Group - Type (Object Table)
The Type table stores the information for all of the types used in the SP. All of the types predefined in
the Core Spec shall be included by default in the table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 123 of 265

Table 37 Type Table Description
Column IsIndex Type Description
UID uid The UID of the type. (Read-only)
Name Yes name The name of the type. (Read-only)
CommonName Yes name This is a name that may be shared by multiple types. (Read-only)
Format type_def This value will be 0 for a predefined type (integer, uinteger, bytes,

max bytes). Otherwise this specifies the format of the type. For
details, see the format specification, section 5.1.1. (Read-only)

Size uinteger_2 Size (in bytes) needed to store a value of this type. (Read-only)
Default ref_def_00 This column defines the default value for the type. (Read-only for

pre-personalization types)
The Type table contains one row for each type in use in the SP. The host may add host-defined types
by invoking the CreateRow method on the Type table.

No user-defined types shall be removed by the Delete or DeleteRow methods unless the TPer is able
to verify that no column of that type is currently in use.

Types are often constructed of other types. The TPer shall prevent modification or removal of a type
object upon which another type is dependent.

The TPer shall also prevent type recursion.

The size of the Format column is SSC-dependent. The value of the Size column includes any
necessary overhead (such as for bytes{max=<n>} or for tagging a value of an Alternative_Type. The
TPer calculates the value of this column. It is an error for the host to specify a value for this column in
the CreateRow method invocation.

The Default column is used to identify the default value for that type. This default value is used when
the CreateRow method is invoked and a column that uses that type does not have a value specified in
the CreateRow invocation. The default value of the Default column is zeroes (a Null UID reference).

If the value of the Default column is zeroes then there shall be no default value for that type. A
CreateRow invocation on a table with a column of that type shall have a value for that column specified
in the method invocation, or the method invocation shall fail. Otherwise, the value of the Default
column shall be a uidref to a byte table that contains the default value for the type. The value in the
byte table shall be the same as required for messaging tokenization (see section 3.2.2.3), and shall be
type checked by the TPer whenever a CreateRow is invoked that uses that value (i.e., that does not
specify a value for a column of that type).

The format specification for specifying the value of the Format column is in section 5.1.1.

The Type table values that represent the built-in types, as well as all those types pre-defined in this
specification, are be found in Table 30.

5.3.2.6 Table and Method Metadata Group - MethodID (Array Table)
This table associates method names and uids. Each value in the Name column must be unique. Life
cycle permits this table to be read with the use of the Anybody authority, and prevents this table from
being written by any authority.

Table 38 MethodID Table Description
Column IsIndex Type Description

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 124 of 265

Column IsIndex Type Description
RowNumber uinteger_4 This is the row number for this row of this

array table, as assigned and maintained by
the TPer. (Read-only)

UID uid UID identifier of the method. (Read-only)
Name Yes name Name of this method. (Read-only for pre-

personalization methods)
CommonName Yes name A name that may be shared among multiple

methods. (Read-only for pre-personalization
tables)

TemplateID Yes SPTemplates_ref This is that Template’s UID in the
SPTemplates table. This may be zeroes in
the Admin SP. (Read-only)

In the MethodID table of every SP, there shall be a row for each method that may be invoked on that
SP. Each of these rows shall have a CommonName column value. Each row in the MethodID table shall
have a CommonName column value of the Template from which it was issued. This is the name of the
Template from the Admin SP’s SPTemplates table.

In issued SPs (SPs other than the Admin SP), the TemplateID column value shall always be zeroes (a
Null UID reference). In the Admin SP, the value of the TemplateID column may be zeroes. A value of
zeroes in the TemplateID column of the Admin SP’s MethodID table indicates that that row is active in
the SP. Otherwise, the value of the TemplateID column in a row of the Admin SPs MethodID table
shall be the uid of the row of the SPTemplates table to which that method belongs.

The Name-CommonName-TemplateID column value combination shall be unique for each row in the table.

5.3.2.7 Table and Method Metadata Group - Method (Array Table)
The table in this section describes the Metadata that the SP keeps about its SP/method, table/method,
and object/method access control associations.

Table 39 Method Table Description
Column IsIndex Type Description
RowNumber uinteger_4 This is the row number for this row of this

array table, as assigned and maintained by
the TPer. (Read-only)

UID uid Unique identifier of this row in the Method
table (Read-only)

InvokingID Yes table_object_ref This is the uidref to the SP/Table/Object
portion of this access control association.
(Read-only)

MethodID Yes MethodID_ref UID identifier for the method part of this
access control association. (Read-only)

CommonName name A name that may be shared among multiple
access control associations (Read-only)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 125 of 265

Column IsIndex Type Description
ACL ACL The ACL for this SP/method, table/method,

or object/method combination. This column
is modified/accessed via the methods
GetACL, RemoveACE, and AddACE. This
column shall not be modifiable directly via
the Set method.

Log log_select Log whether this method succeeds, fails, or
both (or neither). This column shall be
disregarded if the Log Template has not
been issued into the SP.

AddACEACL ACL This column holds the access control list
that permits controls invocation of the
AddACE method on the access control
association represented by this row in the
Method table.

RemoveACEACL ACL This column holds the access control list
that permits controls invocation of the
RemoveACE method on the access control
association represented by this row in the
Method table.

GetACLACL ACL This column holds the access control list
that permits controls invocation of the
GetACL method on the access control
association represented by this row in the
Method table.

DeleteMethodACL ACL This column holds the access control list
that permits controls invocation of the
DeleteMethod method on the access control
association represented by this row in the
Method table.

AddACELog log_select This column identifies the conditions under
which logging of the AddACE method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

RemoveACELog log_select This column identifies the conditions under
which logging of the RemoveACE method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

GetACLLog log_select This column identifies the conditions under
which logging of the GetACL method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 126 of 265

Column IsIndex Type Description
DeleteMethodLog log_select This column identifies the conditions under

which logging of the DeleteMethod method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

LogTo ref_def_00
{LogTableUID}

This identifies the log table to which log
entries for this access control association
are added. The default value of this column
is 00s, which indicates that this access
control association logs to the default log
table. This column shall be disregarded if
the Log Template has not been issued into
the SP.

The Method table contains SP/method, table/method, and object/method access control associations
and logging settings, and each access control association’s related meta-ACL access requirements and
meta-ACL logging settings.

New rows shall not be created in or deleted from the Method table directly. New rows are created in the
Method table as a side effect whenever a table is created or when a row in an object table is created.
Method table rows associated with a particular object or table are removed whenever that table or
object is deleted.

5.3.2.8 Access Control Metadata Group - ACE (Object Table)

Table 40 ACE Table Description
Column IsIndex Type Description
UID uid Unique identifier of this ACE object (Read-only)
Name Yes name Name of this ACE object (Read-only for pre-

personalization ACEs)
CommonName Yes name Name that may be shared among multiple ACE objects

(Read-only for pre-personalization ACEs)
BooleanExpr AC_element A boolean expression of Authorities and/or Authority

Classes that authorizes the ACE if true. If the conditions
described in this access control element are true, then the
ACE is considered authenticated.

RowStart row_selection The value of this column identifies the first row of the
restriction that this ACE identifies. If the value of this
column is 0, then this indicates the first row of the table.

RowEnd row_selection The value of this column identifies the last row of the
restriction that this ACE identifies. This value shall be a
higher value than RowStart. If the value of this column is
0, then this indicates the last row of the table.

ColStart name The value of this column identifies the first column of the
restriction that this ACE identifies. Columns are ordered
left to right in the order in which they appear in this
specification. If the value of this column is a zero length
bytes value, then this indicates the first column of the
table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 127 of 265

Column IsIndex Type Description
ColEnd name The value of this column identifies the last column of the

restriction that this ACE identifies. Columns are ordered
left to right in the order in which they appear in this
specification. If the value of this column is a zero length
bytes value, then this indicates the last column of the
table.

The ACE table has one row for each access control element that may be authenticated by the host.

In the case of invoked SP methods, values of the RowStart, RowEnd, ColStart, and ColEnd columns of
a referenced ACE object are ignored. In the case of table methods on object tables, or in the case of
object methods, RowStart and RowEnd reference an object UID and should be equivalent to each other.

The values for RowStart and RowEnd must be applicable to the table upon which a method requiring
authentication of this ACE is being invoked. If either the RowStart or RowEnd values are out of bounds
for the table, then the invoked method shall fail and return an error. This same restriction applies to the
ColStart and ColEnd column values as well.

5.3.2.9 Access Control Metadata Group - Authority (Object Table)
A Row of the Authority Table is called an Authority. An Authority is a specific use of a Credential and,
possibly, other Authorities. A Class Authority is an authority object referenced by multiple Individual
Authorities and does not use a Credential.

Table 41 Authority Table Description
Column IsIndex Type Description
UID uid Unique identifier of this authority. (Read-only)
Name Yes name Name of this authority. (Read-only for pre-

personalization authorities)
CommonName Yes name Name common to several authorities. (Read-only for

pre-personalization authorities)
IsClass boolean If True, this row is a class authority. If False, this row is

an individual authority.
Class Authority_ref The value of this column designates the class to which

this authority belongs.
Enabled boolean When this value is True, this Authority or Authority

Class is Enabled. If the value of this column is False,
then this authority is disabled.

Secure messaging_type This column identifies the type of secure messaging to
be used

HashAndSign hash_protocol Identifies if hash/sign of session startup method
parameters is required.

PresentCertificate boolean Determines if a certificate needs to be supplied with an
authority at session startup

Operation auth_method The operation to perform with the Credential (e.g.,
Exchange, Signing, SymK, HMAC, PIN, None).

Credential cred_object_uidref This is the specific credential object to be used with this
authority.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 128 of 265

Column IsIndex Type Description
ResponseSign Authority_ref This column identifies the signing authority with which

the SP shall respond during session startup. This may
be self-referential.

ResponseExch Authority_ref This column identifies the exchange authority with which
the SP shall respond during session startup. This may
be self-referential.

ClockStart date This value identifies the date on which this authority
becomes valid.

ClockEnd date This value identifies the date on which this authority
expires/becomes invalid.

Limit uint_4_def_0 Sets a limit on the number of authentications for this
authority.

Uses uint_4_def_0 Total number of successful authentications with this
authority, including both successful Session start-up
invocations and Authenticate method invocations.

Log log_select These flags enable logging of different events that occur
when attempting to authenticate this authority.

LogTo ref_def_00 This identifies the log table to which log entries for
operations with this authority are added.

The Class column identifies the authority class of which an authority object is a member. Class
authorities may be members of another class authority. However, this shall only be valid if it extends to
one level. Class authorities are not permitted to be members of a class authority that is already a
member of another class authority. The TPer shall enforce this requirement. The value of this column
is only valid if the value of the IsClass column is True. The value of this column shall be a Null UID
reference if the authority is not a member of a class.

The Enabled column identifies if the authority object is active. All attempts to authenticate this authority
either directly, through the use of the Authenticate method, or indirectly, as in during session startup,
return an error if the value of this column is False. The default value of this column is True.

The Secure column identifies the type of secure messaging (if any) that is required by this authority,
and identifies the size of the key(s) that shall be generated during secure session startup if confidential
messaging is required. A value of “None” indicates secure messaging is not required and not
permitted. The value of this column shall be enforced when any attempt is made to authenticate this
authority, including the use of the Authenticate method. The options for this column, which are the
options defined for the messaging_type type, are identified in Table 42.

Note that the IV size for both the CCM and GCM modes is 12-bytes. The lower 8-bytes are directly
provided within the secure message. The upper 4-bytes of the IV are taken from the last 4-bytes of the
EncryptSessionKey parameters of the StartTrustedSession/SyncTrustedSession method pair. See
RFC 4106 (GCM) and RFC 4309 (CCM) for details. The EncryptSessionKey parameters of the
StartTrustedSession/SyncTrustedSession method pair need to be 4 bytes longer for the CCM and
GCM modes to accommodate the extra 4 bytes that are used as 'salt' within the IV.

Table 42 Secure Column Values
Column value Algorithm Secure Messaging Type
0 None None
1 HMAC_SHA_256 Integrity only
2 HMAC_SHA_384 Integrity only

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 129 of 265

Column value Algorithm Secure Messaging Type
3 HMAC_SHA_512 Integrity only
4 RSASSA-PSS_1024 (PKCS #1 v1.5) Integrity only
5 RSASSA-PSS_2048 (PKCS #1 v1.5) Integrity only
6 RSASSA-PSS_3072 (PKCS #1 v1.5) Integrity only
7 RSASSA-PSS_1024 (PKCS #1 v2.1) Integrity only
8 RSASSA-PSS_2048 (PKCS #1 v2.1) Integrity only
9 RSASSA-PSS_3072 (PKCS #1 v2.1) Integrity only
10 ECDSA_256_SHA_256 Integrity only
11 ECDSA_384_SHA_384 Integrity only
12 ECDSA_512_SHA_512 Integrity only
13 CMAC_128 with 128-bit MAC Integrity only
14 CMAC_256 with 128-bit MAC Integrity only
15 GMAC_128 with 128-bit MAC and 96-bit IV Integrity only
16 GMAC_256 with 128-bit MAC and 96-bit IV Integrity only
17 AES_CBC_128 Confidentiality only
18 AES_CBC_256 Confidentiality only
19 AES_CBC_128 with HMAC_SHA_256 Integrity and Confidentiality
20 AES_CBC_256 with HMAC_SHA_256 Integrity and Confidentiality
21 AES_CBC_256 with HMAC_SHA_384 Integrity and Confidentiality
22 AES_CBC_256 with HMAC_SHA_512 Integrity and Confidentiality
23 AES_CCM_128 with 128-bit MAC Integrity and Confidentiality
24 AES_CCM_256 with 128-bit MAC Integrity and Confidentiality
25 AES_GCM_128 with 128-bit MAC Integrity and Confidentiality
26 AES_GCM_256 with 128 bit MAC Integrity and Confidentiality

The value of the HashAndSign column determines if hashing and signing of session startup method
parameters is required. If the value of this column is other than “None”, a signed hash is to be used
during session startup. The value of the Operation column and the type of the credential referenced in
the Credential column (and the hash protocol identified in that credential) determine the type of the
hashing and signing. Note that HashAndSign is only enforced for a particular authority during session
startup. Otherwise, this attribute is ignored (for instance, during an Authenticate method invocation).
For additional information see section 3.4.4.7 and section 5.3.4.1.4.

If the value of the PresentCertificate column is True, the authority is a public key authority, and the
credential contains a certificate chain, then it shall be required that a certificate chain associated with
this authority is sent as a parameter of the session startup protocol. If any of those conditions is False,
no certificate is required to be sent. See the TCG Certificates Specification for more information on
certificates.

The value of the Credential column identifies the specific credential object to be used with this
authority. For a class authority, the value of this column shall be zeroes (a Null UID reference).

The value of the ResponseSign column identifies the authority with which the TPer shall respond in the
SyncSession method of the session startup method exchange. The authority referenced in this column

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 130 of 265

identifies the authority to be used by the TPer as the SP Signing Authority. If the value of this column is
00s, then no SP Signing Authority shall be used for initiating that session.

The value of the ResponseExch column identifies the authority with which the TPer shall respond in the
SyncSession method of the session startup method exchange. The authority referenced in this column
identifies the authority to be used by the TPer as the SP Exchange Authority. If the value of this column
is 00s, then no SP Exchange Authority shall be used for initiating that session.

An authority is automatically enabled starting on the date defined in the ClockStart column if the TPer
has a trusted date. A value of all 0’s indicates no start date, and the authority shall be authenticatable
until the date in the ClockEnd column is reached. If the Clock Template has not been issued with this
SP, then the value of this column shall be disregarded, and should be set to all zeroes. Any authority
with a non-zero ClockStart date shall not be authenticatable if the ClockTime table’s TrustMode
column is “Timer”.

An authority is automatically disabled starting on the date defined in the ClockEnd column if the TPer
has a trusted date. A value of all zero indicates no end date, and the authority’s ability to be
authenticated shall not expire. If the Clock Template has not been issued with this SP, then the value of
this column shall be disregarded, and should be set to all zeroes. Any authority with a non-zero
ClockEnd date shall not be authenticatable if the ClockTime table’s TrustMode column is “Timer”

The Limit column defines a limit on the number of times that an authority may be authenticated, either
explicitly or implicitly. This value represents the maximum number of total successful authentications
with this authority, including session start-up invocations and Authenticate method invocations. A
value of 0 shall mean no limit. The default value of the Limit column is 0.

The value of the Uses column identifies the number of times an authority has been authenticated. If the
value of Uses is equal to the value of Limit for this authority and the value of the Limit column is not
0, then this authority shall not be authenticatable, and attempts to authenticate shall result in an error
response. This value is not subject to transactional rollbacks. The default value of the Uses column is
0.

The value of the Log column identifies when uses of this authority (i.e., authentications and
authentication attempts) are logged. This logging is only applicable when authentications are done in
establishing a session or in augmenting the authorities on it (via the Authenticate method), not when
authentication is tested on a method. If the Log Template has not been issued into the SP, then this
column is disregarded and should be set to zero.

The LogTo column identifies the Log table to which events related to this authority (session startups and
authentications) are logged. The default value of this column is a Null UID reference, which indicates
that this authority’s operations log to the default log table (see section 5.7). This column shall be
disregarded if the Log Template has not been issued into the SP.

5.3.2.10 Access Control Metadata Group - Certificates (Object Table)

Table 43 Certificates Table Description
Column IsIndex Type Description
UID uid UID of this row of the Certificates table (Read-only)
Name Yes name Name of this certificate
CommonName Yes name Name that may be shared among multiple Certificates.
CertData byte_table_ref This is the uidref to the byte table that holds the certificate data

for this Certificates object.
CertSize uinteger_4 Number of bytes actually used in the certificate.
For composition and formatting of a certificate chain, see the TCG Certificates Specification.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 131 of 265

5.3.2.11 Credential Table Group - C_PIN (Object Table)

Table 44 C_PIN Table Description
Column IsIndex Type Description
UID uid Unique identifier of this C_PIN object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-personalization

C_PIN objects)
CommonName Yes name A name that may be shared among multiple C_PIN objects

(Read-only for pre-personalization C_PIN objects)
PIN password Password string.
CharSet ref_def_00 uidref to the byte table that holds the char set for the PIN. If the

value of this column is zeroes, then the default character set is
used with the GenKey method. (Read-only)

TryLimit uinteger_4 Maximum number of failed tries before always failing.
Tries uinteger_4 Current number of failed tries.
Persistence boolean Identifies if value of Tries column is persistent through power

cycles
The C_PIN table contains one row for each password credential.

If the value of the CharSet column is zeroes (a Null UID reference), then the default character set used
when creating a new PIN column value with the GenKey method shall be made up of the set of valid
ASCII printable characters as defined in RFC 1345. The default value of the CharSet column is zeroes.

If not 00s, then the value of the CharSet column is a uidref to a byte table that contains the character
set to be used when the GenKey method is invoked on this C_PIN object to generate a new password.

If the CharSet column value is not zeroes, it shall be a uid to a byte table in which shall be defined a
character set to be used when creating a new PIN column value with the GenKey method. The
character set defined in the byte table shall be made up of a subset of the set of valid ASCII printable
characters as defined in RFC 1345.

The default value of the TryLimit column when a new C_PIN object is created is 0. The value 0 in this
column indicates that there is no limit on the number of tries for that object.

The default value of the Tries column when a new C_PIN object is created is 0. If the value of the
TryLimit column is not 0, then the value of the Tries column is incremented by the TPer on every
failed Authenticate, including the implicit Authenticate if the authority is a Signing Authority invoked
during session startup.

When the value of the Tries column is equal to the value of the TryLimit column, and the TryLimit
column is not equal to 0, further attempts to authenticate using this credential will always fail (until the
value of the Tries column is reset), but Tries will not increment beyond TryLimit.

The value of the Tries column is set to 0 by the TPer upon successful invocation of the Authenticate
method or implicit session startup authentication of the authority referencing this C_PIN object.

The value of the Tries column may be reset from the host by successful invocation of the Set method
on that cell to set the value to 0 (access control must be properly fulfilled).

Additionally, the value of the Tries column will be reset to 0 after a power cycle if the value of the
Persistence column is False. Otherwise, the value of the Tries column will persist across power
cycles.

If TryLimit is 0, there is no limit to the number of Tries, and Tries shall remain 0.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 132 of 265

Note: The value of the Tries column is not subject to transactional rollback when changed by the TPer.
The TPer shall be able to set the Tries column value during a Read-Only session, but the host shall
only be able to set this column during a Read-Write session.

The C_PIN object with UID=0x00 0x00 0x00 0x0B 0x00 0x00 0x00 0x01 and Name=“SID” is the
default SID object.

5.3.2.12 Credential Table Group - C_RSA_1024 (Object Table)

Table 45 C_RSA_1024 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-

only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among C_RSA_1024

objects (Read-only for pre-personalization objects)
Format padding_type This column defines the type of padding used with

RSA encryption.
Pu_Exp uinteger_128 RSA Public Exponent
Mod uinteger_128 RSA Public Modulus
Pr_Exp uinteger_128 RSA Private Exponent
P uinteger_64
Q uinteger_64

p and q, the primes from the key generation,

Dmp1 uinteger_64
Dmq1 uinteger_64

d mod (p-1) and d mod (q-1) (often known as dmp1
and dmq1)

Iqmp uinteger_64 (1/q) mod p (often known as iqmp)
Hash hash_protocol If a referencing authority has a HashAndSign

column value of True, this column identifies the
hash algorithm to create the session startup
method parameter MAC to be signed by this
credential.

ChainLimit int_1_def_0 The chaining limit for using a chained down key
from this one. –1 indicates no limit. 0, no chain, is
the default.

Certificate Certificates_ref Certificate(s) – provides a chained set of
unencoded X.509 certificates if needed to prove an
ancestor authority

5.3.2.13 Credential Table Group - C_RSA_2048 (Object Table)

Table 46 C_RSA_2048 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-

only for pre-personalization objects)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 133 of 265

Column IsIndex Type Description
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes

name A name that may be shared among multiple

C_RSA_2048 objects (Read-only for pre-
personalization objects)

Format padding_type This column defines the type of padding used with
RSA encryption.

Pu_Exp uinteger_256 RSA Public Exponent
Mod uinteger_256 RSA Public Modulus
Pr_Exp uinteger_256 RSA Private Exponent
p uinteger_128
q uinteger_128

p and q, the primes from the key generation

Dmp1 uinteger_128
Dmq1 uinteger_128

d mod (p-1) and d mod (q-1) (often known as dmp1
and dmq1)

Iqmp uinteger_128 (1/q) mod p (often known as iqmp)
Hash hash_protocol If a referencing authority has a HashAndSign

column value of True, this column identifies the
hash algorithm to create the session startup
method parameter MAC to be signed by this
credential.

ChainLimit int_1_def_0 The chaining limit for using a chained down key
from this one. –1 indicates no limit. 0, no chain, is
the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove
signing from an ancestor authority

5.3.2.14 Credential Table Group - C_AES_128 (Object Table)

Table 47 C_AES_128 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_AES_128

objects (Read-only for pre-personalization objects)
Key bytes_16 Key
Mode symmetric_mode Defines the mode with which this credential shall be used.
FeedbackSize feedback_size Feedback size for CFB mode
ResidualData bytes_16 The value in this column provides the IV for the

Encrypt/Decrypt method (unless the IV parameter in the
EncryptInit/DecryptInit method is invoked).

Hash hash_protocol Defines the hash protocol to be used with this credential

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 134 of 265

The Mode column defines the encryption mode with which this credential shall be used. Valid values
are ECB, CBC, CFB, OFB, GCM, CCM, CTR and MediaEncryption. MediaEncryption mode permits a
vendor-specific encryption mode. Having a mode other than MediaEncryption does not prevent this
credential from being used as a media encryption key. For additional information on media encryption,
see 5.8.

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the EncryptInit/DecryptInit method is invoked). The TPer then sets this value as the
last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’s mode, as defined in Table 48.

The Hash column defines the hash protocol to be used with this credential.

Table 48 C_AES_128 ResidualData Column Values
Mode Column Value
ECB All 00’s
CBC The ciphertext of the last block encrypted/decrypted
CFB The (128 – FeedbackSize) LSBs of the last input to the Encrypt/Decrypt method,

concatenated with the ciphertext of the last block encrypted/decrypted
OFB The last output block of the Encrypt/Decrypt method
CTR The last input block to the Encrypt/Decrypt method + 1
GCM The last input block to the Encrypt/Decrypt method + 1
CCM The last input block to the Encrypt/Decrypt method + 1
MediaEncryption Vendor specific

5.3.2.15 Credential Table Group - C_AES_256 (Object Table)

Table 49 C_AES_256 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_AESS_256

objects (Read-only for pre-personalization objects)
Key bytes_32 Key
Mode symmetric_mode Defines the mode with which this credential shall be used.
FeedbackSize feedback_size Feedback size for CFB mode
ResidualData bytes_32 The value in this column provides the IV for the

Encrypt/Decrypt method (unless the IV parameter in the
EncryptInit/DecryptInit method is invoked).

Hash hash_protocol Defines the hash protocol to be used with this credential

The Mode column defines the encryption mode with which this credential shall be used. Valid values
are ECB, CBC, CFB, OFB, GCM, CCM, CTR and MediaEncryption. MediaEncryption mode permits a
vendor-specific encryption mode. Having a mode other than MediaEncryption does not prevent this
credential from being used as a media encryption key. For additional information on media encryption,
see 5.8.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 135 of 265

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the EncryptInit/DecryptInit method is invoked). The TPer then sets this value as the
last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’s mode, as defined in Table 50.

The Hash column defines the hash protocol to be used with this credential.

Table 50 C_AES_256 ResidualData Column Values
Mode Column Value
ECB All 00’s
CBC The ciphertext of the last block encrypted/decrypted
CFB The (256 – FeedbackSize) LSBs of the last input to the Encrypt/Decrypt method,

concatenated with the ciphertext of the last block encrypted/decrypted
OFB The last output block of the Encrypt/Decrypt method
CTR The last input block to the Encrypt/Decrypt method + 1
GCM The last input block to the Encrypt/Decrypt method + 1
CCM The last input block to the Encrypt/Decrypt method + 1
MediaEncryption Vendor specific

5.3.2.16 Credential Table Group - C_EC_160 (Object Table)

Table 51 C_EC_160 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_160

objects (Read-only for pre-personalization objects)
p uinteger_20 Modulus
r uinteger_20 Order of the curve
b uinteger_20 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_20 Base point x-coordinate
y uinteger_20 Base point y-coordinate
alpha uinteger_20 Private key
u uinteger_20 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_20 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 136 of 265

Column IsIndex Type Description
Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of

unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 52 represents the set of elliptic curve domain parameters as specified in AACS “Introduction and
Common Cryptographic Elements”. The entries p, r, b, x and y are represented in decimal format.
These are example values for a curve that may be used with the C_EC_160 table. These values are set
as the default values for the associated columns when a new row is created in the C_EC_160 table and
when values for those columns are not specified at table creation. These default values are not
represented by a Type table entry – the TPer shall be required to keep track of these values and set
them as defaults for new objects, as necessary.

Table 52 AACS Values for C_EC_160
Column Value
p 900812823637587646514106462588455890498729007071

r 900812823637587646514106555566573588779770753047

b 366394034647231750324370400222002566844354703832

x 264865613959729647018113670854605162895977008838

y 51841075954883162510413392745168936296187808697

5.3.2.17 Credential Table Group - C_EC_192 (Object Table)

Table 53 C_EC_192 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_192

objects (Read-only for pre-personalization objects)
p uinteger_24 Modulus
r uinteger_24 Order of the curve
b uinteger_24 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_24 Base point x-coordinate
y uinteger_24 Base point y-coordinate
alpha uinteger_24 Private key
u uinteger_24 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_24 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 137 of 265

Column IsIndex Type Description
Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of

unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 54 represents the set of elliptic curve domain parameters that is the fixed set known as P-192 in
FIPS 186-3 and secp192r1 in SEC2. The entries p, r, b, x and y represented in that table are example
values for a curve that may be used with the C_EC_192 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_192 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry – the TPer shall be required to keep track of these values and set them as defaults for
new objects, as necessary.

Table 54 FIPS P-192 Values for C_EC_192
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF

= 2192 – 264 – 1

r FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

b 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

y 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

5.3.2.18 Credential Table Group - C_EC_224 (Object Table)

Table 55 C_EC_224 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_224

objects (Read-only for pre-personalization objects)
p uinteger_28 Modulus
r uinteger_28 Order of the curve
b uinteger_28 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_28 Base point x-coordinate
y uinteger_28 Base point y-coordinate
alpha uinteger_28 Private key
u uinteger_28 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_28 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 138 of 265

Column IsIndex Type Description
Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of

unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 56 represents the set of elliptic curve domain parameters that is the fixed set known as P-224 in
FIPS 186-3 and secp224r1 in SEC2. The entries p, r, b, x and y represented in that table are example
values for a curve that may be used with the C_EC_224 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_224 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry – the TPer shall be required to keep track of these values and set them as defaults for
new objects, as necessary.

Table 56 FIPS P-224 Values for C_EC_224
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 00000000 00000001

= 2224 – 296 + 1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 5C5C2A3D

b B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 2355FFB4

x B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21

y BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 85007E34

5.3.2.19 Credential Table Group - C_EC_256 (Object Table)

Table 57 C_EC_256 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_256

objects (Read-only for pre-personalization objects)
p uinteger_32 Modulus
r uinteger_32 Order of the curve
b uinteger_32 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_32 Base point x-coordinate
y uinteger_32 Base point y-coordinate
alpha uinteger_32 Private key
u uinteger_32 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_32 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 139 of 265

Column IsIndex Type Description
Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of

unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 58 represents the set of elliptic curve domain parameters is the fixed set known as P-256 in FIPS
186-3 and secp256r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_256 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC_256 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry – the TPer shall be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 58 FIPS P-256 Values for C_EC_256
Column Value
p FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF

FFFFFFFF = 2256 – 2224 + 2192 + 296 – 1

r FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2
FC632551

b 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E
27D2604B

x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945
D898C296

y 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068
37BF51F5

5.3.2.20 Credential Table Group - C_EC_384 (Object Table)

Table 59 C_EC_384 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_384

objects (Read-only for pre-personalization objects)
p uinteger_48 Modulus
r uinteger_48 Order of the curve
b uinteger_48 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_48 Base point x-coordinate
y uinteger_48 Base point y-coordinate
alpha uinteger_48 Private key
u uinteger_48 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_48 Public key y-coordinate: (u, v) = α (x,y)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 140 of 265

Column IsIndex Type Description
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 60 represents the set of elliptic curve domain parameters is the fixed set known as P-384 in FIPS
186-3 and secp384r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_384 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC_384 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry – the TPer shall be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 60 FIPS P-384 Values for C_EC_384
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF = 2384 – 2128 – 296 + 232 –
1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81
F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973

b B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F
5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

x AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98 59F741E0
82542A38 5502F25D BF55296C 3A545E38 72760AB7

y 3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C E9DA3113
B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F

5.3.2.21 Credential Table Group - C_EC_521 (Object Table)

Table 61 C_EC_521 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_521

objects (Read-only for pre-personalization objects)
p uinteger_66 Modulus
r uinteger_66 Order of the curve
b uinteger_66 Curve coefficient (y2=x3–3x+b mod p)
x uinteger_66 Base point x-coordinate
y uinteger_66 Base point y-coordinate

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 141 of 265

Column IsIndex Type Description
alpha uinteger_66 Private key
u uinteger_66 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_66 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 62 represents the set of elliptic curve domain parameters is the fixed set known as P-521 in FIPS
186-3 and secp521r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_521 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC_521 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry – the TPer shall be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 62 FIPS P-521 Values for C_EC_521
Column Value
p 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF = 2521 - 1

r 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8 899C47AE
BB6FB71E 91386409

b 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3 B8B48991
8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88 3D2C34F1
EF451FD4 6B503F00

x 00C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 053FB521 F828AF60
6B4D3DBA A14B5E77 EFE75928 FE1DC127 A2FFA8DE 3348B3C1 856A429B
F97E7E31 C2E5BD66

y 0118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449 579B4468 17AFBD17
273E662C 97EE7299 5EF42640 C550B901 3FAD0761 353C7086 A272C240
88BE9476 9FD16650

5.3.2.22 Credential Table Group - C_EC_163 (Object Table)

Table 63 C_EC_163 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 142 of 265

Column IsIndex Type Description
CommonName Yes name A name that may be shared among multiple C_EC_163 objects

(Read-only for pre-personalization objects)
k1 uinteger_1 High non-leading, non-constant term of irreducible pentanomial
k2 uinteger_1 Middle non-leading, non-constant term of irreducible

pentanomial
k3 uinteger_1 Low non-leading, non-constant term of irreducible pentanomial
r uinteger_21 Order of the curve

a uinteger_1 Curve coefficient (y2 +xy = x3 + ax2 + b), must be zero or one
b uinteger_21 Curve coefficient (y2 +xy = x3 + ax2 + b)

x uinteger_21 Base point x-coordinate
y uinteger_21 Base point y-coordinate
alpha uinteger_21 Private key

u uinteger_21 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_21 Public key y-coordinate: (u, v) = α (x,y)

Hash hash_protocol The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this one. –
1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of unencoded
X.509 certificates if needed to prove signing from an ancestor
authority

Table 64 represents the set of elliptic curve domain parameters that is the fixed set known as K-163 in
FIPS 186-3 and sect163k1 in SEC2. The entries k1, k2, k3, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_163 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_163 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry – the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 64 FIPS K-163 Values for C_EC_163
Column Value
k1 07

k2 06

k3 03

r 04 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

a 01

b 00 00000000 00000000 00000000 00000000 00000001

x 02 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

y 02 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 143 of 265

5.3.2.23 Credential Table Group - C_EC_233 (Object Table)

Table 65 C_EC_233 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_233

objects (Read-only for pre-personalization objects)
k uinteger_2 Non-leading, non-constant term of irreducible trinomial
r uinteger_30 Order of the curve
a uinteger_1 Curve coefficient (y2 +xy = x3 + ax2 + b), must be zero or one
b uinteger_30 Curve coefficient (y2 +xy = x3 + ax2 + b)
x uinteger_30 Base point x-coordinate
y uinteger_30 Base point y-coordinate
alpha uinteger_30 Private key
u uinteger_30 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_30 Public key y-coordinate: (u, v) = α (x,y)
Hash hash_protocol The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. –1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 66 represents the set of elliptic curve domain parameters that is the fixed set known as K-233 in
FIPS 186-3 and sect233k1 in SEC2. The entries k, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_233 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_233 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry – the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 66 FIPS K-233 Values for C_EC_233
Column Value
k 4A (= 74 in decimal)

r 0080 00000000 00000000 00000000 00069D5B B915BCD4 6EFB1AD5 F173ABDF

a 00

b 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

x 0172 32BA853A 7E731AF1 29F22FF4 149563A4 19C26BF5 0A4C9D6E EFAD6126

y 01DB 537DECE8 19B7F70F 555A67C4 27A8CD9B F18AEB9B 56E0C110 56FAE6A3

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 144 of 265

5.3.2.24 Credential Table Group - C_EC_283 (Object Table)

Table 67 C_EC_283 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_EC_283 objects

(Read-only for pre-personalization objects)
k1 uinteger_1 High non-leading, non-constant term of irreducible pentanomial
k2 uinteger_1 Middle non-leading, non-constant term of irreducible

pentanomial
k3 uinteger_1 Low non-leading, non-constant term of irreducible pentanomial
r uinteger_36 Order of the curve

a uinteger_1 Curve coefficient (y2 +xy = x3 + ax2 + b), must be zero or one
b uinteger_36 Curve coefficient (y2 +xy = x3 + ax2 + b)

x uinteger_36 Base point x-coordinate
y uinteger_36 Base point y-coordinate
alpha uinteger_36 Private key

u uinteger_36 Public key x-coordinate: (u, v) = α (x,y)
v uinteger_36 Public key y-coordinate: (u, v) = α (x,y)

Hash hash_protocol The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this one. –
1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref Certificate(s) – provides a (possibly chained) set of unencoded
X.509 certificates if needed to prove signing from an ancestor
authority

Table 68 represents the set of elliptic curve domain parameters that is the fixed set known as K-283 in
FIPS 186-3 and sect283k1 in SEC2. The entries k1, k2, k3, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_283 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_283 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry – the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 68 FIPS K-283 Values for C_EC_283
Column Value
k1 0C (= 12 in decimal)

k2 07

k3 05

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 145 of 265

Column Value
r 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE

2ED07577 265DFF7F 94451E06 1E163C61

a 00

b 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000001

x 0503213F 78CA4488 3F1A3B81 62F188E5 53CD265F
23C1567A 16876913 B0C2AC24 58492836

y 01CCDA38 0F1C9E31 8D90F95D 07E5426F E87E45C0
E8184698 E4596236 4E341161 77DD2259

5.3.2.25 Credential Table Group – C_HMAC_160 (Object Table)

Table 69 C_HMAC_160 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_HMAC_160

objects (Read-only for pre-personalization objects)
Key bytes_20 Key
Hash hash_protocol Defines the hash protocol to be used with this credential
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.26 Credential Table Group – C_HMAC_256 (Object Table)

Table 70 C_HMAC_256 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_HMAC_256

objects (Read-only for pre-personalization objects)
Key bytes_32 Key
Hash hash_protocol Defines the hash protocol to be used with this credential
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 146 of 265

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.27 Credential Table Group – C_HMAC_384 (Object Table)

Table 71 C_HMAC_384 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_HMAC_384

objects (Read-only for pre-personalization objects)
Key bytes_48 Key
Hash hash_protocol Defines the hash protocol to be used with this credential
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.28 Credential Table Group – C_HMAC_512 (Object Table)

Table 72 C_HMAC_512 Table Description
Column IsIndex Type Description
UID uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)
CommonName Yes name A name that may be shared among multiple C_HMAC_512

objects (Read-only for pre-personalization objects)
Key bytes_64 Key
Hash hash_protocol Defines the hash protocol to be used with this credential
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.3 Methods
This section details the methods provided to an SP by the Base Template.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 147 of 265

5.3.3.1 SP Method Group - DeleteSP (Method)
SPUID.DeleteSP[]
=>
[Result : boolean]

This method is used to delete the SP to which the DeleteSP method has been invoked.

