TCG Storage Architecture
Core Specification

Specification Version 1.0
Revision 0.9 —draft —
May 24, 2007

Draft

Work In Progress

This document is an intermediate draft for comment only and is subject to
change without notice. Readers should not design products based on this
document.

TCG

Copyright © TCG 2007

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Copyright ©2003-2007 Trusted Computing Group, Incorporated.
Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual
property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Revision 0.9 - draft - Draft Page ii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision History

a Added Sections R. Thibadeau

b 8/25/04 Extensive Edits R. Thibadeau

c 8/31/2004 Lot of changes, particularly types J. Nestor

d 9/7/04 Added more explanation of SPs R. Thibadeau

e 9/16/04 Changed Intro, included example R Thibadeau

f-g 8/5/05 Numerous Edits, Filled out ACL Section R. Thibadeau, D. Philips, J. Cox
h 8/31/05 More ACL Section work R. Thibadeau, D. Philips, J. Cox
i 9/8/05 Slight ACL update, Session update R. Thibadeau, D. Philips, J. Cox
J 9/9/05 Secure Messaging R. Thibadeau, D. Philips, J. Cox
k-1 9/12/05 Misc. cleanup R. Thibadeau, D. Philips, J. Cox
m 9/14/05 Secure Messaging diagrams and cleanup. R. Thibadeau, D. Philips, J. Cox
n 9/22/05 Additional Secure Messaging diagrams. R. Thibadeau, D. Philips, J. Cox
0-q 10/11/05 Addt’l. core spec details & org. changes. R. Thibadeau, D. Philips, J. Cox
p 10-18-05 More small edits for clarity R. Thibadeau

r-s 11/04/05 Changes from October Orlando F2F R. Thibadeau, D. Philips, J. Cox
t 11/xx/05 Changes from post F2F conference calls R. Thibadeau, D. Philips, J. Cox
u-v 11/23/05 Changes from Working Group Core R. Thibadeau, D. Philips, J. Cox

Comments, and cleanup of text, small edits, etc.
w 12/12/05 Removed SP->SP method calls, clarified R. Thibadeau, D. Philips, J. Cox

logging during a read session, etc., some updates
from the SF F2F in Dec ‘05

0.2a-b 12/22/05 Moved up to 0.2 as we’re adding fewer R. Thibadeau, D. Philips, J. Cox
and fewer new issues.

0.2c-d 1/5/06 Added Life Cycle (Section 10) R. Thibadeau
0.2e-i Numerous clarifying changes as per TCG comments | R. Thibadeau, D. Philips, J. Cox
0.3 Numerous clarifying changes as per TCG R. Thibadeau, D. Philips, J. Cox, D. Brown
comments, updated EC tables, added curve choices
0.4 4/7/06 Major Format & Section Changes. D. Ybarra
Added Registry & Locking SP sections
0.5 Numerous small edits filling in gaps left in reformat | R. Thibadeau
0.6 Fixed numerous doc bugs, added section on J. Cox, D. Brown
ECMQV
0.7 Many changes, doc bug fixes, clarifications, and J. Cox
updates based on WG comments and Triage
0.9 Significant modifications based on SWG document | J. Cox and the rest of the SWG

review, multiple proposal submissions, etc. in
preparation for SWG vote

Revision 0.9 - draft - Draft Page iii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

TABLE OF CONTENTS

1 INTRODUCTION e e et e e e e et e et e e e e enaeannas 17
A YooY o L= 1K= 1 a o [N U o 1= g o TSR 17
N = Ao T (o =SS 17
G T B LC =T =T 0o =T PSPPI 17
O =T 01 g o [Yo | S 18
141 (C1o] o =1 I =14 40110 o] (oo |V PRSPPI 18

2 TRUSTED STORAGE DEVICE ARCHITECTURE ..., 21
2.1 Trusted Storage Device ArchiteCture OVEIVIEWuueeiiieeiiiiiiiiiiieee et e e e e e srrraeee e e e 21
2.2 Core ArchiteCture COMPONENTS . .ciiiii e e s e e e e s e s e e e e e e s s ss e e e e e e e e s ssnnnnraneeeaeeeaans 21
221 Multicomponent Trusted Platform (MCTP)oooiiiiiiie e 21
W o (o S EOSPPT PP 21
2221 Host Applications (APPs) and Component Authentication Administrator (CAA)............... 22
2.2.3 Trusted Peripheral (TPEI) e e e 22
2.2.31 SeCUrty Providers (SP) ... 22

2.3 Core ArchiteCture OPEIrAtiONSe i ittt e ettt e e e e e e e s bbbt e e e e e e e e s s nnnbeeeeaaaeannes 23
2.3.1 Host <—> TPer Communication INfrastruCturecccooiviiiiie e 23
2.3.2 SP Issuance & Personalization OVEIVIEW..........c.uuiiiiiiiie it 24
2.3.3 Security Subsystem ClasSes OVEIVIEWcoiiiieiiiiiiuiiiiieie ettt e e e s e e e e e e e srraaeeeae s 24

3 CORE ARCHITECTURE ELEMENTS ... 25
3.1 Core Architecture EIemMentS OVEIVIEWcuiiiiiiiiiiiiiiiieee e e eeeiitie e e e e e s et ee e e e e e s ssnnneeeeeaaeesannnees 25
3.2 Data StrUCtUIEe DESCIIPTIONSuiiiiiiiiiie ettt ettt et e e e et b e e e bt et e e e snbneenneees 25
3.21 Document Data FOrMALSoooi i e e e e 25
3.2.1.1 Tables — EXaMPIE ... 25
3.21.2 Methods — EXAMPIEooiiiiieieeeeee s 25
3.2.2 (D= = T I o= PRSPPI 25
3.2.21 Pseudo-code (EXPOSITOIY)occiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e eans 26
3.22.2 MeESSAGING DAtA TYPESuuiiiiiiie ettt e e e e e e e e e e e e e e e e e e saraaneeaaaeaean 26
3.2.2.3 Method Parameter/Column Value Typing and Encodingcccceiiiiiieiiiiie e, 26
3.2.3 Stream ENCOAING.ueiiiiiiiiee ettt ettt st nn e e e et e e eaneee s 27
3.2.3.1 D= = N o1 T PO PP PR 27
3.23.2 LI =] 0 S 28
3.2.3.3 MELNOM CallS ... eeiieiiiiiie ettt e e e e e s e ae e e s e nsbe e e s e sbaeeeennsaeeeennsaeeeeees 33
3.234 ComPackets, Packets & SUDPACKELScooiiiiiiiiiiii e 37
3.2.35 SECUIE MESSAGING ...eeeeiuteiieeitiiee e ettt e e ettt e e e st e e e et e e e sbeeeeesbaeeeesasaeeeesasseeeeaantaeaesanseeeesanes 41
3.2.3.6 Method Invocation — Result Retrieval Protocol.............ccuuuiiiiiiiiiii e 43
D S =Y 001 o] =1 (=T TR UOPRRPP 43
3.2.5 TADIES = DELAIIS ...cee et e e e e e st e e e e ne e e nnaee s 43
3.2.5.1 gL 0] 1= o)1= S PP STPR 44
3.252 (@10 -T2 SR PSPPI 44
3.25.3 Unique 1dentifiers (UIDS)oooiiiiiie et 44
3.2.6 10707 421 02T o]0 JN1Y/ =1 14 o Yo 1S S 45
3.2.7 SP Tables & MethOd SUMIMANY...........ooiiiiiiii e 45
3.3 Interface COMMUNICALIONS ..ocoiiiiiiiiiii et e et e e e s e st e e e e e e s s s st taeeeaeeeessnsnneneeeeeeennnes 50
3.3.1 Communicating With the TPer Through the Interface Protocolccccoviiiiiie e 50

K 20 I o =Y o o RS UR 51
3.3.3 COMID MaNAQEMENT.....cciiuiiiieiiiiiee et ee ettt e e ettt e e e ettt e e s stae e e e snsaeeeesnseeeesassseeesansseeesanseeeaeannnens 55
3.3.3.1 [a =Y aTo =T I 0oy o1 |15 SRRSO 56

Revision 0.9 - draft - Draft Page iv of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

KRG I S 1= 111 (o] o - F PP P PP PTUPRPPPON 57
3.3.4.1 REGQUIAE SESSIONS.....coiiiiiiiiiie et e e e e e e e e e e e e e s e e e e e e e e e s e nnrreeeaaaeeas 57
3.34.2 (O] a1 1 o] I ST= TS (o] o S 57

K IR T o (0] (oot]l E= =T £ SRR 57
3.3.5.1 TrANSPOIT LAYET ...ttt ettt e et e e e ettt e e s sbe e e e e sbneeeeanreeeean 59
3.3.5.2 INEEITACE LAYET ...t 59
3.3.5.3 LI =T O = =T PO OPPPPP PRI 59
3.3.54 ComMMUNICAION LAYE......eiiiiiiiiie ittt sb e e sbreeeeens 60
3.3.5.5 Communication Layer ProtOCOL..........coicuuiieiiiiiie ettt 60
3.3.5.6 Y =T g F= To =T 0 g =T o L I Y SRR 62
3.3.5.7 S T=E T (o] T IR Y PSSR 63

3.4 SP Operation DeSCIIPLIONS ... ciiiiiiiie et e e s s s e e e e e s e st re e e e e e e s s satrtaeeeaeeeessasnnreeeeeeenannes 63

3.4.1 General SP GUIAEINEScooiuiiiiiiiiie et 63

K o o7~ 1= X @0] | o) SRR 63

3.4.3 SP Issuance, Personalization, and Operational State.............cceeviiiiii e, 65
3.4.3.1 Example — ISSUING @N SP ... e s 66

344 Sessions, Methods, and TranSaCONSoovvuiiii e 66
3441 1Y 1= g ToTo =SS 67
3.4.4.2 LI = 10 7= Lo (o o SR 67
3.4.4.3 Session Manager ProtoCOl LAYET............uiiiiiiiiiii ettt sneee e 68
3444 ENAING SESSIONSciiiiiiiiie et et e e e et e e e et e e e et e e e e enrea e e nnnees 68
3.4.45 YT] o IS TS (o o T PSSR 69
3446 SESSION TIMEOULS ...ttt en e e 70
3.4.4.7 Signed Hashing During Session Startupccccciiiiiiiee e 71

3.4.5 SESSION EXAMPIES.....iiiiiiii ittt e e et e e e e e e e e e e e e e e e e e e ———e e e e e e e e nnbraaeaaaaaann 71
3.4.5.1 NO AUhOTitY EXAMIPIEoiiiiiiie e e 72
3.4.52 Password EXAMPIEoooiiiiiiie e 72
3.4.5.3 Full Host & SP Session Key EXamPIec.euiiiiiiiiiic e 73
3.4.54 Host Public Key Authentication EXample ... 74
3.4.55 Full Public/Symmetric Key EXamplesoooiiiiiiii e 75

3.4.6 Stream Flow Control: HOSt & TPEr.......cooiiiiii e 77
3.4.6.1 Transmission Acknowledgement..... ... 78
3.4.6.2 Transmission Negative Acknowledgement............ccueiiiiiiiiiii e 78
3.4.6.3 TransSmMISSION TIMEOULS.........cciiiiiiiiiiiie et 78
3.4.6.4 Buffer ManagemeENntveiiiiii i a e e s aaa e 79
3.4.6.5 (01 (o F] 1 aTo = IS 111 o) o [PPSO 79

4 LIFE CYCLE OF SPS ..o e e e e eaans 81
4.1 Life CYCle Of SPS OVEIVIEW ..ottt ettt e e e e e e s st e e e e e e e e e s e snnbeaeeeeaaannes 81
A W | - O3V o [T] - (L ST UPRPPTOPURRTRN 81
4.3 DefiNed AUTNOTITIES ..ottt e et e e e st et e e e bb et e e s snbeeesanreeee e e 87
4.4 STALE BERAVIOIS ..ottt b e s e e h e e b rn e nnre s 88

4.4.1 ACCESS CONIIOL ...ttt et e bt et et e aar e sn e nan e nane s 88

4.2 ISSUB..cuiiiieiie ettt b e h et ah e e e et bt et e ar e e ne e naren 88

443 LTS =0 B D11 o] =T o S 88

444 LT =0 o o Y o T 88

44.5 [T =To B T IST=1 o] (=T B o =Y o I 89

446 ManUFACTUIING ..ooiieiiiie et e e e e e bttt e s e bttt e e e s e e e e e nbe e e anees 89

447 Manufacturing-DisSabledcoooiiiii e 89

4.4.8 ManufaCturiNg-FrOZEN ... e 89

449 Manufacturing-Disabled-FrOZen...........cccoo i 89

o L0 T = U1 [T o TSSOSO 89

N o B Y £t =Y [F= T 1= o U U 89

Revision 0.9 - draft - Draft Page v of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

S SP REFERENCEo 90
S0 A Y e €1 o] o = 1 PRSP SRRRN 90
5.1.1 Variable TYPES OVEIVIEWuiiiiiiiiiie ittt ettt e et e e e st e e e s sbeeeeeas 90
T IV Y = 1 o) [T Y] o= TR SUPURPP 91
5.1.3 SP Method Status COES........c.ueiiiiiiii ettt e s e e neeas 111
5.1.3.1 SUCCESS...c bbbt a e bt st e et et e sabe e e bt e e abbe e abeeenareean 112
5.1.3.2 NOT_AUTHORIZED ..ottt 112
5.1.3.3 READ _ONLY L.ttt ettt ettt ea e e e bt e st e et et e s e nnre e e 112
5.1.34 SP _BUSY ettt 112
5.1.35 SP_FAILED ...ttt ettt ettt e e e te e e ente e e neeeaneeeanteeeaneeeans 112
5.1.3.6 SP_DISABLEDottt ettt et e e en e e eneeenneeeateeeanneean 112
51.37 SP_FROZEN ...ttt ettt ettt ettt e et e e et e e e ae e e aeeeeneeeanteeeaneeen 112
5.1.3.8 NO_SESSIONS_AVAILABLE.......o ottt e e e 112
5.1.3.9 INDEX _CONFLICT ...ttt ettt ettt e et e e et e e s e e e emeeeeaeeeaneeeameeeeemneeenees 112
5.1.3.10 INSUFFICIENT_SPACE......coi ittt ettt ettt anreesnee s 113
5.1.3.11 INSUFFICIENT_ROWS ... oottt b et sbe e s eenee s 113
5.1.3.12 INVALID_COMMAND ...ttt sttt e sbe e st e s bee e sabeeenneeas 113
5.1.3.13 INVALID_PARAMETER ..ottt 113
5.1.3.14 INVALID_REFERENGCE.......coi ittt 113
5.1.3.15 INVALID_SECMSG_PROPERTIES ...ttt ittt e 113
5.1.3.16 TPER_MALFUNGCTIONoiiiiiiiii ittt et e et e e see e st e e sneeeeneeenneeea 113
5.1.3.17 TRANSACTION_FAILUREooi ittt e e nnee e e s 113
5.1.3.18 RESPONSE_OVERFLOW ...ttt st snee e st e e smeeeenee s 113
5.2 SesSion Manager MEtNOUSuuiiiiiiiee ettt e st e e sabeee e e 114
5.2.1 L0 1YY T SRR 114
522 TPer Properties MethOd e e e e e e e e e e 114
5.2.2.1 Properties (Method)ooi it st e e et e e e s saaeeeeanes 114
5.2.3 Session Startup MeEthOASuviiiiiii e e e 116
5.2.3.1 StartSession/SyncSession MethOdS...........ooiiiiiiiiiiiei e 116
5.2.3.2 StartTrustedSession/SyncTrustedSession Methodsccceeeveiiiiiiiiieie e, 118
5.2.3.3 CloseSEeSSION MELNOM........eiiiiiiiiiic e 119
LR T - 1Y =T =T 0 1] = =PSSOSR 119
5.3.1 L0 1YY T PSS 119
5.3.1.1 Base Template Tables and Methods OVErvieW............ccooiiiiieiiiiiie i 119
5.3.2 Dat@ SEIUCIUIES ...ttt ettt e e e e e ettt e e e e e e e e e e nnneaeeeaaeeeeenneeas 119
5.3.2.1 General Metadata Group - SPInfo (Array Table)..........ccccoiiiiiiiiiee e 119
53.22 General Metadata Group - SPTemplates (Array Table).........cccooiiieiiiiiiiiiieeeee 120
5.3.2.3 Table and Method Metadata Group - Table (Object Table)cccccveviiiviiiciieee e, 121
5324 Table and Method Metadata Group - Column (Array Table).........cccccvevviiiieiviiiee e, 122
5.3.25 Table and Method Metadata Group - Type (Object Table)cccoeceiveviiiiieiieee e, 122
5.3.2.6 Table and Method Metadata Group - MethodID (Array Table)............ccccovveeeeeeeiiicnnneee, 123
5.3.2.7 Table and Method Metadata Group - Method (Array Table)ccoovecviieieieeeiiicie, 124
5.3.2.8 Access Control Metadata Group - ACE (Object Table)...........cooccuiiieeiieiiiiiiiieeiee e, 126
5.3.29 Access Control Metadata Group - Authority (Object Table) ..o 127
5.3.2.10 Access Control Metadata Group - Certificates (Object Table)cccccvviiiiiiiiiniinineen. 130
5.3.2.11 Credential Table Group - C_PIN (Object Table).........cccoccueeiiiiiiiii e, 131
5.3.2.12 Credential Table Group - C_RSA_1024 (Object Table)ccccovurieiiiiiiiiiiieeiee, 132
5.3.2.13 Credential Table Group - C_RSA_2048 (Object Table)ccccovuriiiiiiiiiiiieeeee, 132
5.3.2.14 Credential Table Group - C_AES_128 (Object Table)coccuviiiiiiiiiiiiieeeeee e, 133
5.3.2.15 Credential Table Group - C_AES_256 (Object Table)cccccuveiiiiiiiieiiiee e, 134
5.3.2.16 Credential Table Group - C_EC_160 (Object Table).........cccceecureriiiiiiieeiiiee e, 135
5.3.2.17 Credential Table Group - C_EC_192 (Object Table).........cceeeureriiiiiiieeiiiei e 136
5.3.2.18 Credential Table Group - C_ EC_224 (Object Table)...........ccccurrrieeeeeiiicieeeeee e 137
5.3.2.19 Credential Table Group - C_ EC_256 (Object Table)...........cccccuvrreeeeeeiiiiiieieee e 138
5.3.2.20 Credential Table Group - C_EC_384 (Object Table)..........ccerieriiieriiiieeee e 139
5.3.2.21 Credential Table Group - C_EC_521 (Object Table)..........ccoevvureiiiiiiiiiiiieieeee e, 140

Revision 0.9 - draft - Draft Page vi of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.2.22 Credential Table Group - C_ EC_163 (Object Table)...........ccccouvrrreieeiiiiieeee e 141
5.3.2.23 Credential Table Group - C_ EC_233 (Object Table)...........ccecurrriieeeeiiieeeeee e 143
5.3.2.24 Credential Table Group - C_EC_283 (Object Table)..........ccouvureiiiiiiiiiiiiiieeeee e, 144
5.3.2.25 Credential Table Group — C_HMAC_160 (Object Table)........cccceeoerriireiiieiie e 145
5.3.2.26 Credential Table Group — C_HMAC_256 (Object Table)........cccceeceriiiriniieiiie e 145
5.3.2.27 Credential Table Group — C_HMAC_384 (Object Table)..........ccccovurieiriiiieiiiiiieee, 146
5.3.2.28 Credential Table Group — C_HMAC_512 (Object Table)..........ccccovuiiriiniiieiiiiiie e, 146
TG T T 1V 1= (g To o £ SRR 146
5.3.3.1 SP Method Group - DeleteSP (Method)ooeiiciiiiiiiiiiiee e 147
5.3.3.2 Basic Table Method Group - CreateTable (SP Method)ccoooviiiiiiiiiiiiiee e 147
5.3.3.3 Basic Table Method Group - Delete (Object Method)cccoeviiiiieiiiiie e 148
5.3.34 Basic Table Method Group - CreateRow (Table Method) ..o, 148
5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)cooociiieieiieiiiiieee. 149
5.3.3.6 Basic Table Method Group - Get (Table and Object Method)..........cccoceeiiiiiiiiinennee 149
5.3.3.7 Basic Table Method Group - Set (Table and Object Method)cccceeiiiiiiiiiineenee 150
5.3.3.8 Basic Table Method Group - Next (Table Method)............ccoceiiiiiii 150
5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)...........ccoovvieiiiiiiciiniiee 151
5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)cooviiiiiiiiieiiniinenn, 151
5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)...........ccccooviieiiiiiiiiinineen. 151
5.3.3.12 Access Control Method Group - Authenticate (SP Method)..........cccccveviiiiiiiiiiiee e, 152
5.3.3.13 Access Control Method Group - GetACL (Meta-Method)...........coovviiveiiiiieiiiiiiee e, 152
5.3.3.14 Access Control Method Group - AAdACE (Meta-Method)..........cccoccveveeiiiiiiiiiiice e, 153
5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method).............cccoveeeveiiiiiinnnnen, 153
5.3.3.16 Key Related Method Group - GenKey (Object Method)............cccceeeiiiiiiiiiiiiei 153
5.3.4 (1Yol o] i o HP USRS 154
5.3.4.1 F U 1 1= 1 o= (o o RSO PRRRR 154
5342 Table ManagemENt 162
5.3.4.3 oo O] | 1 o SRR 165
5344 Default Logging SettingS........ooi i 166
TR TS T 1103 USRI 167
5.3.51 Base Template-Specific Life Cycle State Descriptions/Exceptions............ococccveeeneennn. 167
5.35.2 Initial Access Control SEHNGScoeiiiiiiieie e e e 167
5.3.6 EXAMPIES ... 173
5.3.6.1 SesSIioN Startup EXAMPIES......cooiiii e 173
5.3.6.2 CreateTable EXamPIEuuiiiiiiie et e e e et 174
5.3.6.3 CreateROW EXAMPIE ...t e e e e e e e e 174
5.3.6.4 DeleteROW EXAMPIEooiiii e 174
5.3.6.5 Delete EXAMPIE ... 175
5.3.6.6 LTy =T o o] o =T TP 175
5.3.6.7 T C = g o 1= SR 175
5.3.6.8 NEXE EXAMPIES....ceeeeieeee ettt e e e e e et e e e e e e e e e neeeaaeeaan 176
5.3.6.9 Authenticate EXamPIeso 176
5.3.6.10 AdAACE EXAMPIEooiiiiiiiiieiie ettt 177
5.3.6.11 ReMOVEACE EXAMPIEcocooiiiiiiiieiieee et e e e e e 177
5.3.6.12 DeleteMethod EXampPIEoooiiiiiiiiiee ettt 177
5.3.6.13 Authority Table EXamPIE.........c..uuriiiiiiiieie et e e e e e e e ennees 177
5.3.6.14 Starting Sessions Using EC-MQVcoooiiiiii e 178
5.3.6.15 Starting Sessions USING EC-DH ..o e e 179
L N o 11 TR 1= 1.4 o = L SR OUSSRR 180
541 L0 1YY T PSS 180
54.2 Dat@ SEIUCIUIES ...eeeeee et e e e e e e et e et e e e e e st e e e e e e e e eansnnaeeeaeeeesnnneees 180
5.4.2.1 TPer Metadata Group - TPerInfo (Array Table)..........oooiiiiiieee e, 180
5422 TPer Metadata Group - Serial Number Contents ..o 180
5.4.2.3 TPer Metadata Group - CryptoSuite (Array Table).........cccccveviiiiiiiiiiiie e 181
54.24 TPer Metadata Group — Properties (Byte Table)........ccooviiiiiiiiiiiiiiee e 181
5.4.25 SPs on the TPer Group - Template (Object Table)ccooviieiiiiiiiiee e 181

Revision 0.9 - draft - Draft Page vii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

54.2.6 SPs on the TPer Group - SP (Object Table)ccccevveiiiiiiieiee e 182
B.4.3 MEINOAS ... et 182
5.4.3.1 [SSUESP (SP MEthOd)oiiiiieieiie ettt e e e 182
54.4 =TT od] o) o] - S PRSP 183
54.4.1 Templates and the AdmIn SP ... e 183
5442 AdMIN SP SESSIONS ...t e e e e e e 184
5443 AUTNOITEIES ..ottt e e e e e et e et e e e e e e e ee e e e e e e e e e s annnnneeeaaeeannns 184
5444 Default Logging SettingS........ooi i 185
oI N T 1 (Y o 1= N SRR 185
5451 Admin Template-Specific Life Cycle State Descriptions/Exceptions..........cccccceccvvveeennnee. 185
5452 Initial Access Control SEHNGScveiiiiiiieiie e 185
5.4.6 [e= T 0 0] o] L= PSRRI 187
5.4.6.1 Example Values for Admin Template Authoritiesccccuvveeeiiie i, 187
5.4.6.2 Typical Required CryptoSuite Values...........coouiiiiiiiiiiii e 188
LS T O [Yo Qi 1= 1 1] o] =\ =SSOSR 191
551 L0 1YY T PSS 191
5.5.2 TeIMINOIOGYueeieieiiieii ettt ettt e e et e e e e b e e e ab e e e e e e e e e 191
5.5.3 Dat@ STIUCIUIES ...t ettt et e e e e e ettt e e e e e e e e e e nnnaeeeeaeeeeennneas 191
5.5.3.1 ClockTime (Array TabIe).....oueeiiiieiee e 191
B5.5.:4 IMEINOAS ...t b e b ettt e s abe e e s e sneean 193
5.5.4.1 GetClock (Table MethOd).........ccoiiiiii it e e e sraeeeeans 193
5542 ResetClock (Table Method)eiiiiiiiiee et e e 193
5.54.3 SetClockHigh/SetLagHigh (Table Methods).............cooiiiiiiiiii e, 194
5544 SetClockLow/SetLaglow (Table Method)cccviiieiiiiiiiieee e 195
5.54.5 IncrementCounter (Table MethOd) ..o 196
SRS o T B =Yo7y o) (o] o I USSR 196
5.5.5.1 Setting the TIMeo e e e 196
5.5.5.2 High Trust VS, LOW TrUSE.....eeii e 196
5.5.5.3 /T a o] (o] g (o3 @ 11 T | (=1 SRR 197
5554 INCremMeENntal ClOCK et e e e e e e e e e e eeeeaaeeeeanns 197
55.5.5 I =T 1Y (o o = S 198
5.5.5.6 1 o] o N I 4= T PSPPSRI 198
5557 Sy o] e 1= To Ty 3T Y SRS 198
5.5.5.8 Default Logging SettiNgS.....ccvii i a e 199
e G T 1 (Y 0o = TSRS 199
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions............ccccvvvveeeeennn. 199
5.5.6.2 Initial Access Control SEtNGScooiiiiiiiii e 199
5.5.7 e o 4] o 1= T RSP RR 200
5.5.7.1 Example ClockTime Tablesooiiiiiii e 200
5.6 CrYPLO TEMPIALE ...ooi ettt ettt e e skt e e e e s st b et e e s sabe e e e e sabbeeenabeeeenes 202
5.6.1 L0 1YY T SRR 202
5.6.2 TErMINOIOGYueeiiieiiiiiie ettt et e et e e e e bt e e ab e e e n e e e e e 202
B5.6.3 Data STIUCIUMESooeiiiiiie ettt et et e e et e e e st e e e e st e e e e nbaeeeeanseeeeeanseeeennees 202
5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table)ccoceeviviiiieiiiiiiee e 202
5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table)ccccevueeeiviiieeeeiiieeene 203
5.6.3.3 Cryptographic Support Group - H_ SHA 384 (Object Table)ccccvvvveeeeiiiiiciiieeee, 204
5.6.3.4 Cryptographic Support Group - H_ SHA 512 (Object Table)cccovvvveeeeiiiiiiieeee, 204
B.6.4 IMEINOAS ... et 205
5.6.4.1 Key Related Method Group - Random (SP Method) ..o 205
5.6.4.2 Crypto Related Method Group — Stir (SP Method).......c..cooiiiiiiiiii e 205
5.6.4.3 Decryption Method Group — Decryptinit (Object Method) ..o 206
5.6.4.4 Decryption Method Group - Decrypt (Object Method)...........coooiiiiiiiiii 206
5.6.4.5 Decryption Method Group — DecryptFinalize (Object Method)...........ccccooviieiiiiiiiiennne 207
5.6.4.6 Encryption Method Group — Encryptinit (Object Method)...........ccccoeviiiiiiiiieeeee e 207
5.6.4.7 Encrytion Method Group - Encrypt (Object Method)cccoeiviiiiiiiiie e 207
5.6.4.8 Encryption Method Group — EncryptFinalize (Object Method)...........ccccceeviiieiiiineenee 208