The TPer owner is able to delete an SP by opening a session to the Admin SP and invoking the Delete
method on the SP object in the Admin SP’s SP table. However, the SP owner probably cannot delete
the SP in this way, and instead uses this method.

This method operates within a Read-Write session to the SP that is being deleted. The SP will not be
deleted until the session is successfully closed. Upon successful deletion of the SP, the following
changes are made:

o The row in the Admin SP’s SP table that represents this SP is deleted.

o The value of the Instances column of the Admin SP’s Template table is reduced by 1 for each
of the Templates that had been issued into the SP being deleted.

o The SP itself is deleted. The means of deletion is implementation-specific. Once the SP has
been deleted, the Host shall no longer have the capability to open sessions to the SP.

o Any TPer functionality affected by the existence of the SP based on the templates incorporated
into it is modified as defined in the appropriate Template reference section of the Core Spec.

Since an SP may be disabled by the SP owner or frozen by the TPer owner, this method shall be
invokable on a disabled/frozen SP, as the entity that caused entry to the disabled or frozen state may
not be available or have appropriate permission to reenable/unfreeze the SP prior to deletion (access
control must still be fulfilled). See section 4

This method shall only be successfully invoked in a Read-Write session.

5.3.3.1.1 Fails
• If the method is invoked from within a Read-Only session.

5.3.3.2 Basic Table Method Group - CreateTable (SP Method)
SPUID.CreateTable[

NewTableName : name,
Kind : table_kind,
GetSetACL : ACL,
Columns : columns,
MinSize : uinteger_4,
MaxSize = uinteger_4,
HintSize = uinteger_4,
CommonName = name]

=>
[UID : uid, Rows : uinteger_4]

This method is used to create a new table in an SP. For a byte table, all rows exist at table creation. For
the other table types, no rows will exist, but are inserted using the CreateRow method.

The NewTableName parameter is the name for this table. The NewTableName-CommonName
combination shall be unique within the Table table.

The Kind parameter identifies the table’s type (object, array, or byte).

GetSetACL is the list of ACEs placed in the access control lists of the GetACL, AddACE, and
RemoveACE methods for the methods available on the new table.

The Columns parameter defines the columns of the new table. For byte tables this parameter must be
an empty list.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 148 of 265

The MinSize parameter is used to define the initial number of rows allocated for the new table.

The optional MaxSize parameter defines the host-requested maximum number of rows that can be
created for the table.

The optional HintSize parameter is used to suggest a number of rows to be created for the table.

The method returns the UID of the table, and the number of rows allocated.

5.3.3.2.1 Fails
• If a table with the specified name already exists.
• If there isn’t space in the SP for the new table.
• If metadata/support tables (i.e. Table, Column, Method, and ACE) are not all able to create all

required rows to support this table.
• If TPer determines MinSize is too large.

5.3.3.3 Basic Table Method Group - Delete (Object Method)
ObjectUID.Delete[]
=>
[Result : boolean]

Successful invocation of this method deletes the object upon which this method was invoked.

Upon successful deletion of an object, rows in the Method table where this object’s UID appears in the
Type column shall be deleted.

In the case of successful invocation of this method on a table descriptor object (a row in the Table
table), the associated table is deleted. The rows in the Method table where the table’s or table
descriptor object’s UID appear in the InvokingID column are deleted. The rows in the Column table
that are associated with the table are also deleted.

If invoked on an SP object (a row in the Admin SP’s SP table), the SP is deleted. Deleting an SP in this
fashion has the same effects as detailed in 5.3.3.1.

5.3.3.3.1 Fails
• If the object does not exist.

5.3.3.4 Basic Table Method Group - CreateRow (Table Method)
TableUID.CreateRow[

Data : row_data]
=>
[Result : createrow_result]

This method inserts one or multiple rows into a table. This method is not available on byte tables. The
list of refs and/or uidrefs returned is the list of all row references and/or UIDs of the rows created.

If a row with the specified indexed column values already exists in the table in which the new row is
being created, it is deleted before the new row is inserted. Access control must be satisfied on the
Delete or DeleteRow method for that row for the “overwrite” to occur. If ACLs do not permit the row to
be deleted, an error is returned and the table is unchanged (no new row is created).

When a row in an object table is created, a number of Method table rows are created that correspond to
the default methods permitted for the created object. ACLs are set on those methods, and in the meta-
ACL methods associated with those methods, as follows:

o Using the HostSigningAuthority from the StartSession method, if provided.

o Otherwise, using the HostExchangeAuthority from the StartSession method, if provided.

o Otherwise, using the Anybody Authority.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 149 of 265

A value for a row’s UID column, or any other system column, cannot be specified.

Note that CreateRow may be limited in some instances based on required default values for some table
columns, and may be required to make certain validity checks when creating rows for some tables.
These instances will be called out in the pertinent Template Reference sections.

5.3.3.4.1 Fails
• When the table is full (i.e. MaxSize of the table was reached).
• If a row where the indexed column value combination already exists that is the same as that

requested in the method cannot be over-written
• Columns specified are not part of table definition.
• Attempts to create more rows than may be allocated
• If all required associated rows are not able to be created in all related tables (i.e. the Table,

Method, Column, and ACE tables)

5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)
TableUID.DeleteRow[

Where : row_selection,
Count = uinteger_4]

=>
[Result : boolean]

This method is used to delete table rows. This method shall not be able to be successfully invoked on
byte tables.

Invoking this method deletes Count rows, beginning with the row addressed by the value in the Where
parameter.

If not provided, Count shall default to 1.

Count is not permitted for object tables (adjacency has no meaning), and shall be disregarded by the
TPer. Only one row in an object table at a time may be deleted by invocation of this method – that row
is identified in the row_selection parameter.

For side effects of deleting objects, see the description of the Delete method (section 5.3.3.3).

5.3.3.5.1 Fails
• If the addressed row does not exist.
• If Count is specified as 0.
• If Count is specified and there are not Count rows starting at Where.

5.3.3.6 Basic Table Method Group - Get (Table and Object Method)
TableUID.Get[
ObjectUID.Get[

Cellblock : cell_block]
=>
[Result : get_result]

This method is used to fetch the values of selected table cells.

The Cellblock parameter defines the scope of the data that the method is attempting to retrieve by
identifying the rectangular range of cell values on which the method should operate.

Successful invocation of this method shall only return the values that are readable based on the
currently authenticated authorities and ACE restrictions for this method. It is not an error to request
columns that are restricted by an authenticated ACE.

If multiple row values are returned from an array table, rows shall be returned from the lowest
numbered row to the highest numbered row. Column name-value pairs shall be returned in the order in

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 150 of 265

which they are listed in the Column table, with the first column linked from the Table’s table descriptor
object in the Table table. This first column links to the second column in its Next column, and so forth.

When an ACE with row and column restrictions is used on a table that puts the row or column
restrictions out of bounds for that table, an authentication failure error is returned.

If the method is invoked on a byte table, the return type is ByteColumns. If the method is invoked on a
non-byte table, the return type is Columns.

5.3.3.6.1 Fails
• If table/object doesn’t exist.
• If the object method’s Cellblock parameter contains row values.
• If the method is invoked on a Byte table and has column values in the Cellblock parameter.
• If the any of the Cellblock parameter values are out of bounds for the table upon which it was

invoked.

5.3.3.7 Basic Table Method Group - Set (Table and Object Method)
TableUID.Set[
ObjectUID.Set[

Where : cell_block,
Values : set_values]

=>
[Result : boolean]

This method is used to change the values of selected table cells. Unlike with the Get method, if any of
the cells cannot be written, Set shall return an error. Either all the changes will be made, or none of
them will be made.

The Where parameter defines the location of the cells whose values the method is attempting to
change. It is an error for the object method’s Where parameter to contain row information. Attempting
to invoke the Set method on a range of objects (a range of rows in an object table) with the table
method shall result in an error.

5.3.3.7.1 Fails
• If the table/object doesn’t exist.
• If an attempt is made to change the value of an UID or other system cell.
• If an attempt is made to set a cell to a value larger than that cell’s type allows.
• If the method is invoked on a byte table and the cell_block parameter contains Column values
• Set is restricted by an access control limitation on any of the rows and columns requested.

5.3.3.8 Basic Table Method Group - Next (Table Method)
TableUID.Next[

Where = row_selection,
Count = uinteger_4]

=>
[Result : next_result]

When successfully invoked on an array table, the Next method returns zero or more row number/uidref
pairs currently in use in the table following the specified Where row, iterating sequentially (by
RowNumber column value) through the table rows. If Where is not specified, the first row of the table is
the first row number returned. If Count is not specified, it defaults to 1. If there are fewer than Count
rows defined after the indicated starting row, only the defined row numbers are returned.

Since object tables are unordered, the iteration that results from successful invocation of this method on
an object table will cause the method to “visit” the rows in the table in some undefined order. The
method invocation returns zero or more uidrefs “following” the specified Where row, iterating through
the table. If a value for the Where parameter is not specified in the method invocation, iteration starts at
the “beginning” of the table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 151 of 265

The list of returned uidrefs that result from invocation of the Next method on an object table returns
those uidrefs in an arbitrary order. Results are not guaranteed to be consistent if the object table is
modified between calls to Next. The implementation is required to visit all rows of an object table only if
the table is not changed during the iteration.

5.3.3.8.1 Fails
• If the table/object doesn’t exist.

5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)
SPUID.GetFreeSpace[]
=>
[uinteger_8, Table_ref_rows_list]

The GetFreeSpace method is an SP method that enables the host to retrieve the number of rows that
can be additionally created in each table.

Invoking GetFreeSpace returns two values. The first return value is the approximate amount of free
space (in bytes) available in the SP. The second is a list containing the UID of each table descriptor
object and the number of rows that can be additionally created for each table (separately) under current
conditions of the SP and the TPer. This number may change in subsequent invocations of this method,
based on modifications subsequent to the method invocation.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system can generate per table.

5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)
TableObjectUID.GetFreeRows[]
=>
[uinteger_4]

The GetFreeRows method is a table method that enables the host to retrieve the number of rows that
may be additionally created in a table.

When GetFreeRows is invoked, the TPer returns only the number of rows that can be additionally
created for that table.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system can generate per table.

5.3.3.10.1 Fails
• When the table TableObjectUID does not exist in the SP.

5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)
MethodTableUID.DeleteMethod[

InvokingID : table_object_ref,
MethodID : MethodID_ref]

=>
[Result : boolean]

Successful invocation of the DeleteMethod method removes the indicated SP/method, table/method, or
object/method access control association from the Method table. The association that is deleted from
the Method table is the row where the InvokingID column value is the InvokingID parameter of the
method, and the value of the MethodID column is the uid referenced in the MethodID parameter of the
DeleteMethod invocation.

The DeleteMethod method is typically used during personalization, and allows the personalizing host to
prevent the usage of certain methods on certain tables, objects, or the SP by removing the access
control association that permits the method to be invoked.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 152 of 265

This does not remove the capability of invoking the indicated method from the SP entirely. It only
removes the indicated access control association that allows the method to be invoked in that particular
fashion.

5.3.3.11.1 Fails
• If the Type/Method combination does not exist.

5.3.3.12 Access Control Method Group - Authenticate (SP Method)
SPUID.Authenticate[

Authority : Authority_ref,
Challenge = challenge]

=>
[typeOr{ Success : boolean,
Response : response }]

Authorities invoked during session startup are implicitly authenticated. The Authenticate method is
used to explicitly authenticate an authority within a session, i.e., after a session has already
successfully begun.

The implementation may limit the number of authorities that may be authenticated at any one time (as
recorded in the MaxAuthentications value of the Properties method). If the authentication attempt
would cause the MaxAuthentications property value to be exceeded for the session, a properly invoked
Authenticate method shall return a status of SUCCESS and a result of False.

5.3.3.12.1 Fails
• If the authority called out in the method invocation does not exist.
• If the secure messaging required by the authority is not in effect.
• If the Challenge in the first Authenticate method invocation does not match that expected by

the TPer.
• If the Challenge returned in the second Authenticate invocation does not match that expected

by the TPer.

5.3.3.13 Access Control Method Group - GetACL (Meta-Method)
MethodTableUID.GetACL[

InvokingID : table_object_ref,
MethodID : MethodID_ref]

=>
[ACL : ACL]

This method is used to retrieve the contents of an access control association’s ACL, which are stored in
the Method table. This method returns a response of type "ACL", which is a list of uidrefs to ACE
objects.

The InvokingID parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the MethodID table.

5.3.3.13.1 Fails
• If the Type/Method combination does not exist.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 153 of 265

5.3.3.14 Access Control Method Group - AddACE (Meta-Method)
MethodTableUID.AddACE[

InvokignID : table_object_ref,
MethodID : MethodID_ref,
ACE : ACE_table_ref]

=>
[Result : boolean]

This method is used to add an ACE to an existing SP/method, table/method, or object/method access
control association, which is a row in the Method table.

The InvokingID parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the MethodID table.

The ACE parameter is a uidref to the ACE to be added to the ACL column of the appropriate Method
table row.

5.3.3.14.1 Fails
• If the Type/Method combination does not exist.
• If the ACE does not exist in the ACE table.
• If the ACE already exists in the ACL of the invoked access control association.
• If the ACL of the invoked access control association is full.

5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)
MethodTableUID.RemoveACE[

InvokingID : table_object_ref,
MethodID : MethodID_ref,
ACE : ACE_table_ref]

=>
[Result : boolean]

This method is used to remove an ACE from an ACL in an existing SP/method, table/method, or
object/method access control association, which are rows in the Method table.

The InvokingID parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the MethodID table.

The ACE parameter is a uidref to the ACE to be removed from the ACL column of the appropriate
Method table row.

5.3.3.15.1 Fails
• If the Type/Method combination does not exist.
• If the ACE does not exist in the ACE table.

5.3.3.16 Key Related Method Group - GenKey (Object Method)
This section describes the method used for key creation.

CredentialObjectUID.GenKey[
PublicExponent = uinteger_4,
PinLength = uinteger_1]

=>
[Result : boolean]

An existing Credential object is filled in with new key material. This method fills in the new key as
appropriate for the type of the credential on which the method was invoked.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 154 of 265

If this method is invoked on an RSA object (C_RSA_1024 or C_RSA_2048) and the optional
PublicExponent parameter is not specified, then the keys shall be calculated using the public
exponent 2^16+1 (65537). The key randomly generated with this method for RSA keys is a 1 followed
by n-1 random bytes, where n is the size of the key.

If this method is invoked on a C_PIN object, then a new value with PinLength characters is generated
and stored in that C_PIN object’s Password column. The character set used to generate the C_PIN
value is referenced in the C_PIN table’s CharacterSet column, or the default character set if the C_PIN
table’s CharacterSet column is 00s (see C_PIN table description in section 5.3.2.11).

If PinLength is not specified in the method invocation, the default value is 32. The maximum permitted
value for the PinLength parameter is 32. Successful invocation of this method on a C_PIN object sets
the value of that object’s Tries column to 0.

5.3.3.16.1 Fails
• If the credential object does not exist.
• If a bad exponent is included.
• If PinLength is greater than the size of the Password column in the C_PIN table.

5.3.4 Description
5.3.4.1 Authentication

5.3.4.1.1 Credential Tables
Credential tables represent an extensible basis for providing the public and private parts of
authentication mechanisms and key stores. Each credential table represents a different mechanism or
key store type and each row a different authentication or key using the mechanism or key store
represented by the table. The credential tables supported shall be reflected in the CryptoSuite table
in the Admin SP.

Credential tables contain secrets that might need to never leave the TPer. Normal ACLs can prevent
that in the case of an attack that comes in over the interface. To help protect against an attack in which
the TPer electronics are changed, some column values may be hidden in storage by the TPer. In the
credential table definitions, marked columns (those shaded gray) may be hidden. The hiding of those
columns and the means by which they are hidden are implementation-specific.

5.3.4.1.2 Authorities
Authorities are objects in the Authority table. Each authority object is made up of columns that
identify the authentication method for that authority, the necessary credentials for authenticating, and
whether secure messaging is required during session startup for, or authentication of, that authority.

Authorities are made up of two types – Class and Individual.

Class authorities are a convenient grouping method provided to simplify simultaneous modification of
multiple access control elements. Class authorities may be members of another class authority, but
this shall not be permitted to expand beyond a single level. The TPer shall enforce that class
authorities are not permitted to be members of a class authority that is already a member of another
class authority. Class authorities shall not be permitted to reference credentials or secure messaging
requirements. Class authorities cannot be directly authenticated – authentication attempts that
reference class authorities shall always fail.

Individual authorities may be members of class authorities. Each individual authority shall only be a
member of a single class. When an individual authority is authenticated, either from session startup or
explicitly via the Authenticate method, the class authority that the individual authority references is
considered to be authenticated also. If that class authority also references a class, then the class
authority referenced by the initial class authority is also considered to be authenticated.

The authorities required by the Base Template are enumerated in Table 73.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 155 of 265

Table 73 Default Base Template Authorities
Name UID Common Name IsClass Class Operation

Anybody 00 00 00 09 00 00 00 01 Anybody False Sign

Admins 00 00 00 09 00 00 00 02 Admin True

Makers 00 00 00 09 00 00 00 03 Maker True

MakerSymK 00 00 00 09 00 00 00 04 Maker False Makers SymK

MakerPuK 00 00 00 09 00 00 00 05 Maker False Makers Sign

SID 00 00 00 09 00 00 00 06 TPerOwner False Password

TPerSign 00 00 00 09 00 00 00 07 TPerSign False TPerSign

TPerExch 00 00 00 09 00 00 00 08 TPerExch False TPerExchange

AdminExch 00 00 00 09 00 00 00 09 Admin False Admins Exchange

The Anybody authority may used as the Host Signing Authority during session startup, and when used
in this way allows session startup without providing a proof or secret. If a value is included in the
StartSession method's HostChallenge parameter where the Anybody authority is called out as the
HostSigningAuthority, the HostChallenge parameter shall be ignored by the TPer.

The Anybody authority is always considered "authenticated" within a session, even if the Anybody
authority was not specifically called out during session startup. Invocations of the Authenticate
method that use the Anybody authority shall always succeed. Values in the Challenge parameter of
that Authenticate method shall be ignored.

The members of the Makers authority class permit the manufacturer of the TPer to open an
authenticated session to the TPer. The MakerPuK (i.e., Manufacturer) authority only has the
Manufacturer Public Key (not the private) and a Certificate attesting to this, which is signed by the
Manufacturer.

The SID authority is used by the TPer owner to authenticate to the Admin SP and perform operations
such as freezing or deleting SPs.

A copy of the SID is also present in each SP. This SID authority and credential provides the
personalizing host with a default password authority that can be used to open sessions or verify
physical presence. When an SP is issued or created, the value of the Password column of the C_PIN
credential object referenced by the SID authority is the same as the value of the Password column of
the C_PIN credential object referenced by the SID authority in the Admin SP. Modifications to the SID
authority’s referenced C_PIN credential object in some SP (even the Admin SP) do not affect any other
SP.

The authorities TPerSign and TPerExch are references to the TPer’s signing and exchange keys, and
allow a host with knowledge of the TPer’s credentials to open a secure session with an authenticated
TPer. In the Admin SP Authority table, the Credential column contains the reference to locate the
appropriate credential for use with this authority.

These TPerSign and TperExch authorities are present in the Authority table of each SP. The
credentials to which these authorities contain references are represented by objects in the appropriate
credential tables. The actual key values may be stored in only a single location, but the implementation
shall maintain appropriate references to these credentials so that they are usable in each SP on the
TPer.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 156 of 265

In all SPs, the values TPerSign and TPerExchange in the Authority table’s Operation column
indicate that the signing or exchange operation is to be performed with the TPer credentials as
referenced in the Admin SP’s Authority table.

The AdminExch authority represents the initial credential value submitted during issuance. This is the
authority that enables the host to open a secure, implicitly authenticated session to the host’s SP and
personalize that SP. In the case of the Authority table in the Admin SP, the Base Template Authority
AdminExch shall be disabled. At issuance, prior to personalization, the AdminExch authority has a
RespExch column value set to the AdminExch authority's UID.

5.3.4.1.3 Authority Operations
The Operation column of the Authority table identifies the authentication method for which an
authority object shall be used.

The value of an Operation for a given authority shall match the purpose for which that authority is
being used during session startup. For instance, an authority with an Operation value of Signing or
None shall only be able to be successfully invoked during session startup as either a
HostSigningAuthority or SPSigningAuthority.

The operation types and their requirements are as follows:

• None – This describes an authority that, while invoked during session startup, does not actually
authenticate during session startup, but may be used to reference, for instance, a response
signing or exchange authority. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or
SPSigningAuthority. Referencing an authority with this Operation column value as an
exchange authority shall result in an error.

• Password – This describes an authority that shall be invoked and authenticated with its
referenced C_PIN credential, either during session startup or using the Authenticate method.
If invoked during session startup, this authority shall be referenced as the HostSigningAuthority
or the SPSigningAuthority. Referencing an authority with this Operation column value in
another authority parameter of the session startup methods shall result in an error.

• Sign – This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced public key (RSA/EC) credential, either during session startup
or using the Authenticate method. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or as the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods shall result in an error. The Sign operation
encompasses both Signing and Verification activities – the TPer shall perform the correct
operation based on context.

• Exchange – This describes an authority that shall be invoked during session startup, and shall
be referenced as the HostExchangeAuthority or the SPExchangeAuthority. Referencing an
authority with this Operation column value in another authority parameter of the session
startup methods shall result in an error. The credential referenced by this authority shall be
used to encrypt session keys for transmission to the other party involved in the session. This
authority shall not be able to be authenticated explicitly using the Authenticate method.

• SymK – This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced symmetric key credential, either during session startup or
using the Authenticate method. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods shall result in an error.

• HMAC – This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced HMAC key credential and the referenced HMAC algorithm,

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 157 of 265

either during session startup or using the Authenticate method. The HMAC credential
referenced by the authority using this operation identifies the hash algorithm used to generate
the HMAC. If invoked during session startup, an authority with this Operation column value
shall be referenced as the HostSigningAuthority or the SPSigningAuthority. Referencing an
authority with this Operation column value in another authority parameter of the session
startup methods shall result in an error.

• TPerSign – This describes the signing authority that represents the TPer, which enables the
host to verify the TPer credentials. This authority shall be invoked and authenticated using a
challenge and response with its referenced public key (RSA/EC) credential, either during
session startup or using the Authenticate method. If invoked during session startup, an
authority with this Operation column value shall be referenced as the HostSigningAuthority or
as the SPSigningAuthority. Referencing an authority with this Operation column value in
another authority parameter of the session startup methods shall result in an error. The Sign
operation encompasses both Signing and Verification activities – the TPer shall perform the
correct operation based on context. The TPer signing credential contains certificate chains that
establish the validity of this authority.

• TPerExchange – This describes the exchange authority that represents the TPer. This
authority enables the host to establish a secure session with an SP using the TPer’s exchange
authority. Referencing an authority with this Operation column value in another authority
parameter of the session startup methods shall result in an error. The credential referenced by
this authority shall be used to encrypt session keys for transmission to the other party involved
in the session. This authority shall not be able to be authenticated explicitly using the
Authenticate method. The TPer exchange credential contains certificate chains that establish
the validity of this authority.

5.3.4.1.4 Session Startup
Session startup involves the exchange of either two or four methods between the host and the SP with
which the host is attempting to start the session.

The properties of the session – i.e., whether secure messaging is required, the secure messaging type,
and the type of message authentication – are controlled by values in the columns of authority objects
referenced as parameters to the methods, and are determined independently for each communicator.

When the StartSession method is invoked, the authorities to be used for that session are referenced
as parameters. The following identifies the order of authority precedence in the StartSession
invocation. For the invoked host authorities, the following list defines the “Host Control Authority” that
identifies the Host-to-SP session property requirements, including the secure messaging properties for
communications from the host to the SP:

1. HostSigningAuthority

2. If no HostSigningAuthority is invoked, then the HostExchangeAuthority will be the “Host
Control Authority”.

3. If neither the HostSigningAuthority nor the HostExchangeAuthority invoked, then there
will be no “Host Control Authority”.

For SP response authorities referenced from the “Host Control Authority”, the following list defines the
“SP Control Authority” that identifies the SP-to-Host session property requirements, including the
secure messaging properties for communications from the SP to the host:

1. SPSigningAuthority

2. If no SPSigningAuthority is referenced, then the SPExchangeAuthority will be the “SP
Control Authority”.

3. If neither the SPSigningAuthority nor the SPExchangeAuthority invoked, then there will
be no “SP Control Authority”.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 158 of 265

If the StartSession method fails, the return result is formatted as a SyncSession method invocation
from the TPer, using only the Host and SP parameters, with a non-Success status code.

If the StartTrustedSession method fails, the return result is formatted as a SyncTrustedSession
method invocation from the TPer, using only the Host and SP parameters, with a non-Success status
code.

5.3.4.1.5 Secure Messaging Control
As indicated in section 5.3.4.1.4, control of secure messaging for a session is determined
independently for each communicator. The authorities invoked in the StartSession method determine
the secure messaging types and algorithms requires, and, based on the authorities included in the
session startup, the encrypting credential used to exchange session key(s) for secure messaging.

If the Host Signing Authority is invoked in StartSession, this authority determines if secure messaging
is required on messages from the Host to the TPer, and of what type the secure messaging will be. In
this circumstance, the Host Signing Authority is the “Host Control Authority” for messaging from the
Host to the TPer.

If the Host Signing Authority is not present, and the Host Exchange Authority is present, the Host
Exchange Authority determines if secure messaging is required on messages from the Host to the
TPer, and of what type the secure messaging will be. In this circumstance, the Host Exchange
Authority is the “Host Control Authority” for messaging from the Host to the TPer.

If the Host Signing Authority is the “Host Control Authority”, its Response (SP) Signing and Response
(SP) Exchange Authorities determine the authorities used to represent the SP. If the Host Signing
Authority is not invoked in StartSession, and the Host Exchange Authority is, it is the Host Exchange
Authority that is the “Host Control Authority” and its Response Signing and Response Exchange
Authorities determine the authorities used to represent the SP.

If the Response (SP) Signing Authority is linked from the “Host Control Authority”, it is considered the
“SP Control Authority”, and determines if secure messaging is required on messages from the TPer to
the Host, and of what type the secure messaging will be. If the Response (SP) Signing Authority is not
linked from the “SP Control Authority” and the Response (SP) Exchange Authority is, then it is the
Response (SP) Exchange Authority that serves as the “SP Control Authority” and determines if secure
messaging is required on messages from the TPer to the Host, and of what type the secure messaging
will be.

If the value of a “Control Authority’s” Secure column is 0, then secure messaging shall not be permitted
for messaging from that communicator for the session to start successfully – all messaging exchanges
for sessions controlled by that authority shall be in plaintext.

5.3.4.1.6 Hashing and Signing Method Parameters
If the Host Signing Authority is the “Host Control Authority”, then its Authority.HashAndSign value
identifies whether or not it is required that the parameters of the Host-to-TPer session startup methods
(StartSession/StartTrustedSession) be hashed. If Authority.HashAndSign=T, then the
parameters of these methods are hashed and signed using Authority.Credential and the hash
protocol identified in that credential.

If the Host Exchange Authority is the “Host Control Authority”, then its Authority.HashAndSign value
identifies whether or not it is required that the parameters of the Host-to-TPer session startup methods
(StartSession/StartTrustedSession) be hashed and signed. If Authority.HashAndSign=T, then
the parameters of these methods are hashed and signed using Authority.Credential and the hash
protocol identified in that credential.

If the Response (SP) Signing Authority is the “SP Control Authority”, then its Authority.HashAndSign
value identifies whether or not it is required that the parameters of the TPer-to-Host session startup
methods (SyncSession/SyncTrustedSession) be hashed and signed. If Authority.HashAndSign=T,

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 159 of 265

then the parameters of these methods are hashed and signed using Authority.Credential and the
hash protocol identified in that credential.

If the Response (SP) Exchange Authority is the “SP Control Authority”, then its
Authority.HashAndSign value identifies whether or not it is required that the parameters of the TPer-
to-Host session startup methods (StartSession/StartTrustedSession) be hashed and signed. If
Authority.HashAndSign=T, then the parameters of these methods are hashed and signed using
Authority.Credential and the hash protocol identified in that credential.

5.3.4.1.7 Session Key Exchange
If the Host Signing Authority requires secure messaging, session keys are encrypted with the SP
Exchange Authority’s symmetric key or public key. If there is no SP Exchange Authority, or if there is
an SP Exchange Authority but it does not reference a credential, then session keys are encrypted with
the Host Exchange Authority’s symmetric key. If there is also no Host Exchange Authority, or if there is
a Host Exchange Authority but it does not reference an appropriate credential, an error shall be
returned.

If the SP Signing Authority requires secure messaging, session keys are encrypted with the Host
Exchange Authority’s symmetric key or public key. If there is no Host Exchange Authority, or if there is
a Host Exchange Authority but it does not reference a credential, then session keys are encrypted with
the SP Exchange Authority’s symmetric key. If there is also no SP Exchange Authority, or if there is an
SP Exchange Authority but it does not reference an appropriate credential, an error shall be returned.

If there is no Host Signing Authority, the Host Exchange Authority may require secure messaging. If so,
session keys are encrypted with the SP Exchange Authority’s symmetric or public key. If there is no SP
Exchange Authority, or if there is an SP Exchange Authority but it does not reference a credential, then
session keys are encrypted with the Host Exchange Authority’s symmetric key. If the Host Exchange
Authority does not reference an appropriate credential, an error shall be returned.

If there is no SP Signing Authority, the SP Exchange Authority may require secure messaging. If so,
session keys are encrypted with the Host Exchange Authority’s symmetric key or public key. If there is
no Host Exchange Authority, or if there is a Host Exchange Authority but it does not reference a
credential, then session keys are encrypted with the SP Exchange Authority’s symmetric key. If the SP
Exchange Authority does not reference an appropriate credential, an error shall be returned.

When a key is required for integrity checking, that key shall always be exchanged as the
HostIntegritySessionKey or SPIntegritySessionKey parameters in the StartTrustedSession or
SyncTrustedSession method invocations. These keys are not used in the CCM and GCM
authenticated encryption modes. When a key is used for message encryption, that key is exchanged
as the HostEncryptSessionKey or SPEncryptSessionKey, even for authenticated encryption modes.

For secure messaging modes that use HMAC for message integrity, the following list identifies the size
of the key that shall be exchanged as the integrity session key for the appropriate HMAC usage.

• For HMAC using SHA 256: The integrity session key shall be 256 bits.

• For HMAC using SHA 384: The integrity session key shall be 384 bits.

• For HMAC using SHA 512: The integrity session key shall be 512 bits.

For integrity algorithms that utilize public key cryptography, the Host uses the private key corresponding
to the chained down certificate supplied in the StartSession algorithm to sign the hash of the
message. The hash protocol for this operation is identified in the host control authority’s credential.
The SP uses the chained down certificate supplied in the SyncSession algorithm to sign the hash of the
message. The hash protocol for this operation is identified in the SP control authority’s credential.

5.3.4.1.8 Session Startup Authorities

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 160 of 265

If the HostSigningAuthority is specified in the StartSession invocation, and that authority has an
Operation column value of Signing, SymK, or HMAC, then the SP shall respond to the StartSession
invocation with a SyncSession invocation that contains the SPChallenge parameter, which holds a 32-
byte nonce. The host shall then sign the SPChallenge nonce using the HostSigningAuthority’s
credential as appropriate, and then submit the signed challenge back to the SP in a
StartTrustedSession call.

If the HostSigningAuthority is specified, and that authority has an Operation column value of
Password, then the credential referenced by the authority shall be a C_PIN object for session startup to
resolve properly. The host shall send the value of the PIN (in the clear) via the HostChallenge
parameter in the StartSession method invocation.

If the SPSigningAuthority is referenced, and that authority has an Operation column value of Signing,
SymK, or HMAC, then the host shall include in its StartSession method invocation the HostChallenge
parameter, which holds a 32-byte nonce. The SP shall sign the HostChallenge nonce using the
SPSigningAuthority’s credential as appropriate, and submit the signed challenge back to the host in its
SyncTrustedSession method.

If the SPSigningAuthority is referenced, and that authority has an Operation column value of
Password, then the credential referenced by that authority shall be a C_PIN object for session startup
to resolve properly. The SP shall send the value of the PIN (in the clear) via the SPChallenge
parameter of the SyncSession method.

When session startup successfully completes, all authorities invoked during the session startup process
shall be considered authenticated.

5.3.4.1.9 EC-MQV Session Startup
It is possible to use the session startup method exchanges to start a session using EC-MQV. In order
to do so, it is necessary to follow the following protocol (See Figure 19 for more information):

• The host ECMQV ephemeral public key is conveyed in HostChallenge.

• The host ECMQV static public key is conveyed in HostExchangeCert

• The SP ECMQV ephemeral public key is conveyed in SPChallenge

• The SP ECMQV static public key is conveyed in SPExchangeCert

• The Full ECMQV, C(2,2,ECC MQV) scheme of NIST SP 800-56A, Section 6.1.1.4 is used.

• The key derivation function (KDF) is Concatenation KDF as defined in Section 5.8.1 of NIST SP
800-56A. The AlgorithmID is the ASCII encoding of the string “TCG Storage ECMQV”. The
PartyUInfo is the uinteger Host value and the PartyVInfo is the uinteger SP value.
Supplementary fields are not used (that is, they are empty). The hash function used in the KDF
is SHA-1 if the elliptic curve group is defined over a 163-bit or 192-bit field, is SHA-256 if the
elliptic curve is defined over a 224-bit, 256-bit, 233-bit or 283-bit field, and is SHA-384 if the
elliptic curve is defined over a 384-bit field.

• The C(2,2) “Bilateral Key Confirmation” as defined in Section 8.4.1 of NIST SP 800-56A is used
(see below).

• The value MacTagU is conveyed in HostResponse

• The value MacTagV is conveyed in SPResponse

5.3.4.1.10 EC-DH Session Startup

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 161 of 265

It is possible to use the session startup method exchanges to start a session using EC-DH. In order to
do so, it is necessary to follow the following protocol (See Figure 20 :

• The host ECDH static public key is conveyed in HostExchangeCert

• The host nonce (the value NonceU used in key derivation and key confirmation) is conveyed in
HostChallenge

• The SP ECDH static public key is conveyed in SPExchangeCert

• The SP nonce (the value NonceV used in just key confirmation) is conveyed in the SPChallenge

• The Cofactor Static Unified Model C(0,2,ECC CDH) scheme of NIST SP 800-56A, Section
6.3.2 is used.

• The key derivation function (KDF) is Concatenation KDF as defined in Section 5.8.1 of NIST SP
800-56A. The AlgorithmID is the ASCII encoding of the string “TCG Storage ECDH”. The
PartyUInfo is the uinteger Host value and the PartyVInfo is the uinteger SP value.
Supplementary fields are not used (that is, they are empty). The hash function used in the KDF
is SHA-1 if the elliptic curve group is defined over a 163-bit or 192-bit field, is SHA-256 if the
elliptic curve is defined over a 224-bit, 256-bit, 233-bit or 283-bit field, and is SHA-384 if the
elliptic curve is defined over a 384-bit field.

• The C(0,2) “Bilateral Key Confirmation” as defined in Section 8.4.8 of NIST SP 800-56A is used
(see below).

• The value MacTagU is conveyed in HostResponse

• The value MacTagV is conveyed in SPResponse

5.3.4.1.11 Certificate Presentation
If an authority has a value of True in its PresentCertificate column; the authority references a public
key credential; and that credential references a certificate, then a certificate chain must be presented
when that authority is referenced as an SP authority.

For details on certificate contents/formatting, see the TCG Storage Certificates Specification.

5.3.4.1.12 Explicit Authentication with the Authenticate Method
In addition to authentication of authorities that participate in a successful startup of a session,
authentication of an authority may also be achieved through successful invocation of the Authenticate
method.

If the invoked authority requires password authentication (the value of the Operation column of the
invoked authority is “Password”), one call to Authenticate is made and the Challenge parameter is the
password. The response is either True or False – True if authentication was successful and False if
authentication was unsuccessful.

If the authority requires challenge and response (the value of the Operation column of the authority is
“Sign”, “SymK”, or “HMAC”), the host must invoke the Authenticate method twice. In the first
invocation the method parameter list shall be empty. In the second invocation, the Authority parameter
is the UID of the authority that the host is authenticating and the Challenge parameter is the response
to the SP’s challenge. The Success response is returned to the second invocation– this will be either
True if authentication was successful or False if authentication was unsuccessful.

If an attempt is made to invoke the Authenticate method on an authority that requires secure
messaging, and the required secure messaging parameters as defined in the Secure column of the
Authority table are not currently fulfilled, then the Authenticate method invocation shall fail. If an

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 162 of 265

attempt is made to invoke the Authenticate method on an authority that requires no secure
messaging, and secure messaging is in operation, then the Authenticate method invocation shall fail.

When the Authenticate method invocation protocol requires the host to invoke the Authenticate
method twice, the second Authenticate method may be sent anytime during the session (boundaries
of nested transactions shall need to be respected). If the TPer receives any Authenticate method
after the first Authenticate method has been invoked, the TPer shall attempt to resolve that
authentication attempt, which shall fail if the second Authenticate does not contain the appropriate
response parameters.

5.3.4.2 Table Management

5.3.4.2.1 Creating Tables
New tables are created via successful invocation of the CreateTable method. The Name-CommonName
combination of the table created shall be unique in the Table table.

When a new table is created using the CreateTable method, the columns for the table are specified in
the Columns parameter. The type of this parameter is a typeOr (for more information on types, see the
format specification in section 5.1.1).

o The first option of this typeOr represents a list of column names and the uid of the type (from
the Type table) to be associated with that column. This is to be used if the table does not have
indexed columns.

o The second option of this typeOr represents a struct made up of two lists. The first list is made
up of a list of column names and the uid of the type (from the Type table) to be associated with
that column. The first list represents the set of columns in the table the combination of which is
required to be unique (these are the indexed columns). The second list represents the set of
columns in the table that are not part of the index of that table, and is a list of the column
names and the uid of the type to be associated with that column.

The mechanism by which allocation of rows to a table is accomplished is implementation specific. A
manufacturer may choose to allocate rows statically (create all rows at table creation) or dynamically (at
each CreateRow method invocation).

The total number of rows that may be created for a table based on existing conditions shall be
obtainable using the GetFreeRows method.

The CreateTable method uses the MinSize parameter to define the initial number of rows that shall be
allocated for the new table. The created table shall always be able to have CreateRow invoked on it
that many times. If the MinSize is too large (requests more rows than may be allocated for that table),
the CreateTable method invocation shall result in an error.

MinSize is recorded in the MinSize column of the Table table. The MinSize column in the Table table
may be changed using a Set method invocation. Access control requirements shall be fulfilled as
normal. The TPer will return an error if an attempt is made to set a lower value than is recorded in the
MinSize column. The TPer may reject the request and return an error.

The actual number of rows that have been created for a table are reflected in the value of the Table
table’s Rows column.

The optional MaxSize parameter defines the maximum number of rows that can be created for the
table. Note that this is a host-supplied number, and that there are cases in which the created table
shall not be permitted by the system to have MaxSize rows. However, the TPer shall guarantee that
the table never has more than MaxSize rows.

The MaxSize parameter value is recorded in the MaxSize column of the Table table. Access control
requirements shall be fulfilled as normal to permit this value to be changed, but the TPer may prevent
the value from being changed – in such a case the TPer will return an error.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 163 of 265

The optional HintSize is a number of rows larger than MinSize that is requested for the created table.
The number of possible rows defined in HintSize is not required to be the number of possible rows
actually supplied. It is a host-specified number of rows that the host suggests should be supplied by
the system for that table, if sufficient amount of row space is available. This allows the TPer to optimize
the allocation of rows for the table.

When a new table is created, in addition to space being allocated for that table, other side effects occur
as well:

• A row in the Table table shall be created. This row is a table descriptor object that stores
metadata about the newly created table, including the name of the table, the number of rows
allocated for the table, and the number of free rows in the table. The table descriptor object
also stores the type of the table (bytes, array, or object), as well as a reference to the Column
table row of the table’s first column. Tables and their Table table entries are differentiated from
each other by different UID composition. A table is referred to by a UID derived from that of the
associated Table table entry (see section 3.2.5.3).

• Rows in the Column table shall be created for each of the columns in the new table. Each row
in the Column table stores metadata about a column in the newly created table, including the
column’s name and data type, whether the column value is part of the index for the table
(requires uniqueness across the table), and whether the column is subject to transactional
rollback, as well as the uidref to the row in the Column table that stores metadata about the next
column in the created table.

• Rows in the Method table shall be created for each of the methods available for both the newly
created table and its associated Table table row.

• Rows in the ACE table may be created to limit access control on certain portions of the table or
its associated Table table row.

If all associated rows in all associated tables cannot be created, then the invocation of the CreateTable
method shall fail.

5.3.4.2.2 Retrieving Table Data and Metadata
Table information can be classified in two ways:

• Table Data – this refers to the data stored in the cells of the table.

• Table Metadata – this refers to data that is stored about the table.

Table data is stored in the table itself, while table metadata is stored in other tables, called Metadata
Tables. Examples of these tables are the Table table and the Column table.

Rows in the Table table are table descriptor objects. Since each table descriptor is an object, each row
in that table, like any other object, has its own methods that may be used to retrieve the data stored in
that object. So, upon creation of a table, the control authority for a session is set in the access control
associations for the Get method that enable the host to retrieve that table descriptor object’s data after
authenticating that authority.

Table data, the data stored in table cells, may be retrievable through successful invocation of the Get
method on that table. When the Get method is invoked on a table or object, only the values that are
readable based on currently authenticated authorities and their associated ACE restrictions for the
method shall be returned.

Cell values that may have been requested but are not permitted to be read by the currently
authenticated authorities are not returned. Since the return value of the method for non-byte tables is a
list of name-value pairs, cells to which the host invoking the Get method does not have access are
omitted from the return result. If a column is known to exist but not returned with a value, then the host
can discern that it did not have permission to invoke Get on that cell.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 164 of 265

5.3.4.2.3 Creating Table Rows and Objects
Tables may be modified in the following ways:

• New rows may be created

• Existing rows may be deleted

• Cell values may be changed

In most cases, new rows shall be added to a table through successful invocation of the CreateRow
method on that table. Exceptions to this, where rows are added by methods other than CreateRow, are
identified in table descriptions and in the Template-specific Default Access Control Settings sections of
this specification.

Successful invocation of the CreateRow method creates a row in the invoking table where the column
values for that row are the values passed as parameters to the method invocation. For columns that
did not have values defined in the CreateRow invocation, default values are assigned as described in
5.3.2.5.

When invoking the CreateRow method on a table that requires certain column values to be unique, an
attempt to create a row with parameterized indexed values equivalent to the values in the indexed
columns of some row of that table shall fail unless access control requirements that permit the Delete
or DeleteRow method to be invoked on that table, encompassing the entirety of the affected row (based
on parameterized column values), have also been fulfilled. If access control is fulfilled, the data
parameterized in the CreateRow method overwrites the data in corresponding columns of that row.

When a row in an object table is created, a number of Method table rows are created that correspond to
the default methods permitted for the created object. ACLs are set on those methods, and in the meta-
ACL methods associated with those methods, as follows:

o Using the HostSigningAuthority from the StartSession method, if provided.

o Otherwise, using the HostExchangeAuthority from the StartSession method, if provided.

o Otherwise, using the Anybody Authority.

5.3.4.2.4 Deleting Table Rows and Objects
Rows may be deleted from a table in two ways:

• Successful invocation of the DeleteRow method on the table

• Successful invocation of the Delete object method on an object

Deleting objects may have side effects. For instance, invoking the Delete method on a Table table
row has the side effect of deleting the table with which that table descriptor object is associated. Side
effects that occur upon deletion of objects are documented where appropriate.

Deleting objects shall also cause all Method table rows associated with that object to be deleted.

When an object is deleted by a successful invocation of the DeleteRow method, the side effects of the
method are the same as if the object had been deleted via invocation of the Delete method (see
5.3.3.3).

5.3.4.2.5 Deleting Tables

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 165 of 265

As indicated in Section 5.3.4.2.4, a table shall be deleted by successful invocation of the Delete
method or the DeleteRow method on the table descriptor object (Table table row) associated with the
table to be deleted.

When the method resolves, the following occurs:

• The table descriptor object associated with the table is deleted.

• The table itself is deleted.

• All associated Method table rows are deleted. This includes methods associated with both the
table itself as well as the table descriptor object.

• All associated Column table rows shall be deleted.

Due to their reusability, ACEs that may have been created when a table was created shall not be
deleted when that table is deleted, as the ACE may still be in use by another table. ACEs created as a
side effect of creating a table or object shall be deleted only by direct host action.

5.3.4.2.6 Modifying Tables
In most cases, modifications to tables can be accomplished using the Set method (access control
permitting). Other cases that allow modification of tables without use of the Set method are noted in
the appropriate document section.

Unlike with the Get method, when the Set method is invoked on a table but access control does not
permit some cell to be changed that the Set method invocation is attempting to change, the entire
method fails and returns an error. All changes parameterized in the Set method shall be made for the
method to resolve successfully.

5.3.4.3 Access Control
Access control describes the system used to prevent modification of an SP’s contents by a host that
does not have proper authorization to make those modifications.

The Method table stores access control associations between methods and the tables, objects, or SP
upon which those methods may operate. Each row is an access control association made up of a
reference to the method and a reference to the object/table/SP; an Access Control List (ACL); meta-
ACLs; and columns that store the logging settings for the access control association and its associated
meta-ACL methods.

Each InvokingID/MethodID combination in the Method table shall be unique within the table.

Each ACL column shall hold a limited number of ACEs. The actual number that each ACL column may
store is SSC-dependent.

The default ACEs provided by the Base Template appear in Table 74. Their use is defined in Section
5.3.5 and other Template Life Cycle sections in this document.

Table 74 Base Template Default ACEs
UID Name BooleanExpr RowStart RowEnd ColStart ColEnd

00 00 00 08
00 00 00 01 Anybody Anybody

00 00 00 08
00 00 00 02 Admins Admins

00 00 00 08
00 00 00 03 Makers Makers

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 166 of 265

UID Name BooleanExpr RowStart RowEnd ColStart ColEnd

00 00 00 08
00 00 00 04 PostIssuanceAdmins Admins 0 0

00 00 00 08
00 00 00 05 SPInfo_1 Admins 1 1 Enabled Enabled

00 00 00 08
00 00 00 06 Table_Size Admins MinSize MaxSize

00 00 00 08
00 00 00 07 Method_1 Admins Log Log

00 00 00 08
00 00 00 08 Method_2 Admins AddACELog LogTo

The ACE table for all SPs is defined at Issuance shall be composed of at least the ACE table entries in
Table 74. These entries define Boolean combination of Authorities from the Authority table (displayed
in the ACE column). These are entries for the Base Template, and so exist for all SPs.

Of importance is the notation 0-0 for the Row restriction on the PostIssuanceAdmins ACE. This means
starting at the row of a table after the last row established at the point of Issuance, which is defined as
the point where the IssueSP command returns success. It ends at the last row of the table. The
reserved row number 0 is, in the context of specifying an ACE row restriction, both the beginning of
PostIssuance rows and the end of all rows in a particular table.

5.3.4.3.1 Meta-ACLs
The ability to add ACEs to or delete ACEs from ACLs provides additional granularity of access control,
as the authorization required to add or remove ACEs from ACLs may be different from the authorization
required to invoke the method described in the access control association.

The methods that perform the operations that add or remove ACEs from ACLs, or retrieve the list of
ACEs from an ACL, are AddACE, RemoveACE, and GetACL. Additionally, access control associations
may be removed from the Method table through successful invocation of the DeleteMethod method.
These four methods together are the meta-ACL methods.

Each access control association stores ACLs that govern the authorization requirements for these
methods on that access control association. A separate column in the Method table exists for each of
the meta-ACL methods to store the ACL for that meta-ACL method. A separate column in the Method
table also exists for each of the meta-ACL methods to store the logging settings for that meta-ACL
method.

In order to add an ACE to an ACL, the ACL for the AddACE method associated with that access control
association (stored in the AddACEACL column) must be satisfied. RemoveACE, GetACL, and
DeleteMethod function in a similar way, and would have to fulfill the ACL stored in the RemoveACEACL,
GetACLACL, and DeleteMethodACL column respectively.

5.3.4.4 Default Logging Settings
The default logging settings associated with the Template methods assume that the Log Template has
been issued with the SP. Otherwise, these values should be disregarded, as values of log control
columns shall be ignored if the Log Template has not been issued with an SP.

o Session startup logging (controlled in the Authority table) and logging invocation of the
Authenticate method shall have default settings of LogAlways.

o The following method invocations shall by default log as LogAlways:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 167 of 265

o AddACE

o RemoveACE

o DeleteMethod

o Delete

o CreateTable

o CreateRow

o DeleteRow

o Invocation of the following method invocations shall by default log as LogFailure:

o DeleteSP

o Set

o GenKey

o All other methods described in the Base Template shall be default log as LogNever.

5.3.5 Life Cycle
5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Base Template has the following characteristics based on the current life cycle
state of that SP:

o Issued – At Issuance the SP will have the default Base Template-related access control
settings as described in the following sections.

o Disabled – A Base Template-enabled SP that is in the Disabled state shall not be able to
perform any user-invoked SP operations enabled, with the exceptions noted in section 4.4.3.
These exceptions include invocation of the Authenticate method, the DeleteSP method, and
the Set method used to re-enable the SP. Session Manager protocol layer methods invoked to
the disabled SP shall operate as normal.

o Frozen – A Base Template-enabled SP that is in the Frozen state shall not be able to perform
any user-invoked SP operations, with the exceptions noted in section 4.4.4.

o Issued-Disabled-Frozen – A Base Template-enabled SP that is in the Issued-Disabled-Frozen
state shall not be able to perform any user-invoked SP operations, with the exceptions noted in
section 4.4.5.

5.3.5.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the object/method,
table/method, and SP/method combinations provided to an SP by the Base Template. These access
controls represent the pre-personalization settings of the Base Template-related table/method and
SP/method combinations, i.e. those when the SP initially enters the Issued state.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a Null uidref (zeroes). This indicates that access control to perform that action cannot be
satisfied.

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

5.3.5.2.1 ACEs

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 168 of 265

ACEs defined as defaults for the Base Template, which are defaults for all SPs, are defined in Table 74.

5.3.5.2.2 SP Methods Default Access Control Settings

Table 75 Base Template SP Method Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteSP Admins Admins Admins Admins Admins
CreateTable Admins Admins Admins Admins Admins
GetFreeSpace Admins Admins Admins Admins Admins
Authenticate Admins Admins Admins Admins Admins

5.3.5.2.3 SPInfo Table Default Access Control Settings

Table 76 SPInfo Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set SPInfo_1 None Admins Admins Admins

5.3.5.2.4 SPTemplates Table Default Access Control Settings

Table 77 SPTemplates Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

5.3.5.2.5 Table Table and Table Descriptor Object Default Access Control Settings

Table 78 Table Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteRow PI_Admins None Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set Table_Size None Admins Admins Admins

Table 79 Table Descriptor Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
GetFreeRows Self Self Self Self Self
Set Table_Size None Self Self Self

5.3.5.2.6 Column Table Default Access Control Settings

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 169 of 265

Table 80 Column Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

5.3.5.2.7 MethodID Table and MethodID Object Default Access Control Settings

Table 81 MethodID Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

5.3.5.2.8 Method Table and Method Object Default Access Control Settings

Table 82 Method Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

Set Method_1,
Method_2 None Admins Admins Admins

5.3.5.2.9 Type Table and Type Object Default Access Control Settings

Table 83 Type Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

Table 84 Type Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self

5.3.5.2.10 ACE Table and ACE Object Default Access Control Settings

Table 85 ACE Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 170 of 265

Method ACL AddACE RemoveACEGetACL DeleteMethod
Set PI_Admins None PI_Admins Admins Admins

Table 86 ACE Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.11 Authority Table and Authority Objects Default Access Control Settings

Table 87 Authority Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 88 Authority Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.12 Certificates Table and Certificates Object Default Access Control Settings

Table 89 Certificates Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 90 Certificates Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.13 C_PIN Table and C_PIN Object Default Access Control Settings

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 171 of 265

Table 91 C_PIN Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 92 C_PIN Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
GenKey Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.14 C_RSA_* Tables and Objects Default Access Control Settings

Table 93 C_RSA_* Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 94 C_RSA_* Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
GenKey Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.15 C_AES_* Tables and Objects Default Access Control Settings

Table 95 C_AES_* Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 172 of 265

Table 96 C_AES_* Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
GenKey Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.16 C_EC_* Tables and Objects Default Access Control Settings

Table 97 C_EC_* Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 98 C_EC_* Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
GenKey Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

5.3.5.2.17 C_HMAC_* Tables and Objects Default Access Control Settings

Table 99 C_HMAC_* Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None PI_Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set PI_Admins None PI_Admins Admins Admins

Table 100 C_HMAC_* Object Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
GenKey Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 173 of 265

5.3.6 Examples
This section details pseudo-code examples utilizing Base Template methods and tables, as well as
examples using the Session Manager protocol layer methods.

5.3.6.1 Session Startup Examples
The session startup examples in this section use the example Authority Table 101. References to
objects (uidrefs) in the following examples are shorthanded by providing a descriptive name to
represent that credential (for instance, Authority object uids other than for the Anybody authority are
named AuthUID1-AuthUID5. Credential objects uidrefs are represented by the credential type, and a
number (PINUID1 represents the first C_PIN object referenced in the example).

Table 101 Authority Table (Example) – Session Startup
UID Name IsClass EnabledSecure OperationCredential ResponseSign ResponseExch
AnybodyUIDAnybody F T 0 0 0 0 0
AuthUID1 NAME1 F T 0 1 PINUID1 0 0
AuthUID2 NAME2 F T C_AES_1283 RSA1024UID1AuthUID4 AuthUID5
AuthUID3 NAME3 F T 0 2 AES128UID1 0 0
AuthUID4 NAME4 F T 0 3 RSA1024UID20 0
AuthUID5 NAME5 F T 0 2 AES128UID2 0 0

5.3.6.1.1 Anybody Authority Session Example
SMUID.StartSession [HostSessionID, SPID, 0]

=>

SMUID.SyncSession [HostSessionID, SPSessionID]

5.3.6.1.2 PIN Authority Session Example

Table 102 C_PIN Table (Example) – Session Startup
UID Name PIN
PINUID1 NAME1 ABC123

SMUID.StartSession [HostSessionID, SPID, 0, HostChallenge = ‘ABC123’,
HostSigningAuthority = AuthUID1]
=>
SMUID.SyncSession [HostSessionID, SPSessionID]

5.3.6.1.3 Authenticated and Secure Session Example
This example utilizes the example authorities detailed in Table 101.
SMUID.StartSession [HostSessionID, SPID, 0, HostChallenge = HostChallenge,
HostExchangeAuthority = AuthUID3, HostSigningAuthority = AuthUID2]
=>
SMUID.SyncSession [HostSessionID, SPSessionID, SPChallenge = SPChallenge]

SMUID.StartTrustedSession [HostSessionID, SPSessionID, HostResponse =
Signed<SPChallenge>, HostEncryptSessionKey = Encrypt<HostSessionKey>]
=>

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 174 of 265

SMUID.SyncTrustedSession [HostSessionID, SPSessionID, SPResponse =
Signed<HostChallenge>, SPEncryptSessionKey = Encrypt<SPSessionKey>]

5.3.6.2 CreateTable Example
Note that in this example, only columns relevant to the example are displayed in the sample table.
SPUID.CreateTable [‘DemoTable’, 1, ACEUID, []‘Name’, TypeUID2], [‘Value’, TypeUID3],
[‘State’, TypeUID4]], 10]
=>
[[DemoTableUID, 10]]

Table 103 Table Table (Example) – CreateTable
UID Name Kind Column Rows RowsFree
DemoTableUID DemoTable 1 RowNo1 10 10

Table 104 Column Table (Example) – CreateTable
Row UID Name Type Next
RowNo1 DemoColumn1 UID TypeUID1 RowNo2
RowNo2 DemoColumn2 Name TypeUID2 RowNo3
RowNo3 DemoColumn3 Value TypeUID3 RowNo4
RowNo4 DemoColumn4 State TypeUID4 0

Table 105 DemoTable Table (Example) – CreateTable
UID Name Value State

5.3.6.3 CreateRow Example
DemoTableUID.CreateRow [[Name=‘NAME1’, Value=VALUE1, State=STATE1], [Name=‘NAME2’,
Value=VALUE2, State=STATE2], [Name=‘NAME3’, Value=VALUE3, State=STATE3],
[Name=‘NAME4’, Value=VALUE4, State=STATE4]]
=>
[{UID1, UID2, UID3, UID4}]

Table 106 Demo Table (Example) – CreateRow
UID Name Value State
UID1 NAME1 VALUE1 STATE1
UID2 NAME2 VALUE2 STATE2
UID3 NAME3 VALUE3 STATE3
UID4 NAME4 VALUE4 STATE4

5.3.6.4 DeleteRow Example
DemoTableUID.DeleteRow [[UID1]]
=>
[1]

Table 107 Demo Table (Example) – DeleteRow
UID Name Value State

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 175 of 265

UID Name Value State
UID2 NAME2 VALUE2 STATE2
UID3 NAME3 VALUE3 STATE3
UID4 NAME4 VALUE4 STATE4

5.3.6.5 Delete Example
UID2.Delete []
=>
[1]

Table 108 Demo Table (Example) – Delete
UID Name Value State
UID3 NAME3 VALUE3 STATE3
UID4 NAME4 VALUE4 STATE4

5.3.6.6 Get Examples
The examples in this section use Table 108

5.3.6.6.1 Get (Table Method) Example
DemoTableUID.Get [[startColumnName=‘Value’, endColumnName=‘Value’]]
=>
[[[‘Value’=VALUE3], [‘Value’=VALUE4]]]

5.3.6.6.2 Get (Object Method) Example
UID3.Get [[startColumnName=‘Value’, endColumnName=‘Value’]]
=>
[[[‘Value’=VALUE3]]]

5.3.6.7 Set Examples

5.3.6.7.1 Set (Table Method) Example
DemoTableUID.Set [[startRow=UID3, endRow=UID3], [[Name=NAME1, Value=VALUE1]]]
=>
[1]

Table 109 Demo Table (Example) – Set
UID Name Value State
UID3 NAME1 VALUE1 STATE3
UID4 NAME4 VALUE4 STATE4

5.3.6.7.2 Set (Object Method) Example
UID4.Set[[[Name=NAME2, Value=VALUE2]]]
=>
[1]

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 176 of 265

Table 110 Demo Table (Example) – Set
UID Name Value State
UID3 NAME1 VALUE1 STATE3
UID4 NAME2 VALUE2 STATE4

5.3.6.8 Next Examples
Examples in this section refer to sample Table 110.
DemoTableUID.Next[]
=>
[[UID3, UID4]]

DemoTableUID.Next [Where = UID3]
=>
[[UID4]]

5.3.6.9 Authenticate Examples
Note that in the Authenticate method examples, only columns relevant to the example are displayed
in the sample tables.

5.3.6.9.1 Authenticate Method Example – PIN

Table 111 Authority Table (Example) – Authenticate
UID Name IsClass Enabled Operation Credential
AuthUID1 NAME1 F T 1 PINUID1

Table 112 C_PIN Table (Example) – Authenticate
UID Name PIN
PINUID1 NAME1 ABC123

SPUID.Authenticate [AuthUID1, Challenge=‘ABC123’]
=>
[1]

5.3.6.9.2 Authenticate Method Example – Challenge/Response

Table 113 Authority Table (Example) – Authenticate
UID Name IsClass Enabled Operation Credential
AuthUID2 NAME1 F T 3 RSA1024UID1

SPUID.Autheticate [AuthUID2]
=>
[ResponseBytes]

SPUID.Autheticate [AuthUID2, Challenge=Signed<ResponseBytes>]
=>
[1]

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 177 of 265

5.3.6.10 AddACE Example

Table 114 Method Table (Example) – AddACE
UIDMethodID Type ACL AddACEACL RemoveACEACL DeleteMethodACL

UIDSetMethodUID DemoTableUIDACEUIDACEUID1,
ACEUID2 ACEUID3 ACEUID4

MethodTableUID.AddACE [DemoTableUID, SetMethodUID, ACEUID5]
=>
[1]

Table 115 Method Table (Example) – AddACE Result
UIDMethodID Type ACL AddACEACL RemoveACEACL DeleteMethodACL

UIDSetMethodUID DemoTableUIDACEUID1,
ACEUID5

ACEUID1,
ACEUID2 ACEUID3 ACEUID4

5.3.6.11 RemoveACE Example
MethodTableUID.RemoveACE [DemoTableUID, SetMethodUID, ACEUID1]
=>
[1]

Table 116 Method Table (Example) – RemoveACE
UIDMethodID Type ACL AddACEACL RemoveACEACL DeleteMethodACL

UIDSetMethodUID DemoTableUIDACEUID5ACEUID1,
ACEUID2 ACEUID3 ACEUID4

5.3.6.12 DeleteMethod Example
MethodTableUID.DeleteMethod [DemoTableUID, SetMethodUID]
=>
[1]

Table 117 Method Table (Example) – DeleteMethod
UID MethodID Type ACL AddACEACL RemoveACEACL DeleteMethodACL

5.3.6.13 Authority Table Example
Every SP that incorporates the Base Template shall have the authorities identified in Table 73. The
specific values of the credentials may differ depending on the particular SP, and the capabilities of the
TPer on which it exists. Table 118 provides some example customizations of other portions of the
Authority table.

Table 118 Example Authority Table
Name Common

Name IsClass Class Enabled Secure Operation CredentialTable Cre-
dential

Resp
Sign

Resp
Exch Log

Anybody Anybody False None True NONE NONE 0 0 0 0 LogNever
Admins Admin True None True NONE NONE 0 0 0 0 LogAlways
Makers Maker True None True NONE NONE 0 0 0 0 LogAlways
MakerSymK Maker False Makers True C_AES_128 SymK C_AES_128 1 0 0 LogNever
MakerPuK Maker False Makers True NONE Signing C_RSA_2048 1 0 0 LogNever

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 178 of 265

Name Common
Name IsClass Class Enabled Secure Operation CredentialTable Cre-

dential
Resp
Sign

Resp
Exch Log

SID TPerOwner False None True NONE Password C_PIN 1 0 0 LogFail
TPerSign TPerSign False None True NONE TPerSign C_RSA_1024 2 0 0 LogFail
TPerExch TPerExch False None True NONE TPerExchange C_RSA_1024 3 0 0 LogFail
AdminExch Admin False Admins True NONE Exchange C_AES_128 2 0 0 LogFail

5.3.6.14 Starting Sessions Using EC-MQV

Figure 19 Starting Sessions Using EC-MQV

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 179 of 265

5.3.6.15 Starting Sessions Using EC-DH

Figure 20 Starting Sessions Using EC-DH

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 180 of 265

5.4 Admin Template
5.4.1 Overview
The purpose of the Admin Template is to provide to the Admin SP the capability to optionally Issue
additional SPs and to maintain information about the TPer.

5.4.2 Data Structures
5.4.2.1 TPer Metadata Group - TPerInfo (Array Table)
The table in this section describes the metadata that the Admin SP stores about the TPer.

Table 119 TPerInfo Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned and

maintained by the TPer. (Read-only)
UID uid The UID of this row. (Read-only)
Bytes uinteger_8 The size in bytes of the TPer’s entire protected storage area. (Read-

only)
GUDID bytes_12 TPer’s globally unique serial number - See Table 120 and

accompanying text for GUDID content description (Read-only)
Generation uinteger_4 Generation number of the volume. (Read-only)
FirmwareVersion uinteger_4 Manufacturer-defined revision number of the TPer firmware. (Read-

only)
ProtocolVersion uinteger_4 Revision number of the interface messaging protocol, defined by the

TCG Specification (Read-only)
SpaceForIssuance uinteger_8 Amount of available bytes remaining for issuance. (Read-only)
SSC name Unique name of the SSC, as defined by TCG, that is supported by the

TPer
The TPerInfo table contains exactly one row that is always readable by the Anybody authority.

5.4.2.2 TPer Metadata Group - Serial Number Contents

Table 120 GUDID Column Contents Description
Byte\Bit 7 6 5 4 3 2 1 0

0 0x02
1 0x23
2 0x00
3 0x08
4 NAA (0x05) (MSB) IEEE COMPANY ID
5
6

IEEE COMPANY ID

7 IEEE COMPANY ID (LSB) (MSB) VENDOR-SPECIFIC IDENTIFIER
8
9

10
VENDOR-SPECIFIC IDENTIFIER

11 VENDOR-SPECIFIC IDENTIFIER (LSB)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 181 of 265

This structure meets the requirements of an identification descriptor as in SPC-3, and specifically
conforms to the NAA IEEE Registered format defined in that document.

5.4.2.3 TPer Metadata Group - CryptoSuite (Array Table)
The table in this section describes the metadata the TPer keeps about itself

Table 121 CryptoSuite Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned and

maintained by the TPer. (Read-only)
UID uid The UID of this Crypto operation row. (Read-only)
CryptoCall name Name of the Crypto type (Read-only)
CryptoLen uinteger_2 Key length for this CryptoCall (Read-only)
CryptoOp name Name of the Crypto operation being timed for this

CryptoType/CryptoLen combination (i.e., KeyGen, Encrypt, Decrypt,
Sign, Verify, Hash) (Read-only)

Special boolean_def_false Defines if special operating properties exist for this
CryptoType/CryptoLen combination. Default value is “False” (Read-
only)

Time uinteger_4 Nominal Operation Time in Milliseconds (Read-only)
Variance uinteger_4 Nominal Operation Time or Variance in Milliseconds, as applicable.

(Read-only)
The times recorded in the CryptoSuite table must be average time based on 100 independent
samples using randomly generated keys. The times may be taken when the TPer is otherwise idle and
represent relative performance of the operations, not a guarantee of actual performance in the field.

Every type of crypto functionality present on the TPer shall have one row where the value of the
Special column is False, and may have one or more rows where the value of the Special column is
True. Rows where Special=True represent functionality that may be defined by special properties of
the device such as hardware accelerators or pre-computed cache values (in the case, for example, of
some key generation or random number provisioning).

Note: The rows in this table shall represent all of the crypto functionality on the TPer available to any/all
newly issued SPs.

5.4.2.4 TPer Metadata Group – Properties (Byte Table)
The Properties table is a byte table that stores information about the communications properties of
the TPer. The table is read-only, and its size is SSC-specific. The Properties table shall be sorted as
the spec indicates to provide the required response to the Properties method.

For information on the Properties method and values required by the Core Specification to be stored
in the Properties table, see Table 32.

Implementation-specific Properties may also be stored in the Properties table, but shall appear at
the end of the table, after all of the spec required name-value pairs.

5.4.2.5 SPs on the TPer Group - Template (Object Table)
The table in this section describes the data that the Admin SP keeps about all of its Templates.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 182 of 265

Table 122 Template Table Description
Column IsIndex Type Description
UID uid Unique identifier of this Template. (Read-only)
Name Yes name Unique name of this Template. (Read-only)
RevisonNumber uinteger_4 For Templates defined by the TCG Core Specification, this

is the TCG Core Spec revision number of the Template
(Read-only)

Instances uinteger_2 Number of SPs on the TPer that are currently instantiated
from this Template. Only deleting an SP can decrement this
number. (Read-only)

MaxInstances uinteger_2 Maximum number of SPs that may be instantiated from this
Template at any one time. If 0, then there is no limit on
number of instances. (Read-only)

The Template table has one row for each Template that may be issued by the TPer.

If the value of the Instances column is equal to the value of the MaxInstances column for a given
Template, then attempts to issue additional SPs incorporating that Template shall result in an error.

5.4.2.6 SPs on the TPer Group - SP (Object Table)
The table in this section describes the data that the Admin SP keeps about all of the SPs on the TPer.

Table 123 SP Table Description
Column IsIndex Type Description
UID uid Unique identifier of this SP. (Read-only)
Name Yes name Unique name of this SP. (Read-only)
ORG Authority_ref The Root Authority that authorized this SP (Read-only)
EffectiveAuth bytes_32 The Chained Down Public Key of the Authority that actually

issued this SP (Read-only)
DateofIssue date The date of Issuance (enabled by Clock Template) (Read-

only)
Bytes uinteger_8 Size of the SP. (Read-only)
LifeCycleState life_cycle_state Life Cycle state of this SP (Read-only)
Frozen boolean_def_false TPer Owner control over whether sessions may be opened

on this SP. A value of True in this column indicates that
attempts to open sessions to this SP fail. The default value
of this column is False.

The Admin SP is always UID=0x00 0x00 0x02 0x05 0x00 0x00 0x00 0x01 in the SP Table, and the
values in this table are always readable by the Anybody authority.

NOTE: The LifeCycleState column cannot be written directly - the TPer changes it as appropriate.

5.4.3 Methods
5.4.3.1 IssueSP (SP Method)
This method is used to issue SPs on those TPers where the SPs are not fixed by the manufacturer.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 183 of 265

IssueSP[
SPName : name,
Size : uinteger_4,
Templates : template_list,
AdminExch : exchange_key,
Enabled : boolean]

=>
[UID : SP_ref,
Size : uinteger_4]

The IssueSP method creates a new SP of the specified name from the given Templates. The
AdminExch authority in the new SP will be given the key defined in the AdminExch parameter in its
newly created credential.

The Size is the size in 512 byte blocks that is requested for this SP. The returned Size is the size
actually allocated. The Size returned shall be equal to or greater than the Size requested. If the
TPer cannot allocate the requested Size, the IssueSP method invocation will result in an error.

Issuance always assumes the Base Template, but it is not an error to list it. The list of Templates may
include any Template except the Template named “Admin,” though the Templates available for use are
restricted by the MaxInstances allowed for each Template. The Templates parameter is a list of UIDs
of templates to be included in the issued SP. The UIDs are those of the templates as recorded for each
template in the Admin SP's Template table.

The methods and tables from the Templates requested become part of the issued SP.

ORGs that are permitted to only issue certain Templates into new SPs are controlled by attributes in the
ORG’s certificate. This is defined in the TCG Storage Certificates specification. Reference that
document for details.

5.4.3.1.1 Fails
• If there is already an SP of the same name.
• If the maximum number of SPs permitted for this template already exist.
• If there’s not enough free space for the new SP in the TPer.

5.4.4 Descriptions
There shall be exactly one Admin SP on every TPer that has SPs. The Admin SP shall not be able to
be disabled or deleted.

For TPers that have SPs, when a TPer is shipped from the Manufacturer there will be a number of
predefined Templates and at least one SP (the Admin SP). There may also be additional SPs issued
on the TPer during the manufacturing process.

5.4.4.1 Templates and the Admin SP
Template metadata is stored in the Admin SP’s Table, Column, and Method tables. When the value of
the TemplateID column in the Table, Column, or Method tables is zeroes (Null UID reference) it
indicates that the row is a normal Table, Column, or Method table row of the Admin SP. When it is not
zeroes it is the UID of a Template, indicating that the Table or Column or Method to be created when an
SP is issued using that Template.

Rows with a non-zero TemplateID are readable by Anybody.

The Rows column of the Table table on the Admin SP may be Set by the Issuers authority. The Rows
column indicates how many free rows shall be available in the given table after issuance is complete.
Since the process of issuing an SP can create rows in various tables, it is simpler to have this indicate
“room left for the host application to use” rather than “total space to allocate.”

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 184 of 265

5.4.4.2 Admin SP Sessions
An open Read-Write session to the Admin SP shall not be able to be combined with sessions of any
type open to any other SPs on the TPer (including sessions that are already open when the attempt to
open a Read-Write session to the Admin SP is made).

5.4.4.2.1 Issuance Sessions
Issuance requires a session to the Admin SP that incorporates HostSigning, HostExchange,
SPExchange, and optionally SPSigning, all based on Manufacturer controlled Certificates. The Admin
SP shall require that the HostSigningAuthority and the HostExchangeAuthority (which may be different)
are present in the ORG section of the Authority Table. Certificate chain down is possible, to the Chain
Limit.

The critical method in issuance is IssueSP. The ACL on this method contains exactly one ACE that
cannot be changed, and it requires a Boolean combination of Authorities: (HostSigning AND
HostExchange AND SPExchange). The SPSigningAuthority is optional but recommended. Issuance
will not be deemed completed until the method has completed successfully the session has
successfully closed.

During issuance, the host is responsible for providing logging, and fetching information it requires to
confirm the issuance.

5.4.4.3 Authorities
The authorities that shall be required by the Admin Template are enumerated in Table 124.

Table 124 Default Admin Template Authorities
Name UID Common Name IsClass Class

Issuers 00 00 00 09 00 00 02 01 SPControl True

Editors 00 00 00 09 00 00 02 02 SPControl True

Deleters 00 00 00 09 00 00 02 03 SPControl True

Servers 00 00 00 09 00 00 02 04 SPControl True

Reserve0 00 00 00 09 00 00 02 05 SPControl True

Reserve1 00 00 00 09 00 00 02 06 SPControl True

Reserve2 00 00 00 09 00 00 02 07 SPControl True

Reserve3 00 00 00 09 00 00 02 08 SPControl True

The TPerExch allows a secure session to be established immediately with the Admin SP. Note the
corresponding credentials contain certificate chains that establish the validity of TPerSign and
TPerExch signed by the manufacturer.

In addition to the authorities defined in Table 124, if a TPer supports Issuance, then it shall be required
that the Admin SP have up to an additional 2^16 entries in this table, in blocks of 16, starting
immediately after the default Base and Admin Template authorities. These are called ORG authority
blocks.

ORG0 is the ORG (anization) of the manufacturer or SP licensing authority. Other ORGs may include
other SP licensing authorities. Note the classes include SP Issuance authorities (Issuers), SP ORG
Editors that can edit values within an ORG block, SP Deleters that are restricted to deleting ORG
authorities within a 16 block, and SP Servers that are used to set up confidential messaging between

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 185 of 265

Issuance participants. Members of the Servers class are Sign and Exchange authorizations in order to
permit secure messaging.

For example values for the Admin Template’s required authorities see Table 133.

5.4.4.4 Default Logging Settings
The default logging settings associated with the Admin Template methods are:

o The default logging for Admin SP method, IssueSP, is LogAlways.

o All other methods that apply to the Admin SP will be as described in the Base Template
reference section (See Section 5.3.4.4).

5.4.5 Life Cycle
5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions
The Admin SP has the following characteristics based on the current life cycle state of that SP:

o Issued – The SP will have the default Admin Template-related access control settings as
described in the following sections.

o Disabled – Access control shall prevent the Admin SP from entering the Disabled state.

o Frozen – Access control shall prevent the Admin SP from entering the Frozen state.

o Issued-Disabled-Frozen – Access control shall prevent the Admin SP from entering the
Issued-Disabled-Frozen state.

5.4.5.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the table/method
combinations provided to an SP by the Admin Template. Note that in the Admin SP, there is no
personalization possible.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a Null UID reference. This indicates that access control to perform that action cannot be
satisfied.

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

5.4.5.2.1 ACEs
In addition to the ACEs defined in the Base Template (see Table 74), which are defaults for all SPs, the
following table defines the ACEs added for use in the life cycle of the Admin Template.