Revision 0.9 - draft - Draft Page viii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.6.4.9 ST (oo I (@] o] [=Tex 1Y/ 1=] (o T) PP 208
5.6.4.10 Verify (ObJECE MEINOA).....oiiiiiieeeee e e e e e e e e e e e e ennes 209
5.6.4.11 Hash Method Group — Hashlnit (Object Method)cceoiiiiiiiii e, 210
5.6.4.12 Hash Method Group — HashCalc (Object Method).........ccveviiiiiiiiiiiie e, 210
5.6.4.13 Hash Method Group — HashFinalize (Object Method)cccooiiiiiiiiin e, 211
5.6.4.14 HMAC Method Group — HMACInit (Object Method)..........ccceiiiiiiiiiiiieee e 211
5.6.4.15 HMAC Method Group — HMACCalc (Object Method)cocceeiiiiiiiiiiiiiieee e, 211
5.6.4.16 HMAC Method Group — HMACFinalize (Object Method) ..., 212
5.6.4.17 XOR (SP MethO).....coiiuiiiiiiiiitiie ittt st et eenee s 213
5.6.5 [LYo o] (o] =T SPPPPPRPRt 213
5.6.5.1 L0711 o] [oTo7 < T SSP TSP UPROPSRRPIN 213
5.6.5.2 [F= 1] 11 Vo SRRSO 213
5.6.5.3 HMAC ettt a e ettt e e bt enes 214
5.6.5.4 KOR ettt ettt ettt et et ete e e ee e e te e e R et e e et e ettt e anteeeaneeeanteeateeeanteeeneeennens 215
5.6.5.5 {0119 T [PPSR 216
5.6.5.6 RV 2214131 o PP RR 216
5.6.5.7 = 0o Y])] o RSP PPPPPR 217
5.6.5.8 D =Tel Y o] {10 T PSPPI 218
5.6.5.9 Default Logging SettingS........ooi i 219
B.B.8 LifE CYCIE ettt e et e e e e et e e e nree e e eaeeeeenres 220
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptionsccccceveveeeens 220
5.6.6.2 Initial Access Control SEHNGScoviiiiiiieie e e 220
5.6.7 [e=T 0 0] o] L= PRSPPI 221
5.6.71 Example H_SHA 1 TaAbI.....cocoooiieieee ettt a e 221
5.6.7.2 [P2 T T =T a1 o] L= USRS 222
5.6.7.3 HMAC EXAMPIE ...ttt ettt e e e e et e e e ee e e sneeeenseeeanseeeaneeenn 222
5.6.7.4 Sign Method Invocation EXamples ... 222
5.6.7.5 Verify Method Invocation EXamplecoouuiiiiiiiii e 223
A W Yo B =T 0 o] PO OO P PP OPPPROPPPPN 224
5.7.1 L 1YY TSR 224
5.7.1.1 LI 1001 1] 0 e | PRSPPSO 224
B.7.2 Data STIUCIUMESooeiiieiii ettt et e e et e e e st e e e e st e e e estaeeeeanseeeeeanneeesnnees 224
5.7.2.1 oo IR N4 = 1Y =1 o)1) SRR 224
5.7.2.2 LogList (ODJECE TADIE)eveieiiieeeee e e e 225
B.7.3 MEINOAS ... et 226
5.7.3.1 AddLog (Table MEthOd)coi i e e eaaa e 226
5.7.3.2 CreateLog (Table Method)........c.oooiiiiii e 226
5.7.3.3 ClearLog (Table Method)..........coo i 227
57.3.4 FlushLog (Table Method)..........coouiiiiiii e 227
574 [Ty o 1o T o - SR 227
5.7.4.1 TYPES OF LOGGING .ttt e e e e e e s b e e e 227
57.4.2 oo I = 01 (1= O PRSPPI 228
5743 Deleting @ Log TabIe...... ... et 228
5744 Default Logging SettiNgS.......coii ittt e et e e et e e e s e e e s snaeeeeanes 228
I8 T 1 (Y 3o 1= NSRS 229
5.7.51 Log Template-Specific Life Cycle State Descriptions/Exceptions........cccccccovvvcvivienenen.n. 229
5.7.5.2 Initial Access Control SEHINGSvviiiiiii e 229
5.7.6 [e= T 0 0] o] L= PRSPPI 230
5.7.6.1 Example LOgLISt TabIeooiiiii e 230
LTS T o Yod T o Yo TR =0 01 o] > = SRRSO 232
5.8.1 L0 1YY T PSSR 232
5.8.1.1 LI 1001 1] 0 e | PRSPPSO 232
5.8.2 Data STTUCLUIES ..ottt e e s e e e s b 233
5.8.2.1 LockingInfo (Array Tabl@)cocuiiiiiiiiiee et e e e e s enaeeeeeenes 233
5.8.2.2 Locking (ODJECE TaDIE).....cc it e e e e e s snneeeeeanes 234
5.8.2.3 MBRCONIIOl (Array TabIE)ccciiiiiie et seee et e e et e e e s sneeeeeeanes 239

Revision 0.9 - draft - Draft Page ix of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.8.24 MBR (BYE€ TabIE) ...ttt e et e e e snaee e e e ane 239
B.8.3 MEINOAS ... et 240
5.8.3.1 GetPackage Method (Object Method)ocveiiiiiiiiiii e 240
5.8.3.2 SetPackage Method (Object Method)oocueiiiiiiiiiiii e 240
5.8.4 [T o]) o o RSP 241
5.8.4.1 Locking State DeSCIPLIONSueieiiiiiiee e 241
5.8.4.2 Re-enCrypltion OVEIVIEWcoiiiiiiiiiiiiiee et e e e 247
5.8.4.3 Re-encryption State DeSCriptioNnscoooi e 248
5844 Default Logging SettiNgS.......coiiiiiiiie ittt e e e e et e e e entee e e s aaeeeeeanes 249
TR IR T 1 (Y 3 o[- N SRR 249
5.8.5.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions...........c..ccccevenneee 249
5.8.5.2 Initial Access Control SEHINGSvveiiiii i 249
5.8.6 [e= T 0 0] o] L= PRSPPI 252
5.8.6.1 Re-encryption Functionality EXamples ... 252

6 APPENDIX 1 - REQUIRED UID ASSIGNMENTS.......cciiiiiieineeeeeeee e, 254
6.1 Required UID ASSIGNMENTS OVEIVIEWuuiiiiiiiiiieiiiiiee ettt e s e e e e e snnneee s 254
6.2 RESEIVEU UIDS ...ttt oottt e e e e e e e e aab bt e e e e e e e e e s asabbe e e e e eeeeaaabnbeeaaeeaaanne 254
SR T XYY o | T =To U 10U EPRUSPR 255

Revision 0.9 - draft - Draft Page x of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Table 01
Table 02
Table 03
Table 04
Table 05
Table 06
Table 07
Table 08
Table 09
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22

Figures
Diagram of the Core ArchiteCUreooouiiii i 21
Communications INfrastrUCIUNeoooiiii s 23
Packet CONSITUCTIONociiiiiie ittt e e s e e e et ee e e s nre e e e e neeeeennees 39
TPer-Host COMMUNICALION.........ciiiiiiiie ittt et e st e e e s e e e snneeeaesnneeeean 51
Single HOSt/TPEr INtEractioneii i e 52
Multiple HOSt/TPer INteraction............coooi e 53
Host Session Manager/TPer INteractioncooiiiiiiiiiiii e 54
ComID State Transition DIiagrameeiiiiiieiiiiiiee e e e 55
TPer-Host Communication ProtoCol LAYErsc.eeiiiiiiiiiiiiiiiie e 58
oo 1= @ 1 o OSSR 64
LTS U= g Vo= S SOPSSSR 66
NO AULNOKIEIES USEA......eiiiiiiiiiiiie et e e e e et e e e e e e e e st ee e e e e e e sennsnreneeaeeeanne 72
Pass Code AUthentiCationcuiiiiiiiii e 73
Host Session Key ENCIYPLONccoii oo 74
Host Public Key AUthentiCation 75
Full Public Key, Full Symmetric Key, and Public/Symmetric Key Authentication 77
L0701 1 o I TS T= 1= o] o ISR 80
Life Cycle State TransitioNS..........cocuiiiiiiiiie et e s e e e e e e anneees 81
Starting Sessions Using EC-MQVoooiiiiiiii e 178
Starting Sessions UsiNg EC-DHooo e 179
Locking State DIagramc.ooiiiiiiiiiiie et 242
LBA Range Re-encryption State Diagram...........cooiiiiioiiiiiiiee e 248
Tables
Core ArChiteCtUrE TOPICS ..coceeiiiieteeee et e et e e e e e e e e aeeeaeas 17
L€1(o] =1 I =14 1011 0 To] oo |V PSP PP PR 18
FOO Table DeSCHIPHION ...ttt e e e e e e e et e e e e e e e e e nnneeeeeaeeeeanns 25
TOKEN TYPES ettt e et e e e b et e e e bt e e s e b bt e e e e ra b e e e e e ab e e e nees 28
TiNY AtOmM DESCHIPLON ..o e e e et e e s e e e 29
TiNY ATOM ENCOAINGeiiiiiiiiie ettt ettt e e e e nbe e e e e enbee e e enes 29
Short ATOM DeSCIIPON. et e e e e 29
5T alo]u 2N (o] ¢ I8 =1 oo o 1o To PRSI 29
Medium ALOM DESCHPLIONeeiiiiiiiee e e e e e e e e s eeaaaeeas 30
Medium ALOM ENCOAING ... e e e e e e e e e e s e e e e e e s 30
(o] aTo 2N (o] ¢ I B T=E-Ted] {[o] o ISP 31
(o] aTo 2N (o] o ¢ I8 =1 Te oo 1T ISR POPPRRRR 31
Medium Atom Encoding EXamPleoeioiiiiiiii e 31
Medium Atom Header Encoding EXample ... 32
Named Value ENcoding EXamPIe.........oouuiiiiiiiiiiiie e 32
Named Value/Sequence Encoding EXample ... 32
LiSt Value ENCOINGcoiiiiiiiieiiiiee ettt et e e e e e e e e e e sneeeas 33
Method Call ENCOTINGueiiiiiiiiiie ittt e e st e e e e e e e anneas 35
Method ReSpoNnSEe ENCOAINGcooiuiiiiiiiiiiie et 36
Method Call Encoding with TranSactioncccuiiiiiiii i 36
Method Response Encoding — with Transaction...........cccoooeieiiiiiie e, 37
SPs and Methods Covered in this DOCUMENT............ccoiiiiiiiiiici e 45

Revision 0.9 - draft - Draft Page xi of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61
Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
Table 73

Interface Command — Command BIOCKoooiiiiiiiii e 50
GET_COMID Command BIOCK.........cociiiiiiiiiiiie ettt a e e e e 59
GET_COMID PAyIOadcceiiiiiieeiiiiie ettt e e ettt e e e stee e e e staea e e s nte e e e enteeeeennteeeeennnees 59
HANDLE_COMID_REQUEST Command BIOCKcccuiiiiiiiiiiiiiiie e 60
Verify COmMID PaylOadcocuviiiiiiiiie ettt ettt e e st e e e e sntee e e s snteeeeeanaeeaens 61
GET_COMID_RESPONSE Command BIOCK...........cccuuiiiiiiiieiiiiie e 61
Verify_ComlID_Valid Command RESPONSEuueiiiiiiieeieieiiie e e e 61
Default Type Table ValUEScoo i e 92
= LU O oo [SRR 111
Properties Method RESPONSEooviiiiiiiiie e 115
SPINfO Table DESCIPLONccoiiiiie e e 120
SPTemplates Table DeSCrPHONiii e 120
Table Table DESCHPLON.cii i e e e e e e e e e e e e annrees 121
Column Table DESCHPLONcoiiiieiie et e e e e e e e e e e e eennnees 122
Type Table DESCHIPLON......ueeiiiiei e e e e e e e e e e e e e e e e e eannees 123
MethodID Table DESCHIPLION ... 123
Method Table DeSCriPiON.......cccooiieeeeeeee e 124
ACE Table DESCHPLON ...t e e e e e e e e e e e et eeeaae e s 126
Authority Table DeSCHPHIONcoiuiiiiiiiiii e e 127
SeCUre ColUMN VAIUES ..o ettt e et e e e e e e e e e e e e e e e e e e e nneeeeeeas 128
Certificates Table DeSCIIPHION. e e e e e 130
C_PIN Table DESCHIPHIONcciiiiiie ettt e et e e e e e e e beee e e eanee 131
C_RSA_1024 Table DeSCrPHION.uueiiiitieee ittt ettt e et e e e e e s raeeeeeeanee 132
C_RSA_2048 Table DeSCIPHION.eeiiiitiiie ittt et e et e e e e raeeeeeeanee 132
C_AES 128 Table DESCHPLON.......eiiiiieee et e e e e e e e e ae e 133
C_AES_128 ResidualData Column ValUES............ccoccuiiiiiiiee it 134
C_AES 256 Table DESCHPLON.......ciiiiii it e e e e e e e e aee s 134
C_AES_256 ResidualData Column ValUES............ccoccuiiiiiiiie it 135
C_EC _160 Table DESCIIPLIONuueiieiiieeeieeee et e e e e e e 135
AACS Values TOr C_ EC 180ccoii ittt e e e e et e e e e e 136
C_EC_192 Table DeSCrIPONueeiiiiieeeeeiee e e e e e e e e e e e e enneeeeeeas 136
FIPS P-192 Values for C_EC 192 ...ttt 137
(O = O S -1 o] (=3 B =T o T] 1o} o S 137
FIPS P-224 Values for C_EC 224oooiiieie ettt 138
C_EC_256 Table DeSCHIPLONciiiiiiiiie ittt e e e eeeeanee 138
FIPS P-256 Values for C_EC 256c.ooeiiiiiie ettt 139
C_EC_384 Table DeSCIPLONciiiiiiiii ittt e et e e e e e e e anee 139
FIPS P-384 Values for C_ EC 384 ...ttt 140
C_EC _521 Table DESCIIPLIONuviiiiieeie ettt e e e e e ae e e e e e s e e sanreaee s 140
FIPS P-521 Values for C_EC 521ttt 141
C_EC _163 Table DESCIIPLIONuuiiieiiie ettt e e e 141
FIPS K-163 Values for C_EC 183 ...ttt e 142
C_EC 233 Table DeSCIIPLIONueiiieiiie ettt e e e e e e 143
FIPS K-233 Values for C_EC 233ttt e 143
C_EC_283 Table DeSCrIPONeeiiieieeeieieee e e e e e e e e e e e eeeeas 144
FIPS K-283 Values for C_EC 283 ...ttt 144
C_HMAC_160 Table DeSCIPONooiiiiiiie e e e 145
C_HMAC_256 Table DeSCIPONcoiiiiiiie e 145
C_HMAC _384 Table DeSCHIPONcoiiiiiiie e ee e 146
C_HMAC 512 Table DESCHPLONcoceeiieiiieeeee et a e e e 146
Default Base Template AUthOrtieS............uvviiiii i 155

Revision 0.9 - draft - Draft Page xii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
Table 83
Table 84
Table 85
Table 86
Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97
Table 98
Table 99
Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124

Base Template Default ACES........cooo e 165
Base Template SP Method Default Access Control Settings...........ccoovecviiieeiieei i, 168
SPInfo Table Default Access Control Settingscccveeviiiiiiiiie e 168
SPTemplates Table Default Access Control SEttingsoveviieiieiiiiiee e 168
Table Table Default Access Control Settings...........ooivviiiiiiiii i 168
Table Descriptor Objects Default Access Control Settingsceeevviiieiiiiiiii e 168
Column Table Default Access Control Settingsc..eeviiiiiiiiiiiie e 169
MethodID Table Default Access Control Settingsoceeiiiiiiiiiiii e 169
Method Table Default Access Control Settings.........cocooiiiiiiiiiii i 169
Type Table Default Access Control SEetiNgS.........cooi i 169
Type Object Default Access Control Settingscoooiieiiiiiiiiiiii e 169
ACE Table Default Access Control SEttingscoocuveeiiiiiiiiii e 169
ACE Object Default Access Control Settingsceevveeiiiiiiiiiiiiiee e 170
Authority Table Default Access Control Settings.........ccooveciiiiiiie i 170
Authority Object Default Access Control Settingscccuvviiiiiie i 170
Certificates Table Default Access Control Settings.........cccvvviiiiiieiiiiiie e 170
Certificates Object Default Access Control Settingsc.veeiviiiieiiiiiie e 170
C_PIN Table Default Access Control SEtNGSccveeeiiiiiieeiiee e 171
C_PIN Object Default Access Control SettingS........c.ueeveiiiiiiiiiiiiee e 171
C_RSA_* Table Default Access Control Settingscoeriiieiiiiiiiieie e 171
C_RSA_* Object Default Access Control Settingsccueveiiiiiiiiiiiie e 171
C_AES_* Table Default Access Control Settings.........cooceiiiiiiie i 171
C_AES_* Object Default Access Control Settingsocueveiiiiiiiiiiiiee e 172
C_EC_* Table Default Access Control SettingsS..........cooiiiiiiiiiiiiiiie e 172
C_EC_* Object Default Access Control Settingsc.c.vveeeveeeiiiiiiiiiiee e, 172
C_HMAC _* Table Default Access Control Settingscccoovviiciiiiiiiii e, 172
C_HMAC_* Object Default Access Control Settings..........ccevveeiiiiiiiiie e 172
Authority Table (Example) — SeSSioN Starfupcueeiiiiiiiiiiiiee e 173
C_PIN Table (Example) — SeSSION Starfupcceeeiiiiiieeiiiee e 173
Table Table (Example) — CreateTablecooviiiiiiiii e 174
Column Table (Example) — CreateTable.........ooueiiiiiiiiii e 174
DemoTable Table (Example) — CreateTable.............coooiiiiiiiii e, 174
Demo Table (Example) — CreateROWoooiiiiiiiiii e 174
Demo Table (Example) — DeleteROW.........ccooiiiiiii e 174
Demo Table (Example) — Delete 175
Demo Table (EXamPIE) — St ... 175
Demo Table (EXamPIE) — St ... e 176
Authority Table (Example) — Authenticate.............ccueeeviiiiiiiii e 176
C_PIN Table (Example) — AUthentiCatec.covveiieiiiiiiieiee e 176
Authority Table (Example) — Authenticate..............oeeeviiiiiiiii e 176
Method Table (Example) — ADAACEoo e e 177
Method Table (Example) — AJACE RESUIL.........ccciiiiiiiiiie e 177
Method Table (Example) — REMOVEACEoooiiiiie e 177
Method Table (Example) — DeleteMethod............oooiiiiiiiiiiii e 177
Example AUthority TabIe ... e 177
TPerInfo Table DeSCrIPHION......co i et e e e e e e e e e e e e e e anes 180
GUDID Column Contents DeSCrPLONoiiiiiiiiei e 180
CryptoSuite Table DeSCIIPHONoiiiiie e e 181
Template Table DeSCIPLION.uiii e s 182
SP Table DESCIIPIIONveiiiiie it e e e e e e e e e e e e e e e e e s e nar b e eeeaaeeeanennnrees 182
Default Admin Template AUThOrtIESouviiiiiiii e 184

Revision 0.9 - draft - Draft Page xiii of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 125
Table 126
Table 127
Table 128
Table 129
Table 130
Table 131
Table 132
Table 133
Table 134
Table 135
Table 136
Table 137
Table 138
Table 139
Table 140
Table 141
Table 142
Table 143
Table 144
Table 145
Table 146
Table 147
Table 148
Table 149
Table 150
Table 151
Table 152
Table 153
Table 154
Table 155
Table 156
Table 157
Table 158
Table 159
Table 160
Table 161
Table 162
Table 163
Table 164
Table 165
Table 166
Table 167
Table 168
Table 169
Table 170
Table 171
Table 172
Table 173
Table 174
Table 175

Admin Template Added ACES.........coccuiiiiiiiee e a e e e aa e 185
Authority Table Default Access Control Settings.........ccooveciiiiiiiiee i 186
ISSUESP ACCESS CONIIOl SEHINGSviiiiiiiiiee e e e e 186
TPerinfo Table Default Access Control Settingsc.evvviiiiiiiiiii e 187
CryptoSuite Table Default Access Control Settings.........cc.eveivciiieiiiiiiee e 187
Template Table Default Access Control Settings..........oooviieiiiiiiiiii e 187
SP Table Default Access Control SEttiNgSeeeiiiiiiiiiii e 187
SP Table Default Access Control SEttiNgSooiiiiiiiiiiiiii e 187
Example Authority SEtiNgsooo i s 188
Typical Required CryptoSuite ValUes.............oiiiiiiiiiiiii e 188
Clock Template TerminolOgycoouiiii it 191
ClockTime Table DeSCHIPON.ccoiiiiiie et e e 192
ClockTime Table Default ACCESS CONtIOl..........ccouiiiiiiiiiiee e 200
Example ClockTime Table 1 — High Trust Time.........c.oovvviiiiiiie e, 200
Example ClockTime Table 2 — Low Trust TiMe.........cevviiiiiiiiiiiee e 200
Example ClockTime Table 3 — High and Low Trust TiMeccccceviiiireiniiie e 201
Example ClockTime Table 3 — TIMEIoueiiiiiiiiieeeee e 201
Crypto Template TermMiNOIOGYccoouiiiiiiiiie ettt eee e e e e e e e e sneee e e e snreee e e e 202
H_SHA 1 Table DeSCrIPiON........eeiiiieei et e e e e e e 202
H_SHA 256 Table DeSCHIPON.oiii it e e e 203
H_SHA 384 Table DeSCHIPON.....ooii it e e 204
H_SHA_512 Table DeSCrPHON.eoiiiiiiie et 204
C_RSA_* Objects Default Access Control Settingscoeveveviiciiiiiiiee e 220
C_EC_* Objects Default Access Control Settings..........ccovvveiiiiiciiiiiiie e, 220
C_AES_* Objects Default Access Control Settingsccoovviciiiiiieei i 221
H_SHA * Tables Default Access Control Settings..........ccoovviciiiiiiiiieeie e 221
H_SHA_* Objects Default Access Control Settingsccoovvciiiiiiiie e 221
Example H_SHA 1 Table..........oomiiiiiiiee e 221
Log Template TerminolOgYceeii it e e e e e e e 224
LOg Table DeSCIIPLION.cci ettt e e e e et e e e e e e e e neeeeaens 224
LogList Table DESCIIPHONcoiuuiiiiiiiie i 225
Log Template Added ACES........coo e 229
LogList Table Default Access Control Settingscoooiiiiiiiiiiiiiie e, 230
LogList Objects Default Access Control Settingscoocuviiiiiiiiiiiiie e 230
Initial LogList Object Default Access Control Settingsccceveiiieiiiniie e, 230
Log Table Default Access Control Settings..........ooceiiiiiiiiiiiii e 230
Example LOgLISt TabIeooo e 230
Locking Template TerminolOgYccoeicuiiiiiiiee e e e e e e e e e 232
LockingInfo Table DEeSCIIPLIONccci i e e e e e e 233
Locking Table DeSCHPLONuiiiiiiiee et e e e e e e aeeeae s 234
MBR_Control Table DeSCPONcocciiiieeeee e 239
MBR Table DeSCriPtioN.......ccooiie e 239
Locking Template ADded ACES.........ccooiiiiiiiiiie et e e e e e enae e e e 250
Lockinglnfo Table Default Access Control Settingsooooviiiiiiiiiiii e, 250
Locking Table Default Access Control Settingsccoocieiiiiiiiie i, 250
Locking Objects Default Access Control Settingscoocveviiiiiiiiiii e 250
MBR_Control Table Default Access Control Settingsooooveiiiiiiiiii e, 251
MBR Table Default Access Control Settings.........oooueiiiiiiiiiii e 251
C_RSA_* Objects Default Access Control Settingsccoevvvviiciiiiiiie e 251
C_EC_* Objects Default Access Control Settings..........ccvvvveeiiiiiiiiiiiie e, 251
C_AES_* Objects Default Access Control Settingscccooveiciiiiiiie e 251

Revision 0.9 - draft - Draft Page xiv of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 176
Table 177
Table 178
Table 179
Table 180
Table 181
Table 182
Table 183
Table 184
Table 185
Table 186
Table 187
Table 188

MethodID Table and Table Table Reserved LSB Value Ranges..........ccccoccceeeeeieiiiiiiieeennnn. 254
Type Table Reserved LSB Value RaANGES..........oooieiiiiiiiiiiiiiie ettt a e 254
SPECIal PUIPOSE UIDSeeeiiiiiiiieee et e e e e e et e e e e e e e abraee s 255
JLIE= o) (T 15U 256
Session Manager Method UIDS...........oooiiiiiiiiiiiiie ettt e et e et e e aneaeeeeanes 257
MELNOAID UIDSc.ieieieeeieiiee ettt e e st e e e et e e e e e e e s ssae e e s nsteeeeensteeeeantaeeeannsaeaeenees 257
AULNOTIEY UIDS..... ittt sttt st e e aae e e e e aabb e e e aaneeens 258
ACE UIDS ...ttt e e ettt e e ettt e e e st e e e aase e e e e anssaeeeassae e e e nneeeeeannneeeeannreeennnaees 259
Single RoOW Table ROW UIDScooiiiiiiiiie ettt e e 259
IR o] (=T = = 101 o SRR 259
TYPE UIDS ...ttt ettt ettt e e s bttt e e e eab et e e e aab e e e e e aabe e e e e abeeeeeaaneeean 260
Template Table UIDS.........o et e e st e e st e e s sbeeee e 265
SPTemplates Table UIDScooiiiiiiiie et e e e e e e e e e e e e e annrees 265

Revision 0.9 - draft - Draft Page xv of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Revision 0.9 - draft - Draft Page 16 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

1 Introduction

1.1 Scope and Audience

The Storage Workgroup specifications are intended to provide a comprehensive command architecture
for putting selected features of storage devices under policy-driven access control. The capabilities of
the storage device can be configured to conform to the policies of the trusted platform. In accord with
the Storage Workgroup Use Cases and Peripherals Workgroup Use Cases documents, the controlled
features include access to secure storage areas and the lifecycle state of the storage device as a
trusted peripheral (TPer). This document may also serve as a specification for TPers where that is
deemed appropriate.

The intended audience for this document is storage device and peripheral device manufacturers and
developers that may wish to tie storage devices and peripherals into trusted platforms.

The following table lists the primary topics contained in this specification:

Table 01 Core Architecture Topics

Component Function
Data definitions Basic data types
Templates Types of Security Providers (SPs) and their roles
Table definitions Table’s purpose (& Security Associations)
Methods Commands purpose & data structures
Access Control Authority model for Access Control
Sessions Command streams
Secure Messaging Authenticated Confidential Command Streams
SP Issuance and Personalization | Creating and Deleting SPs for custom uses
Reference Manual Formal definitions for each SP, Table, and Method
Life Cycle Default Table States, State Transitions, and Access Controls

1.2 Key Words

Key words are used to signify the requirements in the specification. The key words “shall,” “should,”
“may,” and “optional” are used in this document. These words are a subset of the RFC-2119 key words
used by TCG, and have been chosen since they map to key words used in T10/T13 specifications.
These key words are to be interpreted as described in [RFC-2119].

" o«

1.3 References
TCG Storage Workgroup Use Cases

T10 SCSI SECURITY PROTOCOL IN/OUT Commands, SCSI Primary Commands draft SPC04r05 or
later

T13 ATA TRUSTED SEND/RECEIVE Commands, ATA8 Commands draft T13/1699-D Rev 3c or later
TCG Storage Certificates Specification

TCG Common Criteria Security Target — Note that the quality of random numbers and
cryptographic computations is the purview of the CC Security Target, not this specification.

Revision 0.9 - draft - Draft Page 17 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Serial ATA 2.6 (SATA-2). 15 February 2007 — Note that for information on the current status of
Serial ATA documents, see the Serial ATA International Organization at http://www.sata-io.org.

ISO/IEC 14776-871. AT Attachment — 8 ATA/ATAPI Command Set (ATA8-ACS)(ANSI INCITS
T13/1699D)

ISO/IEC 14776-151, Serial Attached SCSI 1.1 (SAS-1.1)(ANSI INCITS 417-2006)
ISO/IEC 14776-312, SCSI Primary Commands - 3 (SPC-3)(ANSI INCITS 408-2005)

Internet Engineering Task Force, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile (RFC 3280)

Internet Engineering Task Force, Character Mnemonics & Character Sets (RFC 1345)

National Institute of Standards and Technology (NIST), Security Requirements for Cryptographic
Modules, FIPS Publication 140-2, May 25 2001

National Institute of Standards and Technology (NIST), Secure Hash Standard, FIPS Publication 180-2,
August 1 2002

National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS), FIPS
Publication 186-2, January 27 2000

FIPS Publication 186-3 (Draft revision of FIPS 186-2)

National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS
Publication 197, November 26 2001

National Institute of Standards and Technology (NIST), The Keyed-Hash Message Authentication Code
(HMAC), FIPS Publication 198, March 6 2002

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation - Methods and Techniques, NIST Special Publication 800-38A, December 2001

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation —The CMAC Mode for Authentication, NIST Special Publication 800-38B, May 2005

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation — The CCM Mode for Authentication and Confidentiality, NIST Special Publication 800-38C,
May 2004

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) Mode for Confidentiality and Authentication, NIST Draft Special
Publication 800-38D, April 2006 (see http://csrc.nist.gov/publications/drafts/Draft-NIST_SP800-
38D_Public_Comment.pdf)

National Institute of Standards and Technology (NIST), Recommendation for Pair-Wise Key
Establishment Using Discrete Logarithm Cryptography, NIST Special Publication 800-56A, March 2006

RSA Laboratories, PKCS #1: RSA Cryptography Standard (v 1.5), November 1 1993
RSA Laboratories, PKCS #1: RSA Cryptography Standard (v 2.1), June 14 2002

1.4 Terminology
1.4.1 Global Terminology

Table 02 Global Terminology

Term Definition

Revision 0.9 - draft - Draft Page 18 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

Term

Definition

ACE

Access Control Element. Defined as Rows in an SP’'s ACE Tabile.
This is a Boolean expression of Authorities and the associated Row
and Column Restrictions on the Method/Table, Method/Object, or
Method/SP combination to which the ACE is attached.

ACL

List of ACEs associated with a particular Method/SP, Method/Table,
or Method/Object combination.

Admin

The predefined ‘superuser’ on any SP. The Transport Key given in
Issuance is an Admin by definition.

Admin SP

The SP that has the capability to issue other SPs, and provide
information about the state of SPs on the TPer as well as the TPer
itself.

Authority

Defined as a Row in the Authority Table. This is a security
association between an authentication Operation and a Credential,
such as a public-private key pair.

Data Types

Encoding format of data. Data is encoded in different ways
depending on the context in which the data is being used (stream
encoding, table encoding, etc.)

Full Disk Encryption (FDE)

Data written and read to storage is encrypted before it is written and
decrypted as it is read. Full Disk Encryption means that all user data
through the main read-write function may be encrypted.

Platform Host

A collection of one or more Host Application resources that utilizes
or provides a specific service or set of services.

Host Application

A Trusted Component (software) that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL
IN/OUT commands.[C D1]

An interface command, such as the ATA (T13) TRUSTED SEND or

IF-SEND SCSI (T10) SECURITY PROTOCOL IN command used to transmit
data from the host to the TPer.
An interface command, such as the ATA (T13) TRUSTED RECEIVE
IF-RECV or SCSI (T10) SECURITY PROTOCOL OUT command used by the
host to retrieve data from TPer, or to acquire a ComiID.
The act of activating or instantiating an SP from one or more
Issuance Templates.
MAC Message Authentication Code
Session communications are by messages defined by a messaging
Messaging protocol. Messages from a Host convey remote method calls on an
SP and other messages return the results.
A Method is a remote procedure call to an SP that initiates an action
Method
on the SP.
Object Any row of an Object Table.

Personalization

The act of specializing an issued SP. Personalization requires a
Transport Key from Issuance to give secure access to
personalization.

PuK and PrK

Convenient notation for Public Key and Private Key.

Revision 0.9 - draft -

Draft Page 19 of 265

TCG Copyright 2007

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Term Definition

For TCG Compliance and Conformance purposes a security
Security Subsystem Class subsystem class identifies the components from the Core
(SSC) specification that are Mandatory, Optional, or Excluded from a

particular class of security subsystem.

All communications with a specific SP. A session holds

Session authorization state for all method invocations.

An atomic collection of Tables and Methods that can be issued on
Security Provider (SP) behalf of a host software provider.

25 character passcode made up of ALPHANUMERIC CAPS, where
Security Identifier (SID) 0 (zero) is the same as O (the letter “oh”) and 1 (one) is the same as

| (the letter “eye”).

A Storage Device is any device that provides digital storage

Storage Device services.
) The Storage Media refers to the non-volatile or persistent storage in

Storage Media a storage device.

Storage Working Group One of the TCG working groups whose purpose is to define Security
building blocks for the Storage Device.

(SWG)

SymK Convenient notation for symmetric key (shared secret) cryptography.
SCSI CDB Specification that contains SECURITY PROTOCOL

T10 Specification IN/OUT Commands.

ATA Command Specification that contains TRUSTED

T13 Specification SEND/RECEIVE Commands.

The basic data structures within an SP. Tables store persistent SP
Table state defined in this specification.

TPer A Trusted Peripheral as defined by the Peripheral’s Workgroup.

Credential received by SP Owner during Issuance that enables the

Transport Key SP Owner to authenticate as the Admin authority for that SP.