Table 125 Admin Template Added ACEs
UID Name BoolExpr RowStart RowEnd ColStart ColEnd
00 00 00 08 00 00 02 01 SID SID Frozen Frozen

00 00 00 08 00 00 02 02 Issuers ORG*-1 and ORG*-2 and
TPerExch MinSize MinSize

00 00 00 08 00 00 02 03 Editors Editors * *
00 00 00 08 00 00 02 04 Deleters Deleters * *
00 00 00 08 00 00 02 05 Servers Servers * *

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 186 of 265

UID Name BoolExpr RowStart RowEnd ColStart ColEnd

00 00 00 08 00 00 02 06 Issuers_SID** ORG*-1 and ORG*-2 and
TPerExch and SID

*Identifies ACEs that apply to modification of the Authority table on the Admin SP. Their uses are
reflected in 5.4.4.3.

ORG*-1 represents an authority that is a signing authority that is a member of the Issuers class and
ORG*-2 represents an authority that is an exchange authority that is a member of the Issuers class.
ORG*-1 and ORG*-2 shall both belong to the same "ORG". See 5.4.4.3.

** Some SSCs/ORGs may require that the SID be required for Issuance.

5.4.5.2.2 Authority Table Access Control Settings
The Authority table on the Admin SP has the following default access control settings. These settings
are used in place of the settings normally enabled by the Base Template.

Table 126 Authority Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL
Get Anybody None None Anybody
Next Anybody None None Anybody

In addition to the default access control settings defined in Table 126, certain authority objects have the
following access capabilities/restrictions:

o The Editors ACE is in the ACL for the Set method on all ORG objects in the Authority table.

o The Deleters ACE is in the ACL for the Set method on the Enabled column on all ORG objects
in the Authority table.

5.4.5.2.3 Table Table Access Control Settings
On the Admin SP, the Table table has these access control settings:

o The Issuers ACE is in the ACL for the Set method, which enables the authorities listed in the
Issuers ACE to modify the default amount of rows (defined in the Table table’s MinSize
column) that will be created for each table when a new SP is issued. This applies only to Table
descriptor objects that are not identified as “Active”.

o Anybody can retrieve information about any row of the Table table that has a TemplateID other
than zeroes.

5.4.5.2.4 IssueSP Method Access Control Settings
For TPers capable of Issuance, access control over the IssueSP method is defined in Table 127.

Table 127 IssueSP Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
IssueSP Issuers None None Anybody None

For TPers not capable of Issuance, the IssueSP method is not available (has no row in the Method
table).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 187 of 265

5.4.5.2.5 TPerInfo Table Default Access Control Settings

Table 128 TPerInfo Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Anybody None None Anybody None

5.4.5.2.6 CryptoSuite Table Default Access Control Settings

Table 129 CryptoSuite Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Anybody None None Anybody None
Next Anybody None None Anybody None

5.4.5.2.7 Template Table Default Access Control Settings

Table 130 Template Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Anybody None None Anybody None
Next Anybody None None Anybody None

5.4.5.2.8 SP Table Default Access Control Settings

Table 131 SP Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Anybody None None Anybody None
Next Anybody None None Anybody None

5.4.5.2.9 SP Object Default Access Control settings
Each of the SP objects in the SP table, except for SP.UID=0x00 0x00 0x02 0x05 0x00 0x00 0x00
0x01 (the Admin SP), has default access control settings as enumerated in Table 132.

Table 132 SP Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Anybody None None Anybody None
Delete SID None None Anybody None
Set SID None None Anybody None

5.4.6 Examples
5.4.6.1 Example Values for Admin Template Authorities
Every Admin SP shall have the authorities identified in Table 124. The specific values of the
credentials may differ depending on the capabilities of the TPer on which it exists. Table 133 provides
some example customizations of the portions of the Admin SP’s Authority table that may exist in a
particular implementation.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 188 of 265

Table 133 Example Authority Settings
Name Common

Name IsClass Class Enabled Secure Operation Credential
Table

Cre-
dential

Resp
Sign

Resp
Exch Log

Issuers SPControl True True
Editors SPControl True True
Deleters SPControl True True
Servers SPControl True True
Reserve0 SPControl True True
Reserve1 SPControl True True
Reserve2 SPControl True True
Reserve3 SPControl True True
ORG0-1 ORG0 False 10 True C_AES_128 Sign RSA2048 3 7 8 LogSuccess
ORG0-2 ORG0 False 13 True C_AES_128 Exchange RSA2048 4 7 8 LogSuccess
ORG0-3 ORG0 False 10 True C_AES_128 Sign RSA1024 5 6 6 LogSuccess
ORG0-4 ORG0 False 13 True C_AES_128 Exchange RSA1024 6 6 6 LogSuccess
ORG0-5 ORG0 False 11 True C_AES_128 Sign RSA2048 7 7 8 LogSuccess
ORG0-6 ORG0 False 13 True C_AES_128 Exchange RSA2048 8 7 8 LogSuccess
ORG0-7 ORG0 False 12 True C_AES_128 Sign RSA2048 9 7 8 LogSuccess
ORG0-8 ORG0 False 13 True C_AES_128 Exchange RSA2048 10 7 8 LogSuccess
… … … … … … … … … … … …

5.4.6.2 Typical Required CryptoSuite Values

Table 134 Typical Required CryptoSuite Values
CryptoCall CryptoLen CryptoOp Special Time Variance

PIN 32 None False Not
applicable

Not
applicable

RSA 1024 Sign False < PrK time> <PrK time>

RSA 1024 Verify False < PuK
time>

<PuK
time>

RSA 1024 KeyGen False <time> <time>
RSA 2048 Sign True < PrK time> <PrK time>

RSA 2048 Verify True < PuK
time>

<PuK
time>

RSA 2048 KeyGen True <time> <time>
EC 192 Sign False <PrK time> <PrK time>

EC 192 Verify False < PuK
time>

<PuK
time>

EC 192 KeyGen False <time> <time>
EC 224 Sign False <PrK time> <PrK time>

EC 224 Verify False < PuK
time>

<PuK
time>

EC 224 KeyGen False <time> <time>
EC 256 Sign False <PrK time> <PrK time>

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 189 of 265

CryptoCall CryptoLen CryptoOp Special Time Variance

EC 256 Verify False < PuK
time>

<PuK
time>

EC 256 KeyGen False <time> <time>

AES 128 Encrypt False
< Encrypt
time, 2^16
bytes>

<Encrypt
time 2^16
bytes>

AES 128 Decrypt False
< Decrypt
time, 2^16
bytes>

<Decrypt
time 2^16
bytes>

AES 128 KeyGen False <time> <time>

AES 128 Encrypt True
< Encrypt
time, 2^16
bytes>

<Encrypt
time 2^16
bytes>

AES 128 Decrypt True
< Decrypt
time, 2^16
bytes>

<Decrypt
time 2^16
bytes>

AES 128 KeyGen True <time> <time>

SHA 160 Hash False
<Hash
time, 2^16
bytes>

Not
applicable

SHA 256 Hash False
<Hash time
2^16
bytes>

Not
applicable

SHA 384 Hash False
<Hash time
2^16
bytes>

Not
applicable

SHA 512 Hash False
<Hash time
2^16
bytes>

Not
applicable

5.4.6.2.1 Issuance Session Example
As an example, issuance would contain the following commands and results. In this example, UIDs are
replaced by names to improve readability.
SMUID.StartSession[
 HostSessionID : <a host assigned session number>,
 SPID : "Admin SP",
 Write : True,
 HostChallenge = <random number>,
 HostExchangeAuthority = ORG0-2_UID,
 HostExchangeCert = certificatechain,

HostSigningAuthority = ORG0-1_UID,
HostSigningCert = certificate_chain]

=>

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 190 of 265

SMUID.SyncSession[
 HostSessionID: <the host assigned session number>,
 SPSessionID: <a TPer assigned session number>,

SPChallenge = <a TPer generated random number>
]

SMUID.StartTrustedSession[
HostSessionID: <host session number>,
SPSessionID: <a TPer assigned session number>,
HostResponse : <Host uses ORG0-1 Signing Key to Sign Challenge from TPer>,
HostEncryptsSessionKey : <Host uses TPerExch Exchange Key to send Session
on key to TPer>
]

=>
SMUID.SyncTrustedSession[
 HostSessionID: <host session number>,
 SPSessionID: <TPer session number>,
 SPResponse : <TPer uses TPerSign Signing Key to Sign Challenge from
 Host>,
 SPEncryptSessionKey : <TPer uses ORG0-2 Exchange Key to send Session Key
 to Host>

]

SPID1, Size1 = SPUID.IssueSP [‘AliceSP, 128, [‘Clock’], <128 bit AES key 1>, true]

SPID2, Size2 = SPUID.IssueSP [‘BobSP”, 1024, [‘Clock’, ‘Log’], <128 bit AES key 2>,
true]

SPID3, Size3 = SPUID.IssueSP [‘EveSP”, 2048, [‘Clock’, ‘Crypto’, ‘Log’], <128 bit
AES key 3>, true]

 .
 .
 .

End of Session

Upon successfully issuing this set of commands and closing the session, the new SPs are assumed to
be ready and operational. The host, or another host on the network, may at this point open sessions to
personalize the new SPs: AliceSP, BobSP, and EveSP

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 191 of 265

5.5 Clock Template
5.5.1 Overview
The Clock Template enables an SP to manage information about time. A TPer may support any
number of SPs that incorporate the Clock Template.

5.5.2 Terminology

Table 135 Clock Template Terminology
Term Definition
ExactTime ExactTime is a time value represented by the clock_time type. ExactTime is a

return value in the GetClock method and a parameter of the SetClockHigh and
SetClockLow methods.

HighTime HighTime represents the actual current High Trust time value, which is the value
of the HighSetTime column plus the time elapsed on the IncrementalClock since
the HighSetTime value was set. This is the value returned as ExactTime when
GetClock is invoked and High Trust time is returned.

High Trust A time value retrieved from a remote but strongly protected source of time
IncrementalClock Each Clock Template-enabled SP will have an incremental clock that is

accessible from the TPer and is used to measure time intervals.
LagTime The time period recorded by the Host Application between when it read time from

its time source and when it received the OK result from the SP upon successful
receipt and processing of the ExactTime parameter of the SetClockHigh or
SetClockLow method.

LowTime LowTime represents the actual current Low Trust time value, which is the value of
the LowSetTime column plus the time elapsed on the IncrementalClock since the
LowSetTime value was set. This is the value returned as ExactTime when
GetClock is invoked and Low Trust time is returned.

Low Trust An immediate but not strongly protected source of time, such as the local PC
clock

MonotonicTime A 64-bit persistent counter needed for clock requests that require a counter.
MonotonicTime operations increment the counter independent of transactions and
of the Read/Write state of the session.

MonotonicIncrement This is a counter kept in main memory that is used to reduce the number of writes
to media that are needed to support the MonotonicTime counter.

Timer Mode The Clock Template-enabled SP operates in this mode after a power
cycle/hardware reset, or if time values have never been set. Retrieving the time in
Timer mode returns the value of IncrementalClock and MonotonicTime.

5.5.3 Data Structures
5.5.3.1 ClockTime (Array Table)
The ClockTime table contains exactly one row, with UID=0x00 0x00 0x04 0x01 0x00 0x00 0x00
0x01.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 192 of 265

Table 136 ClockTime Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as

assigned and maintained by the TPer. (Read-only)
UID uid The UID of this row (Read-only)
HaveHigh boolean If the value of this column is True, then the values in the

High Trust time columns (HighByWhom, HighSetTime,
HighInitialTimer, and HighLag) are meaningful. If the value
of the TrustMode column is Low or Timer then the value of
this column shall be False. (Read-only)

HighByWhom Authority_ref Authority that set the High Trust time. This value is valid
only if HaveHigh is set to True; otherwise it should be
zeroes. This is the uidref to the Authority that is the control
authority of the session. (Read-only)

HighSetTime clock_time The value of this column is the time set to the value of the
ExactTime parameter of the SetClockHigh method when
that method is successfully invoked. This value is valid only
if HaveHigh is set to True; otherwise it should be zeroes.

HighInitialTimer clock_time The value of this column is set to the value of the
IncrementalClock when the ExactTime parameter of the
SetClockHigh method was received. This value is valid only
if HaveHigh is set to True; otherwise it should be zeroes.
(Read-only)

HighLag lag The value of this column is set by the SetClockHigh
method. This value is valid only if HaveHigh is set to True;
otherwise it should be zeroes. This represents seconds and
fractions of a second. (Read-only)

HaveLow boolean If the value of this column is True, then the values in the
Low Trust time columns (LowByWhom, LowSetTime,
LowInitialTimer, and LowLag) are meaningful. If TrustMode
is High or Timer, then this value must be False. (Read-
only)

LowByWhom Authority_ref Authority that set the Low Trust time. This value is valid
only if HaveLow is set to True; otherwise it should be
zeroes. This is the uidref to the Authority that is the control
authority of the session. (Read-only)

LowSetTime clock_time The value of this column is the time set to the value of the
ExactTime parameter of the SetClockLow method when
that method is successfully invoked. This value is valid only
if HaveLow is set to True; otherwise it should be zeroes.
(Read-only)

LowInitialTimer clock_time The value of this column is set to the value of the
IncrementalClock when the ExactTime parameter of the
SetClockLow method was received and processed. This
value is valid only if HaveLow is set to True; otherwise it
should be zeroes. (Read-only)

LowLag lag The value of this column is set by the SetClockLow method.
This value is valid only if HaveLow is set to True; otherwise
it should be zeroes. This represents seconds and fractions
of a second. (Read-only)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 193 of 265

Column Type Description
MonotonicBase uinteger_8 The monotonic time counter value is periodically saved

here. (Read-only)
MonotonicReserve uinteger_8 The value of this column indicates the frequency that the

value of the MonotonicBase column is updated. The value
of MonotonicIncrement is added to MonotonicBase
whenever MonotonicIncrement == MonotonicReserve.
(Read-only)

TrustMode clock_kind Controls whether HaveHigh, HaveLow, both, or neither are
currently in effect.

5.5.4 Methods
The following section identifies methods that operate on the Clock.

5.5.4.1 GetClock (Table Method)
ClockTimeTableUID.GetClock[]
=>
[Kind : clock_kind,
ExactTime : clock_time,
LagTime : lag,
MonotonicTime : uinteger_8]

This method is used to fetch information about the current time.

If the value of the HaveLow column is True and the value of the HaveHigh column is False, then the
result of the GetClock method invocation, in pseudo code, are [“Low”, LowTime, LowLag,
MonotonicTime].

If the value of the HaveHigh column is True, then the result of the GetClock method invocation, in
pseudo code, are [“High”, HighTime, HighLag, MonotonicTime].

If the value of both the HaveLow and HaveHigh columns is False then the result, in pseudo code, is
[“Timer”, IncrementalClock, 0, MonotonicTime].

Successful invocation of this method increments the MonotonicTime.

5.5.4.1.1 Fails
• If ClockTime is not the uid of the ClockTime table

5.5.4.2 ResetClock (Table Method)
ClockTimeTableUID.ResetClock[]
=>
[Result : boolean]

Successful invocation of this method resets the Clock Template-enabled SP’s clock values and puts the
SP into Timer mode. This method is invoked automatically when a TPer undergoes a hardware
reset/power cycle.

The following properties are set when this method is invoked:

o The HaveHigh column of the ClockTime table is set to False, and the values of the
HighByWhom, HighSetTime, HighInitialTimer, and HighLag columns are set to zeroes.

o The HaveLow column of the ClockTime table is set to False, and the values of the LowByWhom,
LowSetTime, LowInitialTimer, and LowLag columns are set to zeroes.

o MonotonicIncrement = 0

o ClockTime.TrustMode = Timer

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 194 of 265

o If ClockTime.MonotonicReserve == 0x00

o ClockTime.MonotonicReserve = <some small value, e.g. 100>

o ClockTime.MonotonicBase = ClockTime.MonotonicBase + ClockTime.MonotonicRe
serve

o MonotonicBase = ClockTime.MonotonicBase

o MonotonicReserve = ClockTime.MonotonicReserve

Note that this guarantees that the MonotonicTime value always increases (although it may, in a
ResetClock, skip up to the value of MonotonicReserve).

5.5.4.2.1 Fails
• If ClockTime is not the uid of the ClockTime table

5.5.4.3 SetClockHigh/SetLagHigh (Table Methods)
ClockTimeTableUID.SetClockHigh[

ExactTime : clock_time
]
=>
[Result : boolean]

ClockTimeTableUID.SetLagHigh[
 LagTime : lag
]
=>
[Result : boolean,
LowPreserved: boolean]

This method pair is used to set the time from a High Trust source. The invocation of these methods
operate as follows:

1. The host invokes the SetClockHigh method on the ClockTime table. The ExactTime input is
received and processed. At this time the value that will eventually be used to set
HighInitialTimer should be computed by the SP, by reading the IncrementalClock value.

2. The SP returns a Result of “True”, indicating that the ExactTime value was received and
processed.

3. The host invokes the SetLagHigh method on the ClockTime table. This method must be the
next method invoked by the host after invocation of the SetClockHigh method invocation. If it
is not, the SetClockHigh method’s ExactTime values to be stored in the ClockTime table will
not be saved to the table. When the SetLagHigh method is received under this condition, the
LagTime input is received and processed. If this invocation is accepted, then

o The value of the HaveHigh column is set to True.

o The value of the HighByWhom column is set to the authority for this session.

o The value of the HighSetTime column is set to ExactTime.

o The value of the HighInitialTimer column is set to the previously read
IncrementalClock value.

o The value of the HighLag column is set to LagTime.

4. If the new HighSetTime and HighLag values do not bracket existing LowSetTime and LowLag
values, then the value of the HaveLow column is set to False and the values of the LowByWhom,
LowSetTime, LowInitialTimer, and LowLag columns are set to zeroes. For additional
information, see 5.5.5.2.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 195 of 265

5. Once all of the above steps have been processed, the SP shall return the method result. If
step 3 was completed successfully, the Result is returned as True. If any of the updates in step
3 were not successfully completed, Result is returned as False. If the HaveLow column is not
set to False from True and the LowByWhom, LowSetTime, LowInitialTimer and LowLag
columns are not set to zeroes due to the described bracketing, then LowPreserved is returned
as True. Otherwise, Low is returned as False.

5.5.4.3.1 Fails
• If ClockTimeTableUID is not the uid of the ClockTime table.
• If the SetLagHigh method is not received immediately after the SetClockHigh method.
• If the value of TrustMode is not Low.

5.5.4.4 SetClockLow/SetLagLow (Table Method)
ClockTimeTableUID.SetClockLow[

ExactTime : clock_time,
]
=>
[Result : boolean]

ClockTimeTableUID.SetLagLow[
 LagTime : lag
]
=>
[Result : boolean]

This method pair is used to set the time from a Low Trust source. The invocation of these methods
operate as follows:

1. The host invokes the SetClockLow method on the ClockTime table. The ExactTime input is
received and processed. At this time the value that will eventually be used to set
LowInitialTimer should be computed by the SP by reading the IncrementalClock value.

2. The SP returns a Result of “True”, indicating that the ExactTime value was received and
processed.

3. The host invokes the SetLagLow method on the ClockTime table. This method must be the
next method invoked by the host after invocation of the SetClockLow method invocation. If it is
not, the SetClockLow method’s ExactTime values to be stored in the ClockTime table will not
be saved to the table. When the SetLagLow method is received under this condition, the
LagTime input is received and processed. If this invocation is accepted, then

o The value of the HaveLow column is set to True.

o The value of the LowByWhom column is set to the authority for this session.

o The value of the LowSetTime column is set to ExactTime.

o The value of the LowInitialTimer column is set to the previously read
IncrementalClock value.

o The value of the LowLag column is set to LagTime

4. If the value of TrustMode is LowAndHigh and HaveHigh is True, then this call shall be accepted
only when the existing HighSetTime and HighLag values bracket the new LowSetTime and
LowLag values. For additional information, see 5.5.5.2.

5. Once all of the above steps have been processed, the SP shall return the method result. If
step 3 was completed successfully and the condition noted in step 4 was met, the updates are
made to the ClockTime table and the Result is returned as True. If any of the updates in step 3
were not successfully completed or the condition noted in Step 4 was not met, Result is
returned as False.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 196 of 265

This invocation is accepted only when the value of the TrustMode column is not “High”.

5.5.4.4.1 Fails
• If ClockTimeTableUID is not the uid of the ClockTime table.
• If the SetLagLow method is not received immediately after the SetClockLow method.
• If the values of HighSetTime and HighLag do not bracket the SetClockLow method’s

ExactTime combined with the SetLagLow method’s LagTime.
• If the value of the TrustMode column is not “High”.

5.5.4.5 IncrementCounter (Table Method)
ClockTimeTableUID.IncrementCounter[]
=>
[MonotonicTime : uinteger_8]

This method increments and then returns the value of the monotonic counter as follows:

if ++MonotonicIncrement == MonotonicReserve

MonotonicBase += MonotonicReserve

MonotonicIncrement = 0

ClockTime.MonotonicBase = MonotonicBase

return MonotonicTime = MonotonicBase + MonotonicIncrement

For two calls to IncrementCounter, the later call will always return a value that is greater than that
returned by the earlier call.

This method is permitted in a Read-Only session. The incrementing of the counter’s value is not subject
to transactional rollback.

5.5.4.5.1 Fails
• If ClockTimeTableUID is not the uid of the ClockTime table.

5.5.5 Descriptions
The Clock Template enables an SP to keep track of date-time utilizing two time markers:

o A time value called ExactTime that records a time stamp that can be interpreted either in
Generalized Time or UTC Time format.

o An error value called LagTime

5.5.5.1 Setting the Time
The SP that incorporates the Clock Template receives the time from a Host Application. It is expected
that the Host Application or some process communicating through the Host Application will monitor and
record the time lag between the point when the Host Application reads the clock time from the source it
is using to get the time, and the point when the Host Application receives confirmation from the SP that
the value has been received.

The Host Application then sends to the SP the lag that it has recorded and, on receipt of this value, the
SP records both the time and the lag in the ClockTime table. In this way, the SP has a value for the
time and can also bracket the error.

5.5.5.2 High Trust vs. Low Trust
A distinction is made between time from a High Trust source and time from a Low Trust source. A High
Trust source may be a remote but strongly protected source of time. A Low Trust source may be an
immediate but not strongly protected source of time, such as the local PC clock.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 197 of 265

The High Trust source is expected to be able to provide a more authoritative time, but with a larger lag,
so the High Trust source is used to bracket the Low Trust source. In this way, a Low Trust but accurate
time may also be detected and used.

When the TrustMode is LowAndHigh and both High Trust and Low Trust values are present, then the
Low Trust time is rejected if it isn’t confirmed by the High Trust time. Specifically, the following should
be true (See 5.5.5.4 for descriptions of LowTime and HighTime):

• LowTime > HighTime.
• LowTime + LowLag < HighTime + HighLag.

If either of these conditions is not true, the Low Trust value is discarded because it is probably wrong.
This means that if Low Trust values exist in the ClockTime table, a SetClockHigh method invocation is
received, and either of the above conditions is false, then the Low Trust values are set to 0; or, if High
Trust values exist in the ClockTime table and a SetClockLow method invocation is received, the
method invocation fails if either of the above conditions is not true.

The SP that incorporates the Clock Template may accept a Low Trust time with or without an existing
High Trust bracket, or just a High Trust time.

5.5.5.3 Monotonic Counter
An SP that incorporates the Clock Template also shall independently maintain a counter that
increments every time a clock time is read – this is a 64-bit persistent counter called MonotonicTime.
The counter is incremented independent of transactions and of the Read/Write state of the session.

This counter is needed for clock requests that require a counter, since it is possible to have the SP time
set back in time, and to enable differentiation between multiple requests received at the same clock
time.

For each SP that incorporates the Clock Template, there shall also be a counter kept in main memory
called MonotonicIncrement. This counter is used to reduce the number of writes to media that are
needed to support the MonotonicTime.

The value of the virtual variable MonotonicTime that the user sees (via the IncrementCounter or
GetClock methods) will be:

 MonotonicTime = MonotonicBase + MonotonicIncrement

The following is always true:

 0 < MonotonicIncrement < MonotonicReserve

Note that in this case, MonotonicBase and MonotonicReserve are not necessarily the values stored in
the ClockTime table. Rather, these values of MonotonicBase and MonotonicReserve are written to
media only as needed to guarantee that the IncrementCounter method always returns a unique value
after a power cycle, etc.

In order to reduce writes to media, the MonotonicBase value stored in the ClockTime table is only
occasionally updated. This is controlled by the value in the MonotonicReserve column of the
ClockTime table.

5.5.5.4 Incremental Clock
Each TPer shall have a quickly accessible incremental clock. This is referred to as IncrementalClock.
Although this clock will not have the correct absolute time, it will be accurate in measuring time
intervals.

To support Host interaction with the Clock Template-enabled SP, two virtual variables – HighTime and
LowTime – are used. HighTime and LowTime internally represent actual current time values.

Calculation of the values of HighTime and LowTime uses the original time set (the value of the
HighSetTime or LowSetTime columns), the value of IncrementalClock when those columns were set

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 198 of 265

(the value of the HighInitialTimer or LowInitialTimer columns), and the current value of
IncrementalClock:

 HighTime = HighSetTime + (IncrementalClock – HighInitialTimer)

 LowTime = LowSetTime + (IncrementalClock – LowInitialTimer)

The HighTime value is changed to new value v as follows (as when a SetClockHigh or SetClockLow
method invocation is received):

 HighSetTime = v

 HighInitialTimer = IncrementalClock

The LowTime virtual variable is changed similarly.

This approach avoids the need to update the media as the value of IncrementalClock changes.

Some TPers may also include other special hardware that can be used to implement the Clock
Template. These include a real-time clock (with battery backup) and non-volatile memory that can be
used to store monotonic counter values.

The existence of a real-time clock on the TPer shall be reported in the response to the Properties
method (see section Table 32).

5.5.5.5 Timer Mode
The Clock Template provides an additional time mode, Timer Mode, to identify when the time has been
un-set after a disk controller reset or if the SP has never had a time set.

After a TPer reset or upon issuance, the SP is in Timer mode. In Timer mode, the time is incremented,
but a successful invocation of the GetClock method will return a clock_kind of “Timer”, the values of the
IncrementalClock and MonotonicTime, and a LagTime of 0. This indicates that the time value cannot
be trusted as an absolute because of the reset.

The ResetClock method is invoked at power up or after a TPer reset, before the SP that incorporates
the Clock Template is accessible. This places the TPer into Timer Mode.

If the TPer has a real-time clock, the TPer will use that value at power up or after a TPer reset so long
as the real-time clock has power. Otherwise, the TPer reverts to the behavior previously described.

5.5.5.6 Storing Time
The clock_time data type is used to represent time in the ClockTime and other tables. This type may
be used to represent either UTC or Generalized time. The clock_time type is a list made up of the
following base types (the information in parentheses identifies the data requirement for the value that
the TPer shall enforce):

o Year (4 digits) – uinteger_2

o Month (2 digits, 1-12) – uinteger_1

o Day (2 digits, 1-31) – uinteger_1

o Hour (2 digits, 0-23) – uinteger_1

o Minute (2 digits, 0-59) – uinteger_1

o Second (2 digits, 0-59) – uinteger_1

o Fraction (number of milliseconds, 0-999) – uinteger_2

5.5.5.7 Storing LagTime
LagTime is stored in the ClockTime table and represented as a method parameter or return result by a
data type that is a list made up of the following base types:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 199 of 265

o Seconds – uinteger_2

o Fraction – uinteger_2

5.5.5.8 Default Logging Settings
The default logging settings associated with the Clock Template methods are:

o The default logging for all Clock Template-enabled methods (ResetClock, SetClockHigh,
SetClockLow, IncrementCounter) is LogAlways.

o All other methods that apply to the ClockTime table will be as described in the Base Template
reference section (See Section 5.3.4.4).

5.5.6 Life Cycle
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Clock Template has the following characteristics based on the current life cycle
state of that SP:

o Issued – At Issuance the SP will have the default Clock Template-related access control
settings as described in the following sections.

o Disabled – If the Clock Template-enabled SP has entered the Disabled state, the SP shall log
authentication, session startup, and method invocation attempts, if the Log Template has been
issued into the SP. These log entries shall have timestamps of the kind appropriate to that log
entry. TPer resets shall cause the SP’s ClockTime table to revert to Timer mode. Log entries
added while the SP is in the Disabled state shall not be retrievable – see other behaviors of
SPs in the Disabled state, as described in section 4.4.3.

o Frozen – When a Clock Template-enabled SP enters the Frozen state, TPer resets shall still
cause the SP’s ClockTime table to revert to Timer mode. Logging shall not occur while the SP
is in the Frozen state. Other behaviors of the SP in the shall be as described in section 4.4.4

o Issued-Disabled-Frozen – If the Clock Template-enabled SP has entered the Issued-
Disabled-Frozen state, the SP shall log authentication, session startup, and method invocation
attempts, if the Log Template has been issued into the SP. These log entries shall have
timestamps of the kind appropriate to that log entry. TPer resets shall cause the SP’s
ClockTime table to revert to Timer mode. Log entries added while the SP is in the Issued-
Disabled-Frozen state shall not be retrievable. A Clock Template-enabled SP that is in the
Issued-Disabled-Frozen state shall not be able to perform any user-invoked SP operations, with
the exceptions noted in section 4.4.5.

5.5.6.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the table/method
combinations provided to an SP by the Clock Template. These access controls represent the pre-
personalization settings of the Clock Template-related table/method combinations, i.e. those that exist
when the SP first enters the Issued state.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a Null UID reference (zeroes). This indicates that access control to perform that action
cannot be satisfied.

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 200 of 265

5.5.6.2.1 ACEs
There are no ACEs added to support the Clock Template.

5.5.6.2.2 ClockTime Table Default Access Control Settings

Table 137 ClockTime Table Default Access Control
Method ACL AddACE RemoveACEGetACLDeleteMethod
Get Admins Admins Admins Admins Admins
GetClock Admins Admins Admins Admins Admins
IncrementCounter Admins Admins Admins Admins Admins
ResetClock Admins Admins Admins Admins Admins
SetClockHigh Admins Admins Admins Admins Admins
SetLagHigh Admins Admins Admins Admins Admins
SetClockLow Admins Admins Admins Admins Admins
SetLagLow Admins Admins Admins Admins Admins

5.5.7 Examples
5.5.7.1 Example ClockTime Tables

Table 138 Example ClockTime Table 1 – High Trust Time
UID Have

High
High
ByWhom HighSetTime High InitialTimer HighLag Have

Low
Low
ByWhom

00 00 04 01 00 00 00 01 True 9

{Year=2006,
Month=8, Day=2,
Hour=11,
Minute=58,
Second=37}

{Year=2006,
Month=1, Day=2,
Hour=11,
Minute=58,
Second=37,
Fraction=26}

{Seconds=135,
Fraction=900} False 0

LowSetTime Low
InitialTimer LowLag Monotonic

Base
Monotonic
Reserve

Trust
Mode

 0 0 0 1 3 High

Table 139 Example ClockTime Table 2 – Low Trust Time
UID Have

High
High
ByWhom HighSetTime High

InitialTimer HighLag Have
Low

Low
ByWhom

00 00 04 01 00 00 00 01 False 0 0 0 0 True 9

LowSetTime Low
InitialTimer LowLag Monotonic

Base
Monotonic
Reserve

Trust
Mode

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 201 of 265

LowSetTime Low
InitialTimer LowLag Monotonic

Base
Monotonic
Reserve

Trust
Mode

{Year=2006,
Month=8,
Day=2,
Hour=11,
Minute=59,
Second=18}

{Year=2006,
Month=1,
Day=2,
Hour=11,
Minute=59,
Second=18,
Fraction=91}

{Seconds=16,
Fraction=80} 1 3 Low

Table 140 Example ClockTime Table 3 – High and Low Trust Time
UID Have

High
High
ByWhom HighSetTime High

InitialTimer HighLag Have
Low

Low
ByWhom

00 00 04 01 00 00 00 01 True 9

{Year=2006,
Month=8,
Day=2,
 Hour=11,
Minute=58,
Second=37}

{Year=2006,
Month=1,
Day=2,
Hour=11,
Minute=58,
Second=37,
Fraction=26}

{Seconds=135,
Fraction=900} True 9

LowSetTime Low
InitialTimer LowLag Monotonic

Base
Monotonic
Reserve Trust Mode

{Year=2006,
Month=8,
Day=2,
Hour=11,
Minute=59,
Second=18}

{Year=2006,
Month=1,
Day=2,
Hour=11,
Minute=59,
Second=18,
Fraction=91}

{Seconds=16,
Fraction=80} 4 3 LowAndHigh

Table 141 Example ClockTime Table 3 – Timer
UID Have

High
High
ByWhom HighSetTime High

InitialTimer HighLag Have
Low

Low
ByWhom

00 00 04 01 00 00 00 01 False 0 0 0 0 False 0

LowSetTime Low
InitialTimer LowLag Monotonic

Base
Monotonic
Reserve

Trust
Mode

0 0 0 4 3 Timer

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 202 of 265

5.6 Crypto Template

5.6.1 Overview
The Crypto Template provides a set of cryptographic methods that operate on public and symmetric
key store tables, collectively called Credential tables, provided by the Base and other Templates. The
Crypto Template also provides a set of tables that supports these methods.

The set of cryptographic methods that the Crypto Template provides support functionality that includes
Encryption, Decryption, Signing, Verifying, Hashing, HMAC, and XOR. Other Templates may provide
Credential tables to an SP. Credential tables in an SP that does not incorporate the Crypto Template
may be key stores or contain credentials for use in media encryption, secure messaging, and
authentication. Incorporating the Crypto Template into an SP enables the host to perform encryption,
decryption, signing, and verification on the TPer, using keys and data stored on the TPer.

5.6.2 Terminology

Table 142 Crypto Template Terminology
Term Definition
"stream" The term "stream", used in quotation marks in this section, is not related to session or

messaging streams. Rather, this term is used to identify a single operational context related
to a particular cryptographic operation. A "stream" is created using an initialization method, is
operated on by one or more calculation methods of the type appropriate to the initialized
"stream", and is closed by a finalization method. A particular context shall deal only with the
operation associated with it (encrypt, decrypt, HMAC, or hash).

5.6.3 Data Structures
The Crypto Template provides tables similar to the Credential tables described by the Base and other
Templates. However, unlike those Credential tables, which represent key stores or authentication
associations, the Crypto Template’s tables are Credential support tables optimized for incremental on-
TPer operations.

5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table)
This section describes the support table for use with SHA-1 hashing operations.

Table 143 H_SHA_1 Table Description
Column IsIndex Type Description
UID uid Unique identifier for this row. (Read-only)
Name Yes name Name of this object (Read-only for pre-personalization

objects)
CommonName Yes name A convenient name that may be shared by several objects.

(Read-only for pre-personalization objects)
Proof bytes_20_def_00 This is the proof to be checked when the Verify method is

invoked on this credential object; or this is the proof to be
created when the Sign method is invoked on this
Credential object. The default value of this column is 00s.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 203 of 265

Column IsIndex Type Description
Accumulator bytes_20_def_00 This is the accumulator where a new hash is incrementally

created upon invocation of the Hash or HMAC methods on
this credential, or where an initial condition is set. The
default value of this column is zeroes.

Signer cred_object_uidref Reference to the signing/verification credential object.
This is the signing credential whose public key or
symmetric key will decrypt the proof to reveal the proof’s
underlying hash when the Verify method is invoked; or
whose private or symmetric key will encrypt the proof when
the Sign method is invoked on this credential; or whose
HMAC key will be used when the HMAC methods are
invoked on this credential. The default value of this
column is zeroes (Null UID reference).

Object of this table are used with the HashInit, HashCalc, HashFinalize, HMACInit, HMACCalc,
HMACFinalize, Sign, and Verify methods.

5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table)
This section describes the support table for use with SHA-256 hashing operations.

Table 144 H_SHA_256 Table Description
Column IsIndex Type Description
UID uid Unique identifier for this row. (Read-only)
Name Yes name Name of this object (Read-only for pre-personalization

objects)
CommonName Yes name A convenient name that may be shared by several objects.

(Read-only for pre-personalization objects)
Proof bytes_32_def_00 This is the proof to be checked when the Verify method is

invoked on this credential object; or this is the proof to be
created when the Sign method is invoked on this
Credential object. The default value of this column is 00s.

Accumulator bytes_32_def_00 This is the accumulator where a new hash is incrementally
created upon invocation of the Hash or HMAC methods on
this credential, or where an initial condition is set. The
default value of this column is zeroes.

Signer cred_object_uidref Reference to the signing/verification credential object.
This is the signing credential whose public key or
symmetric key will decrypt the proof to reveal the proof’s
underlying hash when the Verify method is invoked; or
whose private or symmetric key will encrypt the proof when
the Sign method is invoked on this credential; or whose
HMAC key will be used when the HMAC methods are
invoked on this credential. The default value of this
column is zeroes (Null UID reference).

Object of this table are used with the HashInit, HashCalc, HashFinalize, HMACInit, HMACCalc,
HMACFinalize, Sign, and Verify methods.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 204 of 265

5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table)
This section describes the support table for use with SHA-384 hashing operations.

Table 145 H_SHA_384 Table Description
Column IsIndex Type Description
UID uid Unique identifier for this row. (Read-only)
Name Yes name Name of this object (Read-only for pre-personalization

objects)
CommonName Yes name A convenient name that may be shared by several objects.

(Read-only for pre-personalization objects)
Proof bytes_48_def_00 This is the proof to be checked when the Verify method is

invoked on this credential object; or this is the proof to be
created when the Sign method is invoked on this
Credential object. The default value of this column is 00s.

Accumulator bytes_48_def_00 This is the accumulator where a new hash is incrementally
created upon invocation of the Hash or HMAC methods on
this credential, or where an initial condition is set. The
default value of this column is zeroes.