Interface protocol commands (i.e. T10 SECURITY PROTOCOL
Trusted Commands IN/OUT or T13 TRUSTED SEND/RECEIVE) used to communicate
with an SP.

Unique 8 byte identifier that identifies objects within tables, tables,

Unique Identifier (UID) and the SP itself

Revision 0.9 - draft - Draft Page 20 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

2 Trusted Storage Device Architecture

2.1 Trusted Storage Device Architecture Overview

The Core Architecture supports all of the use cases and threat models developed for the TCG Storage
Use Cases. Peripherals based on this architecture are called Trusted Peripherals or TPers and reside
in the storage device. This section is only a summary of the Storage Core Architecture. Refer to Section
3 and 4 for details.

2.2 Core Architecture Components

Figure 1 Diagram of the Core Architecture

MCTP

Ore Table
Table Methods & ACLs

Ore b uthority
B uthority Methods & 8 ClLs

Interface

5P Methods & A CLs |

=
s
3]
c
L
®
2
o
o
=

The core architecture is illustrated in Figure 1 . Figure 1 shows a single Multicomponent Trusted
Platform (MCTP) with one Trusted Peripheral (TPer). The MCTP supports 1 or more TPers.

2.2.1 Multicomponent Trusted Platform (MCTP)

The MCTP keeps track of the peripherals through the Component Authentication Administrator (CAA).
Various host applications (APPs) communicate with the TPer using an application client and through
a peripheral interface such as ATA or SCSI.

2.2.2 Host

For the purposes of this specification, a Host is the application client that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL IN/OUT commands under Security

Revision 0.9 - draft - Draft Page 21 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Protocol 1-6. One example of such an initiator is a PC Client as defined by the PC Client workgroup of
TCG. Multiple Hosts are supported.

2.2.2.1 Host Applications (APPs) and Component Authentication Administrator (CAA)

APPs (including the CAA) can: 1) create, 2) query or 3) change the persistent state of the TPer data
structures. This communication is performed using sessions. See Section 2.3.1.

2.2.3 Trusted Peripheral (TPer)

The Trusted Peripheral (TPer) resides in the Storage Device. The TPer manages trusted storage-
related functions and data structures. Two main aspects to the TPer use cases as it pertains to the
Core are:

1. Data Confidentiality and Access Control over TPer features and capabilities: TPer
functions and capabilities are built upon: 1) an option for policy driven setup and 2) use of
cryptographic access control over TPer content. Such features and capabilities include access-
controlled readable and writeable data areas, and access-control to built-in firmware functions
or hardware functions in the TPer. Furthermore, it is possible for a single trusted host
application to gain exclusive access to subsets of these features and capabilities. Finally, the
protection extends to confidentiality of instructions and data in transit between the trusted Host
application (or a TPM it uses) and the TPer.

2. TPers & Hosts Bilateral Enrollment and Connection: Enrollment establishes the conditions
under which data/instruction Connections can be established between TPers and Hosts. The
access control conditions for enroliment may be different than those for connection. The
datalinstruction consequences of a failure to be enrolled or connected may be different for
different TPers and Hosts. Finally, the permissions/authorities required for enroliment and
connection of a TPer with a Host may be different than the permissions/authorities required for
enrollment and connection of a Host with a TPer.

The Core Architecture provides for a system of tables where the content and meaning of the table
entries may be different for different types of storage devices with different features and capabilities.

This Core Architecture’s access control system scales with the available storage device resources.
Storage device resources include processor performance, memory space, and media capacity. TPer
data structures and operations may be fixed (and limited) or Host application-definable up to the limit of
the storage device’s available resources.

2.2.3.1 Security Providers (SP)
The TPer may contain one or more Security Providers (SPs).

A Security Provider (SP) is a set of tables and methods that control the persistent trust state of the SP
and may participate in control of the persistent trust state of the TPer.

A Security Provider (SP) supports specific TPer functionality. Each SP has its own storage, functional
scope, and security domain. SPs support functions such as authentication, secured attribute-value
storage, disk encryption/decryption, backup, time stamping, and event logging. SPs are created by: 1)
the manufacturer (during storage device creation) or 2) the Issuance process (see SP Issuance section
2.3.2).

A Security Provider provides a way for the Host to define: 1) which TCG functions are performed, 2)
who has access to these functions, 3) how the TPer & SPs communicate with the Host, 4) when these
events are permitted and 5) when the events are logged.

A Security Provider is made up of the following components:

e Tables are storage elements. The three table kinds are described in Section 3.2.5.1 Kinds of
Tables. Tables consist of rows and columns. Tables may contain one or more rows.

e Persistent State Information: Table content is also known as persistent state information. This
type of information remains active through power cycles, reset conditions, and spin up/down
cycles. This persistent state information shall not be part of the User Addressable Logical

Revision 0.9 - draft - Draft Page 22 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Block Address space on the storage device and therefore is not affected by usual partitioning or
formatting of the storage device by the Host operating system.

e Methods are actions that are invoked on SPs, Tables, Table entries, or Objects. Method
operations include functions such as: table additions, table deletion, table read access, and
table backup.

e Authorities are authentication agents. Authorities specify passwords or cryptographic proofs
required to execute the methods in the SP.

e Access Control Lists (ACLS) are lists of approved Boolean expressions of Authorities. ACLs
bind methods to valid authorities.

2.3 Core Architecture Operations

2.3.1 Host <—> TPer Communication Infrastructure

The Host communicates with SPs using Trusted commands. Trusted commands are interface-specific
protocols (i.e. T10 SECURITY PROTOCOL IN/OUT Protocol 1-6, or T13 TRUSTED SEND/RECEIVE
Protocol 1-6). Methods are a communications protocol transported in the payload of the interface-
specific protocol.

General interface-specific protocols are defined by INCITS T10 and T13.

The SP communication protocol uses a layered communication system consisting of the following
elements:

1. Methods: Methods are “atomic” actions that invoke SP activity.

2. Transactions: A transaction is a series of one or more method invocations grouped to enable
state rollback to a pre-defined point if an error or abort occurs during execution of any of the
methods in the series. Methods are executed either within or outside of a transaction.

3. Sessions: A session is a communication channel between the Host and an SP. A session
requires a pair of events: 1) an “Open”, and 2) a “Close”. Transactions and method invocations
occurring both inside and outside of transactions occur within sessions.

Figure 2 Communications Infrastructure

‘ Methods ‘

‘ Transactions {optional) ‘

‘ Sessions ‘

‘ ATAISCS Interface Commands ‘

The only way to communicate with an SP is via a session. Only the host may open a session. Methods
are executed within the session. Normally, when the methods and associated responses are
completed, the host closes the session. Other interface-specific commands (i.e. ATA/SCSI) can be
interleaved among ATA/SCSI TRUSTED/SECURITY PROTOCOL commands at any time.

A Single Session shall be Read-Only or Read-Write. If the device is capable, one or more read-only
sessions may be established simultaneously to a single SP. Typically, changes made to an SP during
a Read-Only session shall not persist past the end of that session. A case of a non-transient change
permitted in a Read-Only session is automatic forensic logging, if enabled.

Revision 0.9 - draft - Draft Page 23 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Read-Write Sessions may or may not alter persistent state information (table content). A Read-Write
session (one which has the capability of making non-transient changes to an SP) shall be unable to run
simultaneously with any other sessions to the same SP.

Secure Messaging provides session communications that support message confidentiality, message
integrity/authenticity, or both. Using previously-defined security attributes, the host and TPer may pass
encrypted or integrity protected messages (methods and their associated responses) during sessions.
Message encryption is recommended but not required. When secure messaging is in use, it is done
regardless of and in addition to any encryption done on the communications channel.

TPer-Host Attachment/Communication. In the simplest case the host is just the platform host to
which the TPer is directly attached or attached over a network. The host could be some other platform
host that communicates with the immediate platform host, which relays the session stream to the TPer
over a network. In another case, the TPer could be wirelessly connected to its host, or part of a SAN
and connected to multiple hosts.

2.3.2 SP Issuance & Personalization Overview
New SPs are created or modified using sessions and methods.

Issuance is the act of creating a new SP. When TPers are capable of SP issuance, special resources
called Templates are required. Templates define the initial tables and methods upon which new SPs
are based when issued. All SPs incorporate the Base Template’'s tables and methods. Other
Templates are combined with the Base Template to extend its functionality. Some Templates that may
extend the Base Template are: Admin Template, Clock Template, Crypto Template, Locking Template,
and Log Template.

Personalization is the customization of a newly created SP. The primary purposes of Personalization
are modification of the SP’s initial table data and/or the administrative authority on that specific SP, as
well as customization of the default access control settings.

2.3.3 Security Subsystem Classes Overview

The Core Specification defines all possible TCG-related functions supported by a TPer. However, every
TPer is not required to support all functionality defined in this specification. There shall be multiple
“classes” of Core Specification compliance, called Security Subsystem Classes (or SSCs). Each
Security Subsystem Class specification is a companion document to the Core Specification.

Security Subsystem Classes explicitly define the minimum acceptable Core Specification capabilities of
a TPer in a specific “class”. A TPer in a specific class may have only some of the capabilities (tables,
methods, access controls) defined in this Core Specification and may include additional capabilities
through table definitions. No Security Subsystem Class shall replace a capability called out in the Core
Specification with the same capability implemented in different tables, methods, and access controls.

Security Subsystem Classes define only TCG-related functionality. TPer attributes such as host
interface type, storage capacity, data rates, and seek times are not key Security Subsystem Class
attributes, though TPer resources such as available memory, storage capacity, and processing power
influence which Security Subsystem Class(es) a TPer supports.

Revision 0.9 - draft - Draft Page 24 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3 Core Architecture Elements

3.1 Core Architecture Elements Overview

This section defines global TCG storage-related document format, data structures, and functional
behavior.

3.2 Data Structure Descriptions

3.2.1 Document Data Formats
This specification defines three distinct but closely related data models:
e Tables: Data stored in tables is of a maximum fixed size. When a table is created it is always

allocated with a fixed number of fixed-size columns. Some Security Subsystem Classes may
require that tables be created with a pre-allocated maximum number of rows.

¢ Messaging: Data moving across the interface is encoded into byte streams. These streams
carry encodings for method calls, parameters, and results, as well as some other control
information. There are no predefined limits on the size or length of these streams, but the TPer
may limit the maximum size of encoded values.

e Exposition Pseudo-code: This provides a C-like definition of Methods and Table contents.
The definition of the exposition pseudo-code is in next section 3.2.2.1.

3.2.1.1 Tables — Example

For the example in the following sections, a table named “Foo” is used. This specification documents
the “Foo” table in the following manner:

Table 03 Foo Table Description

\Column Type \Description
D \uid IUID of the entry.
|Username |name |Name of the user.

'SerialNumber |uinteger_4 |Serial Number of item purchased.

3.2.1.2 Methods — Example
The value of row 2, column “Username” of table “Foo” will be set to “Alice”.

In the pseudo-code, the Method invocation is shown as:

Foo.Set[[startRow=2, startColumn=""Username”], “Alice”]
=>

[boolean]

“=>" is the separator between the method call specification and the return result
specification.

Note that since actual method invocation is performed using UIDs and not names, “Foo.Set” would be
replaced by the UIDs for “Foo” and “Set.”

3.2.2 Data Types

Data is encoded in different ways depending on the context in which the data is being used. One data
context is data stored in tables. Another data context is data crossing the interface in messaging — this
is called “Stream Encoding”.

Revision 0.9 - draft - Draft Page 25 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

This section introduces the different data types, provides a brief introduction on how these types are
used, and shows how they are displayed in this document. See Section 3.2.3 for additional details
regarding data types and data type Stream Encoding.

3.2.2.1 Pseudo-code (Expository)

Pseudo-code is used to describe types, method parameters, and snippets of code without having to use
the byte encodings directly.

Method parameters are of two kinds: required and optional. Required parameters must come in the
order defined in this specification, must precede the optional parameters, and are not named values.
Optional parameters are passed as named values. Optional parameters are not required to be in order,
and are not required to be included in a method invocation.

In the pseudo-code, the required parameters are given expositional names for ease of reference, and
are formatted as: Expositional-Name : Parameter-type. Optional parameters are given in the form
of Named values, except the right hand side in the prototype is the type of the value, as in: tableName
= Parameter-type.

A method's result shall be contained in a list, and shall be followed by an End of Data token and a
status code list. Note that the return value(s) are annotated with the same convention as parameters,
and may contain optional parts that are also passed as named values. The result list of a failed method
invocation should be empty.

In this document

SP method calls are written as: SPUID.MethodName[<Parameters>]

Table method calls are written as: TableNameUID.MethodName[<Parameters>]

Object methods are written as: ObjectNameUID.MethodName[<Parameters>]
For example:

Calling an SP method: SPUID.Random[<Parameters>]

Adding an entry to a log table: SomeLogTableUID.AddLog[<Parameters>]

Encrypting host data: C_AES 1280bjectUID.Encrypt[<Parameters>]

SPUID always represents the UID reserved to refer to “this SP.” This reserved UID is 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x01. TableNameUID represents the UID of a particular table. In the case of
this example, the UID would be of the table named “TableName”. ObjectNameUID represents the UID
of a particular object. In the case of this example, the UID would be of the object named “ObjectName”
(see 3.2.5.3 for information on UIDs).

3.2.2.2 Messaging Data Types
There are two data types defined specifically for messaging.

e Named values. Named values are used to send the optional parameters in method calls.
e List values. List values are used to encode method parameter lists and return results.

Named values identify method parameters in the stream encoding. List values are used to group
method parameters or to separate the method signature from the method parameters in the stream
encoding. For more information on stream encoding, see 3.2.3.

3.2.2.3 Method Parameter/Column Value Typing and Encoding

All method parameter values and all column values are defined by types that appear in the Type table
of the Base Template (see Table 37). Each type has a UID associated with it. Types may be derived
from combinations of other types.

Types are divided into two categories: base types and derived types.

Revision 0.9 - draft - Draft Page 26 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Base types are the types from which all other types are built. The base types are:
0 integer — a signed mathematical integer
0 uinteger — an unsigned mathematical integer
0 Dbytes
0 bytes {max=n}

Derived types are built from other types in combination with a format identifier. The format identifier is
used to indicate the way in which the types are to be combined. A simple type is a type that is derived
directly from a base type. For more information on types, see 5.1.

To enable the TPer to identify the type used for each method parameter and correctly store that value
in a table, if necessary, and to allow the TPer to type check method parameter values, each method
parameter, when it is transmitted across the interface, is prefixed with the UID of the type of that
parameter.

In order to encode a parameter that is a simple, enumeration, reference, or name-value type, the UID of
that type is encoded, followed by the encoded parameter value.

For parameters that are list types, the type for the list need be encoded only once, and the list itself
then enclosed with the Start List and End List tokens (see 3.2.3 for token information), rather than
encoding the list type for each element of the list.

To encode a parameter that is an alternative type, the UID of that alternative type is encoded, followed
by the encoded UID of the type that was selected from among the alternatives, followed by the encoded
parameter value.

To encode a parameter that is a struct type, the UID of that struct type is encoded, followed by the
encoded type UID and value for each of the struct’s included components — the group of UIDs and
values of the struct's components shall be enclosed with the Start List and End List tokens.

To encode a parameter that is a set type, the UID of the set type is encoded, followed by the encoded
typ UID and value for each of the set's type — the group of UIDs and values for the set's components
shall be enclosed with the Start List and End List tokens.

For an example of encoding using this mechanism, see 3.2.3.3.2.

3.2.3 Stream Encoding

The messaging model provides for stream encoding of multiple remote procedure calls and multiple
responses in the same interface command payloads, with the purpose of permitting large data blocks to
be broken up and submitted in parts, for the parts to be acted on, and for the results to be returned in
parts. This streaming model permits results to be asynchronously returned before all the parts are
received.

This section details how values and control markers are encoded into byte sequences for transport over
session streams (byte streams).

3.2.3.1 Data Types

As introduced in Section 3.2.2, data is encoded using four basic types of values. These four types can
represent all of the basic and derived data types.

e Integers: Integer values are used to represent numbers, Booleans, and enumerations. In the
interface (session stream) and in tables they are big endian. The implementation is free to use
other representations in other circumstances, converting as necessary.

e Bytes: These are sequences of 8 bit bytes and are used to represent strings, cryptographic
keys, bit-vector encoded sets, blobs, etc.

e List: Zero or more values of any type, grouped into an ordered list ([3, "abc", false]).

¢ Named: The name (a byte-value) followed by its value (any messaging type). A named value
attaches a name to some other value (size=32).

Revision 0.9 - draft - Draft Page 27 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.2.3.2 Tokens

Values of the four basic types are packaged into tokens, each of which is a (tag, length, value)
sequence of bits that specify a single data value.

Table 04 Token Types

| Byte |Hex ‘Acronym ‘Meaning
o e s M

|6|§ d<5..0> .;mOJF | |Tinyatom
1/o B(s [n<z.0> IIEGNNGEGEGEGEGEEEE o 5F | Short atom
Hﬁﬁi@ n<10..0> ﬁlCO..DF | |Medium atom
111 o @@ B s h<23"16> n<i5..8> n<7..0> [E0..E3 | Long atom
L [E4.EF| TCG Reserved
Ao 0 | s. [startList
A oo -+ | cL [EndList
Ao > | SN [StartName
A" | r: | EN [End Name
§\\\\>\\\>\\\>\\\>\\\>\\\>\\>\\\\\\\\W\\\\\\\\\\\\\\NI F4.F7 I TC|G Reserved
1A I ¢ | cALL [cal
|
|
|
|
|

A iMoo« M o0 | 0D [EndofData
Al Ao o M| -~ | EOS [End of session
A oA M 5 | ST [Starttransaction
At Ao o N C | ET [End of transaction
D FF TCG Reserved

The Token Types identified in Table 04 are divided into 3 subgroups:
e Simple Tokens - Atoms: tiny, short, medium, and long atoms
e Token Sequences: Start List, End List, Start Name, and End Name

e Control Tokens: Call, End of Data, End of Session, Start Transaction, End Transaction

Additionally, tokens OxE4-0xEF, OxF4-0xF7 and OxFD-OxFF are reserved for use by TCG.

3.2.3.2.1 Simple Tokens — Atoms Overview

Atoms can be tiny atoms, which are one byte in length; short atoms which have a 1-byte header and
can contain up to 15 bytes of data; medium atoms which have a 2-byte header and can contain up to
2047 bytes of data; and long atoms which have a 4-byte header and which can contain up to
16,777,215 bytes of data.

Integer values should be encoded using the shortest possible atom. Tiny atoms only represent
integers, whereas short, medium, and long atoms can be used to represent integers or bytes (with the
“B” bit set).

A continued value is used to represent a long byte sequence when the total length is not known in
advance. A continued value is represented by a sequence of two or more atoms. Each atom may be a
short atom, medium atom, or long atom. The BS bits are set to 11b for all atoms except the last atom,
for which the BS bits are set to 10b. All representations of continued values are considered equivalent

Revision 0.9 - draft - Draft Page 28 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

encodings of the same value. Thus a 100-byte value could be split up into ten 10-byte atoms; two 50-
byte atoms; or two 25-byte atoms, four 10-byte atoms, an 8-byte atom, and a 2-byte atom.

3.23.2.1.1 Tiny atoms
Tiny atom header and data are all contained in eight bits.

Table 05 Tiny Atom Description
| Header+Data
|Tiny atom |sign | data

0 [s [ddddfdd

The encoding is as follows:

Table 06 Tiny Atom Encoding

Tlny AT This bit is set to Ob to indicate the atom is a tiny atom

indicator

Sign Value Interpretation

indicator . . .
0Ob The data is treated as unsigned integer data.
1b The data is treated as a signed integer.

Data bits These represent the data value, an unsigned value in the range of 0...63 or a signed
value in the range of —32...31. The interpretation will be based on the setting of the sign
bit.

3.2.3.2.1.2 Short atoms
Short atoms consist of a one-byte header and between 1 and 15 bytes of data.

Table 07 Short Atom Description
Header (1 byte) | Data
sign/

|
|Short Atom - continued | l€ngth |(1...15 bytes)
(1o BN s fhkhk[a [

The encoding is as follows:

Table 08 Short Atom Encoding

Short Atom
indicator

These two bits are set to 10b to indicate the atom is a short atom.

Value Interpretation

0Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.

1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.

Revision 0.9 - draft - Draft Page 29 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Sign/continued Value Interpretation
indicator
0b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.
Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 15.

3.2.3.2.1.3 Medium atoms
Medium atoms consist of a two-byte header, and between 1 and 2047 bytes of data.

Table 09 Medium Atom Description
| Header (2 bytes) | Data
0 | 1 |

Medium sign/ ' '
Atom continued

length |(1 2047 bytes)

11oMBN[s hininjalnlnininkld . [d

The encoding is as follows:

Table 10 Medium Atom Encoding

Medium Atom
indicator

These three bits are set to 110b to indicate the atom is a medium atom.

Value Interpretation

0Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.
1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.
Sign/continued Value Interpretation
indicator
Ob The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.
Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 2047.

Revision 0.9 - draft - Draft Page 30 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.23.2.1.4 Long atoms
Long atoms consist of a four-byte header, and between 1 and 16M bytes of data.

Table 11 Long Atom Description

| Header (4 bytes) | Data

| 0 | 1 | 2 | 3 |
L ign/ 1..16,777,215
i el e OO

Afflofo" o BN s [naln Ak n A A A A AR A A AR AR R e T

The encoding is as follows:

Table 12 Long Atom Encoding

!_or]g AL These four bits are set to 1110b to indicate the atom is a long atom.
indicator
|reserved These bits are reserved and shall be set to Ob.

Value Interpretation

0Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.
1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.
Sign/continued Value Interpretation
indicator
0Ob The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 16,777,215.

3.2.3.2.2 Encoding Example

An example encoding of a medium atom can be found in Table 13. The bit organization in the header
of the example in Table 13 can be found in Table 14.

Table 13 Medium Atom Encoding Example
| poic 5448 49[s3 (49 [53 [a1 [aE las 58 [41 [4D 50 [ac [45 lar lag (41 [4D [a5 laa a9 [55 [aD la1 [54 [aF 4D
IMedium Atom Header [T [[1 [s [1 [s [a [N e [x[a[m[p[L]efofr[alm[elo]i[ulm[alrom

Revision 0.9 - draft - Draft Page 31 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 14 Medium Atom Header Encoding Example

‘ Byte 1 ‘ Byte 2 i
‘medium atom ‘ byte/integer ‘ sign/continued Li - Iingt[| ‘
1010 1 | 0 0000001[1]1/0/0
| DO | 1C |

3.2.3.2.3 Token Sequences
Composite values are represented by a sequence of tokens.

3.2.3.23.1 Named

Named values have the form name=value and are used to represent an attribute-value pair. A named
value is a sequence of tokens: a Start Name token (SN), followed by a non-continued byte value that
specifies the name, followed by any value (including list or Named values), followed by an End Name
token (EN token).

For example, the named value foo=3 would be encoded may be encoded using a short atom for "foo"
and a tiny atom for 3 as shown in Table 15.

Table 15 Named Value Encoding Example
[F2|A3 |66 |6F [6F |03 |F3|

[short [segre
;;SO f 3

atom
Note that the value is not constrained to be a single integer as shown here, but could be anything,
including another named value or a sequence. Table 16 shows an encoding of "foo=bar=3" using a
short atom for "foo", a short atom for "bar", and a tiny atom for 3.

lloll lloll

en
| Name |value ‘ ‘

Table 16 Named Value/Sequence Encoding Example
IF2|A3 |66 |6F |6F [F2|A3 |62 |61 |72 03 [F3[F3

short vegen [4r vr 1 e short [enpur (vuun [wn nn
‘ ' "o" "o b* |"a™ |"r"| 3 ‘ ‘
atom atom
‘SN > | name |value ‘EN ‘EN
Name
| Value |

3.23.24 List

Lists are ordered sequences of elements of the form [el,e2,...,ei]. List elements may be tokens,
token lists, or named tokens. A list is encoded as a Start List token (SL) followed by a sequence of
zero or more elements followed by an End List token (EL).

For example, the sequence [3, 4, [5, 61] is a sequence of three tiny atoms encoded as shown in
Table 17.

Revision 0.9 - draft - Draft Page 32 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 17 List Value Encoding
[F0 03 040 [05 (06 [F1 [FT
SC[3 [4 [SC[5 [6 [ECEC

3.2.3.25 Control Tokens

Control tokens are single byte tokens that are used to specify special actions.

e Call. Used to start a method call.

¢ End of Data. Used to signal the end of the parameters, or the result, of a method call. This is
used in message streams by both the host and the SP.

e End of Session. Used to end a session.

e Start Transaction. Used to open a transaction. When the host begins a transaction, the Start
Transaction token is sent by the host to the SP and is immediately followed by the status
required for that transaction control token. When the SP delivers its response, its message
shall mirror that of the host by including Start Transaction tokens in the equivalent places in the
message stream, along with the actual status of the Start Transaction request. See example
encoding in 3.2.3.3.3.

e End Transaction. Used to commit or abort a transaction. When the host ends a transaction,
the End Transaction token is sent by the host to the SP and is immediately followed by the
status required for that transaction control token. When the SP delivers its response, its
message shall mirror that of the host by including End Transaction tokens in the equivalent
places in the message stream, along with the actual status of the End Transaction request.
Sending the End Transaction token and a status code of 0x01 aborts a transaction. See
example encoding in 3.2.3.3.3.

In cases where the host transmits unexpected or out of order control tokens the TPer should abort the
session. These cases include (but are not limited to):

e Multiple consecutive tokens of the same type
e Out of order tokens
e Tokens with undefined accompanying status codes

3.2.3.3 Method Calls
This section describes the encoding of method calls.

3.23.3.1 Syntax
A method call starts with a sequence of tokens that are sent from the application to the TPer as follows:

e Method. A call token followed by tokens for a value that identifies the method to call. This value
is:

o InvokingUID, MethodUID — This indicates the method invocation is a series of tokens
with two short atom elements. InvokingUID here is the UID of the table, object, or “this
SP” upon which the method is being invoked, and MethodUID is the UID of the method
as recorded in the MethodID table. The InvokingUID of an SP invoking a method shall
always be Ox00 0x00 0x00 Ox00 O0x00 0x00 O0x00 O0x01, which is used to signify
“this SP”.

Session Manager layer methods follow this format as well. The host shall use the
reserved UID "SMUID" (0Ox00 0x00 0x00 0x00 Ox00 Ox00 0x00 OxFF) as the
InvokingUID of Session Manager methods.

e Input Parameters. This is a token list of the method invocation’s parameters. Positional
parameters, those required by the method invocation, shall appear first, in the order in which

Revision 0.9 - draft - Draft Page 33 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

they are listed in this specification for that method, and are not named. Optional parameters
shall appear after all positional parameters. Optional parameters are named values. These
parameters may be listed in any order, but shall follow the list of all positional parameters for
that method.
Positional parameters shall be made up of the following parts:
o The UID of the row in the Type table that represents the value’s type.
e For certain types, the UID of the component value
0 The appropriate Atom identifier for the value.
0 The encoded value.
Optional parameters shall be made up of the following parts:
0 The StartName token.
0 The appropriate Atom identifier for the name.
0 The encoded name.
0 The UID of the row in the Type table that represents the value’s type.
e For certain types, the UID of the component value
0 The appropriate Atom identifier for the value.
0 The encoded value.
0 The EndName token.
EndOfData. An end of data token sequence.

Status Code List. This is the status list that contains the status code expected from successful
invocation of the method. The first value in the list shall be 0x00 for a method that the host
expects to complete properly. For a method that the host wishes to abort, the host shall include
a value that is not 0x00 as the first value in the status list, which shall cause the TPer to abort
processing on that method and return that non-0x00 value as the first value in the status list.

The second and third values in the status list are reserved, and are defined in this specification
to be zeroes.

Each method call shall have a response that is a sequence of tokens that are sent from the TPer to the
host as follows.

Output Results. This is a token list.
EndOfData. An end of data token sequence.

Status List. The status list returned for the method invocation. The first value in the status list
shall always be the status of the method, as described in 5.1.3. The second and third values in
the list are uintegers reserved for use by the TCG, and are defined in this specification to be
Zeroes.

Additional values may be returned in the status list, as long as the first three values in the
status list are returned as required by this specification.

Method responses shall be returned for all method invocations or method invocation attempts within a
session, though responses for method invocation attempts of methods not recognized by the TPer or
that result in some other failure condition shall return an empty method result (the output result is an
empty list) and an error code. Unrecognized method invocation attempts outside of a session should
be ignored by the TPer — in these cases, no response is sent.

Revision 0.9 - draft - Draft Page 34 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Session Manager protocol layer method invocations that are recognized but fail shall receive the normal
response format for that method, accompanied by an error status code. Session startup methods that
fail in this way shall have returned the expected method response, but that method shall have only the
identifying parameters (Host, SP) and an error status code. If the identifying parameters (particularly
the Host parameter) are invalid (i.e. of the incorrect type), the TPer may ignore the method.

All message traffic to invalid/non-existent streams and/or sessions shall be ignored by the TPer.

The TPer may begin sending the response as soon as enough parameters have been received to
prepare a response.

3.2.3.3.2 Method Call Encoding Stream — Example

The method example in this section invokes the CreateRow method on the Authority table using the
following byte stream format. The encoded stream data for the example method invocation is can be
found shown in Table 18. For the result of the method as returned by the TPer, see Table 19.

Table 18 Method Call Encoding
‘ Call |token ‘ Authority |token ‘ CreateRow ‘
| F8 | A8 | 0000000900000000 | A8 | 000000 0600000004 |

‘ [\SN \token | Name \token ‘ name |token ‘ Alice \EN ‘
[FO |F2 | A4 [4E616D65 | A8 |000000050000020B | A5 |416C 696365 |F3 |

\SN |token | CommonName \token ‘ name
|F2 | AA | 436F 6D 6D 6F 6E 4E 616D 65 | A8 | 0000 00 0500000208 |

‘token ‘ AliceGroup ‘EN ‘
| AA | 416C 69 63 65 47 72 6F 75 70 ‘F3‘

\SN \token | IsClass \token | boolean F"EN ‘
'F2 | A7 |4973436C617373 | A8 | 0000000500 00 04 01 W\Fs‘

\SN \token ‘ Enabled |token | boolean_def_true F\ EN i
'F2 | A7 [456E61626C6564 | A8 | 0000000500000403 |1 |F3 |

\SN \token | Secure \token ‘ messaging_type W\EN ‘
'F2 | A6 |536563757265 | A8 \ooooooosooooo4o4|ﬂF3\

\SN \token | HashAndSign |token ‘ hash_protocol W‘ EN i

Revision 0.9 - draft - Draft Page 35 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

‘SN ‘token | HashAndSign |t0ken ’ hash_protocol W‘ EN
'F2 | AB | 48617368416E645369676E | A8 |000000050000040D |0 |F3

|SN ’token ’ Operation ’token \ auth_method E-|EN
'F2 | A9 [4F7065726174696F6E | A8 | 000000 0500000408 |1 |F3

’SN ’token ’ Credential ’token ’ cred_object_uidref ’token ’ PinObjectUID |EN ‘
'F2 | AA | 43726564 656E7469616C | A8 | 0000000500001002 | A8 | 0000 00 0B 00000009 |F3 \

1 [eop [[| Status] \

[F1 [Fo [Fo [00 [00 [00 [F1 |

Which returns, upon success with:

[true]

Table 19 Method Response Encoding

’T| createrow_result | uidref_list ’T| New Authority Object ’TWI
[F0 (00 00 00 05 00 00 06 07 [00 00 00 05 00 00 08 09 [FO |00 00 00 09 00 FF FF 01 [F1 [F1

|EOD]T| Status ’T‘
| Fo_[Fo[00[00 /00 F1,

3.2.3.3.3 Method Encoding with Transactions — Example

This example displays the encoding of a series of methods that utilize transactions. The method
invocation is in Table 20. The response from the TPer is encoded in Table 21.

Table 20 Method Call Encoding with Transaction

‘ Begin Transaction ‘ Status ‘ Call ‘ token | Authority |token ‘ CreateRow
\ FB | 00 | F8 | A8 | 0000000900000000 | A8 | 0000 00 0600 00 00 04

‘ [‘SN ‘token ‘ Name ‘token ‘ name ‘token ‘ Alice ‘ENI
[FO |[F2 | A4 [4E616D65 | A8 |000000050000020B | A5 |416C696365 |F3 |

‘SN ‘token ’ CommonName ‘token ‘ name
F2 | AA | 436F6D6D6F BE4E616D65 | A8 | 00 00 00 05 00 00 02 OB

Revision 0.9 - draft - Draft Page 36 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|token ’ AliceGroup ‘EN
| AA | 416C 69636547 726F 7570 |F3

’SN ’token ’ IsClass |token \ boolean F’EN
'F2 | A7 [4973436C617373 | A8 [0000000500000401 [0 [F3

\SN |t0ken | Enabled \token \ boolean_def_true F-|EN ‘
'F2 | A7 |456E61626C6564 | A8 | 0000000500000403 [1[F3 \

\SN \token | Secure \token ‘ messaging_type W"EN ‘
'F2 | A6 [536563757265 | A8 | 000000 0500000404 [0 [F3 \

‘ SN \token ‘ HashAndSign |token | hash_protocol W\ EN
'F2 | AB | 48617368416E645369676E | A8 | 0000 00050000040D |0 [F3

| SN | token ‘ Operation ‘ token ‘ auth_method E| EN
'F2 | A9 [4F7065726174696F6E | A8 | 0000000500000408 |1 |F3

‘SN ‘token ’ Credential ’token | cred_object_uidref ‘token ’ PinObjectUID ‘EN ‘
|F2 | AA | 43726564 656E7469616C | A8 |0000000500001002 | A8 | 0000000B00000009 |F3 |

1| EOD | [| Status |] | EndTransaction Status

| F1 | F9 " Fo [o00 [o00 [00 [F1 | FC 00

Table 21 Method Response Encoding — with Transaction

Begin Transaction|[| createrow_result | uidref_list [T [New Authority Object ‘
| FB [FO|00 00 00 05 00 00 06 0700 00 00 05 00 00 08 09 [FO (00 00 00 09 00 FF FF 01 \

7[1 [EOD| [Status [] [End Transaction [Status|

F1F1[Fo [Fooojoofoo/F1] FC | 00

3.2.3.4 ComPackets, Packets & Subpackets
Data crosses the Host/TPer interface in T10 SECURITY PROTOCOL IN/OUT or T13 TRUSTED
SEND/RECEIVE commands.

The low-level interface transport layer shall handle the retransmission of damaged or incomplete
commands. Secure messaging, detailed in later sections of this specification, permits the host

Revision 0.9 - draft - Draft Page 37 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

application to secure its data from malicious attack, not to address hardware and low-level transport
issues. (Similarly with the session start up protocol, hashing is intended to detect tampering.)

The payloads of the interface commands convey tokenized byte streams (method calls, their
parameters, their results, and status codes) and other control information, such as ACKs and NAKs.

3.2.34.1 Format

There are three levels of packetization on the host interface: ComPackets, Packets, and Subpackets.
A ComPacket is the unit of communication transmitted as the payload of an interface command. An
interface command payload shall hold only one ComPacket. A ComPacket shall not span multiple
interface commands. A ComPacket is able to hold multiple packets in its payload. A Packet is
associated with a particular session and may hold multiple subpackets. A Subpacket may hold multiple
Tokens. Tokens may span multiple subpackets and multiple packets. However, subpackets cannot
span multiple packets, and packets cannot span multiple ComPackets.

Figure 3 provides an overview of how ComPackets are constructed from packets; how packets are
constructed from subpackets; and how subpackets are constructed from the session byte stream.

Revision 0.9 - draft - Draft Page 38 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

Figure 3 Packet Construction
Session Byte Stream
Alreaddy Sent Being Sent inFirst Subpack et Being Sent in Second Subpacket Pending
Bu B1 Bz Ba Bat Bs Bs B? Bs Bs Bw B11 B12 B13B14315 B1s B1? B18B19 an Bz1 Bzz B23 Bza
First Subpacket
Kind Resarved Length Data
00 | DOOOO0 | 0OOO6 B, B,B,B,B,, B,
Second Subpacket
Kind Reserwed Length Data
00| 00D00O ooo08 |B,B,B,B,.B,B,B,B,
Facket
Session Mumber Secpumber Aok Type Acknovwdedoement Lencth Data
ooo10001 ooao1 00 oooo 0D00Z2|0000000006 B, B; B;
Crata
By B, B,,0000000008 By, By 84,845 Byg By B4 By

Zom Packet
Rezerved Extended ComiD CutstandingCata MinTransfer Length Data
D000 | com com com Com o005 o005 000 38 goo100010001000000
Ciata
I]I]I]ZZI]I]I]I]I]I]I]I]I]ﬁBBB?BEBSB10 B11I]I]I]I]I]I]I]I]I]BB1231EBMI315I315I31?B1EB19

3.2.34.2

ComPacket Format

Header

Reserved:uinteger_4 — must be all zeros.

ExtendedComID:uinteger_4 — The ComID of this ComPacket
OutstandingData:uinteger_4 — For ComPackets sent by the TPer to the Host, this field
contains the total number of bytes that the TPer has available for the host on this ComID.
This value is based on the data available in the TPer at the point in time when the

ComPacket is transmitted to the host by the TPer.

Revision 0.9 - draft -

This total shall not include the data

Draft Page 39 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

being transferred in the current ComPacket. This total shall include
Compacket/Packet/Subpacket overhead. If the TPer has no additional data for this ComID,
this value shall be 0x00 0x00 0x00 O0x00. If the TPer has more than OxFF OxFF OxFF
OxFF bytes for this ComID, this value shall be OxFF OxFF OxFF OxFF. For ComPackets
sent by the Host to the TPer, this field is reserved and shall contain 0x00 0x00 0x00
0x00.

MinTransfer:uinteger_4 — For ComPackets sent by the TPer to the Host, this field
contains the minimum number of bytes that the host must request on this ComID in order to
transfer a packet for any session associated with this ComID. This value is based on the
data available in the TPer at the point in time when the ComPacket is sent by the TPer.
This value shall include Compacket/Packet/Subpacket overhead. If the TPer has no
additional data for this ComID, or if the TPer has no minimum requirement, this value shall
be 0x00 0x00 0x00 0x00. The host application that manages this ComID shall request at
least MinTransfer bytes on the next IF-RECV command that it sends for this ComID. For
ComPackets sent by the Host to the TPer, this field is reserved and shall contain 0x00
0x00 0x00 0x00.

Length:uinteger_4 — The number of bytes in the payload

e Payload

3.2.3.4.3

Data:bytes{length}. This contains a sequence of one or more packets.

Packet Format

Each packet will be made up of the fixed fields noted below, to allow acknowledgements, negative
acknowledgements, and/or data to be included in a single packet.

e Header

0 Session: uinteger_8 — The session number associated with this packet. The session
number is composed of two uinteger_4 values — the TPer session number and the Host
session number (Session = TPerSN concatenated with the HostSN). The TPer
Session Number is sent first; the Host Session Number is second. Consequently, the
same session number is used for communications between both parties.

o SegNumber: uinteger_4 — An incrementing counter that starts at 1 and increments
until 2%2-1, which identifies the number of the packet within the session and defines the
ordering of transmitted packets.

The message recipient shall ignore a packet with an equal or lower SeqNumber value
than any previously acted-upon packet. In addition, wrapping of the SeqNumber shall
result in the session being automatically aborted.

Each communicator shall maintain multiple SeqNumber counts, including that of the
last packet acknowledged, the next packet expected, and the last packet transmitted.

0 AckType: uinteger_2 — This will be 0x00 0x01 if the Acknowledgement field is to
contain a packet acknowledgement. This will be 0x00 0x02 if the Acknowledgement
field is to contain a packet negative acknowledgement. This will be 0x00 0x00 if no
packets are being acknowledged or negative acknowledged, and the value of the
Acknowledgement field shall be zeroes.

o0 Acknowledgement: uinteger_4 — If the value of the AckType field is 0x00 0x01, then
this number shall be the SeqNumber of the last packet successfully received by the
receiver. If the value of the AckType field is 0x00 0x02, then this shall be the
SegNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the last known good packet
received plus one. For AckType field value of 0x00 0x02, the communicator shall not
NAK a SeqNumber less than or equal to the last ACKed SeqNumber. If the AckType
field is 0Ox00 0x00, then the value of this field shall be zeroes.

0 Length: uinteger_4 — The number of bytes in the Payload field.

Revision 0.9 - draft - Draft Page 40 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

e Payload
o Data: bytes{length} — This contains a sequence of one or more subpackets.

3.2.3.4.4 Data Subpacket Format
A Data Subpacket consists of the following fields:

e Header
o Kind: uinteger_2 — This field is set to zeroes to identify this as a data subpacket.
0 Reserved: uinteger_4 — These bytes are reserved. This specification requires these
bytes to be zeroes.
0 Length: uinteger_4 — The number of bytes in the subpacket payload. This is equal to
the number of bytes in the subpacket payload.
e Payload
o Data: bytes{length} — This contains a series of bytes representing one, more than
one, or perhaps part of one token.

3.2.3.45 Credit Control Subpacket Format

A Credit Control Subpacket consists of the following fields. For more information on the use of Credit
Control Subpackets, see Flow Control in Section 3.4.6.

e Header
o Kind: uinteger_2. This is 0x80 0x01, and identifies this subpacket as a credit control
subpacket.
0 Reserved: uinteger_4 — These bytes are reserved. This specification requires these
bytes to be zeroes.
0 Length: uinteger_4. The number of bytes in the Credit Control subpacket payload.
This is always 0x00 0x00 0x00 0x02 for a subpacket of this type.
e Payload
o0 Credit: uinteger_2. The number of bytes to credit. It's an additional number of bytes
that may be sent to the stream.

3.2.3.5 Secure Messaging
Secure messaging enables protection of the packet payload. Secure messaging comes in three types:

o Confidential Messaging — this provides encryption on the message being transmitted.
Confidential Messaging prevents the packet contents from being read by an intruder between
the packet source and destination.

o Integrity/Authenticity Checking — this provides the ability to detect tampering with packets in a
session.

o Confidential Messaging with Integrity/Authenticity Checking — this provides encryption on the
message being transmitted and the added ability to detect tampering with packets in a session.

3.2.35.1 Secure Messaging Packet Format

A secure messaging packet is used when encryption or integrity/authenticity checking (or both) is
enabled for a session. The secure messaging packet is composed of the following fields:

e Header
0 Session: uinteger_8 — The session number associated with this packet. The session
number is composed of two uinteger_4 values — the TPer session number and the Host
session number (Session = TPerSN concatenated with the HostSN). The TPer
Session Number is sent first; the Host Session Number is second. Consequently, the
same session number is used for communications between both parties.

Revision 0.9 - draft - Draft Page 41 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

(0]

(0]

SegNumber: uinteger_4 — An incrementing counter that starts at 1 and increments
until 2%2-1, which identifies the number of the packet within the session and defines the
ordering of transmitted packets.

The message recipient shall ignore a packet with an equal or lower SeqNumber value
than any previously acted-upon packet. In addition, wrapping of the SeqNumber shall
result in the session being automatically aborted.

Each communicator shall maintain multiple SegqNumber counts, including that of the
last packet acknowledged, the next packet expected, and the last packet transmitted.
AckType: uinteger_2 — This will be 0x00 0x01 if the Acknowledgement field is a
packet acknowledgement. This will be 0x00 0x02 if the Acknowledgement field is a
packet negative acknowledgement. This will be 0x00 0x00 if no packets are being
acknowledged or negative acknowledged, and the value of the Acknowledgement field
shall be zeroes.

Acknowledgement: uinteger_4 — If the value of the AckType field is 0x00 0x01, then
this number shall be the SeqNumber of the last packet successfully received by the
receiver. If the value of the AckType field is 0x00 0x02, then this shall be the
SegNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the last known good packet
received plus one. For AckType field value of 0x00 0x02, the communicator shall not
NAK a SeqNumber less than or equal to the last ACKed SeqNumber. If the AckType
field is 0x00 0x00, then the value of this field shall be zeroes.

Length: uinteger_4 — The number of bytes in the Payload field (made up of the IV
field, Secure Data field and the Message Authentication Code field).

e Payload

(0]

Initialization Vector (IV): uinteger{0-16} — The IV input for the selected encryption or
integrity checking mode. For GCM, GMAC, and CCM, the IV is 8 bytes long and shall
contain a unique value with each encryption invocation. A simple algorithm is for the
sender to use the sequence number as the IV. For AES-CBC encryption, the IV shall
contain a random 16-byte integer. For all other modes, the IV shall have zero length.
SecureData — This is the encrypted/integrity-protected data. The Secure payload field
s made up of the following parts (all of which are encrypted, if secure messaging
requires encryption:
= DatalLength: uinteger_4 — Length of the Data field, in bytes.
= Data:{Data Length} — The encrypted or integrity-checked set of subpackets
and any necessary padding (dependent on encryption mode). This field is
made up of the following two parts:

e SubpacketData:{Data Length} — The encrypted or integrity-checked
subpackets.

e Pad: bytes: - Any necessary padding required to fulfill the alignment
constraints for the encryption mode in use. For AES-CBC encryption,
the length of the Pad field shall include a number of padding bytes
such that the total length of the Data field plus the Pad field is
congruent to zero mod 16. For GCM and CCM, there is no required
padding.

Message Authentication Code (MAC): {size of MAC} — A message authentication
code that protects the integrity of the packet. The MAC covers the Session,
SegNumber, AckType, Acknowledgement, Length, IV, and, for encrypted data, the
ciphertext (the value of the SecureData field, which is made up of the Data Length and
Data fields; note the Data field is made up of the SubpacketData field and the Pad
field), or, for unencrypted data, the unencrypted SecureData field.

Revision 0.9 - draft - Draft Page 42 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.2.3.6 Method Invocation — Result Retrieval Protocol

A method is invoked by tokenizing the method call and its parameters as described in previous
sections, using the token encoding format and Subpacket-Packet-ComPacket format. The host sends
the ComPacket to the TPer in an IF-SEND command. Multiple IF-SEND commands may be required
to encompass the entirety of a method invocation or series of method invocations, and their related
data.

The host then polls the TPer by transmitting IF-RECV commands. When the TPer has packaged its
response, it transmits the tokenized results to the host in response to an IF-RECV command. Multiple
IF-RECV commands may be required to retrieve all of the results of a particular method invocation or
series of method invocations.

For additional information on the operation of the IF-RECV commands, see the descriptions for those
commands as detailed in the appropriate interface specifications.

3.2.4 Templates

Templates are sets of tables and methods, grouped by feature, from which SPs are created.
This document covers the following Templates:
e Base Template: Provides the tables and methods common for all SPs.

e Admin Template: Provides administrative control over other SPs and the TPer settings as a
whole, and control over Issuance of new SPs.

e Clock Template: Contains tables and methods specialized for forensic and cryptographic
clocks.

e Crypto Template: Contains functional extensions to the Base SP cryptographic and procedural
capabilities.

e Locking Template: Provides tables and methods for storage encryption/decryption and
read/write lock state control.

s Log Template: Contains tables and methods specialized to forensic logging.

3.2.5 Tables - Details

All persistent data for SPs are stored in tables — the only data for an SP that persists past the end of a
session is the data that is stored in tables. Tables survive operations on user-areas, such as
reformatting.

Tables are stored in SP-specific parts of the secure storage area of the TPer. The secure storage
area(s) of a TPer are only accessible by the T10 SECURITY PROTOCOL/T13 TRUSTED commands.

A table consists of a grid with named columns and addressable rows. At each column and row
intersection there is a cell. All the cells in a column have the same type. The column types are specified
at table creation. For some SSCs, the number of rows in a table is completely determined when it is
created (additional rows cannot be allocated), but other SSCs define tables with a dynamically allocable
number of rows. If an SSC permits additional rows to be added to a table, then the number of rows
specified at table creation is the initial number of rows allocated for that table.

A table name or table column name may be up to 32 bytes in length. By convention, the names
assigned in this document consist of ASCII characters, the first of which is a letter and others is a letter,
digit or underscore. Adjacent underscores do not occur. All names are case sensitive.

SPs may be issued and deleted. Within an SP, tables may be created and deleted. For each table,
rows may be created and deleted (except within a Byte table — see 3.2.5.1), but columns are created
only when the table is created. A specific Security Subsystem Class may disallow the creation of any of
these.

Revision 0.9 - draft - Draft Page 43 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Each SP has a set of metadata tables (such as the Table table, Column table, etc.) that describes all
the tables of the SP including the metadata tables themselves.

Access control provides a means to limit the methods that may be executed on tables, or particular
rows or cells of tables.

3.2.5.1 Kinds of Tables
There are three kinds of tables:

1. Byte table. A byte table has one unnamed column of type uinteger_1. Note: The rows of this
table cannot be allocated or freed. The address of the first row in a byte table is 1. Byte tables
provide raw data storage.

2. Array table. Unlike byte tables, array tables may have more than one column. Each array
table row is addressed by an unsigned integer that is stored in a column, named RowNumber,
which is only readable from the host — the host shall not specify or modify the value of this
column for a row in an array table. The first row in an array table has RowNumber column value
1, etc. Array tables provide storage for categorizable data.

3. Object table. When created, one or more columns are designated as the index. Each row of
the table has a value or combination of values in the indexed column(s) that is unique within the
table for those column values. When more than one column is marked for indexing, each
indexed column participates in the index ("multi-column index"). The TPer is not required to
keep rows of the table sorted by the index. Object tables provide storage for data that binds a
set of methods to that data.

For Object and Array tables:
¢ A newly created table is initially empty and rows must be created before they can be used.

e There is always a UID column of type UID. In object tables, rows are addressed by UID. In
array tables, rows are addressed by row number or UID.

3.2.5.2 Objects

An object is any row of an object table. The particular object type is defined by the object table in which
the object occurs. The columns of the object table define the contents of each object in it.

For example, object table Foo is the Foo object type. Each row in object table Foo is an instance of the
Foo object type.

An important aspect of an object type is the set of methods it defines. For a specific SP, there are
methods on the SP itself, methods that act on the tables and have the whole table as their possible
scope, and methods for each of the objects within the SP. In order to hide the information inside an
object, object-specific ACLs are applied to the methods capable of manipulating that object’s data.

3.2.5.3 Unique Identifiers (UIDs)

Each array and object table has a column named UID. This column contains an 8-byte unique identifier
for that row. Each row has an SP-wide unique value in this column. This value is never shared with
another row, and is never reused by that SP. The TPer shall guarantee that UIDs are unique across
the entire SP anytime that a UID is generated.

The UID column is present to provide anti-spoofing capability, and to provide a means to address these
rows. New UIDs are assigned when rows are created and old values are discarded when rows are
deleted. If all UIDs have been used, no more rows can be created.

Each table is also represented by a UID. A table’s UID is derived from the UID of that table in the
Table table. The Table table is an object table in which each row is a table descriptor object that
stores metadata about the associated table.

Revision 0.9 - draft - Draft Page 44 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0
The bytes in a UID shall be utilized as follows:

o0 The first four bytes of a table row’s UID shall be the “containing table” id and the last four bytes
will be assigned in a TPer-specific manner.

o0 UIDs of tables shall be assigned as follows:

0 The UIDs of table descriptor objects (the table’s row in the Table table) shall be 0x00
0x00 Ox00 0x01 XX XX XX XX, where XX XX XX XX represents the values assigned

by the TPer to that object’'s UID. For example, The Table table’s UID shall be 0x00
0x00 0Ox00 0Ox01 Ox00 0Ox00 0x00 0Ox01

o The UID used to reference the actual table (rather than that table’s row in the Table
table) shall be XX XX XX XX 0x00 Ox00 Ox00 0x00, where XX XX XX XX are the last
four bytes of that table’s UID in the Table table. Four 0x00’s as the last four bytes of a
UID that does not have four 0x00’s at the beginning are references to a table. This is
the UID that is returned by a successful invocation of the CreateTable method.

0 All non-table UIDs shall have their high four bytes be the low four bytes of the
containing table’s UID. So, references to rows in a table are assigned UIDs based on
the UID of the containing table. For instance, references to the rows in table XX XX XX
XX 0x00 0x00 0x00 0x00 are assigned UIDs XX XX XX XX yy yy yy yy where the
first four bytes of the containing table UID and of the row are the same.

All UIDs with their first four bytes equal to 0x00 0x00 0x00 0x00 are reserved for use by the TCG and
shall never be assigned by the TPer. When necessary to refer to the SP with a UID, a UID of 0x00
0x00 0x00 0x00 0x00 Ox00 Ox00 0xO01 is reserved to signify “this SP”.

For each table defined in this specification, UIDs with last four bytes between 0x00 0x00 0x00 0x00
and 0x00 0x01 0x00 0xO00 shall be reserved for use by the TCG.

A Null UID reference is all zeroes (0x00 0x00 Ox00 Ox00 Ox00 Ox00 0x00 0x00).

3.2.6 Common Methods

Each table and each object has these methods:
e Get: Used to access the values of one or more table cells.
e Set: Used to modify the values of one or more table cells.
Object and array tables also have these methods
e CreateRow: Used to insert a new row into the table.
o DeleteRow: Used to delete one or more rows of a table.
e Next: Used to iterate over all the rows of a table.

The CreateRow, DeleteRow, and Next methods are not defined for byte tables or for objects.

3.2.7 SP Tables & Method Summary

The SPs, Tables, and Methods are presented in overview in Table 22 below.

Table 22 SPs and Methods Covered in this Document

Template| Grouping Tables Table| Comments Grouping Methods COTIES
Concepts Type Concepts
Base All SPs Have Base
Version SPInfo Array | Details of SP DeleteSP SP Deletion
Size, Etc. SPTemplates |Array SP Basic SP
Components

Revision 0.9 - draft - Draft Page 45 of 265

TCG Storage Architecture Core Specification

TCG Copyright 2007

Specification Version 1.0
Table Object| Tables in SP CreateTable Table
Creation
Column Array | Cols in Tables Delete Object
Deletion
Tables and Type Object) SP Types CreateRow Row
Methods Creation
MethodID |Array | Methods in SP Basic DeleteRow ROW
Table/Object Deletion
Method Array | Access Control Get Read Cells
Associations
ACE Object| Access Control Set Write Cells
on Methods
Authority Object| Authorities in Next Next Row
Access SP
Control Certificates |Object| Certs for Public Basic DeleteMethod Method
Key Credentials Method Deletion
Authenticate Authenticate
Authority
C _PIN Object| Credential GetACL Set ACEs
Access on Method
C RSA 1024 |Object| Credential Control AddACE Create
B - ACEs
C RSA 2048 |Object| Credential RemoveACE Delete
- - ACEs
C AES 128 |Object] Credential Mi GenKey Generate
- — isc Keys
C AES 256 [Object| Credential
C_EC 160 [Object Credential
C EC 192 [Object| Credential
Credentials | C_EC_224 Object| Credential
C_EC 256 [Object Credential
C EC 384 [Object| Credential
C EC 521 [Object| Credential
C EC 163 |Object| Credential
C EC 233 [Object| Credential
C EC 283 [Object| Credential
C HMAC 160|Object| Credential
C_HMAC_256|Object Credential
C HMAC 384/Object| Credential
C HMAC 512|Object| Credential
Template| Grouping Tables Table| Comments Grouping Methods COmETE
Concepts Type Concepts
Admin Stores TPer/SP Info,
CryptoSuite |Array| Crypto IssueSP Issue SP
yp Capability Issuance
Basic Info TPerinfo |Array | Details of TPer
aboutTPer | properties | Byte TPer
communications
details
SPsonTPer| Template [Object SP Templates
Revision 0.9 - draft - Draft Page 46 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

Issued SPs

TCG Copyright 2007

Grouping

Template
Concepts

Table
Type

Comments

Template| Grouping Tables Comments Grouping Methods Comments
Concepts Type Concepts
Clock Keeps date/time
ClockTime |Array| Holds all clock GetClock Reading
info Clock
ResetClock Managing
Clock
SetClockHigh Sets time
from high
trust source
SetLagHigh Sets lag
time from
high trust
Clock Clock source
Information Management| :
SetClockLow Sets time
from low

trust source

Grouping
Concepts

SetLagLow Sets lag
time from
low trust

source
IncrementCounter | Reading
Monotic

Counter

Comments

Crypto

Enable Hidden CSP

Hash
Functionality

H_SHA_1

Object| Credential

H_SHA_256

Object| Credential

H_SHA_384

Object| Credential

H_SHA 512

Object| Credential

Crypto
Operations

Random

Gen
Random
Number

Decryptinit

Public or
Symmetric
Key
Decryption

Decrypt

Public or
Symmetric
Key
Decryption

DecryptFinalize

Public or
Symmetric
Key
Decryption

Encryptinit

Public or
Symmetric
Key
Encryption

Encrypt

Public or
Symmetric
Key
Encryption

Revision 0.9 - draft -

Draft

Page 47 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

EncryptFinalize Public or
Symmetric
Key
Encryption
Hashlnit Hash
HashCalc Hash
HashFinalize Hash
HMACInit HMAC
HMACCalc HMAC
HMACFinalize HMAC
Sign Public Key
Sign
Verify Public Key
Verify
XOR For Key
Derivation
Template| Grouping Tables Table| Comments Grouping Methods Comments
Concepts Type Concepts
Log Forensic Logging
Log Array | Stores logs AddLog Add record
to Log Table
LoglList [Object| Contains Log CreateLog Create a
table metadata new Log
Table
. Log ClearLo Removes all
Logging Management 9 entries in a
Log Table
F|ushLog Commits log
entries in
main
memory
Template| Grouping Tables Table| Comments Grouping Methods Comments
Concepts Type Concepts
Lockin g Encryption/Key Management/Read-Write Lock State
Control
LockingInfo |Array Device GetPackage Wrapped
capability Key
. Retrieval
Device
Management | ocking [Objectl LBA Ranges SetPackage Wrapped
definitions Key Key
Management| Retrieval
MBRControl |Array| Boot Control
Boot Control MBR Byte | Boot Control
Code
Template Grouping Methods Comments
Concepts
None

Revision 0.9 - draft -

Draft

Page 48 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Properties _Channel
information

StartSession Session
Startup

SyncSession Session
Startup

Session Manager Layer Methods - These methods -
are not associated with a particular Template or SP. Session |StartTrustedSession| Secure
These methods provide the host the capabilities Management Session
required to start sessions with SPs. Startup

SyncTrustedSession| Secure
Session

Startup

CloseSession Session
Termination

by the TPer

Revision 0.9 - draft - Draft Page 49 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.3 Interface Communications

The TCG Core Specification describes the architecture and main command set in an interface protocol-
independent way. The Core Specification is not, however, agnostic to the interface protocols. It
recognizes the limitations and characteristics of the main targeted interface protocols. In particular the
TCG has targeted the INCITS T13/ATA and INCITS T10/SCSI protocols. Accordingly, the TCG has
secured a set of command codes from these standards bodies that will allow the current specification to
be implemented. These commands are the T10 SECURITY PROTOCOL IN/OUT and the T13
TRUSTED SEND/RECEIVE.

This section abstracts out the common features of these commands that will serve as a requirement for
an interface protocol to implement the present specification.

The following assumptions are made regarding the interface commands:

e The interface commands have two parts: (1) a command block and (2) a data block or payload.
The data blocks for a particular interface protocol are of a fixed size, called BLK-SIZE. BLK-
SIZE must be at least 512 bytes. The data block size for a particular interface protocol is
assumed to be fixed and therefore the parameter BLK-SIZE is not part of the command block.

e There is at least one command in the interface protocol that transfers data from the host to the
storage device. These commands are called IF-SEND.

e There is at least one reserved command in the interface protocol that transfers data from the
storage device to the host. These commands are called IF-RECV.

e The command blocks for these two commands shall have the following fields
o0 Protocol ID: with at least 6 values that can be mapped into 1 to 6.
o Transfer Length: 2 bytes, indicating the number of blocks to be transferred.
0 ComlD: 2 bytes, the ComID to be used.

e The interface protocol shall preserve the order for IF-SEND and IF-RECV. That is, the
commands sent from a particular host will arrive at the TPer in the order in which they were
sent from that host.

The command block of the interface commands are described in the format defined in Table 23.

Table 23 Interface Command — Command Block

Command Either IF-SEND or IF-RECV.

Protocol ID Between 1 and 6

Transfer Length: 2 bytes The number of blocks to be
transferred.

ComiD: 2 bytes The ComlD to be used.

The mapping of the IF-SEND and IF-RECV commands to specific interface protocol commands are
described in the TCG documents related to the particular protocol.

3.3.1 Communicating With the TPer Through the Interface Protocol

The communication between the Host and the TPer take place through the use of IF-SEND and IF-
RECYV as illustrated in Figure 4 below.

Revision 0.9 - draft - Draft Page 50 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 4 TPer-Host Communication

IF-SEND
IF-SEND
Command Block Data Block

l (Payload)
IF-SEMD i i
Pratocal ID
i TCG SWG Protocol
Transfer Length
ComiD ’ ’
|
HOST ~ " "™~ " | TPER
-}
IF-RECY i
Protocal D
i TCG SWG Protocol
Transfer Length
ComiD ’
T IF-RECY
Command Block Data Block
(Payload)

Most of the useful communication is encapsulated in the payload of these commands. However, there
will be some interaction with the command block as well, particularly for the lower level commands used
to start a session.

The payload of these commands shall be of one of two types

0 Packetized payloads: The data block has a single ComPacket. The ComPacket contains one
or more packets. Each packet contains one or more subpackets. Details of how the packets
are specified in section 3.2.3.4.

0 Byte field payloads: This is a simple type of payload that is used in the more rudimentary
layers of the protocol stack defined in this section.

The packetized payloads are used when the Protocol ID of the command block is set to 1, and the byte
field payloads are used when the Protocol ID is set to 2. The transfer length varies depending on the
commands.

The ComlD are used to allow the TPer to identify the caller of the IF-RECV command and appropriately
populate the payload for the command.