Signer cred_object_uidref Reference to the signing/verification credential object.
This is the signing credential whose public key or
symmetric key will decrypt the proof to reveal the proof’s
underlying hash when the Verify method is invoked; or
whose private or symmetric key will encrypt the proof when
the Sign method is invoked on this credential; or whose
HMAC key will be used when the HMAC methods are
invoked on this credential. The default value of this
column is zeroes (Null UID reference).

Object of this table are used with the HashInit, HashCalc, HashFinalize, HMACInit, HMACCalc,
HMACFinalize, Sign, and Verify methods.

5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table)
This section describes the support table for use with SHA-512 hashing operations.

Table 146 H_SHA_512 Table Description
Column IsIndex Type Description
UID uid Unique identifier for this row. (Read-only)
Name Yes name Name of this object (Read-only for pre-personalization

objects)
CommonName Yes name A convenient name that may be shared by several objects.

(Read-only for pre-personalization objects)
Proof bytes_64_def_00 This is the proof to be checked when the Verify method is

invoked on this credential object; or this is the proof to be
created when the Sign method is invoked on this
Credential object. The default value of this column is 00s.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 205 of 265

Column IsIndex Type Description
Accumulator bytes_64_def_00 This is the accumulator where a new hash is incrementally

created upon invocation of the Hash or HMAC methods on
this credential, or where an initial condition is set. The
default value of this column is zeroes.

Signer cred_object_uidref Reference to the signing/verification credential object.
This is the signing credential whose public key or
symmetric key will decrypt the proof to reveal the proof’s
underlying hash when the Verify method is invoked; or
whose private or symmetric key will encrypt the proof when
the Sign method is invoked on this credential; or whose
HMAC key will be used when the HMAC methods are
invoked on this credential. The default value of this
column is zeroes (Null UID reference).

Object of this table are used with the HashInit, HashCalc, HashFinalize, HMACInit, HMACCalc,
HMACFinalize, Sign, and Verify methods.

5.6.4 Methods
5.6.4.1 Key Related Method Group - Random (SP Method)
This section describes the method used to generate random numbers.

SPUID.Random[
Count : uinteger_256,
BufferOut = cell_block]

=>
[Result : max_bytes_256]

This method returns a sequence of random bytes of a specified size, as defined in the Count method
parameter. The quality of random numbers generated is under the purview of the conformance profile.

If the BufferOut parameter is specified, Result will be empty.

5.6.4.2 Crypto Related Method Group – Stir (SP Method)
SPUID.Stir[
 Value : stir_input
]
=>
[Result : boolean]

The purpose of this method is to add additional information for use by the Random method for
subsequent invocations of that method.

The Stir method is invoked using the Value parameter, which can hold either an integer or a Boolean
value.

Invocation of the Stir method with the integer Value parameter allows the host to pass an integer of its
choice as the information to be added for use by the Random method.

Invocation of the Stir method with the Boolean Value parameter indicates that the TPer should
generate the information to be used by the Random method.

Invocation of the Stir method with a Value parameter of False is an error.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 206 of 265

5.6.4.3 Decryption Method Group – DecryptInit (Object Method)
CredentialObjectUID.DecryptInit[

IV = iv]
=>
[Result : boolean]

This method is used to initiate a decryption “stream” using the credential object that invoked the
method. Only one decryption “stream” shall be able to be open at any one time for any individual
credential object.

If the IV parameter is included, the parameterized IV is used in place of that which may be stored in the
credential object itself.

5.6.4.3.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential
• If the object currently already has a decryption “stream” open

5.6.4.4 Decryption Method Group - Decrypt (Object Method)
CredentialObjectUID.Decrypt[

DataInput : decrypt_input,
BufferOut = cell_block]

=>
[Result : decrypt_result]

The Decrypt method causes the TPer to perform decryption on the data supplied using the credential
object that invoked the method.

This method shall require that the DecryptInit method has been invoked previously during the
session to start a decryption “stream” for the invoking credential object, and that the DecryptFinalize
method has not yet been invoked to close that “stream”. Invoking the Decrypt method when there is
no open decryption “stream” (i.e. before DecryptInit or after DecryptFinalize) shall result in an
error.

The value of the DataInput argument can be either a max bytes value, wherein bytes to be decrypted
are passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP
that holds the data to be decrypted. The value passed upon invocation of the Decrypt method is
decrypted using the key in the specified credential.

If the Result cellblock is specified, the DataInput byte length shall be equal in size to or smaller than the
cellblock specified for the Result.

The required length of the DataInput bytes is dependant upon the mode of operation selected for the
credential. Should padding be required, the host shall perform it.

If the host invokes the Decrypt method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Decrypt method, the host must also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

If the host invokes the Decrypt method using the BufferOut cellblock as the target for the result bytes,
then in addition to fulfilling the access control on the Decrypt method, the host must also fulfill the
access control required to invoke the Set method on the entirety of that cellblock.

If the BufferOut parameter is specified, the method Result shall be empty.

5.6.4.4.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 207 of 265

• If the DataInput cellblock reference is not a to valid cellblock
• If the DataInput is a cellblock reference and Get access control on that cellblock has not been

fulfilled
• If the BufferOut is not a valid cellblock
• If BufferOut has been specified and Set access control on that cellblock has not been fulfilled
• If the DataInput byte size is not the same size as or smaller than the Result cell size (if specified).
• If Decrypt has been invoked when no decryption “stream” is open

5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)
CredentialObjectUID.DecryptFinalize[
]
=>
[Result : decrypt_result]

Invocation of this method closes the decryption “stream” associated with this object.

5.6.4.5.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential
• If there is no decryption “stream” open for this credential object

5.6.4.6 Encryption Method Group – EncryptInit (Object Method)
CredentialObjectUID.EncryptInit[

IV = iv]
=>
[Result : boolean]

This method is used to initiate an encryption “stream” using the credential object that invoked the
method. Only one encryption “stream” shall be able to be open at any one time for any individual
credential object.

If the IV parameter is included, the parameterized IV is used in place of that which may be stored in the
credential object itself.

5.6.4.6.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential
• If the object currently already has an encryption “stream” open

5.6.4.7 Encrytion Method Group - Encrypt (Object Method)
CredentialObjectUID.Encrypt[

DataInput : encrypt_input,
BufferOut = cell_block]

=>
[Result : encrypt_result]

The Encrypt method causes the TPer to perform encryption on the data supplied using the credential
object that invoked the method.

This method shall require that the EncryptInit method has been invoked previously during the
session to start an encryption “stream” for the invoking credential object, and that the EncryptFinalize
method has not yet been invoked to close that “stream”. Invoking the Encrypt method when there is
no open encryption “stream” (i.e. before EncryptInit or after EncryptFinalize) shall result in an
error.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 208 of 265

The value of the DataInput argument can be either a max bytes value, wherein bytes to be encrypted
are passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP
that holds the data to be encrypted. The value passed upon invocation of the Encrypt method is
encrypted using the key in the specified credential.

If the Result cellblock is specified, the DataInput byte length shall be equal in size to or smaller than the
cellblock specified for the Result.

The required length of the DataInput bytes is dependant upon the mode of operation selected for the
credential. Should padding be required, the host shall perform it.

If the host invokes the Encrypt method using the data addressed via the cellblock as data input, then
in addition to fulfilling the access control on the Encrypt method, the host must also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

If the host invokes the Encrypt method using the BufferOut cellblock as the target for the result bytes,
then in addition to fulfilling the access control on the Encrypt method, the host must also fulfill the
access control required to invoke the Set method on the entirety of that cellblock.

If the BufferOut parameter is specified, the method Result shall be empty.

5.6.4.7.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential
• If the DataInput cellblock reference is not a to valid cellblock
• If the DataInput is a cellblock reference and Get access control on that cellblock has not been

fulfilled
• If the BufferOut is not a valid cellblock
• If BufferOut has been specified and Set access control on that cellblock has not been fulfilled
• If the DataInput byte size is not the same size as or smaller than the Result cell size (if specified).
• If Encrypt has been invoked when no encryption “stream” is open

5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method)
CredentialObjectUID.EncryptFinalize[
]
=>
[Result : boolean]

Invocation of this method closes the encryption “stream” associated with this object.

5.6.4.8.1 Fails
• If the object does not exist
• If the object does not contain a valid credential
• If the object is not a symmetric credential
• If there is no encryption “stream” open for this credential object

5.6.4.9 Sign (Object Method)
CredentialObjectUID.Sign
HashObjectUID.Sign[

DataInput : sign_input,
BufferOut = cell_block]

=>
[Result : sign_result]

This method is used to sign a data input using the private part of a public-private key pair.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 209 of 265

The value of the DataInput argument can be either a max bytes value, wherein bytes to be signed are
passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that
holds the data to be signed.

For the Sign method invoked on an asymmetric credential object, the DataInput value is signed using
the private part of the key pair of the specified public key credential.

For the Sign method invoked on a hash object, the data in the hash object’s Accumulator column is
signed using the private part of the key pair of the public key credential referenced in the hash object’s
Signer column. It is an error for the Sign method to be invoked on a hash object and have the
DataInput parameter specified.

If the DataInput parameter specifies a cellblock address as the input to the method, in addition to
fulfilling the access control requirements to invoke the Sign method, the host shall also fulfill the access
control requirements necessary to invoke the Get method on the entirety of the specified cellblock.

If the BufferOut parameter is specified as the target of the method result, in addition to fulfilling the
access control requirements to invoke the Sign method, the host shall also fulfill the access control
requirements necessary to invoke the Set method on the entirety of the specified cellblock.

If the BufferOut parameter is specified, the method Result shall be empty.

5.6.4.9.1 Fails
• If the invoking object does not exist
• If the Sign method is invoked on a hash object and that object does not reference a valid public key

credential (RSA, EC)
• If the invoking credential, or the credential referenced from the hash object, does not contain a valid

private key
• If the DataInput cellblock reference is not a to valid cellblock
• If the host application has not fulfilled the access control requirements necessary to invoke the Get

method on the DataInput cellblock
• If the BufferOut is not a valid cellblock
• If the host application has not fulfilled the access control requirements necessary to invoke the Set

method on the BufferOut cellblock

5.6.4.10 Verify (Object Method)
CredentialObjectUID.Verify
HashObjectUID.Verify[

DataInput : verify_input,
Proof = verify_proof]

=>
[Result : boolean]

This method may be invoked on a hash object or a public key credential. It is used to verify a signed
hash against a proof.

The value of the DataInput argument can be either a max bytes value, wherein bytes to be verified are
passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that
holds the data to be verified.

The value of the Proof parameter identifies the data that the DataInput is to be compared against. The
value of the Proof parameter can be either a max bytes value, wherein the proof data bytes are passed
as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the
proof data.

5.6.4.10.1 Fails
• If the invoking object does not exist.
• If the invoking credential object is not a valid public key credential (RSA, EC).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 210 of 265

• If the invoking hash object does not reference a public key credential.
• If the host application has not fulfilled the access control requirements necessary to invoke the Get

method on the DataInput or Proof cellblock.
• If the DataInput or Proof are not valid cellblocks.

5.6.4.11 Hash Method Group – HashInit (Object Method)
HashObjectUID.HashInit[
 BufferOut = cell_block]
=>
[Result : boolean]

 This method is used to initiate a hash “stream” using the hash object that invoked the method. Only
one hash “stream” shall be able to be open at any one time for any individual hash object.

Invocation of this method is required before the HashCalc method can be successfully invoked. In
preparation for beginning the hash “stream”, upon successful invocation of the Hashinit method, the
invoking hash object’s Accumulator column is set to zero.

If the BufferOut cellblock is specified, that cellblock shall be larger than or equal to the size of the hash
calculation result.

5.6.4.11.1 Fails
• If the hash object does not exist
• If BufferOut has been specified and is not a valid cellblock
• If BufferOut has been specified and is not larger than or equal to the size of the hash calculation

result
• If BufferOut has been specified and Set access control on that cellblock has not been fulfilled
• If the hash object currently already has a hash “stream” open

5.6.4.12 Hash Method Group – HashCalc (Object Method)
HashObjectUID.HashCalc[

DataInput : hash_input
]
=>
[Result : hash_result]

Invocation of the HashCalc method causes the input Data or Buffer to be hashed. The TPer hashes the
data on block boundaries as they are reached.

This method shall require that the HashInit method has been invoked previously during the session to
start a hash “stream” for the invoking hash object, and that the HashFinalize method has not yet been
invoked to close that “stream”. Invoking the HashCalc method when there is not an open hash “stream”
(i.e. before HashInit or after HashFinalize) shall result in an error.

The value of the DataInput argument can be either a max bytes value, wherein bytes to be hashed are
passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that
holds the data to be hashed.

Results are stored in the BufferOut cellblock of the HashInit method, if that parameter is included.
Otherwise the results are stored in the invoking hash object’s Accumulator column. If the BufferOut
parameter is specified in the HashInit method, the HashCalc method Result will be empty.

The method returns the DataInput that has been consumed in the hash as the method result.

5.6.4.12.1 Fails
• If the object does not exist
• If the DataInput cellblock reference is not a to valid cellblock

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 211 of 265

• If the DataInput parameter references a cellblock and Get access control on that cellblock has not
been fulfilled

• If HashCalc has been invoked when no hash “stream” is open
• If HashCalc cannot write to BufferOut cellblock.

5.6.4.13 Hash Method Group – HashFinalize (Object Method)
HashObjectUID.HashFinalize[
]
=>
[Result : hash_result]

Invocation of the HashFinalize method causes the TPer to flush the remaining, non-blocked data
through the hash and sets the BufferOut cellblock specified in the HashInit method. If the BufferOut
cellblock was not supplied to the HashInit method, the hash result is set to the Accumulator column of
the invoking hash object.

The method returns the input data that had not yet been consumed by the hash until it had been
flushed by this method invocation as the result of the method.

If there is no open hash “stream” for the invoking hash object, the method invocation shall fail.

5.6.4.13.1 Fails
• If the object does not exist
• If the object does not reference a valid symmetric credential object that contains a valid key
• If BufferOut is not a valid cellblock
• If BufferOut is specified and Set access control on that cellblock has not been fulfilled
• If HMACFinalize has been invoked when no HMAC “stream” is open

5.6.4.14 HMAC Method Group – HMACInit (Object Method)
HashObjectUID.HMACInit[
]
=>
[Result : boolean]

This method is used to initiate an HMAC “stream” using the hash object that invoked the method. Only
one HMAC “stream” shall be able to be open at any one time for any individual hash object.

Invocation of this method is required before the HMACCalc method can be successfully invoked. In
preparation for beginning the HMAC “stream”, upon successful invocation of the HMACInit method, the
invoking hash object’s Accumulator column is set to zero.

5.6.4.14.1 Fails
• If the hash object does not exist
• If the hash object does not reference a valid symmetric credential object that contains a valid key
• If the hash object currently already has an HMAC “stream” open

5.6.4.15 HMAC Method Group – HMACCalc (Object Method)
HashObjectUID.HMACCalc[

DataInput : hmac_input }
]
=>
[Result : hmac_result]

Invocation of the HMACCalc method causes the DataInput parameter value, or the data referenced by
the DataInput parameter, to be hashed using the HMAC algorithm with the symmetric key credential
referenced from the invoking hash object.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 212 of 265

This method shall require that the HMACInit method has been invoked previously during the session to
start an HMAC “stream” for the invoking hash object, and that the HMACFinalize method has not yet
been invoked to close that “stream”. Invoking the HMACCalc method when there is not an open HMAC
“stream” (i.e. before HMACInit or after HMACFinalize) shall result in an error.

The value of the DataInput argument can be either a max bytes value, wherein bytes to have the HMAC
operation performed are passed as a parameter of the method; or a cellblock that addresses a subset
of a table on the SP that holds the data to have the HMAC operation performed.

The method returns the input Data or input Buffer value that has been consumed in the hash as the
method Result.

5.6.4.15.1 Fails
• If the object does not exist
• If the object does not reference a valid symmetric credential object that contains a valid key
• If the DataInput cellblock reference is not a to valid cellblock
• If the DataInput is a cellblock reference and Get access control on that cellblock has not been

fulfilled
• If HMACCalc has been invoked when no HMAC “stream” is open

5.6.4.16 HMAC Method Group – HMACFinalize (Object Method)
HashObjectUID.HMACFinalize[

BufferOut = cell_block
]
=>
[Result : hmac_result]

Invocation of the HMACFinalize method causes the TPer to flush the remaining, non-blocked data
through the hash, computes the HMAC, and sets the result to the BufferOut cellblock. If the BufferOut
cellblock has not been supplied, the HMAC result is set to the Accumulator column of the invoking
Hash object.

The method returns the input data that had not yet been consumed by the hash until it had been
flushed by this method invocation as the result of the method.

If there is no open HMAC “stream” for the invoking Hash object, the method invocation shall fail.

5.6.4.16.1 Fails
• If the object does not exist
• If the object does not reference a valid symmetric credential object that contains a valid key
• If BufferOut is not a valid cellblock
• If BufferOut is specified and Set access control on that cellblock has not been fulfilled
• If the BufferOut cellblock is specified and it is not larger than or equal to the size of the HMAC result
• If HMACFinalize has been invoked when no HMAC “stream” is open

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 213 of 265

5.6.4.17 XOR (SP Method)
SPUID.XOR[

PatternInput : byte_table_ref,
DeletePattern : boolean,
DataInput : xor_input,
BufferOut = cell_block

]
=>
[Result : xor_result]

The input data is XORed using the pattern specified in the PatternInput parameter. This parameter is
a reference to the byte table that stores the pattern.

That DataInput argument can be either a max bytes value, wherein bytes to be XORed are passed as
a parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the
data to be XORed.

5.6.4.17.1 Fails
• If the PatternInput is not a byte table
• If the DataInput cellblock reference is not a to valid cellblock
• If BufferOut is not a valid cellblock
• If PatternInput is smaller than the input data
• If BufferOut is smaller than the input data
• If associated access control conditions, as described in 5.6.5.4 are not met

5.6.5 Descriptions
5.6.5.1 Cellblocks
Methods of the Crypto Template utilize cellblocks for parameters. Cellblocks are the data type
cell_block, and define a set of rows and columns that make up a congruent area of a table. Use of
cellblocks as method parameters necessitate special access control condition requirements.

Any cellblock used as input data to a method requires that the host invoking the method satisfy the
access control requirement necessary to invoke the Get method on the entirety of the parameterized
cellblock.

Any cellblock used as an output buffer for a method requires that the host invoking the method satisfy
the access control requirement necessary to invoke the Set method on the entirety of the
parameterized cellblock.

Exceptions or additions to this, such as are required for the XOR method’s PatternInput parameter, are
noted in the method’s description.

5.6.5.2 Hashing
Invocation of the HashInit method, followed be one or more HashCalc method invocations and the
HashFinalize method on a H_SHA_* object, causes the data parameterized in or referenced from the
HashCalc method invocations to be hashed in the manner described in FIPS 180-2.

A hash “stream” is initiated using the HashInit method invoked upon a hash object. Only one hash
“stream” shall be open at any one time for any individual hash object. During a session, invoking the
HashInit method on a hash object after invoking HashInit on that object but before invoking the
HashFinalize method shall cause the second HashInit method invocation to fail.

The HashInit method shall be invoked prior to invocation of the HashCalc method. In preparation for
beginning the hash “stream”, upon successful invocation of the HashInit method, the invoking hash
object’s Accumulator column is set to zero. After invocation of the HashInit method, the Set method
may be used to set an initial condition in the Accumulator column. Invoking the Set method on the

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 214 of 265

Accumulator column after the HashInit invocation and after one or more successful HashCalc
invocations may cause the final hash result to be an unexpected or inconsistent value.

The HashInit method has a parameter that allows the host to specify a particular cellblock as the
target of the hash’s final result. This cellblock shall be set to the final hash result upon successful
invocation of the HashFinalize method. Access control requirements necessary to permit invocation
of the Set method on the entirety of this cellblock shall be fulfilled, or the HashInit method invocation
shall fail. If the BufferOut parameter of the HashInit method was used, the cellblock shall be larger
than or equal to the size of the expected final hash calculation result, or the HashInit method
invocation shall fail.

Successful invocation of the HashCalc method causes the data input to the HashCalc method to be
hashed with the value currently stored in the Accumulator column of the invoking hash object. The
HashCalc method returns as its result the input data that has been consumed in the hash. Hashing is
done at block boundaries appropriate for the hash object type.

The HashCalc method shall accept either bytes passed across the interface as a parameter of the
method invocation; or shall identify a cellblock that holds the data to be hashed. If the data is
addressed via cellblock, the host shall fulfill access control requirements necessary to invoke the Get
method on the entirety of that cellblock, or the HashCalc method invocation shall fail.

Upon invocation of the HashFinalize method, the TPer flushes the remaining, non-blocked data
through the hash function represented by the invoking hash object. Upon completion of hashing, the
final hash result is set to the cellblock specified in the HashInit method. If this parameter was not
included in the HashInit method, then the Accumulator column of the invoking hash object is set to
the final hash result. The HashFinalize method returns any data that had previously been input but
had not yet been hashed and returned in the HashCalc method. The HashFinalize method closes the
hash “stream” on the invoking hash object.

If the BufferOut parameter of the HashInit method was used, the referenced cellblock shall be set to
the final hash value. Access control requirements necessary to permit invocation of the Set method on
the entirety of this cellblock shall be fulfilled, or the HashFinalize method shall fail. If the BufferOut
parameter of the HashInit method was used, the cellblock shall be larger than or equal to the size of
the expected final hash calculation result, or the HashFinalize method invocation shall fail.

Invoking HashCalc or HashFinalize on a hash object that does not have an open “stream” shall cause
that method invocation to fail.

5.6.5.3 HMAC
Invocation of the HMACInit method, followed be one or more HMACCalc method invocations and the
HMACFinalize method on a H_SHA_* object, causes the data parameterized in or referenced from the
HMACCalc method invocation to have a message authentication code computed on that input data using
the H_SHA_* object upon which the method was invoked, the HMAC key referenced from that H_SHA_*
object, and the HMAC algorithm described in FIPS 198.

An HMAC “stream” is initiated using the HMACInit method invoked upon a hash object. Only one
HMAC “stream” shall be open at any one time for any individual hash object.

During a session, invoking the HMACInit method on a hash object after invoking HMACInit on that
object but before invoking the HMACFinalize method shall cause the second HMACInit method
invocation to fail. The HMACInit method shall be invoked prior to invocation of the HMACCalc method.

Successful invocation of the HMACCalc method causes the data input to be hashed on block boundaries
as they are reached. Intermediate results are stored as internal state and are not accessible from the
host.

The HMACCalc method shall accept either bytes passed across the interface as a parameter of the
method invocation; or shall identify a cellblock that holds the data to be hashed. If the data is

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 215 of 265

addressed via cellblock, the host shall fulfill access control requirements necessary to invoke the Get
method on the entirety of that cellblock, or the HMACCalc method invocation shall fail.

Successful invocation of the HMACCalc method returns the input data that was consumed in the hash
method.

Upon invocation of the HMACFinalize method, the TPer flushes the remaining, non-blocked data
through the hash function represented by the invoking hash object, computes the HMAC, and sets the
result to the BufferOut cellblock if specified. If the BufferOut cellblock is specified, the host shall be
required to fulfill access control requirements necessary to successfully invoke the Set method on the
entirety of that cellblock.

If the BufferOut cellblock has been specified in the HMACFinalize method invocation, that cellblock
shall be larger than or equal to the size of the HMAC calculation result or the HMACFinalize method
invocation shall fail.

If the BufferOut cellblock has not been supplied, the HMAC result is set to the Accumulator column of
the invoking hash object.

The HMACFinalize method invocation shall return the data that had been supplied as input to the
HMACCalc method that had not yet been consumed.

Invoking HMACCalc or HMACFinalize on a hash object that does not have an open “stream” shall cause
that method invocation to fail.

5.6.5.4 XOR
Invocation of the XOR method causes the XOR method’s input data to be XORed with the pattern
specified in the PatternInput parameter of the method invocation.

The XOR method shall accept either bytes passed across the interface as a parameter of the method
invocation; or shall identify a cellblock that holds the data to be hashed. If the data is addressed via
cellblock, the host shall fulfill access control requirements necessary to invoke the Get method on the
entirety of that cellblock, or the XOR method invocation shall fail.

The PatternInput parameter of the method shall be the uid of a byte table that holds the pattern with
which the input data shall be XORed. The PatternInput shall be the same size or larger than the input
data or the method shall fail. The host shall be required to fulfill access control requirements necessary
to invoke the Get method on the entirety of the PatternInput cellblock, or the XOR method invocation
shall fail.

The DeletePattern parameter identifies the behavior of the PatternInput table after the XOR operation is
complete. If the DeletePattern parameter is True, then at completion of the XOR operation the contents
of the byte table referenced as the PatternInput shall be set to all 00’s. If the DeletePattern parameter
is False, the method shall not alter the contents of the referenced byte table. The host shall fulfill
access control requirements that permit invocation of the Set method on the PatternInput table or the
XOR method invocation shall fail.

If the host’s intention is to use the XOR method as a one-time pad, the host should invoke the XOR
method with a DeletePattern value of True.

The XOR method returns data in one of two ways. If the BufferOut parameter is specified in the method
invocation, then the XOR method result is set to that cellblock. The BufferOut parameter is specified, the
cellblock shall be the same size or larger than the XOR result. The host shall be required to fulfill
access control requirements necessary to invoke the Set method on the entirety of that cellblock, or the
XOR method invocation shall fail. If the BufferOut parameter is specified, the method result shall be
empty.

If the BufferOut parameter is not specified, the method result shall be the result of the XOR operation.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 216 of 265

5.6.5.5 Signing
Signing of a selected input can be accomplished as described in the following subsections. The exact
algorithms used in the signing and verification of digital signatures are defined in FIPS 186-2, and are
dependent on the public scheme (RSA, EC, etc.) used.

5.6.5.5.1 Invocation of Sign on a Public Key Credential
Invocation of the Sign method can be done by invoking the method on a key pair credential object that
has a private key (for example, C_RSA_1024 or C_EC_256 objects) and either passing in data or
referencing data to be used as the input for signing. The TPer utilizes the private key stored in the
credential object referenced in the invocation and performs a private key signing operation on the input
data.

For this usage, if a cellblock is referenced to hold the output of the Sign method invocation, then no
data is returned, and the result of the Sign is stored in the referenced cell_block. The host shall fulfill
access control requirements necessary to invoke the Set method on the entirety of that target cellblock.

If a cellblock is not referenced to hold the Sign method output, the data returned is the result of the
signing operation performed on the input data with the private key of the referenced credential object.

5.6.5.5.2 Invocation of Sign on a Hash Object
A second way to accomplish signing is to invoke the Sign method on a H_SHA_* object. If the
invocation is done in this manner, then the H_SHA_* object upon which the method was invoked shall
reference a key pair credential object that has a private key. The signing operation in this case is done
using the private key of that referenced credential object.

When invocation of the Sign method is done on a H_SHA_* object, the signing operation can be
performed on either:

1. Data parameterized in or referenced from the Sign method invocation. If this is the case, the
signed data will either be stored in a cell_block referenced in the invocation or returned as the
result of the method invocation. If a cellblock is referenced as the target of the signed data, the
host shall be required to fulfill access control requirements necessary to invoke the Set method
on the entirety of that cellblock, or the Sign method invocation shall fail.

2. Or, if no input data or reference is included in the method invocation, the signing operation is
performed on the value of the H_SHA_* object’s Accumulator column. If this is the case, the
signed data will be stored to the Proof column of the H_SHA_* object, and can be retrieved with
a successful invocation of the Get method on that column.

5.6.5.6 Verifying
Verification of a signed hash can be accomplished as described in the following subsections. The exact
algorithms used in the signing and verification of digital signatures are defined in FIPS 186-2, and are
dependent on the public scheme (RSA, EC, etc.) used.

5.6.5.6.1 Invocation of Verify on a Public Key Credential
Verification may be performed by invoking the Verify method on a public key credential.

The Verify method is invoked on a public key credential. The proof to be verified against may be
supplied in one of two ways.

1. The proof may be parameterized in bytes as the Proof parameter of the Verify method
invocation.

2. The proof may be stored in a cellblock, which is addressed by the Proof parameter of the
Verify method.

The value to be verified may be supplied byt the DataInput parameter in one of two ways:

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 217 of 265

1. The value for verification may be supplied in bytes as the DataInput parameter of the Verify
method invocation.

2. The value for verification may be stored in a cellblock, which is addressed by the DataInput
parameter of the Verify method.

If either the DataInput or Proof parameters are supplied and address a cellblock, the host shall be
required to fulfill the access control requirements necessary to invoke the Get method on the entirety of
that cellblock or the Verify method invocation shall fail.

Verification of the input against the proof is performed using the public key of the invoking public key
credential.

Invocation of the Verify method shall return True if the verified value matches the proof. Otherwise,
the method invocation shall return False.

5.6.5.6.2 Invocation of Verify on a Hash Object
To perform signed hash verification in this way, the Verify method is invoked on a hash object.

The proof to be verified against may be supplied in one of three ways.

1. The proof may be parameterized in bytes as the Proof parameter of the Verify method
invocation.

2. The proof may be stored in a cellblock, which is addressed by the Proof parameter of the
Verify method.

3. If Proof parameter is not supplied to the Verify method, the proof used shall be the value of
the invoking hash object’s Proof column.

The value to be verified may also be supplied in one of three ways.

1. The value for verification may be supplied in bytes as the DataInput parameter of the Verify
method invocation.

2. The value for verification may be stored in a cellblock, which is addressed by the DataInput
parameter of the Verify method.

3. If the DataInput parameter is not supplied to the Verify method, the proof used shall be the
value of the invoking hash object’s Accumulator column.

If the Proof parameter is supplied and is a cellblock, the host shall be required to fulfill the access
control requirements necessary to invoke the Get method on the entirety of that cellblock or the Verify
method invocation shall fail.

Verification of the input against the proof is performed using the public key of the public key credential
that shall be referenced from the invoking hash object.

Invocation of the Verify method shall return True if the verified value matches the proof. Otherwise,
the method invocation shall return False.

5.6.5.7 Encrypting
Invocation of the EncryptInit method, followed by one or more Encrypt method invocations and the
EncryptFinalize method, encrypts data that has either been sent to the Crypto template-enabled SP
from the host in the method invocation, or that is currently stored in the SP.

Successful invocation of the EncryptInit method is used to initiate an encryption “stream” using the
credential object that invoked the method. Only one encryption “stream” shall be open in a session at
any one time for a particular credential object. During a session, invoking the EncryptInit method on
a credential object after invoking EncryptInit on that object but before invoking the EncryptFinalize
method shall cause the second EncryptInit method invocation to fail.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 218 of 265

If the optional IV parameter is used in the EncryptInit method, the parameterized IV is used in place
of that which may be stored in the ResidualData column of the invoking credential. Otherwise, the
value of the ResidualData column of the invoking credential is used as the IV, as required by the value
of the credential object’s Mode column.

As indicated, the host may generate an initialization vector externally and either pass it as a parameter
to the EncryptInit method, or Set the ResidualData column of the symmetric credential object that
will be referenced for use with the encryption. Alternatively, the host may invoke the Random method
and set its output to the ResidualData column of the symmetric credential object that will be referenced
for use with the encryption. For details and guidelines on generation and handling of initialization
vectors, reference NIST Special Publication 800-38.

If the EncryptInit method is invoked with an IV and the credential object or credential object’s Mode
column value do permit use of an IV, then the EncryptInit method shall fail.

The EncryptInit method, upon successful invocation, sets the ResidualData column of the invoking
credential to zero.

Successful invocation of the Encrypt method causes the TPer to use the key stored in the invoked
credential object to encrypt the input data. Encryption is performed using key stored in the invoking
credential object.

The input data may either be parameterized in the Encrypt method invocation, or stored in a table that
is referenced as a cellblock from the Encrypt method invocation. If the Encrypt method's DataInput
parameter references a cellblock, the host shall fulfill access control requirements necessary to invoke
the Get method on the entirety of that cellblock or the method invocation shall fail.

If a cellblock is referenced to hold the output of the Encrypt method invocation, then no data is
returned, and the result of the Encrypt is stored in the referenced cellblock. If the output cellblock is
used, the host shall be required to fulfill the access control requirements necessary to permit invocation
of the Set method on the entirety of the referenced cellblock. If the cellblock is not specified, the data
returned is the result of the encryption operation performed on the input data.

The length of the data input to the Encrypt method shall be as required by the block size of the
particular key type and mode used. Should padding be required, the host shall perform it.

Successful invocation of the Encrypt method causes the invoking symmetric credential object’s
ResidualData column to have the value specified in Table 48 (for C_AES_128 objects) or Table 50 for
C_AES_256 objects).

Upon invocation of the EncryptFinalize method, the encryption “stream” for the invoking credential
shall be closed. Invoking Encrypt or EncryptFinalize on a hash object that does not have an open
“stream” shall cause that method invocation to fail.

Note that only one write session is open at any given point in time. After closing a write session and
opening another write session to the same SP, the host may find that the ResidualData value might
have been modified by another write session.

5.6.5.8 Decrypting
Invocation of the DecryptInit method, followed by one or more Decrypt method invocations and the
DecryptFinalize method invocation decrypts data that has either been sent to the Crypto template-
enabled SP from the host in the method invocation, or that is currently stored in the SP.

Successful invocation of the DecryptInit method is used to initiate a decryption “stream” using the
credential object that invoked the method. Only one decryption “stream” shall be open in a session at
any one time for a particular credential object. During a session, invoking the DecryptInit method on
a credential object after invoking DecryptInit on that object but before invoking the DecryptFinalize
method shall cause the second DecryptInit method invocation to fail.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 219 of 265

If the optional IV parameter is used in the DecryptInit method, the parameterized IV is used in place
of that which may be stored in the ResidualData column of the invoking credential. Otherwise, the
value of the ResidualData column of the invoking credential is used as the IV, as required by the value
of the credential object’s Mode column.

If the DecryptInit method is invoked with an IV and the credential object or credential object’s Mode
column value do permit use of an IV, then the DecryptInit method shall fail.

The DecryptInit method, upon successful invocation, sets the ResidualData column of the invoking
credential to zero.

Successful invocation of the Decrypt method causes the TPer to use the key stored in the invoked
credential object to decrypt the input data. Decryption is performed using the key stored in invoking the
credential object.

The input data may either be parameterized in the Decrypt method invocation, or stored in a table that
is referenced as a cell_block from the Decrypt method invocation. If the Decrypt method's DataInput
parameter references a cellblock as the data input, the host shall fulfill access control requirements
necessary to invoke the Get method on the entirety of that cellblock or the method invocation shall fail.

If a cellblock is referenced to hold the output of the Decrypt method invocation, then no data is
returned, and the result of the Decrypt is stored in the referenced cellblock. If the output cellblock is
used, the host shall be required to fulfill the access control requirements necessary to permit invocation
of the Set method on the entirety of the referenced cellblock. If the cellblock is not specified, the data
returned is the result of the decryption operation performed on the input data.

The length of the data input to the Decrypt method shall be as required by the block size of the
particular key type and mode used. Should padding be required, the host shall perform it.

Successful invocation of the Decrypt method causes the invoking symmetric credential object’s
ResidualData column to have the value specified in Table 48 (for C_AES_128 objects) or Table 50 for
C_AES_256 objects).

Upon invocation of the DecryptFinalize method, the decryption “stream” for the invoking credential
shall be closed. Invoking Decrypt or DecryptFinalize on a hash object that does not have an open
“stream” shall cause that method invocation to fail.

Note that only one write session is open at any given point in time. After closing a write session and
opening another write session to the same SP, the host may find that the ResidualData value might
have been modified by another write session.

5.6.5.9 Default Logging Settings
The default logging settings associated with the Crypto Template methods are:

o The default logging setting for the Delete object method on objects in the H_SHA_* tables, and
for invocation of the Verify method, is LogAlways.

o The default setting for all instances of the Crypto Template methods (Sign, HashInit,
HashCalc, HashFinalize, HMACInit, HMACCalc, HMACFinalize, XOR, EncryptInit, Encrypt,
EncryptFinalize, DecryptInit, Decrypt, and DecryptFinalize) is LogSuccess.

o All other methods that apply to the H_SHA_* tables shall be as described in the Base Template
reference section on Default Logging Settings (See 5.3.4.4).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 220 of 265

5.6.6 Life Cycle
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Crypto Template has the following characteristics based on the current life cycle
state of that SP:

o Issued – At Issuance the SP will have the default Crypto Template-related access control
settings as described in the following sections.

o Disabled – A Crypto Template-enabled SP that is in the Disabled state shall not be able to
perform any user-invoked SP operations, with the exceptions noted in section 4.4.3.

o Frozen – A Crypto Template-enabled SP that is in the Frozen state shall not be able to perform
any user-invoked SP operations, with the exceptions noted in section 4.4.4.

o Issued-Disabled-Frozen – A Crypto Template-enabled SP that is in the Issued-Disabled-
Frozen state shall not be able to perform any user-invoked SP operations, with the exceptions
noted in section 4.4.5.

5.6.6.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the table/method
combinations provided to an SP by the Crypto Template.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a Null UID reference. This indicates that access control to perform that action cannot be
satisfied.

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

5.6.6.2.1 C_RSA_* Objects Access Control Settings – Crypto Template Methods
All objects created in the C_RSA_* tables have the access control settings associated with Crypto
Template methods as defined in Table 147.

Table 147 C_RSA_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Sign Self Self Self Self Self
Verify Self Self Self Self Self

5.6.6.2.2 C_EC_* Objects Access Control Settings – Crypto Template Methods
All objects created in the C_EC_* tables have the access control settings associated with Crypto
Template methods as defined in Table 148.