3.3.2 The ComID

The ComlID is used to enable the correct communication of response data to the host. The ComlID
allows the TPer to identify the caller of the IF-RECV command and appropriately populate the payload
for the command.

In order to open a session with a particular SP on a TPer, the host application must start by requesting
a ComlID from the TPer. The TPer issues a ComID to the host application. The ComiID is transmitted
in the Security Protocol Specific field of the interface command. Once the host application has a unique

Revision 0.9 - draft - Draft Page 51 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

ComiD, the host is able to initiate the process of starting a session. An example of this interaction can
be found in Figure 5 .

Figure 5 Single Host/TPer Interaction

Host Application TRer
Get ComlD (IF-RECY)

i ComlD vy

Start=ession (1) -
- Syncoession (1)

hethod Calls (1)

-

- Methd Replies (1)

hethod Calls (1) -
» Method Replies (1)

End Zession (1) -

End Session (1)
- ComlD oy "expires"

Once the session is started, the TPer associates the session number with the ComID. In this way,
when an IF-RECV is sent to the TPer using Protocol ID of 1, the TPer is able to respond with a payload
containing only the packets for the session number associated with the ComID. This allows for multiple
applications to be simultaneously communicating with the TPer without interfering with one another, as
displayed in Figure 6 .

Revision 0.9 - draft - Draft Page 52 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 6 Multiple Host/TPer Interaction
Host Application 1 TPer Host Application 2

Get ComlD (IF-RECY)
ComiD =x Get ComlD F-RECY)

ComlD oy

-l
-

¥

StartSession (1)

&

StanSession (1)
StanSession (2)

¥

SyncSession (2)

&

SyncSession (1)

¥

hlethod Calls (2)

¥

Method Calls (1)

Wethod Replies ()

F |

SyncSession (1)

Methd Replies (1) L
hethod Calls (1) o
. Method Calls (1)
hethod Calls (23, End Session (2) o
. Method Replies (), End Session ()
hlethod Replies (1) L
. Method Replies (1))
- . End Session (1)
End Session (1) o

End Session (1)

End Session (1) ComlD yy "Epires"
ComlD = "expires”

¥

F 3

In some situations it might be useful to allow for a single entity, called the Host Session Manager, to
manage the TPer communications for a set of different applications running on the host. To enable
this, multiple sessions are permitted to be opened with a single ComID. All the sessions opened with a
given ComlD shall be associated with it. An example of this behavior is displayed in Figure 7 .

Revision 0.9 - draft - Draft Page 53 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 7 Host Session Manager/TPer Interaction

Host Application? Host Application Host Session Manager TPer
Bie gin e ssion - StartSession (1) .
Begin Session o
- StantSession (2 -
Sync3ession
- oK - ¥ 2]
Packet A .
ComlD Packet (Packet A) o
. ComlD Packet (Packet B)
. FacketB
- SyncSession (1)
. Ok
Packet C o
Facket D o
ComlD Packet (Packets C & D) .
. ComlD Packet (Packets E & F)
. Facket E
. Facket F

Note that to the TPer, communication with a single application is no different than communication with a
Session Manager that may act as an intermediary for multiple applications with which the TPer is
communicating. An application may open a single session to the TPer for itself, multiple sessions for
itself, multiple sessions for one or more other applications, multiple sessions for itself and one or more
other applications, or any other combination.

When an IF-RECV is sent to the TPer using a particular ComID, the TPer shall respond by putting
packets from the sessions associated with the ComID into the response. If there are more pending
responses from the various sessions associated with the ComID than fits the IF-RECV, it is up to the
TPer to determine which packets to include.

The number of packets/subpackets that are included in the response is a function of the amount of
available responses, the transfer length of the command, and the flow control mechanism. The amount
of data still remaining to be retrieved and the minimum transfer length required to retrieve at least one
packet, at the time the ComPacket was generated, is reported in the ComPacket header.

Revision 0.9 - draft - Draft Page 54 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.3.3 ComID Management
A mechanism is required to manage the ComlIDs so as to minimize the chances of two host
applications using the same ComlID in the rare occasions in which there are ComID conflicts.

ComIDs may be of two types: reserved and normal. The reserved ComlIDs are used to allow for
rudimentary commands to be defined at lower levels of the protocol stack. One example is the
GET_COMID command (see definition below). The lower 4096 out of the possible ComIDs shall be
reserved — 0-2047 are reserved for TCG use/assignment, and 2048-4095 are reserved as vendor-
unique. The other, non-reserved ComIDs shall be used for multiplexing the TPer responses to IF-
RECVs.

A ComlID may be in one of the following three states:

1. Inactive: The ComID has not been assigned to anyone since the last hardware reset or power
cycle; ComIDs may also be in the Inactive state due to circumstances other than reset/power
cycle.

2. Issued: The ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using this ComID.

3. Associated: One or more open sessions are associated with the ComiID.

ComlIDs that are either in the Issued state or the Associated state are said to be Active. The state
diagram in Figure 8 shows these states and the possible transitions among them.

Note that support for ComID management commands is SSC-dependent.

Figure 8 ComlID State Transition Diagram

Inactive ; Issued Associated

Active

The possible state transitions are:

0 Inactive to Issued: A ComID transitions from the Inactive state to the Issued state when it is
returned to the host during a successful execution of the GET_COMID command.

0 Issued to Associated: A ComID transitions from the Issued state to the Associated state once
a session is open using that ComID. This occurs when at the point when session startup has
successfully completed.

0 Issued to Inactive: A ComlD transitions from Issued to Inactive when any one of the following
conditions hold

0 There is a hardware reset or power cycle.

0 The host issues MAX_COMID_CMD commands using the ComID before starting a
session. MAX_COMID_CMD defines a limit on the number of commands that a TPer
will accept for a given ComlID before the TPer transitions an Issued ComID to Inactive.

Revision 0.9 - draft - Draft Page 55 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

A TPer's MAX_COMID_CMD value is retrieved using the Properties method.
Support for MAX_COMID_CMD is SSC-dependent.
0 The host does not start a session using the ComID within MAX_COMID_TIME from the
ComID being issued. MAX_COMID_TIME defines a limit on the amount of time a
ComID can exist in the Issued state without an active session. A TPer's
MAX_COMID_TIME value is retrieved using the Properties method.
0 Associated to Inactive: A ComlID transitions from Associated to Inactive when any of the
following conditions are met:
o There is a hardware reset or power cycle.
o0 After all sessions associated with the ComID are closed.
In order to minimize the possibility of conflict, the ComID issuance mechanism shall have the following
two characteristics:

o A ComlD that is in an active state shall not be issued again. That is, only ComIDs that are in
either the inactive or issued states shall be returned to the host as a response to the
Get_ COMID command.

o0 The TPer shall issue ComlIDs in a sequential manner (wrapping around cyclically as needed),
keeping a record in non-volatile memory that is a pointer to a ComID not yet allocated.

In addition to the above transitions, the TPer may transition a ComID to the Inactive state at any time
for any reason.

3.3.3.1 Extended ComID

Despite all the mechanisms put in place, there is always the possibility that some application will hold
on to its ComlID for an extended period of time and not recognize that the ComID has become Inactive
and (possibly) subsequently been issued to another application. Since there are only 61440 normal
non-reserved ComlDs, the probability of this occurring is not small enough to be neglected.

To help deal with this issue the TPer makes use of Extended ComIDs. Extended ComIDs are 4 bytes
long and have the first 2 bytes equal to the ComID. The MSB of the ComID is the first byte of the
Extended ComlID, and the LSB of the ComID is the second byte of the Extended ComID. The TPer
arbitrarily generates the remaining 2 bytes every time a ComID is issued. The GET_COMID command
will return the 4-byte Extended ComID to the host. Note that there may have been many Extended
ComlIDs associated with the same ComID over the life of the TPer. Extended ComlIDs associated with
reserved ComIDs (0-4095) shall always be 0.

The Extended ComID can be in one of the following states
1. Inactive: The associated ComlD is in the inactive state.

2. Issued: The Extended ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using the
associated ComID.

3. Associated: One or more open sessions were open with the ComID. These sessions are said
to be associated with the Extended ComID.

4. Invalid: The Extended ComlID has not been issued since the last power cycle/reset, or has
become inactive and there exists another Extended ComlID with the same associated ComID in
one of the active states (Issued or Associated).

The Extended ComID can be used to determine if an application is using a stale, conflicting ComiD, i.e.,
if the ComID the application is using has become inactive and subsequently assigned to another
application. When this happens, the application’s Extended ComlID shall be invalid. When the
application makes an inquiry to the TPer using the Extended ComID, the TPer shall respond with an
indication that the Extended ComiID is invalid.

Revision 0.9 - draft - Draft Page 56 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

3.3.4 Sessions
There are currently two types of sessions:

o Regular Sessions (or just Sessions): These are communication channels between a host
application and an SP.

e Control Sessions: These are between the TPer Session Manager (TSM) and the Host
Session Manager (HSM).

The Host Session Manager is an abstract entity that represents the peer, on the host side, of the TPer
Session Manager. The HSM could be an application that is routing traffic to several applications on the
host or it could simply be a module in a given application that deals with establishing sessions with the

TPer.

3.3.4.1 Regular Sessions

Each Regular Session is identified by a distinct Session Number (SN). The SN is an 8-byte quantity
composed of two subparts: the TPer Session Number (TSN) and the Host Session Number (HSN),
each of which has 4 bytes.

SN = (TSN, HSN)

The HSN is assigned by the HSM and can be any value. Typically the HSM will assign HSNs in such a
way as to make them unique for all of its communications with one or more TPers, though this is not
required.

The TSN is assigned by the TSM. The TSM shall guarantee that all Regular Sessions associated with
a particular ComID are assigned a different TSN. In addition, the TSM shall not assign any TSN in the
range 0 to 4097 to a regular session. These TSNs are reserved by TCG for special sessions, of which
the control session is the only one currently defined.

Additional details regarding session startup can be found in 3.4.4.5.

3.3.4.2 Control Sessions

Each Control Session is identified by a distinct ComID and a TPer Session Number of zeroes (TSN =
0x00 0x00 O0x00 0x00). There is exactly one Control Session associated with each ComID. The
Control Session is between the TSM, identified by TSN=0x00 0x00 0x00 0x00 and the HSM, identified
by the ComID. The HSN is not used to identify the session in a Control Session. It is used simply as a
“routing aid” for the cases in which multiple sessions are simultaneously started using the same ComID.
However, the HSN will become active once the Regular Session is started.

The life cycle of the Control Session is tied to the life cycle of the ComID in that the Control Session
associated with a particular ComID starts as soon as the ComID is issued and it starts with the default
credits. When the ComlD is retired, the Control Session is terminated. The flow control for the Control
Session is performed in the same manner as the flow control for Regular Sessions, with the difference
that the communication is between the TSM and the HSM and these entities are responsible for the
flow control.

The packet headers for communications in the case where several different sessions are
simultaneously started on the same ComID will have different SNs because the HSNs will be different.
As far as flow control is concerned, only the TSN matters since the Control Sessions are identified by
the TSN=0x00 0x00 0x00 0x00 and the ComID.

3.3.5 Protocol Layers

In order to describe the overall process for establishing communication with the TPer and initiating a
session to an SP, it is necessary to partition the protocol stack into layers. The commands in each

Revision 0.9 - draft - Draft Page 57 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

layer differ in the amount of functionality available. The lower level allows only one-way communication

(TPer to host) and shall only use simplistic byte field responses.

communication and use packets and methods.

Figure 9 below depicts the protocol layers.

The higher layers have two-way

Figure 9 TPer-Host Communication Protocol Layers

TPer

Host

Session
sP Application
- Management |
Session
Manager
| communicaton |
TPer
""""""" ™er
TPer
Interface Interface Device
Controller Driver
Storage Transport Host Bus
Device Adapter

Session layer: This layer is entered when a session is successfully established between the
host application and an SP in the TPer. Most of the commands and functionality specified in
the TCG Core Specification operate in this layer. Payloads in this layer are packetized and
tokenized.

Management layer: This layer deals with establishing a session between an SP and a host
application. Payloads in this layer are packetized and tokenized.

Communication (Com) layer: In this layer the host application already has an assigned
ComID that is used for establishing two-way communication. It is a bidirectional
communication/control layer. This layer is used for management of ComIDs and dealing with
error conditions and other storage device management issues.

TPer layer: This is the first entry point to the TPer. This is a “one-way” communication layer.
That is, only IF-RECV commands are dealt with in this layer. The host application does not
have a ComID yet. There is a set of reserved ComIDs that can be used to execute special
commands at this layer.

Revision 0.9 - draft - Draft Page 58 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

o Interface layer: This portion of the stack contains the protocol for allowing the host to control a
specific storage device. The interface protocol must support IF-SEND and IF-RECV, i.e., have
commands with the properties that are required for these TCG commands.

e Transport layer: This portion of the stack is responsible for transporting the data from one
particular host to one particular storage device and vice-versa. An example is Fibre Channel.

3.3.5.1 Transport Layer

This layer of the protocol stack is responsible for transmitting the data from one particular host to one
particular storage device and vice-versa. There are no specific interactions with this layer described in
the TCG Core Specification. The only requirement is that this layer interact with the Interface layer in
such a way as to guarantee that the order of commands sent from a single host to a single storage
device are preserved.

3.3.5.2 Interface Layer

The commands at this layer are the IF-SEND and the IF-RECV commands. The interface controller on
the storage device shall identify these commands and send them to the TPer level.

All commands that map to IF-SEND and all the commands that map to IF-RECV that have the protocol
ID field in the set {1, 2, 3, 4, 5, 6} shall be sent to the TPer.

For an IF-SEND, the interface controller retrieves the data from the host to the storage device, sends
the command block parameters (Command, Protocol ID, Transfer Length, ComID) to the TPer, waits for
all data to be transferred, and then returns the IF-SEND command status at the interface protocol level.

For an IF-RECV, the interface controller sends the command block parameters (Command, Protocol ID,
Transfer Length, ComID) to the TPer, waits for data to be generated from the TPer, and starts transfer
to the host. Once all the data has been transferred, the IF-RECV command status is returned at the
interface protocol level.

3.3.5.3 TPer Layer

This is the entry point into the TPer. This layer has very limited functionality. Commands at this layer
are designed to be used without ComIDs. In particular, the command used to request a ComID,
GET_COMID, is dealt with in this layer.

The only commands dealt with in this layer are IF-RECV commands with some specific reserved
ComlIDs and protocol ID settings. All other commands are passed up to the Communication Layer.
The commands specified in this layer and in the communication layer will have Protocol ID = 02h.

3.353.1 GET_COMID

The command block for the GET_COMID command is defined in Table 24. The payload of the
GET_COMID command is defined in Table 25.

Table 24 GET COMID Command Block

FIELD VALUE
Command IF-RECV
Protocol ID 02
Transfer Length 0001
ComlID 00 00

Table 25 GET_COMID Payload

BYTE FIELD VALUE

Revision 0.9 - draft - Draft Page 59 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

BYTE FIELD VALUE
0-3 Extended ComlID Allocated ComID
‘11)_ (BLK-SIZE- Reserved zero

o0 The first 4 bytes of the payload shall be the Extended ComID. The first two bytes of the
Extended ComID are the ComID. If the TPer is not able to assign a new ComlD for any reason
it will return all zeroes in the Extended ComlD field.

0 The remaining BLK-SIZE - 4 bytes of the single transferred data block shall be reserved and set
to zero.

3.3.5.4 Communication Layer

The Communcation Layer provides a mechanism for two-way communication between the host
application and the TPer. The primary purpose of the communication at this layer is to manage the
allocated ComID and to verify the validity of the allocated ComiID.

Communication at this layer occurs using IF-SEND and IF-RECV commands using Trusted Protocol ID
02h. The host must have a ComID that has been assigned by the TPer using the GET_COMID
command available at the TPer Layer.

If the host application uses a ComlID that is not valid or has become invalid since its last usage, the
protocol at this layer has the ability to signal the error to the host application without raising exceptions
on lower layers such as the Interface or TPer layers. This allows host applications to verify validity of
ComlIDs without disturbing the operation of the TPer.

3.3.5.5 Communication Layer Protocol
The commands for communication with the TPer at this layer are as follows:

¢ HANDLE_COMID_REQUEST: IF-SEND to ComlIDs with the caller's Extended ComiD
passed as the first 4 bytes of the payload.

e GET_COMID_RESPONSE: IF-RECVs on ComIDs previously allocated by the TPer.

For any given ComlD, the host is expected to issue request and response commands in pairs.
Consecutive response commands return data corresponding to the last request received from the TPer.
The response may be regenerated by the TPer at the time of receipt of the command.

3.3.551 HANDLE_COMID_REQUEST

This command is used to inquire about or manage the state of the ComlID previously allocated by the
TPer. The command block for the HANDLE_COMID_REQUEST command is defined in Table 26.

Table 26 HANDLE COMID REQUEST Command Block

FIELD VALUE
Command IF-SEND
Protocol ID 02

Transfer Length nn nn

ComiD Allocated ComID

Revision 0.9 - draft -

Draft

Page 60 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The payload sent by the host to the TPer, at the minimum, consists of the 4-byte Extended ComID and

a Request code. Additional fields may be required for some request codes. Currently only one Request
code is defined: Verify ComlID Valid. The payload required for this request is defined in Table 27.

Table 27 Verify ComID Payload

BYTES FIELD VALUE

0-3 Extended ComID Allocated ComID
4-7 Request Code 00 00 00 01

8 — n*BLK-Size Reserved zero

On receiving this request, the TPer checks if the ComID sent in the payload matches any of the
ComIDs currently active in the TPer. The response is reported in the payload of the next
GET_COMID_RESPONSE command sent to the requested ComID.

3.3.55.2 GET_COMID_RESPONSE

This command is used to pick up the response of the TPer to a previous HANDLE_COMID_REQUEST
command. The command is sent to the ComlID for which the status is requested. The command block
for the GET_COMID_RESPONSE command is defined in Table 28

Table 28 GET COMID RESPONSE Command Block

FIELD VALUE
Command IF-RECV
Protocol ID 02

Transfer Length nn nn

ComlID Request_ ComID

The transfer length is the maximum length in blocks that the TPer may send in response to the
command. If the actual length of the response data is smaller, then the TPer shall pad the data with
zeros. If the actual length of the response data is larger, then the TPer shall only send the requested
amount of data.

The payload of the response data always contains the maximum available length of the response data
in byte 8-9. The host may use this information to repeat the response command with a transfer length
that fits the available data.

Currently, only the response to the Verify_ComlID_Valid request code is defined. The payload built by
the TPer in response to the Verify_ComlD_Valid command is defined in Table 29.

Table 29 Verify ComID Valid Command Response

BYTE FIELD VALUE

0-3 Extended ComID Allocated ComID
4-7 Request Code 00 00 00 01
8-9 Available Data Length in blocks | 00 01

10-11 Reserved 0000

Revision 0.9 - draft - Draft Page 61 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

BYTE FIELD VALUE

1215 Current state of Extended Enum_ {Invalid, Inactive, Issued,
ComiD Associated}

16 - 25 Time of Allocation of ComID 10 byte format

26 — 35 Time of Expirty of ComID 10 byte format

36 —45 Time since last reset of TPer 10 byte format

46 — BLK-SIZE Reserved zero

If the TPer does not support a real-time clock, the Time values in the Verify ComID_Valid response
shall be all zeroes. If the TPer supports a real-time clock, the fields that report the time shall use the
following format:

Year (4 digits) — uinteger_2

Month (2 digits, 1-12) — uinteger_1

Day (2 digits, 1-31) — uinteger_1

Hour (2 digits, 0-23) — uinteger_1

Minute (2 digits, 0-59) — uinteger_1

Second (2 digits, 0-59) — uinteger_1

Fraction (number of milliseconds, 0-999) — uinteger_2
Reserved — uinteger_1 — 0x00

If the current state of the ComlID is reported as unknown, only the current time or time since last reset of
the TPer is valid in the data payload. If the ComID state is reported as valid, the time of expiry will be
less than the current time.

3.3.5.6 Management Layer

Commands dealt with in this layer will be IF-SEND and IF-RECV with Protocol ID = 1 and with a valid
active ComlD.

This is the first layer that makes use of tokenized and packetized payloads. Communications in this
layer occur between the TPer Session Manager (TSM) and the Host Session Manager (HSM). Al
communications happen within Control Sessions. There is exactly one Control Session for each
ComiD.

The Control Session associated with a particular ComlID starts as soon as the ComID is issued, with a
default amount of flow control credits. When the ComlID is retired, the Control Session is terminated.
The flow control for the Control Session is performed in the same manner as the flow control for
Regular Sessions, with the difference that the communication is between the TSM and the HSM and
these entities are responsible for the flow control.

In the case where several different sessions are simultaneously started on the same ComlD, the packet
headers for communications will have different SNs because the HSNs will be different. As far as flow
control is concerned, only the TSN matters since the Control Sessions are identified by the TSN=0x00
0x00 0x00 0x00 and the ComiD.

One of the main tasks of this layer is to manage the startup of Regular Sessions. During this process,
the TSM and the HSM will assign the TSN and the HSN that will compose the SN for the Session to be
created.

Revision 0.9 - draft - Draft Page 62 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

When the process is initiated the HSM assigns an HSN (i.e. newHSN). The HSM has the opportunity to
make sure newHSN is different from any other HSNs in use by other sessions managed by it, though
this is not required.

This HSN is used in the header of the packets containing the StartSession method, and the SN for
this packet would be SN = (TSN=0x00 0x00 0x00 0x00, HSN=myHSN). Once the TSM receives the
StartSession method it assigns a TSN to the session. The TSM shall assign the TSN, newTSN, in
such a way as to guarantee that TSNs are unique per ComID. The TSN assignment is returned to the
application through the packet containing the SyncSession method invocation. At this point the
Session Number for the new session has been established — newSN = (newTSN, newHSN).

Once the TSM processes the StartSession method and returns the SyncSession response, the
Regular Session will be open for the case of sessions that do not require challenge-response. For
sessions that require challenge-response, the Regular Session will be open when the TSM finishes
processing the StartTrustedSession and sends out the SyncTrustedSession response.

3.3.5.7 Session Layer
In this layer all communications occur within a Regular Session.

3.4 SP Operation Descriptions

The following section highlights how tables and methods are managed.

3.4.1 General SP Guidelines

The Admin SP manages Templates, creates other SPs under issuance control, and maintains
information about other SPs and the TPer as a whole. There shall be exactly one Admin SP on every
TPer that has SPs or that can have SPs issued. If present, the Admin SP cannot be deleted or
disabled.

Each SP is created by mixing one or more of the Templates identified in the Admin SP.
A Template includes the following:

1. lts name. Each Template must have a different name. The TCG shall never define a Template
whose name begins with an underscore. Any templates defined by a manufacturer that are not
TCG specified Templates shall have a name that begins with an underscore.

2. A set of table and method definitions. These definitions will be used to define the initial tables
and methods of any instance of that Template. Any tables added by a manufacturer to a TCG
defined Template shall begin with an underscore.

3. Optionally, a maximum instance count. At any time there can be no more than this number of
SPs based on this Template instantiated within the TPer.

An SP includes the following:
1. Its name. Each SP must have a different name. The Admin SP has the reserved name Admin.
2. lIts tables. Tables are stored in the access-protected, non-volatile storage area on the TPer.
3. A set of methods.

All SPs must be created from at least the Base Template. The Base Template may be combined with
any other Template(s) to create an SP, though the number of SPs that instantiate a particular Template
may be limited.

3.4.2 Access Control

Access Control limits the methods that can be executed on an SP, a table, or on specific rows and
columns of a table.

Revision 0.9 - draft - Draft Page 63 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Permission to execute a method is governed by which secrets the method’s invoker has proven that it
knows. The secrets and their public parts are called Credentials. The operation for proving knowledge
of a secret is called an Authentication Operation. The actual proving of knowledge of a secret is
called Authentication.

Authentication in this document may be described as either Explicit Authentication, which occurs as a
result of challenge/response, for example; and Implicit Authentication, which occurs as a result of
implicitly proving knowledge of a secret, such as during session key exchange. An authority is
considered authenticated in either type of scenario - the terms Explicit and Implicit are descriptive and
do not limit the authentication or capabilities of an authority.

In addition to authentication, credentials may also be used for Encryption.

The Authority table on an SP associates specific Credential-Operation pairs together in Authority
objects. For example, one authority may include a credential that contains the secret password with
retry and hiding specification and the stipulated proof-of-knowledge operation of password
authentication.

An authority can be used by the host application to represent a person, a role, a program agent, etc.
These are distinctions of meaning to the application, not to the SP.

Certain authorities are defined by this specification. The AdminExch authority, of the class Admins, is
one such pre-defined authority. Every SP has an AdminExch authority at time of issuance. Security
Subsystem Classes may specify authorities in addition to these, or may restrict the use of some of
these. For details regarding the Admin authority and other pre-defined authorities, refer to 5.3.4.1.2.

Access Control is specified in layers. The top layer of the mechanism is Access Control Lists (ACLs).
ACLs are lists of Access Control Elements (ACES). This layering gives the host a way in which it can
delegate control of an ACL, via control of its ACEs, to various independent entities.

ACEs are Boolean combinations of authorities. This permits the ACE to express cross-certification or
other forms of restriction. When an Authority is authenticated, it is True in the Boolean expression, and
False otherwise.

Figure 10 Access Control
SP, Table, or Object

A

Method 1 Method 2
{or] (or]
ﬂSE’1 f-‘xCEE ﬂEES ﬂCIi—’l
AUTHT and AUTHA or ALTHS ALTHT and ALUTHA AUTHZ and AUTH4
(ALUTHZ or ALUTH3)

An authority may be one of two kinds: Individual and Class. Each Individual Authority may be a member
of one Class Authority. A Class Authority may also be a member of one Class Authority. A Class
Authority is identified only by its Authority UID and Class Name. A Class Authority does not refer
directly to a Credential. An Individual Authority specifies one Credential and one Operation on the
Credential.

A Credential is an object in a Credential Table. All credential tables have a name that starts with
"C_". A credential table must have at least one column for a secret. It may also have “public” parts,

Revision 0.9 - draft - Draft Page 64 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

such as public keys and certificates. A particular credential need not have all its columns filled in. For
example, if only a public key and certificates validating that public key are known, then the private key
columns may be unused (zeroes in these columns indicate that this information is not present).

A Credential Table must also have internal implementation for using the secrets and the “public” parts
of each credential and must handle all optional parts.

The operation is selected, as appropriate for the credential, from:

e Password or PIN or Passcode

e Signing:
0 Public Key Challenge/Response Sign/Verify
o Symmetric Key Challenge/Response Sign/Verify
o HMAC Challenge/Response Sign/Verify

o Key Exchange (Certificates or other methods provide implicit Authentication)
0 Public Key Encrypt/Decrypt
0 Symmetric Key Encrypt/Decrypt

e None or ““ This operation will always succeed and therefore the authority will always
Authenticate.

A Class Authority is authenticated when an Individual Authority that is a member of that Class Authority
is authenticated. Class Authorities cannot be directly authenticated. Class Authorities are a convenient
way to allow an ACE to be set on a method without enumerating all the Individual Authorities that may
authorize that method. This means that the Individual Authorities that belong to that Class Authority can
be changed without having to change any of the ACEs that refer to the Class Authority.

Access control is permitted in that ACEs can apply to methods on an SP, on a particular table in an SP,
or on arbitrary parts of a particular table in an SP, down to the granularity of a single table cell. Note
that access control over reading the columns that participate in an object table’s index gate whether or
not that object may be read.

With ACEs as the building blocks of ACLs, each ACE can have separate managerial control. For
example, one authority might create a table and give another authority control of some of the ACEs on
that table. This allows flexible, fine-grained management of access.

The simplest ACL is one ACE of one authority. The minimum and maximum number of ACEs in an
ACL and the minimum and maximum number of authorities in an ACE is Security Subsystem Class-
specific. Every Security Subsystem Class shall at least stipulate the minimum.

Authentication to an authority occurs within a session (or during session startup) and applies only to
that session. All authorities that participate in successful session startup are authenticated for that
session. During a session the host may make any number of Authenticate method invocations.
There may be Security Subsystem Class-defined TPer and per session limits on the maximum number
of authorities that may be authenticated at any one time.

Security is enhanced by logging events that are related to ACLs. Authorities determine when attempts
to use them are to be logged (authentication failures, etc.).

3.4.3 SP Issuance, Personalization, and Operational State

Issuance is the cryptographically controlled creation of SPs from Templates. Issuance occurs within a
session to a TPer's Admin SP, and is achieved by demonstrating knowledge of the secrets required to
authorize the creation of new SPs and then, for each new SP, creating a unique credential for the
Admin authority on that SP. Issuance is not considered complete until the Issuance session to the

Revision 0.9 - draft - Draft Page 65 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Admin SP successfully closes. Templates can not be included in an SP except during the initial
issuance of that SP.

Personalization follows Issuance. The Admin authority on the new SP can accomplish personalization
by opening a session to the issued SP, creating new tables and methods (in addition to the tables and
methods that were provided by the Templates), provisioning those tables, and, finally, setting the
access controls on the SP’s methods. Personalization will not be considered complete until the session
is successfully closed.

Operational State is reached once personalization is complete. The result of the Issuance and
Personalization process is an SP both usable by and useful to a host application.

3.4.3.1 Example —Issuing an SP

Issuing an SP is similar to building a train (see Figure 11 below). Every train (SP) must have an engine
(Base Template). Additional cars (other Templates) providing additional capabilities may be added at
the time of issuance. In the simplest case, an SP is issued from just the Base Template (see part ‘a’). In
more complex cases several Templates can be used.

Figure 11 Issuance

TEMPLATES

ISSUED SPs

a) Simple

Host App o
Tahles/Methods '.

-
elommm el MW

Basei :

Hest App Host App
Tables/Methods Tables/Methods

b) Complex

Host App
Tables/Methods [

-
D0 0 OO0 OO0 OO 00 OO0

3.4.4 Sessions, Methods, and Transactions
All communications with an SP occur within sessions. A session is always started by a host.

Normally the host application will end a session when it has finished its communication, but either the
SP or the host may abort a session at any time for any reason. For a specific SP there may be any
number of Read-Only sessions active simultaneously, but only one Read-Write session. Read-Only and
Read-Write sessions are mutually exclusive. The existence of Read-Only sessions, the maximum
number of simultaneous Read-Only sessions that may be opened to any SP, and/or limit the total
number of open sessions available to a TPer shall be defined by Security Subsystem Class.

Except as noted in the SP Reference, no explicit changes to an SP made during a Read-Only session
are made permanent, even when the session closes successfully. Indirect changes, such as PIN
blocking, log updates, etc. will remain persistent.

Methods are procedures that operate on tables or SPs, and are called within a session to an SP. The
caller passes a list of parameter values to the method and the method returns a list of result values
followed by a status list, the first value of which is the status code response to the method invocation.
Status code 0 (OK) means the method call completed successfully. Failure conditions are assigned
specific non-zero status codes (see Status Codes in 5.1.3 for details). Within a given session at most
one method shall be active at a time.