Table 148 C_EC_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Sign Self Self Self Self Self
Verify Self Self Self Self Self

5.6.6.2.3 C_AES_* Objects Access Control Settings – Crypto Template Methods
All objects created in the C_AES_* tables have the access control settings associated with Crypto
Template methods as defined in Table 149.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 221 of 265

Table 149 C_AES_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
EncryptInit Self Self Self Self Self
Encrypt Self Self Self Self Self
EncryptFinalize Self Self Self Self Self
DecryptInit Self Self Self Self Self
Decrypt Self Self Self Self Self
DecryptFinalize Self Self Self Self Self

5.6.6.2.4 H_SHA_* Table/Objects Access Control Settings
Table 150 defines the default access control settings assigned for H_SHA_* tables.

Table 150 H_SHA_* Tables Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow Admins Admins Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set Admins Admins Admins Admins Admins

Table 151 defines the default access control settings for all H_SHA_* objects.

Table 151 H_SHA_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteMethod Self Self Self Self Self
Delete Self Self Self Self Self
Get Self Self Self Self Self
HashInit Self Self Self Self Self
HashCalc Self Self Self Self Self
HashFinalize Self Self Self Self Self
HMACInit Self Self Self Self Self
HMACCalc Self Self Self Self Self
HMACFinalize Self Self Self Self Self
Set Self Self Self Self Self
Sign Self Self Self Self Self
Verify Self Self Self Self Self

5.6.7 Examples
5.6.7.1 Example H_SHA_1 Table
Table 152 displays an example of the H_SHA_1 table. This example table is used as a resource for
method invocation examples in this section. Values in this table are for illustrative purposes only.

Table 152 Example H_SHA_1 Table
UID Name CommonName Proof Accumulator Credential Signer

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 222 of 265

HashObject1 Example1 ExGroup SIGNED
HASH

ACCUMULATED
HASH C_EC_256 3

HashObject2 Example2 ExGroup ACCUMULATED
HASH C_RSA_1024 10

HashObject3 Example3 ExGroup

HashObject4 Example4 ExGroup C_AES_128 7

5.6.7.2 Hash Example
The following method invocation series hashes the input data. The hashing result is stored in the
Accumulator column of the credential upon which the method was invoked. Because no BufferOut
was included in the invocation, the result of the method invocation is the return of the input data.
HashObject3.HashInit () => [T]
HashObject3.HashCalc (DATA) => [DATA]
HashObject3.HashFinalize () => [DATA]

Invoking the Get method on the hash credential’s Accumulator column retrieves the hashed value:
HashObject3.Get ([startColumnName = ‘Accumulator’, endColumnName = ‘Accumulator’])
=> [Accumulator = HASHED_DATA]

5.6.7.3 HMAC Example
The following method invocation series performs HMAC on the input data. The result is stored in the
Accumulator column of the credential upon which the method was invoked. Because the BufferOut
parameter was included in the invocation, the result of the HMAC operation is stored in the referenced
cell_block. Data returned in response to the method invocations is the data that was passed into the
methods.
HashObject4.HMACInit () => []
HashObject4.HMACCalc (DATA1) => [DATA1]
HashObject4.HMACCalc (DATA2) => [DATA2]
HashObject4.HMACFinalize (BufferOut = [Table=‘HMACByteTable’]) => [REMAININGDATA]
The Get method must be invoked on the HMACByteTable in order to retrieve the result of the HMAC
operation. .

5.6.7.4 Sign Method Invocation Examples
The following method invocation performs signing by invoking the Sign method on a public/private key
credential. The input data is signed using the private key in the referenced credential. The signed data
is returned as the result of the method invocation.
C_RSA_1024Object7.Sign (Data = DATA) => [SIGNED_DATA]

The following method invocation performs signing by invoking the Sign method on a H_SHA_1 object.
The H_SHA_1 object references the credential that performs the signing operation, which in this case is
done on the data stored in the Accumulator column, and the result of the signing operation is stored in
the Proof column.
HashObject2.Sign () => []

The data in the Proof column can be retrieved using a Get method invocation.
HashObject2.Get ([startColumnName = ‘Proof, endColumnName = ‘Proof’]) => [Proof =
SIGNED_DATA]

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 223 of 265

5.6.7.5 Verify Method Invocation Example
This example method invocation performs verification by invoking the Verify method on a
public/private key credential. The input data is verified against the proof data using the public key in the
referenced credential. The method return result is True if the input data matches the proof data.
Otherwise the method returns a result of False.
C_RSA_2048Object14.Verify (Data = DATA, Proof = PROOF) => [T]

The following example method invocation displays the operation of the Verify method. The method
invocation verifies the data in the Proof column of the H_SHA_1 object using the credential referenced
from that object.
HashObject9.Verify () => [F]

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 224 of 265

5.7 Log Template
5.7.1 Overview
The Log Template is designed to maintain a log of the activities on the SP into which it was issued.
The purpose of providing this service is to aid in audits, forensic analysis, and general monitoring of the
operation of the SP.

An issued SP that incorporates the Log Template should also incorporate the Clock Template to exploit
the full capabilities of logging. See Section 5.5 for details on the Clock Template.

5.7.1.1 Terminology

Table 153 Log Template Terminology
Term Definition
Default log This is the initial log table created for an SP that incorporates the Log Template. By

default, all authority operations, access control associations, transaction events, and
session startup events log to this table.

5.7.2 Data Structures
5.7.2.1 Log (Array Table)

Table 154 Log Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned

and maintained by the TPer. (Read-only)
UID uid The uid of this log entry. (Read-only)
Session uinteger_4 Host session number assigned by the TPer. (Read-only)
SigningAuthority Authority_ref uid of the Host Signing Authority, if any, that opened the session.

(Read-only)
SigningAuthName name Name of the Host Signing Authority, if any, that opened the

session. (Read-only)
ExchangeAuthority Authority_ref uid of the Host Exchange Authority, if any, that opened the

session. (Read-only)
ExchangeAuthName name Name of the Host Exchange Authority, if any, that opened the

session (Read-only)
MonotonicTime uinteger_8 Monotonic Time value, as defined in section 5.5. Note that if the

Clock Template was not issued into this SP then this value will be
0. (Read-only)

ExactTime clock_time Exact time (if any) that this log entry was added, as defined in
section 5.5. Note that if the Clock Template was not issued into
this SP then this value will be zero. (Read-only)

TimeKind clock_kind Type of time used (if any), as defined in section 5.5. Note that if
the Clock Template was not issued into this SP then this value will
be zero. (Read-only)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 225 of 265

LogKind log_kind This is the user-provided name for this log entry. If the log is
system generated, the value of this column will be "System"
(Read-only)

Name name Name of log entry. (Read-only)
Data max_bytes_64 Value of log entry. (Read-only)
Log tables are array tables that store log entries. Each row in a Log table is an entry.

There may be more than one Log table in an SP. Each of these Log tables must have a unique name.
Only the default Log table, which has the name “Log”, stores System log entries. The Log table
described in this section acts as the template for all log tables. Log tables are created using the
CreateLog method. User-created log tables each have an associated row in the LogList table.

The LogTo column of the Method table allows the host to associate an access control association to a
particular log table. All access control associations enumerated in the Method table at issuance shall
be logged to the default log.

The LogTo column of the Authority table allows the host to associate an authority’s operations to a
particular log table. All authorities at issuance shall be logged to the default log.

Logs are maintained in a cyclical manner. For efficiency, all rows in a Log table should be pre-allocated
(that is, none of them is free). The value 0 in the LogKind column of a row indicates that that row has
not yet been used. As log entries are added, the value in the LogKind column for each of those used
rows changes to reflect the type of log entry added.

If dynamic row allocation is supported, the log table may have additional rows created. New rows are
added at the end of the table. These rows, like the rows present at table creation, are considered
allocated and have the value 0 in the LogKind column. The number of rows in a table may be changed
by invoking the Set method on the Rows column of the Table table. For information on adding rows to
a table, see section 5.3.4.2.1.

A Log table row contains a timestamp and uidrefs to and names of the authorities used to start the
session in which the activity is being logged. Actual log data (the value stored to the Data column)
depends on the LogKind field (see section 5.7.4.2).

All log entries for a single session will share the same unique host session number.

If the Clock Template has not been issued into the SP with the Log Template, when a new entry is
created in a Log table the values for the MonotonicTime, ExactTime, and TimeKind columns shall be 0.

The TPer shall atomically add log entries to a log table if multiple read sessions are open to the SP and
are affecting that log table.

5.7.2.2 LogList (Object Table)

Table 155 LogList Table Description
Column IsIndex Type Description
UID uid uid of this LogList object (Read-only)
Name Yes name Name of the associated Log table (Read-only)
CommonName Yes name Name that may be shared by multiple Log tables (Read-only)
Log table_ref uid of the associated Log table (Read-only)
Serial log_row_ref Cursor for the associated Log table. The log is circular. Serial is

incremented for each log entry and wraps around when it reaches
the end of the Log table. Any row of the Log table that has
LogKind = 0 marks that row as free and unused. (Read-only)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 226 of 265

Column IsIndex Type Description
HighSecurity boolean When HighSecurity is true, every log message is committed to

persistent storage when received. When false, messages may be
queued for later writing (some messages could potentially be lost
when a TPer reset occurs).

The LogList table is an object table that contains exactly one row for each Log table, and contains
information about that log.

The LogList row with UID=0x00 0x00 0x0A 0x02 0x00 0x00 0x00 0x01 is automatically created on
SP issuance with the name Log. A corresponding Log table is also created at Issuance. The uid of
the created Log table is referenced in the LogList’s Log column. This initial row will also have default
values of Serial=1 and HighSecurity=false.

The Log and Serial columns are protected columns and cannot be set by user action. Only the Name,
CommonName, and HighSecurity values may be specified when a Log table is created, and Life Cycle
indicates that only the HighSecurity value may be changed after a Log table is created (see 5.7.5 for
details).

5.7.3 Methods
5.7.3.1 AddLog (Table Method)
LogTableUID.AddLog[

LogEntryName : name,
Data : max_bytes_64]

=>
[Result : boolean]

AddLog will add a log entry to the Log table on which the method was invoked.

Successful invocation of this method automatically sets the value of the Local column of the log entry
to False and sets the LogKind column value to 9.

This call is permitted even during a Read-Only session. It is not subject to transactional abort/rollback. If
multiple Read-Only sessions are open to the same SP, the TPer is required to update the shared log
without corruption. Log entries from each session are guaranteed to be in their proper relative order, but
no guarantee is made about the relative ordering of entries between separate sessions.

5.7.3.1.1 Fails
• If the referenced log table does not exist

5.7.3.2 CreateLog (Table Method)
LogListUID.CreateLog[

NewLogTableName : name,
HighSecurity : boolean,
MinSize : uinteger_4,
MaxSize = uinteger_4,
Hintsize = uinteger_4,
CommonName = name]

=>
[LogListUID : uid,
LogTableUID : uid,
Rows : uinteger_4]

Successful invocation of this method creates a row in the LogList table with the given name and
security level, and creates a corresponding Log table with the name given in the method invocation.
The Log table described in 5.7.2.1 is used as the template for the new table. ACLs are set for the new
row in the LogList table as if CreateRow had been used to create it, as described in 5.7.5. A row in the
Table table is created as normal for the new log table.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 227 of 265

The result of a successful CreateLog method invocation is the uid of the new LogList object, the uid of
the new Log table, and the number of rows created in the new Log table.

5.7.3.2.1 Fails
• If a log table with the specified name already exists.
• If there isn’t space in the SP for the new table.
• If metadata/support tables (i.e. Table, Column, Method, or ACE) are not all able to create all

required rows to support this table.
• If TPer determines MinSize is too large.

5.7.3.3 ClearLog (Table Method)
LogTableUID.ClearLog[]
=>
[Result : boolean]

All entries in the indicated Log table are removed.

5.7.3.3.1 Fails
• If the referenced log table does not exist.

5.7.3.4 FlushLog (Table Method)
LogTableUID.FlushLog[]
=>
[Result : boolean]

Upon successful invocation of this method, all entries that exist only in the main memory and have not
yet been committed to media are committed to the indicated Log table on media. When HighSecurity
is true, FlushLog is implicitly invoked after any AddLog method invocation.

The Result is not generated until the persistent storage commit is complete.

5.7.3.4.1 Fails
• If the referenced log table does not exist.

5.7.4 Descriptions
Logs are cyclical. Implementation shall prevent uncontrolled logging recursion.

5.7.4.1 Types of Logging
There are two types of logging:

o User – User logging is the result of invocation of the AddLog method on a Log table.

o System – System log entries shall be stored in the default Log table, or the log table
designated by the LogTo column of the Authority or Method table. System logging occurs
automatically as the result of four classes of events:

o Authentication attempts against an authority (success/failure). Logging for these
events are controlled in the Authority table.

o Method invocations (success/failure). Logging for these events are controlled in the
Method table.

o Transaction events (TransactionStart, TransactionEnd, TransactionAbort). Logging for
transaction events is always to the default log table.

o Session events (StartSession, SyncSession, StartTrustedSession,
SyncTrustedSession, CloseSession). Logging for session events is always to the
default log table.

Each Template reference section includes a description of the default logging values for methods and
authorities provided to an SP by that Template.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 228 of 265

5.7.4.2 Log Entries
Each log entry is a row in a Log table. Each of these rows includes columns for the Session ID, uidrefs
to Session authorities, the names of those authorities, a timestamp, a monotonic counter value, a
LogKind, a name for the log entry, and a data field that can hold up to 64 bytes of data for a log
message.

The value of the data field for system entries is dependent on the value of the LogKind column.

The LogKind column shall have one of the following values:

o 0 = available

o 1 = methodFail

o 2 = methodSuccess

o 3 = authenticateFail

o 4 = authenticateSuccess

o 5 = transactOpen

o 6 = transactCommit

o 7 = transactAbort

o 8 = sessionEnd

o 9 = user

o 10 = system

o 11-23 = reserved

The structure of the system entry is as follows:

o Bytes 1-8 store the uid of the table involved in the operation. If the method invoked was an SP
method, these bytes will be 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01.

o Bytes 9 – 16 store the uid of the method involved in the operation. If there is no method (i.e.
the log entry is recording a transaction-related operation), these bytes will be zeroes.

o Bytes 17 and 18 store a status code for the operation (i.e. 0x00 for Success).

5.7.4.3 Deleting a Log Table
Because a Log table and the LogList table must be kept in sync, there will be no ACL to allow the Log
table to be deleted via the Table table. The LogList object’s Delete method must be used to delete a
Log table. Successful invocation of that method deletes the Log table and its associated entries in both
the LogList table and the Table table. Note that Life Cycle will prevent the default Log table from
being deleted in any other manner. For more information, see the Log Template Life Cycle section
5.7.5.

5.7.4.4 Default Logging Settings
The default logging settings associated with the Log Template methods are:

o The default logging setting for the Delete object method on objects in the LogList table is
LogAlways.

o The default logging setting for the ClearLog method on all Log tables is LogAlways.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 229 of 265

o All other methods that apply to the Log and LogList tables will be as described in the Base
Template reference section (See Section 5.3.4.4).

5.7.5 Life Cycle
5.7.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Log Template has the following characteristics based on the current life cycle
state of that SP:

o Issued – At Issuance the SP will have the default Log Template-related access control settings
as described in the following sections. Method invocations that occur to the Admin SP during
the Issuance process are logged to the Admin SP default Log table (if the Log Template is part
of the Admin SP and if logging of those method invocations is enabled).

o Disabled – A Log Template-enabled SP in the Disabled state shall log authority authentication
attempts, session startup attempts, and all method invocation attempts (dependent on log
settings in the Authority and Method tables). A Log Template-enabled SP that is in the
Disabled state shall not be able to perform any user-invoked SP operations, with the exceptions
noted in section 4.4.3.

o Frozen – A Log Template-enabled SP that is in the Frozen state shall not be able to perform
any user-invoked SP operations, with the exceptions noted in section 4.4.4.

o Issued-Disabled-Frozen – A Log Template-enabled SP in the Disabled state shall log
authority authentication attempts, session startup attempts, and all method invocation attempts
(dependent on log settings in the Authority and Method tables). A Log Template-enabled SP
that is in the Issued-Disabled-Frozen state shall not be able to perform any user-invoked SP
operations, with the exceptions noted in section 4.4.5.

5.7.5.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the table/method
combinations provided to an SP by the Log Template. These access controls represent the pre-
personalization settings of the Log Template-related table/method combinations, i.e. those that exist
when the SP first enters the Issued state.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a zeroes (Null UID reference). This indicates that access control to perform that action
cannot be satisfied.

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

5.7.5.2.1 ACEs
In addition to the ACEs defined in the Base Template, which are defaults for all SPs, the following table
defines the ACEs added for use in the life cycle of the Log Template.

Table 156 Log Template Added ACEs
UID Name BoolExpr RowStart RowEnd ColStart ColEnd
 00 00 00 08 00 00 0A 01 LogList_Security Admins 1 1 HighSecurity HighSecurity

5.7.5.2.2 LogList Table/Objects Default Access Control Settings

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 230 of 265

Table 157 LogList Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateLog Admins Admins Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set LogList_Security None Admins Admins Admins

Table 158 displays the Object ACLs on all LogList objects except for the first, which is the row created
at Issuance that represents the system log.

Table 158 LogList Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
Set Self Self Self Self Self

Table 159 displays the Object ACLs on the system LogList object, which is the row created at
Issuance that represents the system log.

Table 159 Initial LogList Object Default Access Control Settings
Method ACL AddACE RemoveACE GetACL DeleteMethod

Get Admins Admins Admins Admins Admins
Set LogList_Security None Admins Admins Admins

5.7.5.2.3 Log Table Default Access Control Settings
Table 160 displays the Table ACLs on the default Log table, which is the Log table created at Issuance
and used for system logging.

Note that in this table, when a new entry is added, there is no ACL that allows the Set method to be
used on that entry, and no ACL that allows AddACE or RemoveACE to be used on the Set method. This
is true for both system and user Log entries.

Table 160 Log Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
ClearLog Admins Admins Admins Admins Admins
AddLog Admins Admins Admins Admins Admins

5.7.6 Examples
5.7.6.1 Example LogList Table

Table 161 Example LogList Table
UID Name Log Serial HighSecurity
00 00 0A 02 00 00 00 01 Log 11 3 T

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 231 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 232 of 265

5.8 Locking Template
5.8.1 Overview
The Locking Template defines mechanisms for access control to user data, including controlling media
encryption, user data encryption key management, and Read/Write lock state.

The SP on a TPer that has been issued with the Locking Template provides access control on firmware
and electronics functions intrinsic to the Read/Write operations of the TPer. These include gating
Read/Write functions (Read/Write locking) and the manipulation of keys for encryption of user data.

Functions enabled by the Locking Template are security-policy sensitive and should be provided only
under proper access control. In a Security Subsystem Class in which issuance is not possible, the SP
that incorporates the Locking Template may be activated by default in manufacturing, but only with the
default access control settings as described in this document.

The reason that the Read/Write locking state and the encryption state are controlled in the same SP is
that the change of the encryption key is logically, though not functionally, equivalent to the Read/Write
locking state becoming invalid. When the TPer is in a Read/Write locked state, the absence of correct
authentication is made functionally equivalent to the absence of a correct encryption key. The
Read/Write lock and encryption circuits need common policy control so as to insure that one is not
employed to attack the other. The default access control settings associated with the Locking Template
are found in section 5.8.5.2.

The Locking Template also enables an SP to manage re-encryption of data. Re-encryption is the
process by which User Data LBAs are transformed from 1) encrypted data using the active encryption
key to encrypted data with a new encryption key, 2) clear text data to encrypted data with a new key, or
3) encrypted data to clear text data.

Re-encryption has the following basic attributes:

• This process operates as a background TPer operation. Re-encryption may operate
concurrently with normal User Data Interface Commands.

• Re-encryption processes are linked to a specific LBA range. Multiple concurrent re-encryption
operations are permitted up to the available TPer re-encryption resources.

Side effects may occur when writing cells of the tables of the SP that incorporates the Locking
Template. These side effects include enabling Read/Write locking, enabling encryption with a certain
encryption key, and initiating the re-encryption process.

5.8.1.1 Terminology

Table 162 Locking Template Terminology
Term Definition
Global range The entire User-Addressable LBA Range
Key Changing The changing of a Credential reference
KeysAvailable Condition: Host has provided enough information to enable access to Locking

LBA range keys. See the KeysAvailableCfg column in the LockingInfo Table for
more information.

LBA Range A defined sub-section of the User-Addressable LBA Range
MBR Shadowing This allows loading of preboot code that will be necessary to unlock an LBA

range that starts at LBA 0 for reading and writing
Media Encryption Inline encryption of data to media
Re-encryption Encryption of the original cleartext media data, which may have been

previously encrypted, to the media with a different key.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 233 of 265

Term Definition
TPer_Error_Detect Condition: A TPer re-encryption error has been detected.
TPer_Job_Done Condition: TPer has completed re-encryption without errors
TPer_Key_Error Not all keys are valid
TPer_Ready Condition: ALL the following resources & conditions required to begin or

continue re-encryption are true:
- All TPer resources are available, such as buffer space, re-encryption H/W &
S/W resources.
- Re-encryption keys are valid
- TPer_Error_Detect condition is NOT detected
- TPer_Reset_Stop condition is NOT detected
- PAUSE_req is NOT TRUE
- KeysAvailable is TRUE
- NextKey is valid and the credential that it references is accessible by the TPer
when any authority that has permission on the Set method for the ReadLocked
or WriteLocked columns is authenticated.

TPer_Reset_Detect Condition: A reset condition has been detected.
TPer_Reset_Stop Condition: A reset condition is detected that does not permit the Re-encryption

process to continue.
User-Addressable LBA
Range

The user-accessible storage space on a storage device, where user data is
stored

5.8.2 Data Structures
The Locking Template contains the following tables:

• LockingInfo: Information about the TPer’s configuration

• Locking: The storage encryption and read/write locking controls covering different contiguous
ranges of storage space on the TPer.

• MBRControl and MBR: For MBR shadowing, needed to handle boot environments.

5.8.2.1 LockingInfo (Array Table)
The LockingInfo table is an array table that consists of one row and contains information about the
device configuration.

Table 163 LockingInfo Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as

assigned and maintained by the TPer. (Read-only)
UID uid The UID of this table row. (Read-only)
Name name A manufacturer name for this feature (Read-only)
Version uinteger_4 Manufacturer-defined version number (Read-only)
EncryptSupport enc_supported Supported encryption modes (Read-only)
MaxRanges uinteger_4 Maximum number of LBA ranges, as set by manufacturer

(Read-only)
MaxReEncryptions uinteger_4 Maximum number of simultaneous re-encryptions permitted.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 234 of 265

Column Type Description
(Read-only)

KeysAvailableCfg keys_avail_conds This column defines which conditions are required to assert
KeysAvailable.

EncryptSupport: If Media Encryption is supported, this is indicated here. The value of this column is
“None” if the drive cannot support inline encryption of data to media.

MaxRanges: The value of this column represents the maximum number of different LBA ranges
permitted by the manufacturer. If 0, then the only range available is the entire Global Range of the
storage device.

MaxReEncryptions: represents the number of simultaneous re-encryptions permitted by the TPer.
Simultaneous re-encryptions refer to the number of different LBA ranges that can be concurrently re-
encrypted. A value of 0 indicates Re-encryption is NOT supported.

KeyAvailableCfg: represents additional conditions required for access to the LBA Range keys.
• None = no conditions are required
• 1 = an authority with Set access to ReadLocked/WriteLocked columns for this LBA range has

been authenticated since the last detected reset condition

5.8.2.2 Locking (Object Table)
Locking table rows define encryption & re-encryption behavior for the storage device’s LBA ranges. An
LBA range is defined as an ordered sequence of RangeLength logical blocks (as appropriate to the
device, typically LBAs), numbered consecutively starting at LBA RangeStart.

The Locking table always has at least one row. The first row of the Locking Table always represents
the entire User-Addressable LBA Range. This row shall have a UID column value of 00 00 08 02 00
00 00 01. This row cannot be deleted.

Additional rows shall comply with the following rules:

• Each additional row in this table represents a contiguous “subdivision” of the entire User-
Addressable LBA Range.

• The number of rows in this table must not exceed the value of the Locking_Info table’s
MaxRanges column + 1. If MaxRanges = 0, this is and can only be a one row table.

• New rows of the Locking table are created using the CreateRow method. A valid CreateRow
method requires the following attributes:

• Values for the RangeStart and RangeLength columns shall be specified.

• The specified RangeStart and RangeLength values shall not overlap any other row but the
first row. NOTE: first row is the row that represents the entire user addressable LBA range.
NOTE: TPer checks LBA range before creating a row. An overlapping request results in the
CreateRow method returning an error.

Table 164 Locking Table Description
Column Type Description
UID uid Unique identifier for this Locking object (Read-

only)
Name name Name (Read-only pre-personalization only)
CommonName name Name that may be shared across multiple

Locking objects.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 235 of 265

Column Type Description
RangeStart uinteger_8 LBA starting address, Ignored if MaxRanges =

0 (Read-only)
RangeLength uinteger_8 Quantity of LBAs, including RangeStart LBA.

(Read-only)
ReadLockEnabled boolean_def_false Identifies whether ReadLocking is enabled for

this range.
WriteLockEnabled boolean_def_false Identifies whether WriteLocking is enabled for

this range
ReadLocked boolean The current read locking state
WriteLocked boolean The current write locking state
LockOnReset reset_types Identifies the LBA range’s storage-related

locking behavior, dependent on reset type.
Note that both Read and Write Locking
behavior on reset are controlled by this value.
An empty set means locking does not occur on
any reset.

ActiveKey cred_object_uidref Points to the present encryption key for this
LBA range.

NextKey cred_object_uidref Points to the next encryption key for this LBA
range.

ReEncryptState reencrypt_state This is the present Re-encryption State for this
LBA range. ReEncryptState reports the TPer’s
response to re-encrypt requests. (Read-only)

ReEncryptRequest reencrypt_request This value represents a re-encryption request.
AdvKeyMode adv_key_mode This value defines when NextKey is moved to

ActiveKey
VerifyMode verify_mode Defines verification operation after sector is

written with new encryption key.
ContOnReset reset_types Defines the re-encryption behavior after a reset

condition is detected.
LastReEncryptLBA bytes_max_32 Represents the last good re-encrypted LBA. It

is only valid when the ReEncryptState column
value is ACTIVE, COMPLETED, PENDING or
PAUSED. (Read-only)

LastReEncStat last_reenc_stat Last attempted Re-encryption step. Only valid
when the ReEncryptState column value is
COMPLETED, PENDING, or PAUSED state.
(Read-only)

GeneralStatus gen_status Reason for arriving at PAUSED or PENDING
state. (Read-only)

The first row of the Locking table (the Global Range) shall have a Name column value of Global_Range
and a UID column value of 0x00 0x00 0x08 0x02 0x00 0x00 0x00 0x01.

The first row of the Locking table (the Global Range) shall have a CommonName column value of
Locking.

RangeStart: this column value defines the starting LBA value for this range.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 236 of 265

RangeLength: This column value defines the quantity of contiguous LBAs for this LBA range. If
RangeLength = 0 and the RangeStart = 0 then this pair specifies the storage device’s global range.
The Global Range shall only be specified in a single row. This field is ignored if MaxRanges = 0.

ReadLockEnabled: The value of this column determines whether or not the read-locking feature is
enabled for this scope. Enabled in this sense means whether or not the ReadLocked column value is
meaningful for this range. If the value of the ReadLockEnabled column is False, the read-locking
feature is disabled, and the value of the ReadLocked column is disregarded. If the value of
ReadLockEnabled column is True, the read-locking feature is enabled. The value of the ReadLocked
column identifies the current read locking state.

WriteLockEnabled: The value of this column determines whether or not the write-locking feature is
enabled for this scope. Enabled in this sense means whether or not the WriteLocked column value is
meaningful for this range. If the value of the WriteLockEnabled column is False, the write-locking
feature is disabled, and the value of the WriteLocked column is ignored. If the value of
WriteLockEnabled column is True, the write-locking feature is enabled. The value of the WriteLocked
column identifies the current write locking state.

ReadLocked: The value of this column identifies the current read lock state for the associated LBA
Range. If this value is True, the range is read-locked. If this value is False, the range is read-unlocked.

The Set method may be invoked by the host to change the value of this column and alter the read-lock
state. Setting the column value to 1 read locks the range. Setting the column value to 0 read unlocks
the range.

WriteLocked: The value of this column identifies the current write lock state for the associated LBA
Range. If this value is True, the range is write-locked. If this value is False, the range is write-
unlocked.

The Set method may be invoked by the host to change the value of this column and alter the write lock
state. Setting the column value to 1 write locks the range. Setting the column value to 0 write unlocks
the range.

LockOnReset: This value defines the locking behavior of this LBA range at reset, dependent on reset
type. The values enumerated in this column identify the reset types that cause the values of the
ReadLocked and WriteLocked columns of the Locking table to be set to True (assuming the associated
*LockEnabled values are True for those columns).

The default value of this column is 0.

The Global Range’s LockOnReset value defines global TPer behavior. Row 2-n override the Global
Range's behavior, unless otherwise specified in an SSC.

ActiveKey: This field points to this LBA range’s media encryption key. If the value of this column is
00’s then data in this range is stored in plaintext.

The following rules define how and when the ActiveKey column value is modified:

• Host Application directly writes ActiveKey column value

• When the ReEncryptState column value is COMPLETED and the Host sets the
ReEncryptRequest column value to ADVKey_req, the TPer moves the NextKey column value
to the ActiveKey column (setting the NextKey column to a Null UID reference).

• When the ReEncryptState column value is ACTIVE AND AdvKeyMode = 1 AND
TPer_Job_Done condition is detected, the TPer moves the NextKey column value to the
ActiveKey column (setting the NextKey column to a Null UID reference).

• When ReEncryptState value is PAUSED AND the Host sets ReEncryptRequest to
ADVKey_req, the TPer moves the NextKey column value to the ActiveKey column (setting the
NextKey column to a Null UID reference).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 237 of 265

NextKey: This column identifies the LBA range’s next media encryption key. This value and the
referenced credential object shall be writable when the value of the ReEncryptState column is IDLE
only. Otherwise, attempts to invoke an of the Set, Delete, or DeleteRow methods on the associated
credential object shall return an error.

User Data shall be returned to clear text when the key value stored at NextKey is zeroes AND Re-
encryption has been requested

ReEncryptState: (read only) the value of this column identifies the currently applicable Re-encryption
state (see Figure 22). The value in the column identifies the TPer’s response to the host’s requests in
the ReencryptRequest column.

Reset configuration (ContOnReset) and a detected reset condition define the reported ReEncryptState
and PauseStatus values.

When the ReEncryptState column value is:

• 1 = IDLE: re-encryption is not active for this LBA range.
• 2 = PENDING: This LBA Range’s re-encryption process is waiting to start or continue re-

encryption.
• 3 = ACTIVE: This LBA Range’s re-encryption process is executing
• 4 = COMPLETED: This LBA Range’s re-encryption process has completed without errors
• 5 = PAUSED: This LBA Range’s re-encryption has temporarily halted.

ReEncryptRequest: A host application requests a re-encryption operation by writing to this column.
Successful invocation of the Get method on this column shall always return “0”.

Only state transitions described in Figure 22 shall be valid.

If a Set method invocation attempts to set a value to the ReEncryptRequest column that is not valid for
the current ReEncryptState column value, then this Set method invocation shall return an error.

• 1 = START_req: Host requests a new re-encryption process. Only accepted when the
ReEncryptState column value is IDLE. The TPer changes the value of the ReEncryptState
column to PENDING.

• 2 = ADVKEY_req: Host requests TPer to change the ReEncryptState column value to IDLE
AND move the value of the NextKey column to the ActiveKey column (this move also sets the
value of the NextKey column to a Null UID reference). This request is only valid when the
ReEncryptState column is COMPLETED or PAUSED.

• 3 = RETIDLE_req: Host requests a return to the IDLE state WITHOUT moving keys. This
request provides the host application control over re-encryption resources and background
activity.

• 4 = CONT_req: Host requests the re-encryption process transition ReEncryptState=PAUSED
state to ReEncryptState=PENDING. Re-encryption begins at (LastReEncryptLBA + 1).
Invocation of the Set method to perform this operation shall only succeed if the current
ReEncryptState column value is PAUSED.

• 5 = PAUSE_req: Host requests the quiescing of the re-encryption process. Invocation of the Set
method to perform this operation shall only succeed if the current ReEncryptState column
value is ACTIVE or PENDING.

AdvKeyMode: This value defines when 1) the value of the NextKey column moves to the ActiveKey
column AND 2) the ReEncryptState value changes.

• When AdvKeyMode = 0 AND TPer_Job_Done condition is detected AND ReencryptState is
ACTIVE, TPer changes the ReEncryptState value to COMPLETED.

• When AdvKeyMode = 1 AND TPer_Job_Done condition is detected AND the value of the
ReencryptState column is ACTIVE, the TPer changes the ReEncryptState column value to

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 238 of 265

IDLE. In addition, the TPer changes the value of the ActiveKey column to be the value of the
NextKey column, and then sets the value of the NextKey column to a Null UID reference.

• When AdvKeyMode = 0 AND Reencryptstate is COMPLETED AND AdvKey_req is True, the
TPer changes the ReEncryptState column value to IDLE AND NextKey becomes ActiveKey.

VerifyMode: This column value defines the verification requirement during re-encryption. When True, a
Read Verify shall be performed on the re-encrypted LBA before the LBA is considered good.

ContOnReset: This column value is a list of reset conditions. This value defines how a re-encryption
process reacts to reset conditions.

• A value of Null means the TPer_Reset_Stop condition is set for any reset condition. The
ReEncryptState value is set to PAUSED.

• For each listed reset entry, the re-encryption process may continue after the associated reset
is detected.

LastReEncryptLBA; This column value defines the last good re-encrypted LBA for this region. This
field is only valid when the ReEncryptState is ACTIVE, COMPLETED, PENDING, or PAUSED. Typically,
when the ReencryptState is ACTIVE, this value is updated periodically. In COMPLETED, PENDING, or
PAUSED this value shall be valid. When no LBA has been successfully been re-encrypted, the value is
0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF.

LastReEncStat: (read only) this column value defines the last good re-encryption read-modify-write-
verify sequence. This column value is only valid when the ReencryptState is COMPLETED, PENDING
or PAUSED. When the LastReEncStat value is anything other than SUCCESS, the value of
LastReEncryptLBA+1 is the LBA in error. Valid values are:

• 0 = Success:
• 1 = Read error: unable to read original LBA from media
• 2 = Write error: unable to write new LBA to media
• 3 = Verify error: unable to verify new LBA on media

GeneralStatus: This field defines why the Re-encryption operation arrived at the PAUSED or PENDING
state. Status includes:

Values 0-31 are valid for the PAUSED state, value 32-63 are valid for the PENDING state.

• 1 = pending_tper_error: last ReEncryptState value was PENDING AND a
TPer_Error_Detect condition was detected

• 2 = active_tper_error: last ReEncryptState value was ACTIVE AND a TPer_Error_Detect
condition was detected

• 3 = active_pause_requested: last ReEncryptState value was ACTIVE AND PAUSE_req was
detected

• 4 = pend_pause_requested: last ReEncryptState value was PENDING AND a PAUSE_req value
was detected

• 5 = pend_reset_stop_detect: A reset condition AND its associated ContOnReset
configuration does not allow re-encryption to continue AND last state was PENDING

• 6 = key_error: ReEncryptState value was PENDING AND valid keys were not found in any C_*
table OR insufficient access control granted for reading C_* table.

• 32 = wait_AvailableKeys: keys are not available
• 33 = wait_for_TPer_resources: TPer_Ready condition is not True
• 34 = active_reset_stop_detect: A reset condition AND its associated ContOnReset

configuration does not allow re-encryption to continue AND last ReEncryptState value was
ACTIVE

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 239 of 265

5.8.2.3 MBRControl (Array Table)

Table 165 MBR_Control Table Description
Column Type Description
RowNumber uinteger_4 This is the row number for this row of this array table, as assigned and

maintained by the TPer. (Read-only)
UID uid The UID of this table row. (Read-only)
Enable boolean Enable Master Boot Record Shadowing
Done boolean Indicates if Master Boot Record Shadowing is done.
This table shall have only one row, with UID=0x00 0x00 0x08 0x03 0x00 0x00 0x00 0x01.

If Enable is set to True, then on the next TPer power cycle or hardware reset, the TPer shall respond to
LBA requests with host-requested values from the MBR table, and shall remap further LBA requests to
blocks in the MBR table until Done is set to True. The Done column is set to False on every power cycle
or hardware reset. Done is effective only on the next power cycle or reset.

The Done column is set to True either by the code in the MBR table or by a host application. Access
control must be satisfied in order to set the value of the Done column.

After a power cycle or hardware reset, until the host sets the MBR_Control table's Done column to True,
LBA requests made by the host shall only be fulfillable by values from the MBR table.

The values in the MBR table shall only be modifiable by properly authenticated Set method invocations,
even during the boot process. After a power cycle or hardware reset, until the MBR_Control table's
Done column is set to True, attempts to write MBR space via traditional interface commands abort and
return an error.

The LUN associated with the MBR is the boot LUN. A TPer that has multiple LUNs may have multiple
TPers – each TPer shall be associated with a different LUN. Every LUN on a device is not required to
have a TPer, but LUNs that support the TCG commands and functionality shall have a TPer. A TPer
shall only be associated with exactly one LUN.

5.8.2.4 MBR (Byte Table)

Table 166 MBR Table Description
Column Type Description
Data bytes {x} Bytes to be loaded by MBR Request.

The size of the table (defined as “bytes {x}” in the Type column of the MBR descriptive table) is Security
Subsystem Class (SSC) specific, and is to be specified in the description of each SSC that supports the
use of this functionality. The size of the MBR table shall be retrievable from the Admin SP’s Table table.

Once in MBR mode, the storage capacity reported by the TPer may not be the capacity of the user-
addressable LBA space.

Media encryption does not apply to the code stored in the MBR table, since this code is part of the
secure area and media encryption applies to the user LBA ranges defined in the Locking table.

Errors during boot execution of the code in the MBR table are handled through regular boot error
reporting mechanisms.