Revision 0.9 - draft - Draft Page 66 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Method calls, their parameters, and their results are all sent and received over session streams. Each
session to an SP has at least two streams of bytes onto which data is encoded. One stream goes from
the host to the SP, and the other comes from the SP to the host. Each stream operates asynchronously
from all other streams.

Typical host method calls will send all their parameters/data to the SP before trying to read any of the
results, but the SP is free to generate results incrementally as it consumes its parameters. The host is
similarly free to try to read SP results while sending parameters. The SP implementation decides how
synchronous or asynchronous to be, so long as the semantics of the method call(s) are not
compromised.

Transactions are used to provide a clean model for how changes to an SP are to take effect. They also
provide an easy way for host applications to handle error recovery. If a session is aborted, any open
transactions are aborted.

Changes are successfully committed and made persistent (to the media, made visible to subsequent
sessions on the same SP, etc.) in 2 ways:

1. When a method is invoked outside of a transaction, and resolves successfully, changes
made by that method are committed and made persistent immediately.

2. When a method is invoked inside of a transaction or set of nested transactions, changes
made by that method are committed and made persistent when the top-level transaction
closes.

Effects on other aspects of the TPer (i.e. hardware settings) occur when associated changes are
successfully committed. Note that some changes occur as exceptions to transactional control (i.e.
logging), and commit immediately even if they occur inside of a transaction or following a method
invocation that has failed.

3.4.4.1 Method Calls
A method call consists of the following steps:

The host tells the SP the method it wants to call.

The host sends a list of parameters to the SP.

The body of the method is executed in the SP.

The method results are returned from the SP to the host.

Steps 2-4 may be repeated when input and output are incrementally streamed.

A wWN -

3.4.4.2 Transactions

In addition to method calls, a session may include nested transactions. The maximum number of
transactions that can be nested is Security Subsystem Class-specific, and will be specified in response
to the Properties method invocation. There are tokens in the session stream that are transaction start
and end tokens (defined in the 3.2.3). The host is free to start a transaction on a session between
method invocations, and may subsequently open nested transactions. All transactions consist of the
following steps:

1. The transaction is opened.
2. A set of method calls is made.
3. The transaction is either aborted or committed.

If a transaction is aborted all SP state is reset ("rolled-back") to its value at the time the transaction was
opened.

Nested transactions abort or commit relative to their parent transaction. In the case of an aborted
transaction, the SP state is rolled back to the point where the transaction was started. (This is true
whether or not the transaction is nested.) In the case of a commit, the nested transaction’s changes

Revision 0.9 - draft - Draft Page 67 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

become part of its parent transaction, as if the nested transaction boundaries had never been
established.

A commit of a nested transaction does not make a commit that necessarily persists since the parent
transaction is not yet ended. All transactions must be closed before data is written to the SP.

The TPer must guarantee that a transaction completely commits to media (persists) or completely
aborts. This means that the TPer must arrange that if a power cycle, reset, or other event, occurs in the
middle of a commit, that when the TPer comes back up the commit is either finished or all the changes
are aborted. This guarantees SP consistency and prevents power-off or reset attacks.

3.4.4.3 Session Manager Protocol Layer

The Session Manager is a special protocol layer session on any TPer with SPs. It is used by host
applications to start and stop sessions with SPs and to inquire about overall TPer communication
characteristics. The Session Manager protocol layer does not provide a session “to” any SP — it is a
communications control session. This session is always open and attempts to close it will always fail.
The method calls available on the Session Manager layer are identified in section 5.2, and include
Properties, StartSession and so on.

Although method invocations on the Session Manager layer cannot change permanent state on the
TPer, some method invocations may have side effects that occur outside of the normal method
invocation process, such as logging or PIN retry counts. In cases where these changes should occur —
for example, logging a StartSession method call success or failure — the change occurs on the SP to
which the method call was attempted.

Method calls on the Session Manager layer are formatted/encoded the same as on any other session.
Due to the asynchronous nature of session startup and TPer communications, all of Session Manager
layer methods’ responses are formatted as method calls, so that the host may identify responses to
methods it has invoked.

For more information on protocol layers, and the Session Manager layer in particular, reference section
3.34

3.4.4.4 Ending Sessions

The Host or TPer is free at any time to end a session in which it is participating, but only the host shall
end the session successfully.

The session is not considered successfully closed until the party receiving the end of session request
has responded indicating whether or not it was able to comply with the session ending request. Thus, a
session is successfully ended when the TPer receives an End of Session token (see section 3.2.3.2)
from the host and responds with an End of Session token, and when flow control for ending the session
has been performed as noted in Section 3.4.6.5.

When a session closes, TPer resources that had been reserved for use with that session are released.
The release of resources is not dependent on whether the session closed successfully or
unsuccessfully — the end of the session releases the resources.

Sessions may end unsuccessfully (abort) in a number of ways. These include (but are not limited to):
e |f the TPer detects any violation of flow control.

e The host sends an End of Session token, but does not receive a response from the TPer
within the host's timeout period. In this example, the TPer would also time out while waiting
from some response from the host.

o If the host does not (or can not) send an End of Session token to the TPer, and sends no
other communications, the TPer would time out while waiting for the communication from
the host.

Revision 0.9 - draft - Draft Page 68 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

o If a timeout by one or both of the communicators in a session timeout before flow control
acknowledgements are received.

o If a negative acknowledgement is received by a communicator on one of the End of
Session subpackets. This session has not yet ended, and may still end successfully
through retransmission of the End of Session token. Alternatively, the communicators may
timeout waiting for communications.

If a session is ended in the middle of the transmission of a method call or its parameters, then the
method call is aborted in addition to the session being aborted. This is considered a fatal session error
indicating a communication synchronization error (or worse).

When a session is aborted, open transactions within that session are also aborted.

The TPer may send a CloseSession method on the Session Manager layer when it aborts a session.
This is done by the TPer to notify the host that the TPer is ending the session.

Hardware resets and power cycles cause all open sessions to abort.

3.4.4.5 Starting Sessions
Starting a session depends upon three independent requirements:

1. The TPer and the requested SP having sufficient resources.
2. Negotiating symmetric keys if secure messaging is required.
3. Authenticating requirements (one of the following):

a. Host must authenticate to SP

b. SP must authenticate to Host

c. Both of the above

d. None of the above (No authentication)

The first requirement, sufficient resources, is often time-dependent, so if a session fails to start for this
reason a short delay may be necessary before retrying.

The host sets the second and third requirements when it attempts to start the session, as described
below.

Sessions are started with either a two or four method exchange on the Session Manager protocol layer:

StartSession
SyncSession

StartTrustedSession (optional)
SyncTrustedSession (required if StartTrustedSession is used)

Note: Because of the asynchronous nature of session startup and other Session Manager layer traffic,
the StartSession/StartTrustedSession responses (SyncSession/SyncTrustedSession,
respectively) are formatted as a method call back to the host. Host and SP are the relevant side’s
session numbers (if the session successfully starts).

The Host application starting the session determines the secure messaging and authentication
requirements to be satisfied by specifying up to four authorities:

e HostExchangeAuthority: Host's Exchange Key — used for exchange of session keys, provides
implicit authentication

e HostSigningAuthority: Host's Signing Key — used for authenticating the host to the SP and
session startup method integrity, provides explicit authentication

Revision 0.9 - draft - Draft Page 69 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

e SPExchangeAuthority: SP’s Exchange Key — used for exchange of session keys, provides
implicit authentication

e SPSigningAuthority: SP’s Signing Key — used for authenticating the SP to the host and session
startup method integrity, provides explicit authentication

Note: These authorities are already known to the SP.

Host authorities, if used, are passed in the StartSession method call. SP authorities are bilateral
authorities called out in the Host authorities’ Authority table rows. The ability to specify authorities in
the StartSession method call, coupled with the linking of authorities in the Authority table, provides
a large and diverse set of possible session protocols, including secure messaging. It is the initial
selection of authorities by the host that determines which protocol is to be followed.

Note: When the host makes the StartSession method call it knows which SPExchangeAuthority and
SPSigningAuthority (if any) the SP will use. Those may be the root authorities in a certificate chain
whose ultimate effective authority the host does not know. This is why the SP may return certificates to
the host as part of SyncSession.

If a HostSigningAuthority or SPSigningAuthority requires a Challenge-Response, as is the case for all
PuK, SymK, and HMAC authorities, or if secure messaging is to be used (or both), then the
StartSession and SyncSession methods will be followed immediately by the StartTrustedSession
and SyncTrustedSession methods.

An authority (HostExchangeAuthority, SPExchangeAuthority, HostSigningAuthority, or
SPSigningAuthority) that is also a Public Key Authority (an Authority with public key credentials--PuK)
may have additional information supplied for it in the form of a certificate or certificate chain. In this
case the Effective Authority (the one responding to the challenge) will be the tail PuK of that chain. The
effective authority is transient to the session. When an effective authority is transmitted to the SP, the
full contents of its certificate chain will be available only during the session. It is necessary to create a
new authority on the SP (in a Read-Write session) if the host wants that authority to persist on the SP
past the end of that session.

All authorities that participate in the successful startup of a session are authenticated for that session.

3.4.4.6 Session Timeouts

A session timeout is associated with every session and is specified in milliseconds. The session timeout
can be used to limit the lifetime of a session. A value of zero indicates that the timeout value is infinite,
in effect disabling the timeout feature.

The session timeout is a property of the session and is derived from three sources.
1. DefaultSessionTimeout : A mandatory value in the Properties method response.
2. SPSessionTimeout : A mandatory column in the SPInfo table.

3. SessionTimeout : An optional parameter in the StartSession method call used to open the
session to the SP.

The TPer may impose further conditions on maximum and minimum timeouts supported by the device
depending on hardware and other design considerations. These will be indicated in the Properties
method response values MaxSessionTimeout and MinSessionTimeout. These limits will apply to all of
the three timeouts listed above.

The actual timeout value used by the TPer device for connection will be the one that corresponds to the
shortest of the above three timeout values.

A row in the SPInfo table contains the SP suggested default timeout SPSessionTimeout and can be
modified by the host if it has appropriate authority. This value will take effect immediately on all
sessions open on the SP including the session that made the change itself.

The TPer and the Host both maintain a timer associated with every allocated active session. The timer
starts when a session is successfully opened to an SP. Depending on the type of session started, this

Revision 0.9 - draft - Draft Page 70 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

would be when the tokens for the SyncSession or the SyncTrustedSession method call is built by the
TPer and made available to the host.

The timeout does not apply to the Session Manager layer since it is always open. The time taken to
complete the Session Manager layer exchange to successfully start a session is not in the scope of this
feature.

If, at the end of the timeout, the session has not been terminated, the TPer shall abort the session. The
session is considered to have been closed / terminated when the last status token sent by the TPer is
picked out from the output buffer by the host, or when the TPer releases all the resources (including the
output buffer) for the session.

3.4.4.7 Signed Hashing During Session Startup

If a Signing Authority is invoked in a session startup method (for either the Host or the SP), and the
authority’s HashAndSign column indicates that hashing is required, the signing Credential referenced
in that Signing Authority’s row of the Authority table and the hash protocol identified in the Hash
column of the associated credential are used for the hash/sign operation on the session startup
methods.

Session startup shall fail if an authority indicates that hashing and signing the session startup methods
are required and does not include the signed hash as a parameter of the method invocation.

If a Signing Authority requires the hash/sign operation to be performed, that Authority’s row of the
Authority table shall indicate an Operation/Credential pair of Signing/Private Key, SymK/Symmetric
Key, or HMAC/Symmetric Key.

The signed hash is sent as the last parameter of the method call and hashes the entire method call
(except the hash).

Note that the HostSigningAuthority and SPSigningAuthority provide separate controls for
hashing/signing method invocations from the host to the SP and from the SP to the host, respectively.
This means that hashing and signing may be performed in one of the two communications directions, in
both directions, or in neither direction, depending on the HashAndSign column values of the
HostSigningAuthority and SPSigningAuthority.

3.4.5 Session Examples
Seven examples from among the many possible ways to start a session:

(Protocol diagrams for each one are provided below)

e None. No Authorities are used. This is a non-authenticated, non-secure messaging session.
(Reminder: The Anybody Authority is always authenticated.)

e Host PIN. This is the rudimentary case of passcode authentication, where the passcode is
passed in the clear. Secure messaging is not an option in this case.

e SP Symmetric Key Exchange. The simplest case that provides for full Host & SP session key
encryption. The SP needs to perform only symmetric encryption.

e Full Public Key. This uses public keys for signing and key exchange, for both the Host
application and the SP. With a proper certificate chain or other validation proof for the
exchange key, this is also authenticated. SP Issuance is an example where Full Public Key is
used.

e Full Symmetric Key. This uses symmetric keys for signing and key exchange, for both the
Host application and the SP.

e Host Public Key Authentication. This is a simple, strong enabler that does not start up
secure messaging. An example use case might be a TCG TPM that authenticates a session in
order to unlock the read/write functions of a disk drive and, because of the nonce and the
private key, does not need a secure channel.

Revision 0.9 - draft - Draft Page 71 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

e Host Public Key — SP Symmetric Key. This is a case where it is desired that the SP sign, but
that public key signing, and indeed all the private key operations of public key cryptography, are
deemed too computationally expensive for the SP. The Host application is allowed to perform
private key signing and the SP to perform public key verification and public key to encrypt a
session key. The SP only symmetric key signs, and does symmetric session key receipt.

Descriptions of the usage of these authorities and protocols are found in section 5.3.4.
NOTE: For clarity, only the security related parameters are shown in these diagrams.

3.4.5.1 No Authority Example

For this example, no authorities are invoked during session startup. This session startup protocol
results in startup of a session that permits only actions by the Anybody authority.

Figure 12 No Authorities Used
TPer None Host

Host calls
StartSession
rethod

StartSession (SPName)

TFer calls SyncSession () -Session Clper_t Yes
SyhcSession method ™] —-Haost Authenticated: MNa
-5F Authenticated: Mo
-Secure Messaging: Mo

3.4.5.2 Password Example

This example displays the use of a Host Signing Authority to perform session startup. The referenced
Host Signing Authority has an Operation column value of Password. The StartSession method
invocation transmits a PIN as the value of the HostChallenge parameter. The TPer validates the value
of the HostChallenge parameter to the value of the Password column of the C_PIN credential object
referenced by the Host Signing Authority. Successful session startup results in authentication of the
Host Signing Authority.

Revision 0.9 - draft - Draft Page 72 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 13 Pass Code Authentication
TPer Host-PIN Host

TPer retrieves StartSessf_ifnn %S‘_P."u'_arrr, E‘ogt@haﬁenge, Host calls
irv oked — H;‘irﬁ:mi_u;u;rﬁﬁl StartSession
HostSigningAutharity enge = method
e
If HostSigningAuthority —.. &5 —..—..—. Abort .
is not valid then Abort
TPer retrieves
Credential of invoked
HostSigningAutharity
TFer verifies HostChallenge
Is equivalent to Credential
FiM of invoked
HostSigningAuthority
N
If HostChallenge is not _. | |L.._.. _.._.._._. Abort .
egual to Credential PIM
then Abort -Session Open: Yes
TPer calls SyncSession () _}'-Hnst Authenticated: Yes
SyncSession method -SP Authenticated: Mo
-Secure Messaging: Mo

3.4.5.3 Full Host & SP Session Key Example

The session startup example detailed in this section involves invocation of the StartSession method
by the host with an authority referenced in the HostSigningAuthority parameter.

The Operation column value of the authority referenced as the HostSigningAuthority is None. This
indicates that this authority will not perform a challenge-response for this session startup method
exchange.

The value of the Secure column of the HostSigningAuthority defines the type of secure messaging
required. In this case, the HostSigningAuthority’s Secure column identifies that only confidential
messaging is required.

In this example, the authority invoked by the host as the HostSigningAuthority references an SP
Exchange Authority in the HostSigningAuthority’s RespExch column. This authority’s credential will be
used to encrypt the session key used for confidential messaging. This credential could be either a
public key or a symmetric key. In this example, the credential is a symmetric key.

The SP Exchange Authority does not require secure messaging in this example (i.e., the SP Exchange
Authority’s Secure column value is None), so only messages sent from the host to the SP will be
encrypted.

Successful session startup results in implicit authentication of the Host and the SP.

Revision 0.9 - draft - Draft Page 73 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 14 Host Session Key Encryption

TPer SP-SymK-Exch Host
TPer retricves] StartSessian (SPMame,] Hoet call
o : ozt calls
invoked — - EDS?S'QMQAW?OW*J StartSession
HostSignin gauthority HostSigningCert rrnyu_ﬂlmallyhesﬂrt asa methad
parameter of this method call
If HostSigningAutharity Abort
o notvald then Abort — =1 =BT R
e
TPer calls Syncsession Host generates
— .
SyncSession method HostSession ey
Haost encrypts
HostSessionkey using
SPExchangeAuthority's
Symmetric kKey
TPer Decrypts StartTrustedSession Hosl call
HostSessionkey using (Encryptedi{HostSe ssionKey]) L pstealls
SPExchangeiutharity's] StartTrusﬁdiessmn
Symmetric Key ~metho
Je _ -Session Open: Yes
TPer calls syncTrusted Session () -Host Authenticated: Yes
SyncTrustedSession -5P :ﬂuthentlcate.d: Yes
method -Secure Messaging: Host
ta TPar

"HostSigningdatharity has no credentialg, but calls out the SPExchangafuthority

3.4.5.4 Host Public Key Authentication Example

The example in this section identifies a session startup protocol wherein the host invokes the
StartSession method with an authority value in the HostSigningAuthority parameter. For this
example, the invoked HostSigningAuthority has an Operation column value of Sign. This indicates
that the authority references a public-private key pair.

The TPer responds to the StartSession invocation with a SyncSession method invocation that
includes a value in the SPChallenge parameter. The host signs the SPChallenge parameter using the
private key of the public-private key pair it is using for this session. The host then invokes the
StartTrustedSession method and passes the signed SPChallenge value as the
StartTrustedSession’s HostResponse parameter value.

The TPer validates the signed response using the HostSigningAuthority’s public key. If the validation is
successful, the session starts.

Successful session startup results in explicit authentication of the HostSigningAuthority (through the
challenge-response mechanism).

Revision 0.9 - draft - Draft Page 74 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 15 Host Public Key Authentication

TPer Host-Puk Host
TPer retrieves o i e i A Host calls
; | artSession (SPName, HosSigningAuthariy) StartSe ssion
|n\.f|:|ked . HostSigningCert may optionally be sent as a hod
Ho stiigningAuthority parameter of this method call metho
|anstSigni\rl{gAuthur'rty Abor

isnot valid then Abort —- 3 - — — — — T

If required, TPer validates
HostSigningCert, aborting Aban
it not valid e .0 S

TPer generates
SFChallenge

(Random Monce)
Host signs SPChallenge

TPer calls SyncSession (SFPChallenger® using
SyncSession method _:'HnstSigningAuthnrity
. . . Host calls
TPer verifies StanTrustedSession (Signed{ SPChallenge)) . StartTrustedSession
Signed{SFPChallenge), method
ahﬂl’ting |f nl:lt"."alid — — e — = = ,ﬂi;olrf
TPeri/alls -Session Open: Yes

SyncTrustedSession ()F %-Hust Authenticated: Yes
-SP Authenticated: Mo
-Secure Messaging: Mo

SyncTrustedSession
method

* HostSigningAuthority may require this method call to be hashed.
An error condition res ults if hashing is required for a method call
but not implemented.

3.4.5.5 Full Public/Symmetric Key Examples

In this example, the host invokes the StartSession method with authorities referenced in both the
HostSigningAuthority and HostExchangeAuthority parameters. The HostSigningAuthority references
authorities in its RespSign and RespExch column values, which are used as the SP Signing Authority
and SP Exchange Authority respectively.

The host also includes in the StartSession method invocation a value in the HostChallenge
parameter.

Upon receipt of the StartSession method, the TPer returns the SyncSession method with a random
value in the SyncSession method’s SPChallenge parameter.

The host signs the SPChallenge parameter with the HostSigningAuthority’s referenced credential — this
could be an HMAC if the HostSigningAuthority has an Operation column value of "HMAC" and
references an HMAC credential or a private key encryption if the HostSigningAuthority has an
Operation column value of "Sign" references a public-private key pair.

In addition, in this example the HostSigningAuthority’s Secure column value requires confidential
messaging. The host generates a session key for encryption of the messages the host will be sending
to the TPer. The host encrypts this key with the SPExchangeAuthority’s credential (this could either by

Revision 0.9 - draft - Draft Page 75 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

a symmetric encryption or a public key encryption, depending on the type of credential referenced by
the SPExchangeAuthority).

The host then invokes the StartTrustedSession method, passing the encrypted session key and the
signed SPChallenge as parameters.

The TPer verifies the signed SPChallenge, signs the HostChallenge value, and generates a session
key and encrypts it with the HostExchangeAuthority’s credential.

The TPer returns the SyncTrustedSession method with the encrypted session key and the signed
HostChallenge as parameters.

Upon verification of the signed challenge by the host, the session may begin. The successful session
startup results in explicit authentication of both the HostSigningAuthority and the SPSigningAuthority,
and the implicit authentication of the HostExchangeAuthority and SPExchangeAuthority. All messages
sent by each communicator will be encrypted.

Revision 0.9 - draft - Draft Page 76 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Figure 16 Full Public Key, Full Symmetric Key, and Public/Symmetric Key
Authentication
Full-PuK | Full-SymK |

Ther Host-PuK-SP-SymK Host
Host generates HostChallenge

TPer retrieves invoked StartSession (SPName, HosiChalienge, (Random Monce)

A ; . L P S
ESSS;E}I{%%IQE&;}E%I%& HostExchargedthorily, _Hc_\st.S‘QnmgAmPnM Host calls artSession

g ¥ HostE xchangeCert & HostSigningCert may optionalhy rrethiod
o L) be sent as parameters of thismethod call
If HostSigningAuthority or Aot

HostExchangeAuthority is not— .. M o
valid then Abort

If required, TPerverifies
HostExchangeCert, S P Abort
HostSighingCert, and method hash,
aborting if any are invalid
SyncSession (SPCThallenge)™

TPer generates SPE xchangeCert & SPSigningCert may optionally be ~ If required, Host verifies
SFChallenge =ent &= parameters of this method call SPExchangeCert,
iRandom Monce) R Appd . _SPSigningCert, and method

hash, aborting if any are invalid
TPer calls SyncSession

method Host signs SFChallenge
using
HostSigningAuthority's
TPer verfias StatTrustedSession (Signec(SPChaliengs), Cre?f”"a'
Sighed(SPChallenge) and if | EnciyplediHostSessonfey)) L Host generates
hecessary the method hash, i Aot HostS essionkey
ahorting if either are invalid — .. = Lo S
J Host encrypts
TPer Decrypts HostSessionkey using
HostSessionkiey Using SPExchangesuthority's
SPExchangeAuthority's Credential
Credential R
Host calls
TPer signs HostChallenge using L StarTrustedSession
SPSigningAuthority's Credential method
TRer g;l;nara’[es SyncTrustedSession (sighediHaost Challenge),
SPSessionke EnchyptediSPSessionk ey Host werifies
L v ﬁSigned(HnmChallengej and if
: the method hash
TPer encrypts SPSessionkey necessary i 1 hias,
using HostExchangesutharity's b Abort .. —ahaoring if either are irvalid
Credential L .
Host Decrypts SPSessionkey
TF'eFLcaIIs using SPExchangedutharity's
SyncTrustedSession Credjnhal
method -Session Open: Yes

-Host Authenticated: Yes
-8F Authenticated: Yes
-Secure Messaging. Yes

Full-Puk - All Authorities call aut Public Key Credentials
Full-SymHK - All Autharities call out Symk Credentials
Host-Pulk SP-SymHK - Host Autharities call out Fublic Key Credentials, SP Authorities call out Symb Credentials

* Any invoked Signing Authority may require method call has hing.

3.4.6 Stream Flow Control: Host & TPer

Flow control ensures that when data is sent from a source to a destination that the destination has
enough buffer space to receive it. There are two kinds of flow control: Interface and Stream data.

Revision 0.9 - draft - Draft Page 77 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Interface flow control is involved in moving T10 SECURITY PROTOCOL IN/OUT or T13 TRUSTED
SEND/RECEIVE commands across an interface between a host and TPer, and is outside the scope of
this document.

Stream data flow control is used to keep a Host or TPer from overwhelming the other party with data
during a session. All session streams have flow control. Flow control violation is one reason either
communicator may abort a session.

3.4.6.1 Transmission Acknowledgement

For an SSC that supports transmission acknowledgement, each packet sent from the TPer to the Host
(or vice-versa) for a given session has a sequence number (SeqNumber) that corresponds to the
number of packets that have been sent by that communicator since the start of the session. The first
packet in a session shall have a SeqNumber value of 1.

If transmission acknowledgement is supported, each packet with SeqNumber N must be acknowledged
by the receiver. Once the sender receives an acknowledgement for data contained in packets up to
packet N, the sender may safely discard the data for packets with SeqNumber N and lower.

Packets that contain only ACK or NAK information, and no session data, shall not require an ACK/NAK
response from the receiver. These packets shall still have an appropriate SeqNumber field value.
Packets for sessions that are not protected by secure messaging that do not require ACK/NAK shall be
those packets with a Length field value of zero and a corresponding empty Data field value. For
packets that are protected by secure messaging that do not require ACK/NAK shall be those packets
with a Datalength field value of zero and an empty Data field (The IV and MAC fields may still contain
values).

3.4.6.2 Transmission Negative Acknowledgement

If the receiver detects missing or invalid data, the receiver shall send a negative-acknowledgement
packet (NAK) with the SeqNumber of the packet at which the receiver wishes the sender to begin
retransmission. Generally, the receiver will put a value of the SegNumber of the last known good
packet (N) received plus one (this automatically acknowledges all previous packets with SeqNumbers
less than equal to N). The communicator shall not NAK a SegNumber less than or equal to the last
ACKed SegNumber. Negative acknowledgement serves to notify the sender that a retransmission of
packet N+1, etc. is needed.

[ms2]Upon dispatch of the NAK, the sender of the NAK shall discard all packets with SeqNumbers N+ 1
and higher, since the sender will retransmit these. After the first NAK is sent for packet N+1, all further
data shall be discarded until packet N[ms3] is received. Retransmission of the NAK is dependent on the
transmission timeout value for the session, not on subsequent receipt of additional data.

3.4.6.3 Transmission Timeouts

The flow control timeout is set during the exchange of session startup methods StartSession and
SyncSession. The flow control timeout for a session takes effect after session startup has
successfully completed. Both communicators share the same transmission timeout value.

The sender may provide, in the StartSession method, a value for the TransTimeout parameter. The
communicator that transmits the SyncSession method may include a value for the TransTimeout
parameter. If so, that communicator's timeout value shall be larger than the StartSession
TransTimeout value. In either case, the TransTimeout value shall be greater than or equal to the
MinTransTimeout value and smaller than or equal to the MaxTransTimeout parameter reported in the
Properties method response. If neither communicator includes a value for the TransTimeout
parameter, the DefTransTimeout value, as reported in the Properties method response, shall be
used.

Revision 0.9 - draft - Draft Page 78 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

If the sender detects a missing acknowledgment by means of a timeout, the sender shall retransmit the
data from the last valid acknowledgment. If the sender still receives no acknowledgement after a
timeout period, the sender shall re-transmit the same packet or the same packet with added data if
more data is available. This retransmission will repeat up to an implementation-specific number of
times. Thereafter, the sender shall terminate the session, i.e. no more data can be transmitted for this
session (the session will timeout at some point and be closed by the receiver).

3.4.6.4 Buffer Management

Flow control is used to keep a Host or TPer from overwhelming the other party with data during a
session. Violating flow control is one reason either side may abort a session.

Before session data can be sent, the destination needs to notify the source that it is ready to receive
data and how much data it is able to receive. This is done by sending a Credit Control Subpacket in the
direction opposite that of the data.

The InitialCredit parameters of the StartSession and SyncSession methods provide each
communicator in a session the opportunity to provide an initial amount of credits for use when the
session successfully starts. If either of these values is omitted, then once a session has been
successfully started, the communicator that omitted the value from the InitialCredit parameter of its
session startup method shall send to the other communicator a credit subpacket announcing its
available session buffer space.

The exchange of credits permits data to be moved from one communicator to the other. As data in the
receive buffers of the communicators is consumed and space released, additional credit control
subpackets may be sent.

The sender shall not send more data than it has credits from the receiver. As the sender transmits
data, the amount of transmitted data is subtracted from the total credits that had been provided to the
sender. This identifies the amount of data that may still be sent without receiving additional buffer
credits.

As the receiver consumes data, the receiver may notify the sender that additional data may be sent.
This is done by transmitting a credit control subpacket identifying how much additional buffer space the
sender may utilize. The data sender can then calculate how much more data may be sent. That is, the
number of bytes of data that can be sent to that session will be increased by the value of each credit
received. When a communicator transmits data, the amount of data sent is subtracted from the credit
total.

For SSCs that support flow control, credit subpackets are required after ComID acquisition, so that the
host and TPer may exchange methods/responses on the Session Manager Layer. This credit only
applies to the Session Manager Layer for that ComID. Credit subpackets are also required immediately
after session startup (unless values are posted in the InitialCredit parameters, in which case additional
credit subpackets are optional at this time).

Otherwise, credit control subpackets should be sent infrequently and be bundled with other traffic, in
order to minimize interface overhead. Either communicator in a session may send credit subpackets as
frequently as in every packet, or when a threshold is reached (e.g. the unreported credit is more than
some percentage of the buffer size).

Credit values are byte counts for data only. They do not include packet or subpacket
headers/overheads.

3.4.6.5 Closing a Session

When the sender transmits a packet that contains a close session control subpacket (which is a
subpacket in which there is an End of Session token), the sender shall not immediately assume the
session is closed, but shall wait for the receiver to both transmit its own response packet with a close

Revision 0.9 - draft - Draft Page 79 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

session control subpacket (which the original sender must ACK) and to ACK the original sender’s
packet containing a close session control subpacket.

However, once the receiver has received the packet containing the close session control subpacket;
responded with a packet containing its own close session control subpacket; and acknowledged the
packet with the close session control subpacket, the receiver still cannot assume the session to be
closed. The receiver shall wait at least double the timeout before considering the session to be closed.
This guarantees that if the ACK packet was lost, the sender will try to retransmit the packet with the
close session control subpacket and the receiver will have a chance to retransmit the ACK. See Figure
17

Figure 17 Closing a Session

Sender: Credit 4
Time T

Errar

Ack(x)

Close
L

Receiver:

Titme 2*T

Revision 0.9 - draft - Draft Page 80 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

4 Life Cycle of SPs
4.1 Life Cycle of SPs Overview

Each SP in a TPer is associated with an attribute called the life cycle state. The access control settings
on the SP are derived in part from its life cycle state. This section defines the various life cycle states
and transitions that an SP may make between them.

Life cycle applies to each individual SP. The life cycle state of the TPer as a whole emerges from life
cycle states of individual SPs.