Interface-specific errors and SMART logging behaviors that occur during execution of the MBR table
shall be vendor-specific.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 240 of 265

5.8.3 Methods
5.8.3.1 GetPackage Method (Object Method)
CredentialObjectUID.GetPackage [
 Purpose : package_purpose,
 WrappingKey : Authority_ref,
 HashType : hash_protocol,
 Date = date,
 Log = max_bytes_64
=>
[Result : package]

The purpose of this method is to retrieve key material from a credential table in a secure manner. The
return result is a “package”, with the following format, where the plus sign (+) is used to indicate
concatenation:

o Package = Credential Table Name + WrappingKey(Key Material) + Purpose + Date + Log +
signed(hash(all before))

o The “Credential Table Name” is the name of the credential table containing the
credential object upon which this method was invoked.

o The “WrappingKey(Key Material)” is the key material from the invoking credential
object, encrypted with the credential referenced form the WrappingKey parameter’s
authority object. This credential may be a symmetric key or the public key of a
public/private key pair. When retrieving the key material from credentials that store key
information in multiple columns, columns that are empty shall return as 0 for uinteger
type columns and 00s for bytes type columns.

o The “Purpose” is the Purpose parameter from the method invocation.

o The “Date” is the Date parameter supplied to the method. This value may be omitted.

o The “Log” is the Log parameter supplied to the method. This value may be omitted.

o The “signed(hash(all before))” is a hash of the package contents (except this one),
signed by the WrappingKey authority’s credential. The hash protocol used to create
the hash is the hash protocol specified in the HashType parameter. This is the
signature of a private key for referenced public key credentials, or HMAC for referenced
symmetric key credentials.

The package_purpose type is an enum value with {1=Issuance, 2 = Key Wrapping, 3 = Backup, 4-24 =
reserved}.

5.8.3.1.1 Fails
• If the object does not exist

5.8.3.2 SetPackage Method (Object Method)
CredentialObjectUID.SetPackage [

Value : package,
 WrappingKey : Authority_ref,
 HashType : hash_protocol
=>
[Result : boolean]

The SetPackage method is used to set the key material columns of a credential with key material that is
sent securely to the TPer.

The SetPackage method takes a value that shall be the result of a successful GetPackage method
invocation, and an authority object uidref to the authority that references the credential that can be used
to decrypt the encrypted key contents of the package.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 241 of 265

The TPer decrypts the key material using the credential referenced by the WrappingKey authority and
verifies the signed hash using that key and the hash protocol identified in the method invocation. The
TPer then verifies that the Credential Table Name in the package matches the Credential Table Name
of the Destination credential object parameter. The TPer then sets columns of Destination credential
object with the decrypted key material from the package.

The Log portion of the unwrapped package will cause that log entry to be made to the default Log table,
along with the Date portion. If the Log Template has not been issued into the SP, then the Log and
Date data are disregarded.

5.8.3.2.1 Fails
• If the object does not exist
• If the Destination object does not exist
• If the WrappingKey authority does not exist or does not reference a valid credential.
• If Credential Table Name from the package does not match the name of the Destination credential’s

containing table
• If the signed hash cannot be verified

5.8.4 Description
5.8.4.1 Locking State Descriptions
Figure 21 describes the states and state transitions for the locking types (read lock and write lock). For
simplicity, the diagram and the accompanying textual information describe the operation of one of the
locking types (read or write locking), but the behavior of the other locking type can be seen by applying
the diagram separately (or simultaneously) to each type.

Note that the reset behavior of both read and write locking for each locking object is controlled at the
same point, by a single column in the Locking table, called LockOnReset.

When a reset is described in these state transitions, “reset” is used generically to refer to qualifying
resets, as determined by the value of the LockOnReset column and the reset behavior associated with
particular resets as determined by the appropriate interface-specific description of that reset. Interface-
specific reset definitions are defined in the appropriate TCG specification for that interface type.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 242 of 265

Figure 21 Locking State Diagram

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 243 of 265

5.8.4.1.1 State Descriptions
This section describes the states that are used in Figure 21 , and the column values that each state
represents.

S0 LockEnabled=F

This describes the state where the TPer's Locking feature is turned off. Locking is not possible. The
Locked column and LockOnReset column values are disregarded.

S1 LockEnabled=T/Locked=T/LockOnReset=non-null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently True, indicating that the range is locked. LockOnReset is non-null, indicating
that, upon any of the listed reset events, the range will lock.

S2 LockEnabled=T/Locked=T/LockOnReset=null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently True, indicating that the range is locked. LockOnReset is "False" (null set),
indicating that reset events do not cause the range to lock. The range will maintain current locking
state (the value of the Locked column remains the same, True) through all resets.

S3 LockEnabled=T/Locked=F/ LockOnReset=non-null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently False, indicating that the range is not locked. LockOnReset is "True" (non-null
set), indicating that the listed reset events cause the range to lock.

S4 LockEnabled=T/Locked=F/ LockOnReset=null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
current Locked state is False, indicating that the range is not locked. LockOnReset is "False" (null set),
indicating that reset events do not cause the range to lock. The range will maintain current locking
state (False in this case) through all reset events.

T0 ResetStateMatch=null/LockEnabled=F

This is the transition state where a reset is occurring and the Locking feature is disabled.

T1 ResetStateMatch=T/LockEnabled=T/Locked=T/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value applies to
the currently occurring reset state.

T2 ResetStateMatch=F/LockEnabled=T/Locked=T/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value does not
apply to the currently occurring reset state. This state is functionally equivalent to T3.

T3 ResetStateMatch=null /LockEnabled=T/Locked=T/ LockOnReset=null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value is null.
This state is functionally equivalent to T2.

T4 ResetStateMatch=T/LockEnabled=T/Locked=F/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value applies
to the currently occurring reset state.

T5 ResetStateMatch=F/LockEnabled=T/Locked=F/ LockOnReset=non-null

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 244 of 265

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value value
does not apply to the currently occurring reset state. This state is functionally equivalent to T6.

T6 ResetStateMatch=null /LockEnabled=T/Locked=F/ LockOnReset=null

This describes a transition state where a reset is occurring and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value is null.
This state is functionally equivalent to T5.

5.8.4.1.2 State Change Descriptions
This section describes the state changes depicted in the picture. In parentheses next to each state
transition identifier are the values that change to cause that transition. "Reset" indicates that a reset
occurs to cause the state change. "ResetStateMatch" is used to indicate if a reset event type that
occurred is applicable or matches the LockOnReset column value.

S0:T0 (Reset)

This state change occurs as the result of some device reset event. The locking range with
LockingEnabled=F exits the reset state into its previous state.

S0:S1 (LockEnabled=T, Locked=T, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to True, and the LockOnReset column value to non-
null.

S0:S2 (LockEnabled=T, Locked=T, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to True, and the LockOnReset column value to null.

S0:S3 (LockEnabled=T, Locked=F, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to False, and the LockOnReset column value to non-
null.

S0:S4 (LockEnabled=T, Locked=F, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to False, and the LockOnReset column value to null.

S1:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S1:S2 (LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to null from non-null. The value of the LockEnabled column is still True, and the value of
the corresponding Locked column is still True.

S1:S3 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
to False from True. The value of the corresponding LockEnabled column is still True, and the value of
the LockOnReset column is still non-null.

S1:S4 (Locked=F, LockOnReset=null)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 245 of 265

This state change occurs when the host invokes the Set method to change the range's Locked column
to False from True, and the value of the LockOnReset column from null to non-null. The value of the
corresponding LockEnabled column is still True.

S1:T1 (Reset, ResetStateMatch=T)

This state change occurs as the result of some device reset event, where the reset type matches the
value defined in the LockOnReset column.

S1:T2 (Reset, ResetStatematch=F)

This state change occurs as the result of some device reset event, where the reset type does not match
the value defined in the LockOnReset column.

S2:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S2:S1 (LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to non-null from null. The value of the LockEnabled column remains True, and the value
of the corresponding Locked column remains True.

S2:S3 (Locked=F, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True, and to change the range's LockOnReset column value to non-null from null.
The value of the LockEnabled column remains True.

S2:S4 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the corresponding LockEnabled column remains True, and the
value of the LockOnReset column remains null.

S2:T3 (Reset)

This state change occurs as the result of some device reset event. The range with a LockOnReset
column value of null and other column values of the S2 state exits the T3 state back into the S2 state.

S3:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S3:S1 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the corresponding LockEnabled column remains True, and the
value of the LockOnReset column remains non-null.

S3:S2 (Locked=T, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to True from False, and to change the range's LockOnReset column value to null from non-null.
The value of the LockEnabled column remains True.

S3:S4 (LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to null from non-null. The value of the LockEnabled column remains True, and the value
of the corresponding Locked column remains False.

S3:T4 (Reset, ResetStateMatch=T)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 246 of 265

This state change occurs as the result of some device reset event, where the reset type matches the
value defined in the LockOnReset column.

S3:T5 (Reset, ResetStateMatch=F)

This state change occurs as the result of some device reset event, where the reset type does not match
the value defined in the LockOnReset column.

S4:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S4:S1 (Locked=T, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True, and the value of the LockOnReset column from null to non-null. The value of
the corresponding LockEnabled column remains True.

S4:S2 (Locked=T)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the LockEnabled column remains True, and the value of the
LockOnReset column remains null.

S4:S3 (LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column from null to non-null. The value of the LockEnabled column remains True, and the value of the
corresponding Locked column remains False.

S4:T6 (Reset)

This state change occurs as the result of some device reset event. The range with a LockOnReset
column value of null and other column values of the S4 state exits the T6 state back into the S4 state.

T0:S0 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. This state change
represents behavior of a range for which LockEnabled is False.

T1:S1 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event matched that specified in the range's LockOnReset column. This causes the device to enter
the S1 state upon reset recovery, with a LockEnabled column value of True, a corresponding Locked
column value of True, and the same LockOnReset column value as existed immediately preceding
entry to T1.

T2:S1 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event did not match that specified in the range's LockOnReset column. This causes the device to
recover from the reset with the same LockEnabled, Locked, and LockOnReset column values that
existed previous to entry to T2.

T3:S2 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
LockOnReset column value of null causes the range to recover from the reset with the same
LockEnabled, Locked, and LockOnReset column values that existed previous to entry to T3.

T4:S1 (Reset recover)

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 247 of 265

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event matched that specified in the range's LockOnReset column. This causes the device to enter
the S1 state upon reset recovery, with a LockEnabled column value of True, a corresponding Locked
column value of True, and the same LockOnReset column value as existed immediately preceding
entry to T4.

T5:S3 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event did not match that specified in the range's LockOnReset column. This causes the device to
recover from the reset with the same LockEnabled, Locked, and LockOnReset column values that
existed previous to entry to T5.

T6:S4 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
LockOnReset column value of null causes the range to recover from the reset with the same
LockEnabled, Locked, and LockOnReset column values that existed previous to entry to T6.

5.8.4.2 Re-encryption Overview
The host has the following re-encryption responsibilities:

• Configures re-encryption options

• Initiates re-encryption operations

• Manages error recovery strategy when TPer detects errors. The host defines the next re-
encryption state

• Optionally, acknowledge re-encryption completion

The TPer has the following re-encryption responsibilities:

- Maintain persistent re-encryption state and status information across power cycles.

- Quiesce and report re-encryption state and status

- Detect re-encryption errors, completion and reset conditions

Re-encryption and normal Read/Write commands are concurrent activities. Re-encryption is a TPer
background task. As such, synchronization between normal Read/Write command processing and
background re-encryption processing is required. The means by which this synchronization is
accomplished is implementation dependent. However, the normal Storage Device firmware requires a
way to view the re-encryption process so that the proper encryption keys are selected for User_data
Read/Write commands.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 248 of 265

5.8.4.3 Re-encryption State Descriptions

Figure 22 LBA Range Re-encryption State Diagram

S1: IDLE: Re-encryption is idle in this state. No re-encryption is executing for this LBA range.

Transition S1:S2 START_req has been detected.

S2: PENDING: This LBA Range’s re-encryption process is waiting to start or continue re-encryption

Transition S2:S3 TPer_Ready condition is met.

Transition S2:S5 PAUSE_req has been detected OR TPer detected error condition is met

S3: ACTIVE: This LBA Range’s re-encryption process is executing
Transition S3:S4 TPer_Job_Done condition is met AND AdvKeyMode = 0.

Transition S3:S2 TPer_Reset_detect condition is met AND TPer_Reset_Stop is not met.

Transition S3:S5 A TPer_Error_Detect condition is met OR TPer_Reset_Stop condition is met OR
PAUSE_req has been detected

Transition S3:S1 Tper_Job_Done condition is met AND ADVKeyMode = 1 AND re-encryption has
completed

S4: COMPLETED: This LBA Range’s re-encryption process has completed without errors.

Transition S4:S1 ADVKey_req has been detected.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 249 of 265

S5: PAUSED: This LBA Range’s re-encryption has temporarily halted. The re-encryption process has
been quiesced and awaiting host intervention.

Transition S5:S2 CONT_req has been detected

Transition S5:S1 ADVKey_req OR RETIDLE_req has been detected

5.8.4.4 Default Logging Settings
The default logging settings associated with the Locking Template methods are:

o The default logging setting for the Delete object method, the DeleteRow table method, and the
Set method on objects in the Locking table shall be LogAlways.

o The default logging setting for the Set method on the Locking_Info table, the MBR_Control
table, and the MBR table shall be LogAlways.

o All other methods that apply to the Locking Template-related tables shall be as described in the
Base Template reference section on Default Logging Settings (See 5.3.4.4).

5.8.5 Life Cycle
5.8.5.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Locking Template has the following characteristics based on the current life cycle
state of that SP:

o Issued – At Issuance the SP will have the default Locking Template-related access control
settings described in the following sections.

o Disabled – A Locking Template-enabled SP that is in the Disabled state shall not be able to
perform any use-invoked SP operations, with the exceptions noted in section 4.4.3. This may
result in boot-up failure (if MBR Shadowing is enabled), or the inability to lock or unlock certain
LBA ranges for reading and/or writing.

o Frozen – A Locking Template-enabled SP that is in the Frozen state shall not be able to
perform any user-invoked SP operations, with the exceptions noted in section 4.4.4. This may
result in boot-up failure (if MBR Shadowing is enabled), or the inability to lock or unlock certain
LBA ranges for reading and/or writing.

o Issued-Disabled-Frozen – A Locking Template-enabled SP that is in the Issued-Disabled-
Frozen state shall not be able to perform any user-invoked SP operations, with the exceptions
noted in section 4.4.5. This may result in boot-up failure (if MBR Shadowing is enabled), or the
inability to lock or unlock certain LBA ranges for reading and/or writing.

5.8.5.2 Initial Access Control Settings
The following sections enumerate the initial required access control settings for the table/method
combinations provided to an SP by the Locking Template. These access controls represent the pre-
personalization settings of the Locking Template-related table/method combinations, i.e. those when
the SP enters the Issued state.

In the descriptive tables in this section, “None” indicates that the relevant ACL column of the Method
table has a Null UID reference (zeroes). This indicates that access control to perform that action
cannot be satisfied.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 250 of 265

Some methods do not appear in the descriptive tables in this section for some Template tables or
objects. This indicates that the method shall not be able to be invoked on that table or object, and there
shall be no row in the Method table representing that access control association.

5.8.5.2.1 ACEs
In addition to the ACEs defined in the Base Template, which are defaults for all SPs, the following table
defines the ACEs added for use in the life cycle of the Locking Template.

Table 167 Locking Template Added ACEs
UID Name BoolExpr RowStart RowEnd ColStart ColEnd
00 00 00 08 00 00 08 01 LockingInfo_1 Admins KeysAvailableCfg KeysAvailableCfg
00 00 00 08 00 00 08 02 Locking_1 Makers Name RangeLength
00 00 00 08 00 00 08 03 Locking_2 Admins ReadLockEnabled NextKey
00 00 00 08 00 00 08 04 Locking_3 Admins ReEncryptRequest ContOnReset

5.8.5.2.2 Locking_Info Table Default Access Control Settings

Table 168 LockingInfo Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteRow None None None Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set LockingInfo_1 None Admins Admins Admins

5.8.5.2.3 Locking Table/Objects Default Access Control Settings

Table 169 Locking Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
CreateRow Admins Admins Admins Admins Admins
DeleteRow PI_Admins None Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set Locking_1,

Locking_2,
Locking_3

None Admins Admins Admins

Table 170 displays the Object ACLs on all Locking objects except for the first, which is the row created
at Issuance that represents the Global Range (the TPer’s entire storage area).

Table 170 Locking Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Delete Self Self Self Self Self
Get Self Self Self Self Self
Set Locking_2,

Locking_3
Self Self Self Self

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 251 of 265

5.8.5.2.4 MBR_Control Table Default Access Control Settings
This section defines the default access control settings for the MBR_Control table.

Table 171 MBR_Control Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
DeleteRow Admins Admins Admins Admins Admins
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set Admins Admins Admins Admins Admins

5.8.5.2.5 MBR Table Default Access Control Settings
This section defines the default access control settings for the MBR table.

Table 172 MBR Table Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
Get Admins Admins Admins Admins Admins
Next Admins Admins Admins Admins Admins
Set Admins Admins Admins Admins Admins

5.8.5.2.6 C_RSA_* Objects Access Control Settings – Locking Template Methods
All objects created in C_RSA_* tables in an SP into which the Locking Template has been issued have
the access control settings associated with Locking Template methods as defined in Table 173.

Table 173 C_RSA_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
GetPackage Self Self Self Self Self
SetPackage Self Self Self Self Self

5.8.5.2.7 C_EC_* Objects Access Control Settings – Locking Template Methods
All objects created in C_EC_* tables in an SP into which the Locking Template has been issued have
the access control settings associated with Locking Template methods as defined in Table 174.

Table 174 C_EC_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
GetPackage Self Self Self Self Self
SetPackage Self Self Self Self Self

5.8.5.2.8 C_AES_* Objects Access Control Settings – Locking Template Methods
All objects created in C_AES_* tables in an SP into which the Locking Template has been issued have
the access control settings associated with Locking Template methods as defined in Table 175.

Table 175 C_AES_* Objects Default Access Control Settings
Method ACL AddACE RemoveACEGetACL DeleteMethod
GetPackage Self Self Self Self Self
SetPackage Self Self Self Self Self

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 252 of 265

5.8.6 Examples
5.8.6.1 Re-encryption Functionality Examples

5.8.6.1.1 Clear Text to Encrypt Key 1
The following sequence applies to a User Data LBA region that is currently not encrypted. Preceding
this sequence, this example assumes the following conditions.

• An SP has been issued with the Locking Template, and that SP is active (has been issued and
personalized)

• The Locking table contains a row that represents this unencrypted LBA region.

o This row’s LBA region does not overlap any other row’s LBA region.

Step1: This Locking table row begins with the following conditions:

• ReEncryptState is set to IDLE.

• RangeStart contains first unencrypted LBA

• RangeLength contains the relative offset from first LBA (last LBA to be encrypted).

• ReadLockEnabled and WriteLockEnabled are configured based upon the associated
authority’s requirements.

• ActiveKey is set to 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00.

Step2: The following values are configured preceding re-encryption:

• ContOnReset: Each entry in this list defines the conditions for continuing the re-encryption
process. Ex: if list Null value, then re-encryption is quiesced after a power cycle occurs.

• VerifyMode : when value is 1, a read verify operation must be performed on the newly
encrypted data after it has been written to the media.

• AdvKeyMode: This field defines how the re-encryption exits ACTIVE or COMPLETED states

• New User_Data encryption key must be loaded into associated C_* table.

• NextKey is loaded with a pointer to the associated C_* table.

Step3: Re-encryption is invoked

• The host sets the value of the ReEncryptRequest column to START_req.

• When the TPer detects this new value, the ReEncryptState value becomes PENDING.

• When the TPer, begins re-encryption, the ReEncryptState value becomes ACTIVE.

• As re-encryption is executing, the LastReEncryptLBA is updated. Update rate is
implementation specific. However, this value is valid when ReEncryptState values are
PENDING, PAUSED or COMPLETED.

Step4: Re-encryption is performed. Re-encryption may end in the following way:

• Successful results

o ReEncryptState value changes to COMPLETED OR IDLE based upon AdvKeyMode.

o LastReEncryptLBA equals (RangeStart + RangeLength - 1).

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 253 of 265

o If COMPLETED state, Host sets ReEncryptRequest to ADVKEY_req. The TPer changes
ReEncryptState value to IDLE.

• Failed results

o ReEncryptState value changes to PAUSED

o LastReEncryptLBA represents the last good encrypted LBA.

o PauseStatus represents the condition for changing ReEncryptState to PAUSED.

o The host defines the recovery steps.

5.8.6.1.2 Encrypt Key 1 to Encrypt Key 2
The following sequence applies to an encrypted User Data LBA region and encryption key must be
changed. Preceding this sequence, this example assumes the following conditions.

• An SP has been issued with the Locking Template, and that SP is active (has been issued and
personalized)

• The Locking table contains a row that represents this encrypted LBA region.

o This row’s LBA region does not overlap any other row’s LBA region.

o Associated credentials rows in appropriate C_* tables are valid.

• This LBA region contains previously encrypted User_data

Generally, Encrypt Key 1 to Encrypt Key 2 follows steps 1&2 from Section 5.8.6.1.1 except for the
following conditions.

• ActiveKey has a pointer to a valid C_* object.

From this point, re-encryption invocation and results are the same as Section 5.8.6.1.1.

5.8.6.1.3 Encrypt Key 1 to Clear Text
Generally, Encrypt to Clear Text User_data steps follow Section 5.8.6.1.2 except for the following
conditions.

• The NextKey value is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00.

When the TPer detects a NextKey column value of zeroes and ReEncryptState changes to
START_req, the TPer knows to convert the encrypted User_data LBA region to clear text User_data
LBA region.

From this point, re-encryption invocation and results are the same as Section 5.8.6.1.1.

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 254 of 265

6 Appendix 1 – Required UID Assignments

6.1 Required UID Assignments Overview
The tables in this section define the required UID assignments for objects, methods, and tables, and
table rows as required by this specification.

6.2 Reserved UIDs
The first 216 + 1 uids in each table are reserved for use by the TCG. This represents reservation of the
lower 4 bytes of each uid, 0x00 0x00 0x00 0x00 to 0x00 0x01 0x00 0x00 inclusive. Reservation
allows categorization of table rows using the lower order bytes of each UID.

These default UIDs enable grouping for the following purposes:

o To categorize rows of the Table table by Template

o To categorize rows of the MethodID table by Template

o To categorize rows of the Type table by type format

Each of these categories in each of the respective tables is grouped into 128 categories with 512 UIDs
reserved for each category. The following tables identify the values reserved, and the associated
category for which they are reserved. Note that the reserved byte values represent the lower 4 bytes of
each UID. For additional information on UID assignment, see section 3.2.5.3.

Table 176 MethodID Table and Table Table Reserved LSB Value Ranges
Template Name Reserved Start Reserved End
Base 00 00 00 01 00 00 02 00
Admin 00 00 02 01 00 00 04 00
Clock 00 00 04 01 00 00 06 00
Crypto 00 00 06 01 00 00 08 00
Locking 00 00 08 01 00 00 0A 00
Log 00 00 0A 01 00 00 0C 00
Unassigned 00 00 0C 01 00 01 00 00
Unassigned 00 00 00 00

Table 177 Type Table Reserved LSB Value Ranges
Type Format Name Reserved

Start
Reserved
End

Base Type 00 00 00 01 00 00 02 00
Simple Type 00 00 02 01 00 00 04 00
Enumeration Type 00 00 04 01 00 00 06 00
Alternative Type 00 00 06 01 00 00 08 00
List Type 00 00 08 01 00 00 0A 00
Restricted Reference Type – Row Ref 00 00 0A 01 00 00 0C 00
Restricted Reference Type – UID 00 00 0C 01 00 00 0F 00
General Reference Type – Row Ref 00 00 0F 01 00 00 10 00
General Reference Type – Object UID 00 00 10 01 00 00 12 00
General Reference Type – Table UID 00 00 12 01 00 00 14 00
Name Value Type 00 00 14 01 00 00 16 00
Struct Type 00 00 16 01 00 00 18 00

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 255 of 265

Type Format Name Reserved
Start

Reserved
End

Set Type 00 00 18 01 00 00 1A 00
Unassigned 00 00 1A 01 00 01 00 00
Unassigned 00 00 00 00

6.3 Assigned UIDs
The tables in this section display the assigned UIDs required to be used with the associated tables,
methods, objects, and table rows. For additional information on UID assignment, see section 3.2.5.3.

The tables in this section describe:

• Special Purpose UIDs (Table 178) – this descriptive table contains UIDs assigned special
meanings/functions in the Core Specification, and a brief description of their functions.

• Table UIDs (Table 179) – this descriptive table contains UIDs assigned to all table descriptor
objects (objects in the Table table), as well as the UIDs assigned to the tables themselves.

• Session Manager Method UIDs (Table 180) – this descriptive table contains the UIDs assigned
to Session Manager layer methods.

• MethodID UIDs (Table 181) – this descriptive table contains the UIDs assigned in the MethodID
table to all preinstalled methods.

• Authority UIDs (Table 182) – this descriptive table contains the UIDs assigned in the
Authority table to each of the default authorities described in the Core Spec.

• ACE UIDs (Table 183) – this descriptive table contains the UIDs assigned in the ACE table to
each of the default ACEs described in the Life Cycle/Default Access Control sections of the
TCG Core Specification.

• Single Row Table UIDs (Table 184) – this descriptive table contains the UIDs assigned to rows
in the tables described in the TCG Core Specification as having only one row.

• Table Default Rows (Table 185) – In some instances, the TCG Core Specification also defines
the UIDs of certain objects within some tables. This descriptive table contains the UIDs
assigned to these objects.

• Type UIDs (Table 186) – this descriptive table contains the UIDs assigned to all of the
predefined types, as identified in the Type table. The descriptive table also identifies the table
its columns associated with each type.

• Template Table UIDs (Table 187) – this descriptive table contains the UIDs assigned to all of
the Templates defined in this specification that would appear in the Admin SP’s Template table.

• SPTemplates Table UIDs (Table 188) – this descriptive table contains the UIDs assigned to all
of the Templates defined in this specification that would appear in an SP’s SPTemplates table.

Table 178 Special Purpose UIDs
UID Purpose
00 00 00 00 00 00 00 00 Used to represent Null UID

00 00 00 00 00 00 00 01 Used as the SPUID, the UID that identifies "This SP" – used as the
InvokingID for invocation of SP methods

00 00 00 00 00 00 00 FF Used as the SMUID, the UID that identifies "the Session manager" –
used as InvokingID for invocation of Session Manager layer methods

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 256 of 265

UID Purpose

00 00 00 00 00 00 FF xx Identifies UIDs assigned to Session Manager layer methods, where xx
is the UID assigned to a particular method (see Table 180)

Table 179 Table UIDs
UID of Table Descriptor
Object UID of Table Table Name Template
00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 00 Table Base
00 00 00 01 00 00 00 02 00 00 00 02 00 00 00 00 SPInfo Base
00 00 00 01 00 00 00 03 00 00 00 03 00 00 00 00 SPTemplates Base
00 00 00 01 00 00 00 04 00 00 00 04 00 00 00 00 Column Base
00 00 00 01 00 00 00 05 00 00 00 05 00 00 00 00 Type Base
00 00 00 01 00 00 00 06 00 00 00 06 00 00 00 00 MethodID Base
00 00 00 01 00 00 00 07 00 00 00 07 00 00 00 00 Method Base
00 00 00 01 00 00 00 08 00 00 00 08 00 00 00 00 ACE Base
00 00 00 01 00 00 00 09 00 00 00 09 00 00 00 00 Authority Base
00 00 00 01 00 00 00 0A 00 00 00 0A 00 00 00 00 Certificates Base
00 00 00 01 00 00 00 0B 00 00 00 0B 00 00 00 00 C_PIN Base
00 00 00 01 00 00 00 0C 00 00 00 0C 00 00 00 00 C_RSA_1024 Base
00 00 00 01 00 00 00 0D 00 00 00 0D 00 00 00 00 C_RSA_2048 Base
00 00 00 01 00 00 00 0E 00 00 00 0E 00 00 00 00 C_AES_128 Base
00 00 00 01 00 00 00 0F 00 00 00 0F 00 00 00 00 C_AES_256 Base
00 00 00 01 00 00 00 10 00 00 00 10 00 00 00 00 C_EC_160 Base
00 00 00 01 00 00 00 11 00 00 00 11 00 00 00 00 C_EC_192 Base
00 00 00 01 00 00 00 12 00 00 00 12 00 00 00 00 C_EC_224 Base
00 00 00 01 00 00 00 13 00 00 00 13 00 00 00 00 C_EC_256 Base
00 00 00 01 00 00 00 14 00 00 00 14 00 00 00 00 C_EC_384 Base
00 00 00 01 00 00 00 15 00 00 00 15 00 00 00 00 C_EC_521 Base
00 00 00 01 00 00 00 16 00 00 00 16 00 00 00 00 C_EC_163 Base
00 00 00 01 00 00 00 17 00 00 00 17 00 00 00 00 C_EC_233 Base
00 00 00 01 00 00 00 18 00 00 00 18 00 00 00 00 C_EC_283 Base
00 00 00 01 00 00 00 19 00 00 00 19 00 00 00 00 C_HMAC_160 Base
00 00 00 01 00 00 00 1A 00 00 00 1A 00 00 00 00 C_HMAC_256 Base
00 00 00 01 00 00 00 1B 00 00 00 1B 00 00 00 00 C_HMAC_384 Base
00 00 00 01 00 00 00 1C 00 00 00 1C 00 00 00 00 C_HMAC_512 Base
00 00 00 01 00 00 02 01 00 00 02 01 00 00 00 00 TPerInfo Admin
00 00 00 01 00 00 02 02 00 00 02 02 00 00 00 00 Properties Admin
00 00 00 01 00 00 02 03 00 00 02 03 00 00 00 00 CryptoSuite Admin
00 00 00 01 00 00 02 04 00 00 02 04 00 00 00 00 Template Admin
00 00 00 01 00 00 02 05 00 00 02 05 00 00 00 00 SP Admin
00 00 00 01 00 00 04 01 00 00 04 01 00 00 00 00 ClockTime Clock
00 00 00 01 00 00 06 01 00 00 06 01 00 00 00 00 H_SHA_1 Crypto
00 00 00 01 00 00 06 02 00 00 06 02 00 00 00 00 H_SHA_256 Crypto
00 00 00 01 00 00 06 03 00 00 06 03 00 00 00 00 H_SHA_384 Crypto

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 257 of 265

UID of Table Descriptor
Object UID of Table Table Name Template
00 00 00 01 00 00 06 04 00 00 06 04 00 00 00 00 H_SHA_512 Crypto
00 00 00 01 00 00 0A 01 00 00 0A 01 00 00 00 00 Log Log
00 00 00 01 00 00 0A 02 00 00 0A 02 00 00 00 00 LogList Log
00 00 00 01 00 00 08 01 00 00 08 01 00 00 00 00 LockingInfo Locking
00 00 00 01 00 00 08 02 00 00 08 02 00 00 00 00 Locking Locking
00 00 00 01 00 00 08 03 00 00 08 03 00 00 00 00 MBRControl Locking
00 00 00 01 00 00 08 04 00 00 08 04 00 00 00 00 MBR Locking

Table 180 Session Manager Method UIDs
Method UID Method Name
00 00 00 00 00 00 FF 01 Properties
00 00 00 00 00 00 FF 02 StartSession
00 00 00 00 00 00 FF 03 SyncSession
00 00 00 00 00 00 FF 04 StartTrustedSession
00 00 00 00 00 00 FF 05 SyncTrustedSession
00 00 00 00 00 00 FF 06 CloseSession

Table 181 MethodID UIDs
UID in MethodID Table Method Name Template
00 00 00 06 00 00 00 01 DeleteSP Base
00 00 00 06 00 00 00 02 CreateTable Base
00 00 00 06 00 00 00 03 Delete Base
00 00 00 06 00 00 00 04 CreateRow Base
00 00 00 06 00 00 00 05 DeleteRow Base
00 00 00 06 00 00 00 06 Get Base
00 00 00 06 00 00 00 07 Set Base
00 00 00 06 00 00 00 08 Next Base
00 00 00 06 00 00 00 09 GetFreeSpace Base
00 00 00 06 00 00 00 0A GetFreeRows Base
00 00 00 06 00 00 00 0B DeleteMethod Base
00 00 00 06 00 00 00 0C Authenticate Base
00 00 00 06 00 00 00 0D GetACL Base
00 00 00 06 00 00 00 0E AddACE Base
00 00 00 06 00 00 00 0F RemoveACE Base
00 00 00 06 00 00 00 10 GenKey Base
00 00 00 06 00 00 02 01 IssueSP Admin
00 00 00 06 00 00 04 01 GetClock Clock
00 00 00 06 00 00 04 02 ResetClock Clock
00 00 00 06 00 00 04 03 SetClockHigh Clock
00 00 00 06 00 00 04 04 SetLagHigh Clock
00 00 00 06 00 00 04 05 SetClockLow Clock

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 258 of 265

UID in MethodID Table Method Name Template
00 00 00 06 00 00 04 06 SetLagLow Clock
00 00 00 06 00 00 04 07 IncrementCounter Clock
00 00 00 06 00 00 06 01 Random Crypto
00 00 00 06 00 00 06 02 Salt Crypto
00 00 00 06 00 00 06 03 DecryptInit Crypto
00 00 00 06 00 00 06 04 Decrypt Crypto
00 00 00 06 00 00 06 05 DecryptFinalize Crypto
00 00 00 06 00 00 06 06 EncryptInit Crypto
00 00 00 06 00 00 06 07 Encrypt Crypto
00 00 00 06 00 00 06 08 EncryptFinalize Crypto
00 00 00 06 00 00 06 09 HMACInit Crypto
00 00 00 06 00 00 06 0A HMACCalc Crypto
00 00 00 06 00 00 06 0B HMACFinalize Crypto
00 00 00 06 00 00 06 0C HashInit Crypto
00 00 00 06 00 00 06 0D HashCalc Crypto
00 00 00 06 00 00 06 0E HashFinalize Crypto
00 00 00 06 00 00 06 0F Sign Crypto
00 00 00 06 00 00 06 10 Verify Crypto
00 00 00 06 00 00 06 11 XOR Crypto
00 00 00 06 00 00 0A 01 AddLog Log
00 00 00 06 00 00 0A 02 CreateLog Log
00 00 00 06 00 00 0A 03 ClearLog Log
00 00 00 06 00 00 0A 04 FlushLog Log
00 00 00 06 00 00 08 01 GetPackage Locking
00 00 00 06 00 00 08 02 SetPackage Locking

Table 182 Authority UIDs
UID in Authority Table Authority Name Template
00 00 00 09 00 00 00 01 Anybody Base
00 00 00 09 00 00 00 02 Admins Base
00 00 00 09 00 00 00 03 Makers Base
00 00 00 09 00 00 00 04 MakerSymK Base
00 00 00 09 00 00 00 05 MakerPuK Base
00 00 00 09 00 00 00 06 SID Base
00 00 00 09 00 00 00 07 TPerSign Base
00 00 00 09 00 00 00 08 TPerExch Base
00 00 00 09 00 00 00 09 AdminExch Base
00 00 00 09 00 00 02 01 Issuers Admin
00 00 00 09 00 00 02 02 Editors Admin
00 00 00 09 00 00 02 03 Deleters Admin
00 00 00 09 00 00 02 04 Servers Admin
00 00 00 09 00 00 02 05 Reserve0 Admin
00 00 00 09 00 00 02 06 Reserve1 Admin
00 00 00 09 00 00 02 07 Reserve2 Admin

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 259 of 265

00 00 00 09 00 00 02 08 Reserve3 Admin

Table 183 ACE UIDs
UID in ACE Table ACE Name Template
00 00 00 08 00 00 00 01 Anybody Base
00 00 00 08 00 00 00 02 Admins Base
00 00 00 08 00 00 00 03 Makers Base
00 00 00 08 00 00 00 04 PostIssuanceAdmins Base
00 00 00 08 00 00 00 05 SPInfo_1 Base
00 00 00 08 00 00 00 06 Table_Size Base
00 00 00 08 00 00 00 07 Method_1 Base
00 00 00 08 00 00 00 08 Method_2 Base
00 00 00 08 00 00 02 01 SID Admin
00 00 00 08 00 00 02 02 Issuers Admin
00 00 00 08 00 00 02 03 Editors Admin
00 00 00 08 00 00 02 04 Deleters Admin
00 00 00 08 00 00 02 05 Servers Admin
00 00 00 08 00 00 02 06 Issuers_SID Admin
00 00 00 08 00 00 0A 01 LogList_Security Log
00 00 00 08 00 00 08 01 LockingInfo_1 Locking
00 00 00 08 00 00 08 02 Locking_1 Locking
00 00 00 08 00 00 08 03 Locking_2 Locking
00 00 00 08 00 00 08 04 Locking_3 Locking

Table 184 Single Row Table Row UIDs
UID of Row Single Row Table Name
00 00 00 02 00 00 00 01 SPInfo
00 00 02 01 00 00 00 01 TPerInfo
00 00 08 01 00 00 00 01 LockingInfo
00 00 08 03 00 00 00 01 MBR_Control

Table 185 Table Default Rows
UID of Row Table Name Row Name
00 00 00 0B 00 00 00 01 C_PIN SID
00 00 02 05 00 00 00 01 SP Admin
00 00 04 01 00 00 00 01 ClockTime Clock
00 00 0A 02 00 00 00 01 LogList Log
00 00 08 02 00 00 00 01 Locking Global Range

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 260 of 265

Table 186 Type UIDs
Type UID Type Name Table.Column
00 00 00 05 00 00 00 01 NULL
00 00 00 05 00 00 00 02 bytes
00 00 00 05 00 00 00 03 max_bytes
00 00 00 05 00 00 00 04 integer
00 00 00 05 00 00 00 05 uinteger
00 00 00 05 00 00 02 01 bytes_12 TPerInfo.GUDID
00 00 00 05 00 00 02 02 bytes_16 C_AES_128.Key,