Life cycle in this specification describes the default access control settings of an SP at issuance. The
access control settings of an issued SP are out of scope of the specification. An issued SP is
operational and may be personalized, and may be participating in life cycle states that are wholly within
the control of the SP owner of the issued SP.

Exceptions to this rule, where limitations are placed on personalization or where SP capabilities are
frozen, are within the scope of this and any Security Subsystem Class-specific specification.

Template-related exceptions are specified in the related Template-specific life cycle sections of this
document.

4.2 Life Cycle States

Figure 18 Life Cycle State Transitions

/ Nonemstent }‘\
Issued - Manufacturing -

Disabled Disabled
F
¥
Issued - Manufacturing -
- Disabled- > Disabled -
Frozen Frozen
F
Issued 1= Manufacturin
¥
L lssued - |, ~ Manufacturing -
Frozen) Frozen
-l Failed |
F I T

The following list details the states depicted in Figure 18 and reviews the requirements for each
transition between states, including the entry and exit conditions for each state, and the conditions that
apply to each of these transitions.

1. Nonexistent:

a. Definition: The Nonexistent state is a theoretical state that describes the condition of
an SP before it has been instantiated, or after it has been deleted.

b. Entry: This state is “entered” by an SP when that SP is deleted.

Revision 0.9 - draft - Draft Page 81 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

2.

3.

C.

Issued:

a.

C.

Issued-

Exit: This state is “exited” when an SP is successfully created, either during the
manufacturing process or via successful invocation of the I1ssueSP method from within
a session to the Admin SP. An SP may “exit” the Nonexistent state into the following
other states:

e |ssued — successful invocation of the IssueSP method causes an SP to be
created. The SP shall be created in this state if the SP is operational and if
the value of the 1ssueSP method parameter “Enabled” was True.

e |ssued-Disabled — successful invocation of the 1ssueSP method causes an
SP to be created. The SP shall be created in this state if the SP is
operational and if the value of the 1ssueSP method parameter “Enabled” was
False.

e Manufacturing — an SP created during the manufacturing process causes
an SP to move from the Nonexistent state to the Manufacturing state.

Definition: The Issued state is the standard operational state of an SP, and defines
the initial required access control settings of an SP based on the Templates
incorporated into the SP, prior to personalization. SPs created in Manufacturing enter
the Issued state at an implementation-specific point and at that point in time shall have
initial access controls settings as defined in this specification.

Entry: Initial entry to this state is gated by the access control settings on the IssueSP
method of the Admin SP. An SP may enter the Issued state from the following states:

e Nonexistent — Successful invocation of the IssueSP method.

e Manufacturing — SPs created during the Manufacturing process shall
transition to the Issued state prior to personalization and regular SP
operation.

e |Issued-Disabled — may be transitioned into the Issued state by setting the
value of the Enabled column of the SP’s SPInfo table to True.

e |ssued-Frozen — may be transitioned into the Issued state by setting the
value of the Frozen column of the Admin SP’s SP table to False.

Exit: An SP in the Issued state can exit into the following states:

e Nonexistent — The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

e Manufacturing — SPs created during the manufacturing process may be
transitioned from the lIssued state to the Manufacturing state through
implementation-specific means.

e Issued-Disabled —an SP may be transitioned into the Issued-Disabled state
by setting the value of the Enabled column of the SP’s SPInfo table to False.

e Issued-Frozen — an SP may be transitioned into the Issued-Frozen state by
setting the value of the Frozen column of the Admin SP’s SP table to True.

e Failed —an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

Disabled:

Revision 0.9 - draft - Draft Page 82 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007

Specification Version 1.0

a. Definition: This state occurs after an SP has been issued, when the value of the
Enabled column of the SP’s SPInfo table is False.

b. Entry: An SP may enter the Issued-Disabled state from the following states:

Nonexistent - successful invocation of the 1ssueSP method causes an SP to
be created. The SP shall be created in this state if the SP is operational and
if the value of the 1ssueSP method parameter Enabled was False.

Issued - an SP may be transitioned from the Issued state into the Issued-
Disabled state by setting the value of the Enabled column of the SP’s
SPInfo table to False.

Issued-Disabled-Frozen — an SP may be transitioned from the Issued-
Disabled-Frozen state by setting the value of the Frozen column of the
Admin SP’s SP table to False.

Manufacturing-Disabled — an SP that had previously entered the
Manufacturing-Disabled state may be capable of returning to the Issued-
Disabled state. Control of this transition is implementation-specific.

c. Exit: An SP may exit the Issued-Disabled state into the following states:

4. Issued-Frozen:

Nonexistent — The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

Issued — an SP may be transitioned from the Issued-Disabled state into the
Issued state by setting the value of the Enabled column of the SP’s SPInfo
table to True.

Issued-Disabled-Frozen — an SP may be transitioned from the Issued-
Disabled state into the Issued-Disabled-Frozen state by setting the value of
the Frozen column of the Admin SP’s SP table to True.

Manufacturing-Disabled — an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled state from
the Issued-Disabled state. Control of this transition is implementation-
specific.

Failed — an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

a. Definition: This state occurs after an SP has been issued, when the value of the
Frozen column of the Admin SP’s SP table is True.

b. Entry: An SP may enter the Issued-Frozen state from the following states:

Revision 0.9 - draft -

Issued - an SP may be transitioned from the Issued state into the Issued-
Frozen state by setting the value of the Frozen column of the Admin SP’s SP
table to True.

Issued-Disabled-Frozen — an SP may be transitioned from the Issued-
Disabled-Frozen state into the Issued-Frozen state by setting the value of the
Enabled column of the SP’s SPInfo table to True.

Manufacturing-Frozen — an SP that had previously entered the
Manufacturing-Frozen state may be capable of returning to the Issued-
Frozen state. Control of this transition is implementation-specific.

Draft Page 83 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007

Specification Version 1.0

c. Exit: An SP may exit the Issued-Frozen state into the following states:

Nonexistent — The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP, or by successful invocation of the Delete method on the SP object from
within a session to the Admin SP.

Issued — an SP may be transitioned from the Issued-Frozen state into the
Issued state by setting the value of the Frozen column of the Admin SP’s SP
table to False.

Issued-Disabled-Frozen — an SP may be transitioned from the Issued-
Frozen state into the Issued-Disabled-Frozen state by setting the value of the
Enabled column of the SP’s SPInfo table to False.

Manufacturing-Frozen — an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Frozen state from the
Issued-Frozen state. Control of this transition is implementation-specific.

Failed — an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

5. Issued-Disabled-Frozen:

a. Definition: This state occurs after an SP has been issued, when both the value of the
Frozen column of the Admin SP’s SP table is True and the value of the Enabled
column of the SP’s SPInfo table is False.

b. Entry: An SP may enter the Issued-Disabled-Frozen state from the following states:

Issued-Disabled — an SP may be transitioned from the Issued-Disabled
state to the Issued-Disabled-Frozen state by setting the value of the Frozen
column of the Admin SP’s SP table to True.

Issued-Frozen — an SP may be transitioned from the Issued-Frozen state to
the Issued-Disabled-Frozen state by setting the value of the Enabled column
of the SP’s SPInfo table to False.

Manufacturing-Disabled-Frozen — an SP in the Manufacturing-Disabled-
Frozen state may be able to enter the Issued-Disabled-Frozen state. Control
of this transition is implementation specific.

c. Exit: An SP may exit the Issued-Disabled-Frozen state into the following states:

6. Manufacturing:

Revision 0.9 - draft -

Issued-Disabled — an SP may be transitioned from the Issued-Disabled-
Frozen state into the Issued-Disabled state by setting the value of the
Frozen column of the Admin SP’s SP table to False.

Issued-Frozen — an SP may be transitioned from the Issued-Disabled-
Frozen state into the Issued-Frozen state by setting the value of the Enabled
column of the SP’s SPInfo table to True.

Manufacturing-Disabled-Frozen — an SP that was created during the
manufacturing process may be capable of entering the Manufacturing-
Disabled-Frozen state from the Issued-Disabled-Frozen state. Control of this
transition is implementation-specific.

Failed — an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

Draft Page 84 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

a.

Definition: The Manufacturing state is an implementation-specific state used for
diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing state is to insure data protection for, for instance, device redeployment.
Only SPs that were created in Manufacturing can re-enter the manufacturing state. An
SP that is not created in manufacturing, but created using the IssueSP method, cannot
transition into the Manufacturing state.

Entry: The mechanism that causes entrance to the Manufacturing state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing
state, SPs (other than the Admin SP) must be securely erased. When the Admin SP
enters the Manufacturing state from the Issued state, the value of the SID (the
associated C_PIN credential's Password column value) shall revert to the original value
(as printed on the drive). An SP may enter the Manufacturing state from the following
states:

e Nonexistent — an SP created during the manufacturing process causes an
SP to move from the Nonexistent state to the Manufacturing state.

e |ssued - SPs created in the manufacturing may be transitioned from the
Issued state to the Manufacturing state through implementation-specific
means.

Exit: The mechanism that causes exit from the Manufacturing state is implementation
specific. An SP may exit from the Manufacturing state into the following states:

e Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means.

e |ssued — SPs created during the Manufacturing process shall transition to
the Issued state prior to personalization and regular SP operation.

e Failed —an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

7. Manufacturing-Disabled:

a.

Definition: The Manufacturing-Disabled state is an implementation-specific state used
for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing-Disabled state is to insure data protection for, for instance, device
redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Disabled state. An SP that is not created in manufacturing, but created
using the IssueSP method, cannot transition into the Manufacturing-Disabled state.

Entry: The mechanism that causes entrance to the Manufacturing-Disabled state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing-
Disabled state, SPs (other than the Admin SP) must be securely erased. An SP may
enter the Manufacturing-Disabled state from the following states:

e Issued-Disabled — an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled state from
the Issued-Disabled state. Control of this transition is implementation-
specific.

Revision 0.9 - draft - Draft Page 85 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

C.

Exit: The mechanism that causes exit from the Manufacturing-Disabled state is
implementation specific. An SP may exit from the Manufacturing-Disabled state into the
following states:

e Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

e |ssued-Disabled — an SP in the Manufacturing-Disabled state may be
capable of returning to the Issued-Disabled state. Control of this transition is
implementation-specific.

e Failed —an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

8. Manufacturing-Frozen:

a.

Definition: The Manufacturing-Frozen state is an implementation-specific state used
for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose of the
Manufacturing-Frozen state is to insure data protection for, for instance, device
redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Frozen state. An SP that is not created in manufacturing, but created
using the IssueSP method, cannot transition into the Manufacturing-Frozen state.

Entry: The mechanism that causes entrance to the Manufacturing-Frozen state is
implementation-specific. Whatever mechanism is used to enter the manufacturing
state should be gated by access controls that require both a manufacturing authority
and the SID authority to be authenticated. Prior to/upon entrance to the Manufacturing-
Frozen state, SPs (other than the Admin SP) must be securely erased. An SP may
enter the Manufacturing-Frozen state from the following states:

e Issued-Frozen — an SP that was created during the manufacturing process
may be capable of entering the Manufacturing-Frozen state from the Issued-
Frozen state. Control of this transition is implementation-specific.

Exit: The mechanism that causes exit from the Manufacturing-Frozen state is
implementation specific. An SP may exit from the Manufacturing-Frozen state into the
following states:

o Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

e |ssued-Frozen — an SP in the Manufacturing-Frozen state may be capable
of returning to the Issued-Frozen state. Control of this transition is
implementation-specific.

e Failed —an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

9. Manufacturing-Disabled-Frozen:

a.

Definition: The Manufacturing-Disabled-Frozen state is an implementation-specific
state used for diagnostics, trouble-shooting, factory-creation of SPs, etc. The purpose
of the Manufacturing-Disabled-Frozen state is to insure data protection for, for instance,
device redeployment. Only SPs that were created in manufacturing can enter the
Manufacturing-Disabled-Frozen state. An SP that is not created in manufacturing, but
created using the IssueSP method, cannot transition into the Manufacturing-Disabled-
Frozen state.

Revision 0.9 - draft - Draft Page 86 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

b. Entry: The mechanism that causes entrance to the Manufacturing-Disabled-Frozen
state is implementation-specific. = Whatever mechanism is used to enter the
manufacturing state should be gated by access controls that require both a
manufacturing authority and the SID authority to be authenticated. Prior to/upon
entrance to the Manufacturing-Disabled-Frozen state, SPs (other than the Admin SP)
must be securely erased. An SP may enter the Manufacturing-Frozen state from the
following states:

e Issued-Disabled-Frozen — an SP that was created during the manufacturing
process may be capable of entering the Manufacturing-Disabled-Frozen
state from the Issued-Disabled-Frozen state. Control of this transition is
implementation-specific.

c. Exit: The mechanism that causes exit from the Manufacturing-Disabled-Frozen state
is implementation specific. An SP may exit from the Manufacturing-Disabled-Frozen
state into the following states:

e Nonexistent - The SP may be deleted, and thus enter the Nonexistent state,
by successful invocation of the DeleteSP method from within a session to the
SP; by successful invocation of the Delete method on the SP object from
within a session to the Admin SP; or by other implementation-specific means

e Issued-Disabled-Frozen — an SP in the Manufacturing-Disabled-Frozen
state may be capable of returning to the Issued-Disabled-Frozen state.
Control of this transition is implementation-specific.

e Failed —an SP may move into the Failed state if an unrecoverable write error
or other failure occurs. The TPer controls entry to this state.

10. Failed:

a. Definition: The Failed state describes the condition where the SP has experienced an
unrecoverable write failure; physical read error for the hidden (SP) space; or other
unrecoverable failure that prevents access to TCG related functionality and data
structures (i.e. the SP is unable to accept method invocations).

b. Entry: Entry to this state and access to the SP in this state is controlled by an
unrecoverable write failure or other unrecoverable failure. The TPer controls entry to
this state. An SP may enter the failed state from any other existent state.

c. Exit: The Failed state is a terminal state. The only exit available from the Failed state
is to the theoretical Nonexistent state.

Life cycle states are recorded in the LifeCycleState column of the Admin SP’s SP table. This column
identifies the state in which the SP currently is. The value of this column shall be changed by the TPer
whenever an SP's life cycle state changes.

Access control on reading the SPs available in a TPer, and the life cycle states of those SPs, shall be
readable by the Anybody authority on the Admin SP.

4.3 Defined Authorities

The initial authorities that can affect the life cycle states are defined for:
1. Base Template (Table 73) — the Admins Authority (SP owner) and Makers Authority.

2. Admin Template (Table 124) — In addition to the Base Template Authorities, the Issuing (and
related) authorities, and the SID (TPer Owner) authority.

These are the only Authorities that are within the scope of the specification. Additional authorities may
be defined during SP personalization and operational use, as required and permitted by the access
control settings defined here.

Revision 0.9 - draft - Draft Page 87 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

4.4 State Behaviors
4.4.1 Access Control

Access rights to method invocations on tables are a function of life cycle. Capabilities enabled by
access control may change with transitions between life cycle states. The class authority mechanism is
the most basic mechanism associated with changes in life cycle state.

Initial required access control settings for each Template are found in the related Template reference
sections.

Life cycle state changes related to access control include:
1. Default access controls associated with the creation of a new table or new rows of a table.

2. Changing settings between life cycle states. The change of the life cycle assertion in the SP
Table (in the Admin SP) is a case of changing a setting when changing a life cycle state.

3. Changing readability and write-ability conditions.

4.4.2 |Issued

Behavior of an SP in the Issued state is described in the Template Reference sections, and specifically
in the sections of the Templates of which the SP has been constructed. Access control settings in
those sections apply at the point when an SP has been Issued and before personalization occurs.

4.4.3 Issued-Disabled

If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the successful use of the disabling and enabling functions, any failed session attempts, and failed
attempts to invoke the DeleteSP method, dependant on personalization.

Template-specific information related to disabling of an SP that includes that Template is found in the
Template’s reference section in this document.

In the Issued-Disabled state, only a host application that is able to authenticate to the necessary access
controls shall have the ability to re-enable the SP. Only method invocations related directly to re-
enabling the SP are successful (access control requirements shall still be fulfilled).

Only the following method invocations to the disabled SP will function (fulfilling appropriate access
control requirements shall be required):

o Authenticate

0 Set on the Enabled column of the SPInfo table. Access control requirements must be met as
normal. That can be accomplished either during session startup or using the Authenticate
method.

0 DeleteSP — Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the disabled state does not affect Session Manager protocol layer methods, and session
startup methods shall operate as normal.

The TPer owner or an authorized authority shall still have the ability to invoke the Delete method within
a session to the Admin SP in order to delete the disabled SP.

4.4.4 |ssued-Frozen

If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the any failed session attempts, authentications, or attempts to invoke the DeleteSP method,
dependant on personalization.

Revision 0.9 - draft - Draft Page 88 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Only the following method invocations to the SP will function (fulfilling appropriate access control
requirements shall be required):

o0 Authenticate

0 DeleteSP — Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the Issued-Frozen state does not affect the Session Manager protocol layer methods, and
session startup methods shall operate as normal.

445 |ssued-Disabled-Frozen

If the Log template has been issued into the SP, logging in the SP’s default log table may reflect at least
the successful use of the disabling and enabling functions, any failed session attempts, and failed
attempts to invoke the DeleteSP method, dependant on personalization.

Only the following method invocations to the disabled-frozen SP will function (fulfilling appropriate
access control requirements shall be required):

o Authenticate

0 Set on the Enabled column of the SPInfo table. Access control requirements must be met as
normal. That can be accomplished either during session startup or using the Authenticate
method.

0 DeleteSP — Access control requirements shall be met as normal. That can be accomplished
either during session startup or using the Authenticate method.

In addition, the Issued-Disabled-Frozen state does not affect Session Manager protocol layer methods,
and session startup methods shall operate as normal.

4.4.6 Manufacturing
Behavior of an SP in the Manufacturing state is implementation-specific.

4.4.7 Manufacturing-Disabled

Behavior of an SP in the Manufacturing-Disabled state is implementation-specific.

4.4.8 Manufacturing-Frozen
Behavior of an SP in the Manufacturing-Frozen state is implementation-specific.

4.4.9 Manufacturing-Disabled-Frozen
Behavior of an SP in the Manufacturing-Disabled-Frozen state is implementation-specific.

4410 Failed

When an SP is in the Failed state, session startup methods to the SP shall respond with an error status
and session startup shall not be able to complete.

The TPer owner or an authorized authority may invoke the Delete method within a session to the
Admin SP in order to delete the failed SP.

4411 Miscellaneous

For life cycle requirements of the cryptographic module that supports the Crypto Template and other
TPer cryptographic capabilities, see FIPS 140-2. Requirements for operation of the cryptographic
module as cited in that document affect only the cryptographic functionality provided by the TPer — not
the data stored in the SPs themselves — though cryptographic module failures may affect the TPer’s
authentication, session startup, and secure messaging capabilities.

Revision 0.9 - draft - Draft Page 89 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5 SP Reference
5.1 SP Globals

The following sections define variables, functions, constants, or any system attribute that applies to all
SPs.

5.1.1 Variable Types Overview

This section provides the definitions of the types used in the rest of this document.

The following are the primitive data types (Base_Types) defined by the specification. How these
primitive values are stored in a table cell is implementation dependent. Additional information on these
types can be found in 3.2.2.
e integer. Signed integer. To differentiate among the type sizes, a size identifier is specified with
the type, i.e., a one-byte integer is denoted as integer_1, etc.

e uinteger. Unsigned integer. To differentiate among the type sizes, a size identifier is specified
with the type, i.e. a one-byte integer is denoted as uinteger_1, etc.

e hbytes. A fixed size sequence of bytes that can be used to represent any type of data such as
strings, blobs, bit vectors, time/dates, etc.

o hbytes{max=n}. A variable size sequence of bytes. Invocation of the Get method on a table cell
with this type of value shall return the exact sequence of bytes as was originally set.

Types are specified using the following format (BNF specification):

Type := Base_Type | Simple_Type | Enumeration_Type | Alternative_Type | List_Type
| Restricted_Reference_Type | General_Reference_Type | Name_Value_Type |
Struct_Type | Set _Type

o

Base_Type

Simple_Type
Enumeration_Type
Alternative_Type
List_Type
Restricted_Reference_Type
General_Reference_Type
Name_Value_Type
Struct_Type

Set_Type

1 uidref{Type} size

2 uinteger uinteger

3 uinteger uidref{Type}*
4 uinteger uidref{Type}
5|6 uidref{Table}

71819

10 name value

11 uinteger uidref{Type}*
12 uinteger uinteger

e Base Type. The Base_Type format describes the pre-installed types. All other types are
created using the Base Types as building blocks. The Base Types, except for Null, shall not be
used directly. Base Types shall always have a Size column value of 0 in the Type table.

e Simple Type. The Simple_Type format defines an instance of one of the Base_Type types.
The Simple_Type always includes a size in the format column, which defines the size for that
instance of that Simple_Type.

e Enumeration. An unsigned integer in a specific range. The Enumeration_Type format defines
the range of the enumeration, where the first integer specified in the format description is the
start value of the enumeration, and the second integer specified is the end value. For example,
a range of 0 to 2 inclusive, in plaintext:

o Pseudo-code example: enum{0..2}

e Alternative. A value that may be an element of one of the specified types. The
Alternative_Type format defines a union with the uinteger specifying the number of member
types and followed by that many uidref{TypeObjectUID} references to the member types. The
type of the value is stored with the value in the cell. For example:

Revision 0.9 - draft - Draft Page 90 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

0 Pseudo-code example: typeOr{boolean,uinteger_4,bytes{7}}

e List. A sequence of values of the same type. The maximum number of elements is specified,
and the actual number of elements in the list is stored in the cell. The List_Type defines with
the first integer the maximal number of elements, while the second uidref{Type} specifies the
type of the elements. The elements of the list are not required to be provided in any specified
order. However, the elements of the list shall be stored in a cell and returned to the host (with
the Get method, for example) in the order in which they were received by the TPer.

o Pseudo-code example: list[10]{boolean}
is a list of boolean values, with a maximum of 10 elements.

e Restricted Reference. A reference to a row of a specific table. The
Restricted_Reference_Type defines to which table (uidref{TableUID}) the reference values
refer. The reference is to a physical row number (5) or a UID (6) within the table. In this
example, TNAME is the name of the referenced table:

o Pseudo-code example: uidref{TNAME}

o Pseudo-code example: ref{TNAME}
The value of a ref is the uinteger row number for an array or byte table. The value of a
uidref is a UID from the UID column of a non-byte table. A ref value of 0 or uidref value of 00s
serves as a “null pointer”.

e General Reference. A reference to a row of some table, to the UID of some object, or to the
UID of some table. The General_Reference_Type format defines a physical row number (7), a
uid of some object (8), or a uid of some table (9). The UID reserved to represent “this SP” is
encompassed by a General_Reference_Type of 8.

o Pseudo-code example: uidref{*}
o Pseudo-code example: ref{*}
e Name-Value. This is a name-value pair. The Name-Value_Type format indicator is followed by
the name and then the value for the type, where name is a uidref to the name type and value is
a uidref to the required type of the value.

e Struct. This is a combination of different types. The Struct_Type format indicator is followed
by the number of elements and then uidrefs to the rows in the Type table that represent each of
those elements. Name-value pairs in structs represent optional components. These may be
excluded when passing that struct as a method parameter. When used as a column type, the
size must account for inclusion of all of a struct's components.

e Set. An unsigned integer in a specific range. The Set_Type format defines the range of the
enumeration, where the first integer is the start value of the enumeration, while the second
integer is the end value. The type itself is not limited to only a single selection from among the
choices defined, as in the Enumeration_Type. The Set_Type provides the host the ability to
select more than one of the options. Each shall appear only once in the Set. The Set may hold
any amount of selections, from zero to the number of selections.

0 Pseudo-code example: Set{0..2} — Valid values for this set are made up of the
following = {}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.

The Type table entries that shall represent the built-in types, and additional system types that are
predefined entries of the Type table are all types specified in Table 30.

5.1.2 Variable Types

Table 30 describes all of the default column types described in the Template Reference sections of the
Core Specification. The UID, Name, Format, Size, and Default columns identify the column values of
the Type table. These values shall comprise the Type table for every SP, prior to any personalization.
These types shall not be able to be changed or deleted.

Revision 0.9 - draft - Draft Page 91 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

The UID column shall be the UID for the associated type. The value in the Size column, which
represents the width of the column required to store a value of that type, is implementation dependent,
as the overhead required to differentiate or identify the type or size of the type stored is not defined in
this document, except for base types, whose Size column value shall be 0. For instance, in the case of
a max_bytes value, it is necessary to store with the max_bytes value the size of that value. This means
that a max_bytes type with a size of 18 bytes requires a column width of 19 or more bytes.

In the case of List types and Struct types, ordering is not important, but the TPer shall return the data to
a Get method in the same order in which it had been received or set initially.

The Default column defines the default value for the associated type. Rows with no Default column
value in the descriptive table are types that shall have a value specified whenever a column of that type
is used in a CreateRow (or other similar) method invocation, or that method invocation shall fail. Other
rows, those with values, shall have a uidref in the Type table to a byte table that stores the default value
for that type (without the “”). See the Type table description in 5.3.2.5 for information on default column
values.

The Description column in the table below is informative only, and is not intended to be part of the Type
table implementation.

Note: * in the table below indicates SSC-dependent or implantation-dependent values.

Table 30 Default Type Table Values

ID Name Format Size |Default Description
00 00 00 05 |NULL 0 0 Base installed type, used to
00 00 00 01 represent a null value. The null
value for a particular column is
dependent on that column's type.
In order to define a legal Null
value for a particular type, it is
necessary to construct an
alternative type where Null is one
of the options.
00 00 00 05 |bytes 0 0 Base installed type, used to
00 00 00 02 represent a value made up of a
fixed-size sequence of bytes.
00 00 00 05 jmax_bytes 0 0 Base installed type, used to
00 00 00 03 represent a bytes value that is
equal to or less than the size
specified for the type instance.
00 00 00 05 |integer 0 0 Base installed type, used to
00 00 00 04 represent a signed integer.
00 00 00 05 |uinteger 0 0 Base installed type, used to
00 00 00 05 represent an unsigned integer.
00 00 00 05 |bytes_12 1
00 00 02 01 0000000500000002
12
00 00 00 05 |bytes_16 1
00 00 02 02 0000000500000002
16
00 00 00 05 |bytes_20_def 00 1 "00s"
00 00 02 03 0000000500000002
20
00 00 00 05 |bytes_32_def 00 1 "00s"
00 00 02 04 0000000500000002
32

Revision 0.9 - draft -

Draft

Page 92 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
00 00 00 05 |bytes_32 1 This bytes type is used for, among
00 00 02 05 0000000500000002 other things, the Key column of
32 the C_HMAC_256 table.
00 00 00 05 |version_bytes 4 1 "00 00 00 01"
00 00 02 06 0000000500000002
4
00 00 00 05 |bytes_48_def 00 1 "00s"
00 00 02 07 0000000500000002
48
00 00 00 05 |bytes_64_def 00 1 "00s"
00 00 02 08 0000000500000002
64
00 00 00 05 |uid 1 Used for UIDs
00 00 02 09 0000000500000002
8
00 00 00 05 |certificate 1 Max bytes type used to represent
00 00 02 OA 0000000500000003 * a certificate. The limit on the size
of this type is SSC-specific.
00 00 00 05 jname 1 Name that generically describes
00 00 02 0B 0000000500000003 bytes{max=32}, which is used for
32 name columns and method
parameters. This type is also
used in the Name_Value Type
format.
00 00 00 05 [password 1 Max {bytes = 32}, used for PINs
00 00 02 0C 0000000500000003
32
00 00 00 05 |max_bytes 32 1
00 00 02 OD 0000000500000003
32
00 00 00 05 |max_bytes_64 1 Generic Max Bytes type, used for
00 00 02 OE 0000000500000003 logging.
64
00000005 |int_ 1 def O 1 "0" integer_1 with default of 0
00 00 02 OF 0000000500000004
1
00 00 00 05 |integer_1 1
00 00 02 10 0000000500000004
1
00 00 00 05 |[uinteger_1 1
00 00 02 11 0000000500000005
1
00 00 00 05 |uinteger_128 1
00 0002 12 0000000500000005
128
00 00 00 05 |uinteger_16 1
00000213 0000000500000005
16
00 00 00 05 |feedback_size 1 Feedback sizes for AES used in
00 00 02 14 0000000500000005 CFB or OFB mode. If AES Mode
2 is CFB, this shall be between 1

and the block length. If AES Mode

Revision 0.9 - draft -

Draft

Page 93 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
is OFB, this shall be the block
size.
00 00 00 05 |uinteger_2 1
00 00 02 15 0000000500000005
2
00 00 00 05 |uinteger_20 1
00 00 02 16 0000000500000005
20
00 00 00 05 |uinteger_21 1
00 00 02 17 0000000500000005
21
00 00 00 05 |uinteger_24 1
00 00 02 18 0000000500000005
24
00 00 00 05 |uinteger_256 1
00 00 02 19 0000000500000005
256
00 00 00 05 |uinteger_28 1
00 00 02 1A 0000000500000005
28
00 00 00 05 |uinteger_30 1
00 00 02 1B 0000000500000005
30
00 00 00 05 |challenge_bytes 1 This max bytes type is used to
000002 1C 0000000500000005 * represent a random number in a
challenge/response protocol. The
max number of bytes in this type
are SSC/implementation-
dependent, and are based on the
cryptographic and
communications capability of the
TPer.
00 00 00 05 |uinteger_32 1
00 00 02 1D 0000000500000005
32
00 00 00 05 jmax_bytes_get 1 This is the max bytes type used in
00 00 02 1E 0000000500000003 the get method to represent data
* retrieved from a byte table. The
actual number of bytes that can be
retrieved with a single Get
invocation is SSC/implementation
dependent, but shall be less than
or equal to 4294967295 (the
maximum number of bytes that
may be stored in a byte table)
00 00 00 05 |uinteger_36 1
00 00 02 1F 0000000500000005
36
Revision 0.9 - draft - Draft Page 94 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
00 00 00 05 |uinteger_4 1
00 00 02 20 0000000500000005
4
00 00 00 05 |uint_4 def O 1 "0" Uinteger_4 with default of 0
00 00 02 21 0000000500000005
4
00 00 00 05 |max_bytes_set 1 This is the max bytes type used in
00 00 02 22 0000000500000003 the get method to represent data
* retrieved from a byte table. The
actual number of bytes that can be
retrieved with a single Get
invocation is SSC/implementation
dependent, but shall be less than
or equal to 4294967295 (the
maximum number of bytes that
may be stored in a byte table)
00 00 00 05 |uinteger_48 1
00 00 02 23 0000000500000005
48
00 00 00 05 |uinteger_64 1
00 00 02 24 0000000500000005
64
00 00 00 05 |uinteger_8 1
00 00 02 25 0000000500000005
8
00 00 00 05 |common_name 1 "Host_Application"|This type is used for the
00 00 02 26 0000000500000003 CommonName column. Many
32 tables have values defined for the
CommonName column for rows
created at issuance. This type
defines the default value of rows
for user-defined objects.
00 00 00 05 |uinteger_66 1
00 00 02 27 0000000500000005
66
00 00 00 05 [signed_hash 1 This max_bytes type is used to
00 00 02 28 0000000500000003 * represent a signed hash. The size

limit of this type is based on the
TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest signed
hash output the TPer is capable of
supporting.