C_AES_128.ResidualData
00 00 00 05 00 00 02 03 bytes_20_def_00 H_SHA_1.Proof,

H_SHA_1.Accumulator
00 00 00 05 00 00 02 04 bytes_32_def_00 H_SHA_256.Proof,

H_SHA_1.Accumulator
00 00 00 05 00 00 02 05 bytes_32 C_AES_256.Key,

C_AES_256.ResidualData,
SP.EffectiveAuth

00 00 00 05 00 00 02 06 version_bytes_4 SPTemplates.Version
00 00 00 05 00 00 02 07 bytes_48_def_00 H_SHA_384.Proof,

H_SHA_384.Accumulator
00 00 00 05 00 00 02 08 bytes_64_def_00 H_SHA_512.Proof,

H_SHA_512.Accumulator
00 00 00 05 00 00 02 09 uid All.UID, SPInfo.SPID,

SPTemplates.TemplateID,
Table.LastID

00 00 00 05 00 00 02 0A certificate
00 00 00 05 00 00 02 0B name All.name, All.CommonName,

ACE.ColStart, ACE.ColEnd,
CryptoSuite.CryptoCall,
CryptoSuite.CryptoOp,
Log.SigningAuthName,
Log.ExchangeAuthName

00 00 00 05 00 00 02 0C password C_PIN.PIN
00 00 00 05 00 00 02 0D max_bytes_32 Locking.LastReEncryptLBA
00 00 00 05 00 00 02 0E max_bytes_64
00 00 00 05 00 00 02 0F int_1_def_0 C_RSA_*.ChainLimit
00 00 00 05 00 00 02 10 integer_1
00 00 00 05 00 00 02 11 uinteger_1
00 00 00 05 00 00 02 12 uinteger_128 C_RSA_1024.Pu_Exp/Mod/Pr_exp,

C_RSA_2048.P/Q/Dmp1/Dmq1/Iqmp
00 00 00 05 00 00 02 13 uinteger_16 C_AES_128.Key
00 00 00 05 00 00 02 14 feedback_size C_AES_*.FeedbackSize
00 00 00 05 00 00 02 15 uinteger_2 Type.Size, CryptoSuite.CryptoLen,

Template.Instances,
Template.MaxInstances

00 00 00 05 00 00 02 16 uinteger_20
00 00 00 05 00 00 02 17 uinteger_21

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 261 of 265

Type UID Type Name Table.Column
00 00 00 05 00 00 02 18 uinteger_24
00 00 00 05 00 00 02 19 uinteger_256 C_RSA_2048.Pu_Exp/Mod/Pr_exp
00 00 00 05 00 00 02 1A uinteger_28
00 00 00 05 00 00 02 1B uinteger_30
00 00 00 05 00 00 02 1C challenge
00 00 00 05 00 00 02 1D uinteger_32
00 00 00 02 00 00 02 1E max_bytes_get
00 00 00 05 00 00 02 1F uinteger_36
00 00 00 05 00 00 02 20 uinteger_4 All Array.RowNumber,

SPInfo.SPSessionTimeout,
Table.NumColumns, Table.Rows,
Table.RowsFree, Table.RowBytes,
Table.MinSize, Column.Byte,
CryptoSuite.Time,
CryptoSuite.Variance,
Template.RevisionNumber,
Log.Session,
Locking_Info.MaxRanges,
Locking_Info.MaxReEncryptions,
Certificates.CertSize,
TPerInfo.Generation,
TPerInfo.FirmwareVersion,
TPerInfo.ProtocolVersion,
Locking_Info.Version,
C_PIN.TryLimit, C_PIN.Tries

00 00 00 05 00 00 02 21 uint_4_def_0 Table.MaxSize, Authority.Limit,
Authority.Uses

00 00 00 05 00 00 02 22 max_bytes_set

00 00 00 05 00 00 02 23 uinteger_48
00 00 00 05 00 00 02 24 uinteger_64 C_RSA_1024.P/Q/Dmp1/Dmq1/Iqmp
00 00 00 05 00 00 02 25 uinteger_8 SPInfo.Size, SPInfo.SizeInUse,

TPerInfo.Bytes,
TPer.SpaceForIssuance, SP.Bytes,
ClockTime.MonotonicBase,
ClockTime.MonotonicReserve,
Log.MonotonicTime,
Locking.RangeStart,
Locking.RangeLength

00 00 00 05 00 00 02 26 common_name All.CommonName
00 00 00 05 00 00 02 27 uinteger_66 C_EC_521
00 00 00 05 00 00 02 28 signed_hash
00 00 00 05 00 00 02 29 response
00 00 00 05 00 00 02 2A session_key_encrypt
00 00 00 05 00 00 02 2B session_key_integrity
00 00 00 05 00 00 02 2C proof
00 00 00 05 00 00 02 2D exchange_key
00 00 00 05 00 00 02 2E iv
00 00 00 05 00 00 02 2F encrypt_result

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 262 of 265

Type UID Type Name Table.Column
00 00 00 05 00 00 02 30 decrypt_result
00 00 00 05 00 00 02 31 sign_result
00 00 00 05 00 00 02 32 hash_result
00 00 00 05 00 00 02 33 hmac_result
00 00 00 05 00 00 02 34 xor_result
00 00 00 05 00 00 02 35 max_bytes_256
00 00 00 05 00 00 02 36 bytes_20
00 00 00 05 00 00 02 37 bytes_48
00 00 00 05 00 00 02 38 bytes_64
00 00 00 05 00 00 02 39 encrypt_max_bytes_input
00 00 00 05 00 00 02 3A decrypt_max_bytes_input
00 00 00 05 00 00 02 3B sign_max_bytes_input
00 00 00 05 00 00 02 3C verify_max_bytes_input
00 00 00 05 00 00 02 3D verify_max_bytes_proof
00 00 00 05 00 00 02 3E hash_max_bytes_input
00 00 00 05 00 00 02 3F hmac_max_bytes_input
00 00 00 05 00 00 02 40 xor_max_bytes_input
00 00 00 05 00 00 02 41 stir_integer
00 00 00 05 00 00 04 01 boolean SPInfo.Enabled, Authority.IsClass,

Authority.PresentCertificate,
ClockTime.HaveHigh,
ClockTime.HaveLow,
LogList.HighSecurity,
Locking.ReadLocked,
Locking.WriteLocked

00 00 00 05 00 00 04 02 boolean_def_false Column.IsIndex,
CryptoSuite.Special, SP.Frozen,
Locking.ReadLockEnabled,
Locking.WriteLockEnabled

00 00 00 05 00 00 04 03 boolean_def_true Column.Transactional,
Authority.Enabled

00 00 00 05 00 00 04 04 messaging_type Authority.Secure
00 00 00 05 00 00 04 05 life_cycle_state SP.LifeCycleState
00 00 00 05 00 00 04 06 padding_type C_RSA_*.Format

00 00 00 05 00 00 04 08 auth_method Authority.Operation
00 00 00 05 00 00 04 09 log_kind Log.LogKind
00 00 00 05 00 00 04 0A symmetric_mode C_AES_*.Mode
00 00 00 05 00 00 04 0B clock_kind ClockTime.TrustMode,

Log.TimeKind
00 00 00 05 00 00 04 0C log_select Method.Log,

Method.AddACELog,
Method.RemoveACELog,
Method.GetACLLog,
Method.DeleteMethodLog,
Authority.Log

00 00 00 05 00 00 04 0D hash_protocol Authority.HashAndSign, C_*.Hash

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 263 of 265

Type UID Type Name Table.Column
00 00 00 05 00 00 04 0E boolean_ACE
00 00 00 05 00 00 04 0F adv_key_mode Locking.AdvKeyMode
00 00 00 05 00 00 04 10 keys_avail_conds Locking_Info.KeysAvailCfg
00 00 00 05 00 00 04 11 last_reenc_stat Locking.LastReEncStat
00 00 00 05 00 00 04 12 verify_mode Locking.VerifyMode
00 00 00 05 00 00 04 13 reencrypt_request Locking.ReEncryptRequest
00 00 00 05 00 00 04 14 reencrypt_state Locking.ReEncryptState
00 00 00 05 00 00 04 15 table_kind Table.Kind
00 00 00 05 00 00 04 16 package_purpose
00 00 00 05 00 00 06 01 ACE_expression
00 00 00 05 00 00 06 02 row_selection ACE.RowStart, ACE.RowEnd
00 00 00 05 00 00 06 03 columns
00 00 00 05 00 00 06 04 uint_ref
00 00 00 05 00 00 06 05 row
00 00 00 05 00 00 06 06 table_object_ref Method.InvokingID
00 00 00 05 00 00 06 07 createrow_result
00 00 00 05 00 00 06 08 next_result
00 00 00 05 00 00 06 09 get_result
00 00 00 05 00 00 06 0A set_values
00 00 00 05 00 00 06 0B encrypt_input
00 00 00 05 00 00 06 0C decrypt_input
00 00 00 05 00 00 06 0D sign_input
00 00 00 05 00 00 06 0E verify_input
00 00 00 05 00 00 06 0F verify_proof
00 00 00 05 00 00 06 10 hash_input
00 00 00 05 00 00 06 11 hmac_input
00 00 00 05 00 00 06 12 xor_input
00 00 00 05 00 00 06 13 stir_input
00 00 00 05 00 00 06 14 challenge
00 00 00 05 00 00 08 01 AC_element ACE.BooleanExpr
00 00 00 05 00 00 08 02 ACL Method.ACL, Method.AddACEACL,

Method.RemoveACEACL,
Method.GetACLACL,
Method.DeleteMethodACL

00 00 00 05 00 00 08 03 type_ref_list
00 00 00 05 00 00 08 04 row_data
00 00 00 05 00 00 08 05 columns_list
00 00 00 05 00 00 08 06 uint_ref_list
00 00 00 05 00 00 08 07 template_list
00 00 00 05 00 00 08 08 ref_uidref_createrow_list
00 00 00 05 00 00 08 09 uidref_createrow_list
00 00 00 05 00 00 08 0A ref_uidref_next_list
00 00 00 05 00 00 08 0B uidref_next_list
00 00 00 05 00 00 08 0C Table_ref_rows_list
00 00 00 05 00 00 08 0D get_column_sub_list

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 264 of 265

Type UID Type Name Table.Column
00 00 00 05 00 00 08 0E get_column_list
00 00 00 05 00 00 08 0F set_column_sub_list
00 00 00 05 00 00 08 10 set_column_list
00 00 00 05 00 00 0A 01 column_ref Column.Next, Table.Column
00 00 00 05 00 00 0C 01 SPTemplates_ref All.TemplateID
00 00 00 05 00 00 0C 02 Type_ref Column.Type
00 00 00 05 00 00 0C 03 MethodID_ref MethodID.MethodID
00 00 00 05 00 00 0C 04 ACE_table_ref
00 00 00 05 00 00 0C 05 Authority_ref Authority.Class,

Authority.ResponseSign,
Authority.ResponseExch, SP.ORG,
ClockTime.HaveByWhom,
ClockTime.LowByWhom,
Log.SigningAuthority,
Log.ExchangeAuthority

00 00 00 05 00 00 0C 06 Certificates_ref C_RSA_*.Certificate,
C_EC_*.Certificate

00 00 00 05 00 00 0C 07 SP_ref

00 00 00 05 00 00 0C 08 Template_ref SPTemplates.TemplateID

00 00 00 05 00 00 0C 09 Table_ref

00 00 00 05 00 00 0F 01 row_ref
00 00 00 05 00 00 0F 02 log_row_ref LogList.Serial
00 00 00 05 00 00 10 01 row_uidref
00 00 00 05 00 00 10 02 cred_object_uidref Authority.Credential,

H_SHA_*.Signer, Locking.ActiveKey,
Locking.NextKey

00 00 00 05 00 00 12 01 table_ref Certificates.CertData, LogList.Log
00 00 00 05 00 00 12 02 ref_def_00 Type.Default, Method.LogTo,

Authority.LogTo, C_PIN.CharSet
00 00 00 05 00 00 12 03 byte_table_ref Certificates.CertData
00 00 00 05 00 00 14 01 column-name
00 00 00 05 00 00 14 02 row_uidref-name
00 00 00 05 00 00 14 03 row_ref-name
00 00 00 05 00 00 14 04 table_ref-name
00 00 00 05 00 00 14 05 type_ref-name
00 00 00 05 00 00 14 06 name-uinteger_2
00 00 00 05 00 00 14 07 name-uinteger_1
00 00 00 05 00 00 14 08 name-startColumn
00 00 00 05 00 00 14 09 name-endColumn
00 00 00 05 00 00 14 0A name-startRow
00 00 00 05 00 00 14 0B name-endRow
00 00 00 05 00 00 16 01 column
00 00 00 05 00 00 16 02 lag ClockTime.HighLag,

ClockTime.LowLag

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 – draft – Draft Page 265 of 265

Type UID Type Name Table.Column
00 00 00 05 00 00 16 03 columns_struct
00 00 00 05 00 00 16 04 date Authority.ClockStart,

Authority.ClockEnd, SP.DateofIssue
00 00 00 05 00 00 16 05 clock_time ClockTime.HighSetTime,

ClockTime.HighInitialTimer;
ClockTime.LowSetTime,
ClockTime.LowInitialTimer,
Log.ExactTime

00 00 00 05 00 00 16 06 type_def Type.Format
00 00 00 05 00 00 16 07 cell_block
00 00 00 05 00 00 16 08 struct-name-uinteger_1
00 00 00 05 00 00 16 09 struct-ref_uidref
00 00 00 05 00 00 16 0A struct-Table_ref_uint_4
00 00 00 05 00 00 18 01 reset_types Locking.LockOnReset,

Locking.ContOnReset
00 00 00 05 00 00 18 02 gen_status Locking.GeneralStatus
00 00 00 05 00 00 18 03 enc_supported Locking_Info.EncryptSupport

Table 187 Template Table UIDs
UID of Row Template Name
00 00 02 04 00 00 00 01 Base
00 00 02 04 00 00 00 02 Admin
00 00 02 04 00 00 00 03 Clock
00 00 02 04 00 00 00 04 Crypto
00 00 02 04 00 00 00 05 Log
00 00 02 04 00 00 00 06 Locking

Table 188 SPTemplates Table UIDs
UID of Row SPTemplates Name
00 00 00 03 00 00 00 01 Base
00 00 00 03 00 00 00 02 Admin
00 00 00 03 00 00 00 03 Clock
00 00 00 03 00 00 00 04 Crypto
00 00 00 03 00 00 00 05 Log
00 00 00 03 00 00 00 06 Locking

[C D1]TC: known/expected behaviour (remove?)
[ms2]This only works if the previous packet i.e. N-1 has the same payload, is this what is meant
here?
[ms3]Should this be “Packet N+1”

	1 Introduction
	1.1 Scope and Audience
	1.2 Key Words
	1.3 References
	1.4 Terminology
	1.4.1 Global Terminology

	2 Trusted Storage Device Architecture
	2.1 Trusted Storage Device Architecture Overview
	2.2 Core Architecture Components
	2.2.1 Multicomponent Trusted Platform (MCTP)
	2.2.2 Host
	2.2.2.1 Host Applications (APPs) and Component Authentication Administrator (CAA)

	2.2.3 Trusted Peripheral (TPer)
	2.2.3.1 Security Providers (SP)

	2.3 Core Architecture Operations
	2.3.1 Host <–> TPer Communication Infrastructure
	2.3.2 SP Issuance & Personalization Overview
	2.3.3 Security Subsystem Classes Overview

	3 Core Architecture Elements
	3.1 Core Architecture Elements Overview
	3.2 Data Structure Descriptions
	3.2.1 Document Data Formats
	3.2.1.1 Tables – Example
	3.2.1.2 Methods – Example

	3.2.2 Data Types
	3.2.2.1 Pseudo-code (Expository)
	3.2.2.2 Messaging Data Types
	3.2.2.3 Method Parameter/Column Value Typing and Encoding

	3.2.3 Stream Encoding
	3.2.3.1 Data Types
	3.2.3.2 Tokens
	3.2.3.2.1 Simple Tokens – Atoms Overview
	3.2.3.2.1.1 Tiny atoms
	3.2.3.2.1.2 Short atoms
	3.2.3.2.1.3 Medium atoms
	3.2.3.2.1.4 Long atoms

	3.2.3.2.2 Encoding Example
	3.2.3.2.3 Token Sequences
	3.2.3.2.3.1 Named

	3.2.3.2.4 List
	3.2.3.2.5 Control Tokens

	3.2.3.3 Method Calls
	3.2.3.3.1 Syntax
	3.2.3.3.2 Method Call Encoding Stream – Example
	3.2.3.3.3 Method Encoding with Transactions – Example

	3.2.3.4 ComPackets, Packets & Subpackets
	3.2.3.4.1 Format
	3.2.3.4.2 ComPacket Format
	3.2.3.4.3 Packet Format
	3.2.3.4.4 Data Subpacket Format
	3.2.3.4.5 Credit Control Subpacket Format

	3.2.3.5 Secure Messaging
	3.2.3.5.1 Secure Messaging Packet Format

	3.2.3.6 Method Invocation – Result Retrieval Protocol

	3.2.4 Templates
	3.2.5 Tables - Details
	3.2.5.1 Kinds of Tables
	3.2.5.2 Objects
	3.2.5.3 Unique Identifiers (UIDs)

	3.2.6 Common Methods
	3.2.7 SP Tables & Method Summary

	3.3 Interface Communications
	3.3.1 Communicating With the TPer Through the Interface Protocol
	3.3.2 The ComID
	3.3.3 ComID Management
	3.3.3.1 Extended ComID

	3.3.4 Sessions
	3.3.4.1 Regular Sessions
	3.3.4.2 Control Sessions

	3.3.5 Protocol Layers
	3.3.5.1 Transport Layer
	3.3.5.2 Interface Layer
	3.3.5.3 TPer Layer
	3.3.5.3.1 GET_COMID

	3.3.5.4 Communication Layer
	3.3.5.5 Communication Layer Protocol
	3.3.5.5.1 HANDLE_COMID_REQUEST
	3.3.5.5.2 GET_COMID_RESPONSE

	3.3.5.6 Management Layer
	3.3.5.7 Session Layer

	3.4 SP Operation Descriptions
	3.4.1 General SP Guidelines
	3.4.2 Access Control
	3.4.3 SP Issuance, Personalization, and Operational State
	3.4.3.1 Example – Issuing an SP

	3.4.4 Sessions, Methods, and Transactions
	3.4.4.1 Method Calls
	3.4.4.2 Transactions
	3.4.4.3 Session Manager Protocol Layer
	3.4.4.4 Ending Sessions
	3.4.4.5 Starting Sessions
	3.4.4.6 Session Timeouts
	3.4.4.7 Signed Hashing During Session Startup

	3.4.5 Session Examples
	3.4.5.1 No Authority Example
	3.4.5.2 Password Example
	3.4.5.3 Full Host & SP Session Key Example
	3.4.5.4 Host Public Key Authentication Example
	3.4.5.5 Full Public/Symmetric Key Examples

	3.4.6 Stream Flow Control: Host & TPer
	3.4.6.1 Transmission Acknowledgement
	3.4.6.2 Transmission Negative Acknowledgement
	3.4.6.3 Transmission Timeouts
	3.4.6.4 Buffer Management
	3.4.6.5 Closing a Session

	4 Life Cycle of SPs
	4.1 Life Cycle of SPs Overview
	4.2 Life Cycle States
	4.3 Defined Authorities
	4.4 State Behaviors
	4.4.1 Access Control
	4.4.2 Issued
	4.4.3 Issued-Disabled
	4.4.4 Issued-Frozen
	4.4.5 Issued-Disabled-Frozen
	4.4.6 Manufacturing
	4.4.7 Manufacturing-Disabled
	4.4.8 Manufacturing-Frozen
	4.4.9 Manufacturing-Disabled-Frozen
	4.4.10 Failed
	4.4.11 Miscellaneous

	5 SP Reference
	5.1 SP Globals
	5.1.1 Variable Types Overview
	5.1.2 Variable Types
	5.1.3 SP Method Status Codes
	5.1.3.1 SUCCESS
	5.1.3.2 NOT_AUTHORIZED
	5.1.3.3 READ_ONLY
	5.1.3.4 SP_BUSY
	5.1.3.5 SP_FAILED
	5.1.3.6 SP_DISABLED
	5.1.3.7 SP_FROZEN
	5.1.3.8 NO_SESSIONS_AVAILABLE
	5.1.3.9 INDEX_CONFLICT
	5.1.3.10 INSUFFICIENT_SPACE
	5.1.3.11 INSUFFICIENT_ROWS
	5.1.3.12 INVALID_COMMAND
	5.1.3.13 INVALID_PARAMETER
	5.1.3.14 INVALID_REFERENCE
	5.1.3.15 INVALID_SECMSG_PROPERTIES
	5.1.3.16 TPER_MALFUNCTION
	5.1.3.17 TRANSACTION_FAILURE
	5.1.3.18 RESPONSE_OVERFLOW

	5.2 Session Manager Methods
	5.2.1 Overview
	5.2.2 TPer Properties Method
	5.2.2.1 Properties (Method)

	5.2.3 Session Startup Methods
	5.2.3.1 StartSession/SyncSession Methods
	5.2.3.2 StartTrustedSession/SyncTrustedSession Methods
	5.2.3.3 CloseSession Method

	5.3 Base Template
	5.3.1 Overview
	5.3.1.1 Base Template Tables and Methods Overview

	5.3.2 Data Structures
	5.3.2.1 General Metadata Group - SPInfo (Array Table)
	5.3.2.2 General Metadata Group - SPTemplates (Array Table)
	5.3.2.3 Table and Method Metadata Group - Table (Object Table)
	5.3.2.4 Table and Method Metadata Group - Column (Array Table)
	5.3.2.5 Table and Method Metadata Group - Type (Object Table)
	5.3.2.6 Table and Method Metadata Group - MethodID (Array Table)
	5.3.2.7 Table and Method Metadata Group - Method (Array Table)
	5.3.2.8 Access Control Metadata Group - ACE (Object Table)
	5.3.2.9 Access Control Metadata Group - Authority (Object Table)
	5.3.2.10 Access Control Metadata Group - Certificates (Object Table)
	5.3.2.11 Credential Table Group - C_PIN (Object Table)
	5.3.2.12 Credential Table Group - C_RSA_1024 (Object Table)
	5.3.2.13 Credential Table Group - C_RSA_2048 (Object Table)
	5.3.2.14 Credential Table Group - C_AES_128 (Object Table)
	5.3.2.15 Credential Table Group - C_AES_256 (Object Table)
	5.3.2.16 Credential Table Group - C_EC_160 (Object Table)
	5.3.2.17 Credential Table Group - C_EC_192 (Object Table)
	5.3.2.18 Credential Table Group - C_EC_224 (Object Table)
	5.3.2.19 Credential Table Group - C_EC_256 (Object Table)
	5.3.2.20 Credential Table Group - C_EC_384 (Object Table)
	5.3.2.21 Credential Table Group - C_EC_521 (Object Table)
	5.3.2.22 Credential Table Group - C_EC_163 (Object Table)
	5.3.2.23 Credential Table Group - C_EC_233 (Object Table)
	5.3.2.24 Credential Table Group - C_EC_283 (Object Table)
	5.3.2.25 Credential Table Group – C_HMAC_160 (Object Table)
	5.3.2.26 Credential Table Group – C_HMAC_256 (Object Table)
	5.3.2.27 Credential Table Group – C_HMAC_384 (Object Table)
	5.3.2.28 Credential Table Group – C_HMAC_512 (Object Table)

	5.3.3 Methods
	5.3.3.1 SP Method Group - DeleteSP (Method)
	5.3.3.1.1 Fails

	5.3.3.2 Basic Table Method Group - CreateTable (SP Method)
	5.3.3.2.1 Fails

	5.3.3.3 Basic Table Method Group - Delete (Object Method)
	5.3.3.3.1 Fails

	5.3.3.4 Basic Table Method Group - CreateRow (Table Method)
	5.3.3.4.1 Fails

	5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)
	5.3.3.5.1 Fails

	5.3.3.6 Basic Table Method Group - Get (Table and Object Method)
	5.3.3.6.1 Fails

	5.3.3.7 Basic Table Method Group - Set (Table and Object Method)
	5.3.3.7.1 Fails

	5.3.3.8 Basic Table Method Group - Next (Table Method)
	5.3.3.8.1 Fails

	5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)
	5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)
	5.3.3.10.1 Fails

	5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)
	5.3.3.11.1 Fails

	5.3.3.12 Access Control Method Group - Authenticate (SP Method)
	5.3.3.12.1 Fails

	5.3.3.13 Access Control Method Group - GetACL (Meta-Method)
	5.3.3.13.1 Fails

	5.3.3.14 Access Control Method Group - AddACE (Meta-Method)
	5.3.3.14.1 Fails

	5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)
	5.3.3.15.1 Fails

	5.3.3.16 Key Related Method Group - GenKey (Object Method)
	5.3.3.16.1 Fails

	5.3.4 Description
	5.3.4.1 Authentication
	5.3.4.1.1 Credential Tables
	5.3.4.1.2 Authorities
	5.3.4.1.3 Authority Operations
	5.3.4.1.4 Session Startup
	5.3.4.1.5 Secure Messaging Control
	5.3.4.1.6 Hashing and Signing Method Parameters
	5.3.4.1.7 Session Key Exchange
	5.3.4.1.8 Session Startup Authorities
	5.3.4.1.9 EC-MQV Session Startup
	5.3.4.1.10 EC-DH Session Startup
	5.3.4.1.11 Certificate Presentation
	5.3.4.1.12 Explicit Authentication with the Authenticate Method

	5.3.4.2 Table Management
	5.3.4.2.1 Creating Tables
	5.3.4.2.2 Retrieving Table Data and Metadata
	5.3.4.2.3 Creating Table Rows and Objects
	5.3.4.2.4 Deleting Table Rows and Objects
	5.3.4.2.5 Deleting Tables
	5.3.4.2.6 Modifying Tables

	5.3.4.3 Access Control
	5.3.4.3.1 Meta-ACLs

	5.3.4.4 Default Logging Settings

	5.3.5 Life Cycle
	5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions
	5.3.5.2 Initial Access Control Settings
	5.3.5.2.1 ACEs
	5.3.5.2.2 SP Methods Default Access Control Settings
	5.3.5.2.3 SPInfo Table Default Access Control Settings
	5.3.5.2.4 SPTemplates Table Default Access Control Settings
	5.3.5.2.5 Table Table and Table Descriptor Object Default Access Control Settings
	5.3.5.2.6 Column Table Default Access Control Settings
	5.3.5.2.7 MethodID Table and MethodID Object Default Access Control Settings
	5.3.5.2.8 Method Table and Method Object Default Access Control Settings
	5.3.5.2.9 Type Table and Type Object Default Access Control Settings
	5.3.5.2.10 ACE Table and ACE Object Default Access Control Settings
	5.3.5.2.11 Authority Table and Authority Objects Default Access Control Settings
	5.3.5.2.12 Certificates Table and Certificates Object Default Access Control Settings
	5.3.5.2.13 C_PIN Table and C_PIN Object Default Access Control Settings
	5.3.5.2.14 C_RSA_* Tables and Objects Default Access Control Settings
	5.3.5.2.15 C_AES_* Tables and Objects Default Access Control Settings
	5.3.5.2.16 C_EC_* Tables and Objects Default Access Control Settings
	5.3.5.2.17 C_HMAC_* Tables and Objects Default Access Control Settings

	5.3.6 Examples
	5.3.6.1 Session Startup Examples
	5.3.6.1.1 Anybody Authority Session Example
	5.3.6.1.2 PIN Authority Session Example
	5.3.6.1.3 Authenticated and Secure Session Example

	5.3.6.2 CreateTable Example
	5.3.6.3 CreateRow Example
	5.3.6.4 DeleteRow Example
	5.3.6.5 Delete Example
	5.3.6.6 Get Examples
	5.3.6.6.1 Get (Table Method) Example
	5.3.6.6.2 Get (Object Method) Example

	5.3.6.7 Set Examples
	5.3.6.7.1 Set (Table Method) Example
	5.3.6.7.2 Set (Object Method) Example

	5.3.6.8 Next Examples
	5.3.6.9 Authenticate Examples
	5.3.6.9.1 Authenticate Method Example – PIN
	5.3.6.9.2 Authenticate Method Example – Challenge/Response

	5.3.6.10 AddACE Example
	5.3.6.11 RemoveACE Example
	5.3.6.12 DeleteMethod Example
	5.3.6.13 Authority Table Example
	5.3.6.14 Starting Sessions Using EC-MQV
	5.3.6.15 Starting Sessions Using EC-DH

	5.4 Admin Template
	5.4.1 Overview
	5.4.2 Data Structures
	5.4.2.1 TPer Metadata Group - TPerInfo (Array Table)
	5.4.2.2 TPer Metadata Group - Serial Number Contents
	5.4.2.3 TPer Metadata Group - CryptoSuite (Array Table)
	5.4.2.4 TPer Metadata Group – Properties (Byte Table)
	5.4.2.5 SPs on the TPer Group - Template (Object Table)
	5.4.2.6 SPs on the TPer Group - SP (Object Table)

	5.4.3 Methods
	5.4.3.1 IssueSP (SP Method)
	5.4.3.1.1 Fails

	5.4.4 Descriptions
	5.4.4.1 Templates and the Admin SP
	5.4.4.2 Admin SP Sessions
	5.4.4.2.1 Issuance Sessions

	5.4.4.3 Authorities
	5.4.4.4 Default Logging Settings

	5.4.5 Life Cycle
	5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions
	5.4.5.2 Initial Access Control Settings
	5.4.5.2.1 ACEs
	5.4.5.2.2 Authority Table Access Control Settings
	5.4.5.2.3 Table Table Access Control Settings
	5.4.5.2.4 IssueSP Method Access Control Settings
	5.4.5.2.5 TPerInfo Table Default Access Control Settings
	5.4.5.2.6 CryptoSuite Table Default Access Control Settings
	5.4.5.2.7 Template Table Default Access Control Settings
	5.4.5.2.8 SP Table Default Access Control Settings
	5.4.5.2.9 SP Object Default Access Control settings

	5.4.6 Examples
	5.4.6.1 Example Values for Admin Template Authorities
	5.4.6.2 Typical Required CryptoSuite Values
	5.4.6.2.1 Issuance Session Example

	5.5 Clock Template
	5.5.1 Overview
	5.5.2 Terminology
	5.5.3 Data Structures
	5.5.3.1 ClockTime (Array Table)

	5.5.4 Methods
	5.5.4.1 GetClock (Table Method)
	5.5.4.1.1 Fails

	5.5.4.2 ResetClock (Table Method)
	5.5.4.2.1 Fails

	5.5.4.3 SetClockHigh/SetLagHigh (Table Methods)
	5.5.4.3.1 Fails

	5.5.4.4 SetClockLow/SetLagLow (Table Method)
	5.5.4.4.1 Fails

	5.5.4.5 IncrementCounter (Table Method)
	5.5.4.5.1 Fails

	5.5.5 Descriptions
	5.5.5.1 Setting the Time
	5.5.5.2 High Trust vs. Low Trust
	5.5.5.3 Monotonic Counter
	5.5.5.4 Incremental Clock
	5.5.5.5 Timer Mode
	5.5.5.6 Storing Time
	5.5.5.7 Storing LagTime
	5.5.5.8 Default Logging Settings

	5.5.6 Life Cycle
	5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions
	5.5.6.2 Initial Access Control Settings
	5.5.6.2.1 ACEs
	5.5.6.2.2 ClockTime Table Default Access Control Settings

	5.5.7 Examples
	5.5.7.1 Example ClockTime Tables

	5.6 Crypto Template
	5.6.1 Overview
	5.6.2 Terminology
	5.6.3 Data Structures
	5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table)
	5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table)
	5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table)
	5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table)

	5.6.4 Methods
	5.6.4.1 Key Related Method Group - Random (SP Method)
	5.6.4.2 Crypto Related Method Group – Stir (SP Method)
	5.6.4.3 Decryption Method Group – DecryptInit (Object Method)
	5.6.4.3.1 Fails

	5.6.4.4 Decryption Method Group - Decrypt (Object Method)
	5.6.4.4.1 Fails

	5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)
	5.6.4.5.1 Fails

	5.6.4.6 Encryption Method Group – EncryptInit (Object Method)
	5.6.4.6.1 Fails

	5.6.4.7 Encrytion Method Group - Encrypt (Object Method)
	5.6.4.7.1 Fails

	5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method)
	5.6.4.8.1 Fails

	5.6.4.9 Sign (Object Method)
	5.6.4.9.1 Fails

	5.6.4.10 Verify (Object Method)
	5.6.4.10.1 Fails

	5.6.4.11 Hash Method Group – HashInit (Object Method)
	5.6.4.11.1 Fails

	5.6.4.12 Hash Method Group – HashCalc (Object Method)
	5.6.4.12.1 Fails

	5.6.4.13 Hash Method Group – HashFinalize (Object Method)
	5.6.4.13.1 Fails

	5.6.4.14 HMAC Method Group – HMACInit (Object Method)
	5.6.4.14.1 Fails

	5.6.4.15 HMAC Method Group – HMACCalc (Object Method)
	5.6.4.15.1 Fails

	5.6.4.16 HMAC Method Group – HMACFinalize (Object Method)
	5.6.4.16.1 Fails

	5.6.4.17 XOR (SP Method)
	5.6.4.17.1 Fails

	5.6.5 Descriptions
	5.6.5.1 Cellblocks
	5.6.5.2 Hashing
	5.6.5.3 HMAC
	5.6.5.4 XOR
	5.6.5.5 Signing
	5.6.5.5.1 Invocation of Sign on a Public Key Credential
	5.6.5.5.2 Invocation of Sign on a Hash Object

	5.6.5.6 Verifying
	5.6.5.6.1 Invocation of Verify on a Public Key Credential
	5.6.5.6.2 Invocation of Verify on a Hash Object

	5.6.5.7 Encrypting
	5.6.5.8 Decrypting
	5.6.5.9 Default Logging Settings

	5.6.6 Life Cycle
	5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions
	5.6.6.2 Initial Access Control Settings
	5.6.6.2.1 C_RSA_* Objects Access Control Settings – Crypto Template Methods
	5.6.6.2.2 C_EC_* Objects Access Control Settings – Crypto Template Methods
	5.6.6.2.3 C_AES_* Objects Access Control Settings – Crypto Template Methods
	5.6.6.2.4 H_SHA_* Table/Objects Access Control Settings

	5.6.7 Examples
	5.6.7.1 Example H_SHA_1 Table
	5.6.7.2 Hash Example
	5.6.7.3 HMAC Example
	5.6.7.4 Sign Method Invocation Examples
	5.6.7.5 Verify Method Invocation Example

	5.7 Log Template
	5.7.1 Overview
	5.7.1.1 Terminology

	5.7.2 Data Structures
	5.7.2.1 Log (Array Table)
	5.7.2.2 LogList (Object Table)

	5.7.3 Methods
	5.7.3.1 AddLog (Table Method)
	5.7.3.1.1 Fails

	5.7.3.2 CreateLog (Table Method)
	5.7.3.2.1 Fails

	5.7.3.3 ClearLog (Table Method)
	5.7.3.3.1 Fails

	5.7.3.4 FlushLog (Table Method)
	5.7.3.4.1 Fails

	5.7.4 Descriptions
	5.7.4.1 Types of Logging
	5.7.4.2 Log Entries
	5.7.4.3 Deleting a Log Table
	5.7.4.4 Default Logging Settings

	5.7.5 Life Cycle
	5.7.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions
	5.7.5.2 Initial Access Control Settings
	5.7.5.2.1 ACEs
	5.7.5.2.2 LogList Table/Objects Default Access Control Settings
	5.7.5.2.3 Log Table Default Access Control Settings

	5.7.6 Examples
	5.7.6.1 Example LogList Table

	5.8 Locking Template
	5.8.1 Overview
	5.8.1.1 Terminology

	5.8.2 Data Structures
	5.8.2.1 LockingInfo (Array Table)
	5.8.2.2 Locking (Object Table)
	5.8.2.3 MBRControl (Array Table)
	5.8.2.4 MBR (Byte Table)

	5.8.3 Methods
	5.8.3.1 GetPackage Method (Object Method)
	5.8.3.1.1 Fails

	5.8.3.2 SetPackage Method (Object Method)
	5.8.3.2.1 Fails

	5.8.4 Description
	5.8.4.1 Locking State Descriptions
	5.8.4.1.1 State Descriptions
	5.8.4.1.2 State Change Descriptions

	5.8.4.2 Re-encryption Overview
	5.8.4.3 Re-encryption State Descriptions
	5.8.4.4 Default Logging Settings

	5.8.5 Life Cycle
	5.8.5.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions
	5.8.5.2 Initial Access Control Settings
	5.8.5.2.1 ACEs
	5.8.5.2.2 Locking_Info Table Default Access Control Settings
	5.8.5.2.3 Locking Table/Objects Default Access Control Settings
	5.8.5.2.4 MBR_Control Table Default Access Control Settings
	5.8.5.2.5 MBR Table Default Access Control Settings
	5.8.5.2.6 C_RSA_* Objects Access Control Settings – Locking Template Methods
	5.8.5.2.7 C_EC_* Objects Access Control Settings – Locking Template Methods
	5.8.5.2.8 C_AES_* Objects Access Control Settings – Locking Template Methods

	5.8.6 Examples
	5.8.6.1 Re-encryption Functionality Examples
	5.8.6.1.1 Clear Text to Encrypt Key 1
	5.8.6.1.2 Encrypt Key 1 to Encrypt Key 2
	5.8.6.1.3 Encrypt Key 1 to Clear Text

	6 Appendix 1 – Required UID Assignments
	6.1 Required UID Assignments Overview
	6.2 Reserved UIDs
	6.3 Assigned UIDs