Revision 0.9 - draft -

Draft

Page 95 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

ID

Name

Format

Size

Default

Description

00 00 00 05
00 00 02 29

response

1
0000000500000003 *

This max_bytes type is used to
represent a response to a
cryptographic challenge. The size
limit of this type is based on the
TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest response
output the TPer is capable of
generating and receiving.

00 00 00 05
00 00 02 2A

session_key_encrypt

1
0000000500000003 *

This max_bytes type is used to
represent a session key to be
used to encrypt communications in
secure messaging. The size limit
of this type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest encryption key size the
TPer is capable of supporting for
secure messaging.

00 00 00 05
00 00 02 2B

session_key _integrity

1
0000000500000003 *

This max_bytes type is used to
represent a session key to be
used to generate a message
authentication code in secure
messaging. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest MAC key size the TPer is
capable of supporting for secure
messaging.

00 00 00 05
00 00 02 2C

proof

1
0000000500000003
64

This max_bytes type is used to
represent a proof supplied to the
TPer for verification or generated
by the TPer through cryptographic
signing of a hash.

00 00 00 05
00 00 02 2D

exchange key

1
0000000500000003 *

This max_bytes type is used to
represent the exchange key
supplied to the TPer upon
invocation of the IssueSP method.
The size limit of this type is based
on the TPer's cryptographic
communications capabilities, but
shall be at least large enough to
accomodate the largest exchange
key the TPer is capable of

supporting for secure messaging.

Revision 0.9 - draft -

Draft

Page 96 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name

Format

Size

Default

Description

00 00 00 05 |iv
00 00 02 2E

1
0000000500000003 *

This max_bytes type is used to
represent an Initialization Vector
(IV) used for cryptographic
operations. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities, but shall be at least
large enough to accomodate the
largest IV required by host-
requested on-TPer encryption and
decryption operations.

00 00 00 05 |encrypt_result
00 00 02 2F

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer encryption
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05 |decrypt_result
00 00 02 30

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer decryption
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05 |sign_result
00 00 02 31

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer signing
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05 |hash_result
00 00 02 32

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer hash
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05 |hmac_result
00 00 02 33

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer hmac
operation. The size limit of this
type is based on the TPer's
cryptographic communications
capabilities.

00 00 00 05 |xor_result
00 00 02 34

1
0000000500000003 *

This max_bytes type is used to
represent the result of a host-
requested on-TPer XOR
operation. The size limit of this
type is based on the TPer's
cryptographic communications

capabilities.

Revision 0.9 - draft -

Draft

Page 97 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name

Format

Size

Default

Description

00 00 00 05 jmax_bytes 256
00 00 02 35

1
0000000500000003
256

This max_bytes type is used to
represent the return result from
invocation of the Random method.

00 00 00 05 |bytes_20
00 00 02 36

1
0000000500000002
20

This bytes type is used for the Key
column of the C_ HMAC 160
table.

00 00 00 05 |bytes_48
00 00 02 37

1
0000000500000002
48

This bytes type is used for the Key
column of the C_ HMAC 384
table.

00 00 00 05 |bytes_64
00 00 02 38

1
0000000500000002
64

This bytes type is used for the Key
column of the C_ HMAC 512
table.

00 00 02 39

00 00 00 05 |encrypt_max_bytes_input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the Encrypt
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Encrypt
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 02 3A

00 00 00 05 |decrypt_max_bytes_input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the Decrypt
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Decrypt
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05 |sign_max_bytes_input
00 00 02 3B

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the Sign method.
The size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each Sign invocation) may be
SSC-dependent and is based on
the TPer's cryptographic
communications capabilities.

00 00 02 3C

00 00 00 05 |verify_max_bytes_input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the Verify method,
and is the data to be verified. The
size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each Verify invocation) may be

SSC-dependent and is based on

Revision 0.9 - draft -

Draft

Page 98 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

Name

Format

Size

Default

Description

the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3D

verify_max_bytes proof

1
0000000500000003 *

This max_bytes type is used to
represent the proof input (across
the interface) to the Verify method,
and is the data to be verified
against. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each Verify invocation)
may be SSC-dependent and is
based on the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3E

hash_max_bytes input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the HashCalc
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each HashCalc
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 3F

hmac_max_bytes_input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the HMACCalc
method. The size limit of this type
(which represents the maximum
amount of data the TPer is able to
receive for each HMACCalc
invocation) may be SSC-
dependent and is based on the
TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 40

xor_max_bytes_input

1
0000000500000003 *

This max_bytes type is used to
represent the data input (across
the interface) to the XOR method.
The size limit of this type (which
represents the maximum amount
of data the TPer is able to receive
for each XOR invocation) may be
SSC-dependent and is based on
the TPer's cryptographic
communications capabilities.

00 00 00 05
00 00 02 41

stir_integer

1
0000000500000004 *

This represents the integer
parameter used with the Stir
method. The size of the integer
may be SSC-dependent, and is
based on the TPer's cryptographic

capabilities.

Revision 0.9 - draft -

Draft

Page 99 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description

00 00 00 05 |boolean 201 Derived type, used to represent

00 00 04 01 True (1) or False (0).

00 00 00 05 |boolean_def false 201 "0"

00 00 04 02

00 00 00 05 |boolean_def true 201 "1

00 00 04 03

00 00 00 05 |messaging_type 20128 This enumeration describes the

00 00 04 04 options for selecting secure
messaging. The options for this
value are defined in Table 42. 27-
128 are reserved values.

00 00 00 05 |life_cycle_state 2015 Used to represent the current life

00 00 04 05 cycle state. The valid values are:
0 = issued, 1 = issued-disabled, 2
= issued-frozen, 3 = issued-
disabled-frozen, 4 =
manufacturing, 5 = manufacturing-
disabled, 6 = manufacturing-
frozen, 7 = manufacturing-
disabled-frozen, 8 = failed, 9-15 =
reserved

00 00 00 05 |padding_type 2015 Defines the type of padding used

00 00 04 06 with RSA encryption. '0' identifies
the value as None or Null, '1'
identifies the padding as that
described in PKCS #1 v 1.5, and
'2" identifies the padding as that
described in PKCS #1 v 2.1.
Values 3-15 are reserved for
future use.

00 00 00 05 |auth_method 2023 This describes the enumeration

00 00 04 08 used to represent authentications
methods that may be used to
authenticate authorities. The valid
entries are: 0 =None 1=
Password, 2 = Exhange, 3 = Sign,
4 = SymK, 5 =HMAC, 6 =
TPerSign, 7 = TPerExchange, 8-
23 = reserved for future use

00 00 00 05 |log_kind 2023 Used to represent the predefined

00 00 04 09 log messages used in the default

Log table. The valid values are: 0
= available, 1 = methodFail,2 =
methodSuccess, 3 =
authenticateFail, 4 =
authenticateSuccess,5 =
transactOpen,6 = transactCommit,
7 = transactAbort,8 = sessionEnd,
9 = user, 10 = system, 11-23 =

Revision 0.9 - draft -

Draft

Page 100 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name

Format

Size

Default

Description

reserved

00 00 00 05 |symmetric_mode
00 00 04 OA

2023

Defines the mode to be used with
this AES credential. The valid
values are: 0 =ECB, 1=CBC, 2
=CFB,3=0FB, 4 =GCM, 5 =
CTR,6=CCM, 23 =
MediaEncryption, 7-22 reserved
for future use.

00 00 00 05 |clock_kind
00 00 04 OB

203

Defines the type of clock currently
active. The valid values are: 0 =
Timer, 1 = Low, 2 = High, 3 =
LowAndHigh

00 00 00 05 |log_select
00 00 04 OC

203

Identifies the scope of the logging
for an access control association
or authority. The valid values are:
0 = None,1 = LogSuccess,2 =
LogFail,3 = LogAlways

00 00 00 05 |hash_protocol
00 00 04 OD

2015

Selects which hash algorithm
should be used to create a digital
signature. Options are: 0 = none,
1=8HA 1, 2 = SHA 256, 3 = SHA
384,4 =SHA 512, 5-15 =
reserved

00 00 00 05 |boolean_ACE
00 00 04 OE

207

Used to identify "And" and "Or",
where "And" is 0, "Or" is 1, and
“Not” is 2, and 3-7 are reserved for
future use - used to construct ACE
Expression

00 00 00 05 |adv_key_mode
00 00 04 OF

207

This enumeration defines when
the NextKey is moved to the
ActiveKey. 0 = wait for
ADVKey_ Req, 1 = auto-advance
keys

00 00 00 05 keys_avail_conds
00 00 04 10

207

This enumeration describes the
conditions required to assert
KeysAvailable in the Locking
Template. 0 =None, 1=
Authentication of the authority with
Set access to read/write locked
columns for the LBA Range

00 00 00 05 |last_reenc_stat
00 00 04 11

207

This enumeration identifies the
last attempted re-encryption step.
0 = success, 1 = Read error, 2 =
Write Error, 3 = Verify Error

Revision 0.9 - draft -

Draft

Page 101 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
00 00 00 05 |verify_mode 207 This enumeration defines the
00 00 04 12 verification operation to perform
after a sector has been written
with a new encryption key. 0 = no
verify, 1 = verify enabled, 2-7 =
reserved
00 00 00 05 |reencrypt_request 2116 This enumeration identifies a host
000004 13 re-encryption request value. See
section 5.8.2.2 for values.
00 00 00 05 |reencrypt_state 2116 This enumeration identifies the
0000 04 14 present Re-encryption state for an
LBA range. 1 = Idle, 2 = Pending,
3 = Active, 4= Completed, 5 =
Paused, 6-16 = Reserved
00 00 00 05 |table_kind 213 Defines the kind of table. The
00 00 04 15 valid values are: 1 = Object, 2 =
Array, 3 = Byte
00 00 00 05 |package_purpose 2132 This enumeration describes the
00 00 04 16 purpose for package creation. 1 =
Issuance, 2 = Key Wrapping, 3 =
Backup, 4-32 = reserved
00 00 00 05 |ACE_expression 32 This is an alternative type where
00 00 06 01 0000000500000C04 the options are either a uidref to
000000050000040E an ACE object or one of the
boolean_ACE options
00 00 00 05 |row_selection 32 This type is used to provide a
00 00 06 02 0000000500000F01 selection between a uidref to an
0000000500001001 object table row or a ref to an
array table row
00 00 00 05 |columns 32 This type represents the
00 00 06 03 0000000500000805 alternative type used to define the
0000000500001603 columns in a table in the
CreateRow method. The first
selection is used if the table does
not have an indexed column(s).
The second selection is used if the
table does have an indexed
column(s).
00 00 00 05 |uint_ref 32 Alternative type with selections for
00 00 06 04 0000000500000211 a uinteger_1 or a uidref to an
0000000500000C02 object in the Type table
00 00 00 05 |row 320 Used to provide a mechanism to
00 00 06 05 0000000500001402 select between a name-value pair
0000000500001403 where the value is the uidref of an
object and a name-value pair
where the value is the ref of a
table row.
00 00 00 05 |table_object_ref 32 This type defines a reference to
00 00 06 06 0000000500001001 the uid of a table or the uid of
0000000500001201 some object.

Revision 0.9 - draft -

Draft

Page 102 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID

Name

Format

Size

Default

Description

00 00 00 05
00 00 06 07

createrow_result

32
0000000500000808
0000000500000809

This alternative type offers 2
options — either a list of ref/uidref
pairs (to represent the result of
invoking CreateRow on an array
table), or a list of uidrefs (to
represent the result of invoking
CreateRow on an object table).

00 00 00 05
00 00 06 08

next_result

32
000000050000080A
000000050000080B

This alternative type offers 2
options — either a list of ref/uidref
pairs (to represent the result of
invoking Next on an array table),
or a list of uidrefs (to represent the
result of invoking Next on an
object table).

00 00 00 05
00 00 06 09

get_result

32
000000050000021E
000000050000080E

This alternative type offers 2
options — either a max bytes type
that is to be used to represent the
retrieved data from a byte table, or
a list of lists of column name/value
pairs that is the retrieved data
from a non-byte table.

00 00 00 05
00 00 06 0A

set_values

32
0000000500000222
0000000500000810

This alternative type offers 2
options — either a max bytes type
that is used for data to be setto a
byte table, or a list of lists of
column name/value pairs, where
the name is the name of a column
in the non-byte table and the value
is the value to be stored in that
column.

00 00 00 05
00 00 06 0B

encrypt_input

32
0000000500000239
0000000500001607

This alternative type, used for data
input to the Encrypt method, offers
2 options — either a max bytes
type that is used to transmit
across the interface as a method
parameter the data to be
encrypted, or a cell_block that
identifies the location of the data
to be encrypted, where this data
exists in a table within the SP.

00 00 00 05
00 00 06 0C

decrypt_input

32
000000050000023A
0000000500001607

This alternative type, used for data
input to the Decrypt method, offers
2 options — either a max bytes
type that is used to transmit
across the interface as a method
parameter the data to be
decrypted, or a cell_block that
identifies the location of the data
to be decrypted, where this data
exists in a table within the SP.

00 00 00 05
00 00 06 0D

sign_input

32
000000050000023B
0000000500001607

This alternative type, used for data
input to the Sign method, offers 2
options — either a max bytes type
that is used to transmit across the

Revision 0.9 - draft -

Draft

Page 103 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

Name

Format

Size

Default

Description

interface as a method parameter
the data to be signed, or a
cell_block that identifies the
location of the data to be signed,
where this data exists in a table
within the SP.

00 00 00 05 |verify_input

00 00 06 OE

32
000000050000023C
0000000500001607

This alternative type, used for data
input to the Verify method of the
data to be verified, offers 2 options
— either a max bytes type that is
used to transmit across the
interface as a method parameter
the data to be verified, or a
cell_block that identifies the
location of the data to be verified,
where this data exists in a table
within the SP.

00 00 00 05 |verify_proof

00 00 06 OF

32
000000050000023D
0000000500001607

This alternative type, used for data
input to the Verify method of the
data to be verified against, offers 2
options — either a max bytes type
that is used to transmit across the
interface as a method parameter
the data to be verified against, or a
cell_block that identifies the
location of the data to be verified
against, where this data exists in a
table within the SP.

00 00 00 05 |hash_input

00 00 06 10

32
000000050000023E
0000000500001607

This alternative type, used for data
input to the HashCalc method,
offers 2 options — either a max
bytes type that is used to transmit
across the interface as a method
parameter the data to be hashed,
or a cell_block that identifies the
location of the data to be hashed,
where this data exists in a table
within the SP.

00 00 00 05 |hmac_input

00 00 06 11

32
000000050000023F
0000000500001607

This alternative type, used for data
input to the HMACCalc method,
offers 2 options — either a max
bytes type that is used to transmit
across the interface as a method
parameter the data to be
HMACed, or a cell_block that
identifies the location of the data
to be HMACed, where this data
exists in a table within the SP.

00 00 00 05 |xor_input

00 00 06 12

32
0000000500000240
0000000500001607

This alternative type, used for data
input to the XOR method, offers 2
options — either a max bytes type
that is used to transmit across the
interface as a method parameter

the data to be XORed, or a

Revision 0.9 - draft -

Draft

Page 104 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

Name

Format

Size

Default

Description

cell_block that identifies the
location of the data to be XORed,
where this data exists in a table
within the SP.

00 00 00 05
00 00 06 13

stir_input

32
0000000500000241
0000000500000401

This alternative type, used for the
input to the Stir method, offers 2
options — either an integer type
that is used to seed the Random
method upon its next invocation,
or a boolean that, if True, indicates
that the TPer should seed the
Random method internally.

00 00 00 05
00 00 06 14

challenge

32
000000050000021C
000000050000020C

This alternative type is used to
represent a challenge supplied by
one communicator to another, and
encompasses both nonces for
verification and passwords. This
type is made up of a max bytes
type that represents a challenge,
and a max bytes type that is a
password.

00 00 00 05
00 00 08 01

AC_element

4 *
0000000500000601

An AC_Element is a list of
ACE_Expressions forming a
postfix Authority expression. For
example: [3224 08273177280
] is the list representing the infix
ACE Expression:((32 AND 24) OR
8273) AND 7728

00 00 00 05
00 00 08 02

ACL

4 *
0000000500000801

An ACL is represented as a list of
uidrefs to ACE objects. The
length of the list is SSC-
dependant.

00 00 00 05
00 00 08 03

type_ref _list

4 *
0000000500000C02

A list of an SSC-dependent
number of uidrefs to objects in the
Type table

00 00 00 05
00 00 08 04

row_data

4 *
0000000500001405

Used to provide row data when
creating a new row. This is a list
of SSC-defined length of name-
value pairs.

00 00 00 05
00 00 08 05

columns_list

4 *
0000000500001601

This type defines a list of the
column type. The number of
elements in the list is SSC-specific

00 00 00 05
00 00 08 06

uint_ref_list

42
0000000500000604

List of the Alternative type that
contains selections for a
uinteger_1 or a uidref to an object
in the Type table

00 00 00 05
00 00 08 07

template_list

4 *
0000000500000C08

This type defines a list of uidrefs to
objects that appear in the Admin

SP's Template table. The number
of items in this list is SSC-specific.

00 00 00 05
00 00 08 08

ref _uidref createrow_list

4 *
0000000500001609

This type defines a list of the struct
type that is used to represent a
ref-uidref pair, and is for use with
the CreateRow method. The

Revision 0.9 - draft -

Draft

Page 105 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

Name

Format

Size

Default

Description

number of items in this list is
SSC/implementation-specific.

00 00 00 05
00 00 08 09

uidref_createrow _list

4 *
0000000500001001

This type defines a list of uidrefs,
for use with the CreateRow
method.

00 00 00 05
00 00 08 0OA

ref_uidref _next_list

4 *
0000000500001609

This type defines a list of the struct
type that is used to represent a
ref-uidref pair, and is for use with
the Next method. The number of
items in this list is
SSC/implementation-specific.

00 00 00 05
00 00 08 0B

uidref_next_list

4 *
0000000500001001

This type defines a list of uidrefs,
for use with the Next method.

00 00 00 05
00 00 08 0C

Table _ref rows_list

4 *
000000050000080C

This type defines a list of Table
object descriptor uids and
uintegers, and is used with the
GetFreeSpace method. The
number of members of this list is
limited by the
SSC/implementation, but shall be
less than or equal to 4294967295,
the total number of tables that are
creatable on an SP (the number of
actually creatable tablesis also
SSC/implementation-dependent).

00 00 00 05
00 00 08 0D

get_column_sub_list

4 *
0000000500001601

This type defines a list of column
name/value pairs. The number of
of members of this list is limited by
the SSC/implementation, but shall
be less than or equal to
4294967295, the total number of
columns that are creatable in a
table (the number of actually
creatable columns is also
SSC/implementation-dependent).

00 00 00 05
00 00 08 OE

get_column_list

4 *
000000050000080D

This type defines a list of a list of
column name/value pairs. This is
used in the Get method to return
the requested values. Each list
contained in this list represents a
different row. The number of
elements that may be contained in
this list shall be less than or equal
to 4294967295, which is the total
number of rows that are creatable
in a table (the number of actually
creatable rows is also
SSC/implementation-dependent).

00 00 00 05
00 00 08 OF

set_column_sub_list

4 *
0000000500001601

This type defines a list of column
name/value pairs. The number of

of members of this list is limited by

Revision 0.9 - draft -

Draft

Page 106 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
the SSC/implementation, but shall
be less than or equal to
4294967295, the total number of
columns that are creatable in a
table (the number of actually
creatable columns is also
SSC/implementation-dependent).

00 00 00 05 |set_column_list 4 * This type defines a list of a list of

000008 10 000000050000080F column name/value pairs. This is
used as a parameter of the Set
method. Each list contained in
this list represents a different row.
The number of elements that may
be contained in this list shall be
less than or equal to 4294967295,
which is the total number of rows
that are creatable in a table (the
number of actually creatable rows
is also SSC/implementation-
dependent).

00 00 00 05 |column_ref 5 Reference to a row number that

00 00 OA 01 0000000400000000 must exist in the Column table

00 00 00 05 |[SPTemplates_ref 6

00 00 0C 01 0000000300000000

00 00 00 05 Type_ref 6 Reference to a uid that must exist

00 00 0C 02 0000000500000000 in the Type table.

00 00 00 05 |MethodID_ref 6 Reference to a uid that must exist

00 00 0C 03 0000000500000000 in the MethodID table

00 00 00 05 |ACE_table_ref 6 This is a

00 00 OC 04 0000000800000000 Restricted_Reference_Type,
which indicates that the uidref
used in this type must be to a uid
contained in the ACE table.

00 00 00 05 |Authority_ref 6 Reference to a uid that must exist

00 00 0C 05 0000000900000000 in the Authority table

00 00 00 05 |Certificates_ref 6 Reference to a uid that must exist

00 00 OC 06 0000000A00000000 in the Certificates table

00 00 00 05 |SP_ref 6 Reference to a uid that must exist

00 00 0C 07 0000020500000000 in the Admin SP's SP table

00 00 00 05 |Template_ref 6 Reference to a uid that must exist

00 00 0C 08 0000020400000000 in the Admin SP's Template table.

00 00 00 05 [Table_ref 6 Reference to a uid that must exist

00 00 0C 09 0000000100000000 in the SP's Table table.

00 00 00 05 |row_ref 7

00 00 OF 01

00 00 00 05 |log_row_ref 7 This is a reference type that shall

00 00 OF 02 be used specifically for rows in

Log tables. When performing type
checking, as part of that type
checking the TPer shall validate

Revision 0.9 - draft -

Draft

Page 107 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
that this is a ref to a row in a Log
table.
00 00 00 05 row_uidref 8
00 00 10 01
00 00 00 05 |cred_object_uidref 8 This is a reference type that shall
00 00 10 02 be used specifically for uidrefs to
credential objects. When
performing type checking, as part
of that type checking the TPer
shall validate that this uidref is to
an object in a credential (C_¥)
table.
00 00 00 05 |table_ref 9 This type is used to represent a
00 00 12 01 uidref to a Table that is one of the
set of all tables in the SP.
00 00 00 05 |ref_def 00 9 "00 00 00 00 00 |This table ref is to a byte table that
00 00 12 02 00 00 00" defines the default value for this
column
00 00 00 05 |byte_table_ref 9 This is a reference type that shall
00001203 be used specifically for uidrefs to
byte tables. When performing
type checking, as part of that type
checking the TPer shall validate
that this uidref is to a table that is
a byte table.
00 00 00 05 |column-name 10 Name-value pair that takes a
00 00 14 01 000000050000020B name as the value. The "Name"
000000050000020B in the "Name-value" pair shall be
"Name", so that use of this type
shall be "Name=<name>".
00 00 00 05 |row_uidref-name 10 Used to identify a name-value pair
00 00 14 02 000000050000020B where the value is the uidref of an
0000000500001001 object. The name to be used with
this type is "UID".
00 00 00 05 [row_ref-name 10 Used to idenfiy a name-value pair
00 00 14 03 000000050000020B where the value is the ref of a
0000000500000F01 table row. The name to be used
with this type is "Ref".
00 00 00 05 |table_ref-name 10 This type is used to represent a
00 00 14 04 000000050000020B name-value pair where the value
0000000500001201 is a uidref to a Table that is one of
the set of all tables in the SP. The
name in this type shall be "Name".
00 00 00 05 [type_ref-name 10 Name-value pair that takes as a
00 00 14 05 000000050000020B value a reference to a uid that
0000000500000C02 must exist in the Type table. The
Name in this Name-value pair
shall always be "Type".
00 00 00 05 |name-uinteger_2 10 Name-value pair that takes a
00 00 14 06 000000050000020B uinteger_ as the value.
0000000500000215

Revision 0.9 - draft -

Draft

Page 108 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
00 00 00 05 |name-uinteger_1 10 Name-value pair that takes a
00 00 14 07 000000050000020B uinteger_1 as the value.
0000000500000211
00 00 00 05 jname-startColumn 10 Name-value pair used for the
00 00 14 08 000000050000020B cell_block type. The name portion
000000050000020B of this type shall be "startColumn".
00 00 00 05 jname-endColumn 10 Name-value pair used for the
00 00 14 09 000000050000020B cell_block type. The name portion
000000050000020B of this type shall be "endColumn”.
00 00 00 05 |name-startRow 10 Name-value pair used for the
00 00 14 OA 000000050000020B cell_block type. The name portion
0000000500000605 of this type shall be "startRow".
00 00 00 05 |name-endRow 10 Name-value pair used for the
00 00 14 0B 000000050000020B cell_block type. The name portion
0000000500000605 of this type shall be "endRow".
00 00 00 05 |column 112 This type defines a column name
00 00 16 01 0000000500001401 and its associated type.
0000000500001405
00 00 00 05 |lag 112 A struct made up of 2 uinteger_2
00 00 16 02 0000000500001406 name-value types, used to define
0000000500001406 the lag when setting time. The 2
types represent seconds and
fraction of seconds. The names
required are "Seconds" for the first
value and "Fraction" for the
second. The "Fraction" value is a
number of milliseconds.
00 00 00 05 |columns_struct 112 This type is a struct made up of
00 00 16 03 0000000500000805 two Columns_list types. The first
0000000500000805 list is the indexed columns of a
table, and the second list is the
rest of the columns in the table.
This is used in table creation.
00 00 00 05 |date 113 The date type represents the date
00 00 16 04 0000000500001406 portion of the time from the system
0000000500001407 clock. This is a set of name-value
0000000500001407 pairs, with the following names:

"Year" (uinteger_2), "Month"
(uinteger_1), and "Day"
(uinteger_1) (see 5.5.5.6)

Revision 0.9 - draft -

Draft

Page 109 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

ID

Name

Format

Size

Default

Description

00 00 00 05
00 00 16 05

clock_time

113

0000000500001406
0000000500001608
0000000500001406

Type made up of name-value
pairs used to represent time. Any
value not supplied is treated as 0.
Time comes from the Clock SP. If
the host has supplied a trusted
time since powerup, that time is
used; otherwise a monotonic
counter is used. The Clock_time
type can be used to represent
times in either Generalized Time
or UTC Time. Using this type to
represent UTC Time requires O’s
(zeroes) in fields where
Generalized time requires a value
but UTC Time does not (i.e. 2006
in UTC Time would be
represented as 0006). The names
for these name-value types are
"Year", "Month", "Day", "Hour",
"Minute", "Second", "Fraction"
(see 5.5.5.6)

00 00 00 05
00 00 16 06

type_def

*

11 3 uinteger_
0000000500000806
0000000500000803

A struct made up of a Uinteger of
SSC-dependent size and a list of
uidrefs to objects in the Type table

00 00 00 05
00 00 16 07

cell_block

1156

0000000500001404
000000050000140A
000000050000140B
0000000500001408
0000000500001409

Struct type that is used to
represent a rectangular range of a
table. An area between the whole
table and a single cell can be
selected. NOTE: The parts are
optional types. The Table defaults
to the table being operated on, if
there is one (Get, for example).
The rows and columns default to
the first or last, as appropriate.For
example:[Table="MyTable"]
refers to the entire table.[
Table="MyTable", startRow=2,
endRow=5], refers to all columns
of rows 2 through 5, inclusive, of
table "MyTable". When
referencing an object table row
from within a method, startRow
and endRow are the ID of the
object (and must be the same).
The name-values for these are,
“Table=uid”, “startRow=uid”,
“endRow=uid”,
“startColumn=name”,
“‘endColumn=name” (as indicated
in the individual types that make

up this struct)

Revision 0.9 - draft -

Draft

Page 110 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

ID Name Format Size |Default Description
00 00 00 05 |struct-name-uinteger_ 1 |11 5 Struct composed of 5 Name-
00 00 16 08 0000000500001407 uinteger_1 types, used to
0000000500001407 construct the clock_time type.
0000000500001407 The names required are "Month",
0000000500001407 "Day", "Hour", "Minute", "Second"
0000000500001407 (see 5.5.5.6)
00 00 00 05 |struct-ref _uidref 112 This is a struct composed of 2
00 00 16 09 0000000500000F01 types — a row_ref (value of an
0000000500001001 Array tables RowNumber column)
and a row_uidref (value of a non-
Byte table's UID column)
00 00 00 05 |struct-Table_ref _uint 4 (112 This is a struct composed of 2
00 00 16 OA 0000000500000C09 types — a reference by uid to a
0000000500000220 Table descriptor object, and a
uinteger 4 value.
00 00 00 05 [reset_types 120 31 This Set type is used to identify
00 00 18 01 TCG reset types that map to
interface specific behaviors. The
set values are: 0 = Power Cycle,
1 = Hardware, 2 = HotPlug, 3-
15=reserved for TCG use, 16-31
reserved for vendor-specific reset
behaviors.
00 00 00 05 |gen_status 12063 This set type is used to identify the
00 00 18 02 general status of the re-encryption
process. See section 5.8.2.2 for
values.
00 00 00 05 |enc_supported 12015 This set describes the types of
0000 18 03 user data encryption supported by
the TPer. 0 = None, 1 = Media
Encryption, 2-15 are reserved.

5.1.3 SP Method Status Codes

SP method calls invoke specific operations and receive associated status.

The following sections

identify and define the status codes that may be received in response to method invocations and other
operations. Table 31 identifies the value associated with each of these status codes.

Table 31 Status Codes

' Name | Value
| SUCCESS | 0
| NOT_AUTHORIZED |1
| READ_ONLY | 2
| SP_BUSY '3
| SP_FAILED | 4
| SP_DISABLED |5
| SP_FROZEN | 6
| NO_SESSIONS_AVAILABLE 7

Revision 0.9 - draft -

Draft

Page 111 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

' Name | Value
| INDEX_CONFLICT | 8
| INSUFFICIENT _SPACE 9
| INSUFFICIENT_ROWS | 10
| INVALID_COMMAND 11
| INVALID_PARAMETER | 12
| INVALID_REFERENCE | 13
| INVALID_SECMSG_PROPERTIES | 14
| TPER_MALFUNCTION | 15
| TRANSACTION_FAILURE | 16
| RESPONSE_OVERFLOW | 17

5.1.3.1 SUCCESS
This status is returned when a method executes without error.

5.1.3.2 NOT_AUTHORIZED

This response is returned whenever an attempt is made to invoke a method for which the host does not
have authorization.

5.1.3.3 READ_ONLY

This response is returned if a method that requires invocation from within a Read-Write session is
invoked from within a Read-Only session. DeleteSP is an example of a method that may return this
status.

5.1.3.4 SP_BUSY

This status shall be returned if an attempt is made to open a Read-Write session to an SP when any
other session to that SP is already open, or when an attempt is made to open a Read-Only session to
an SP with which a Read-Write session is already open.

5.1.3.5 SP_FAILED

This status may be returned if an attempt is made to open a session to an SP that is in the Failed life
cycle state.

5.1.3.6 SP_DISABLED

This status may be returned if a method is invoked from within a session to an SP that is in the Issued-
Disabled or Issued-Disabled-Frozen state, and the method is not permitted because of the limitations
placed on SP operation by the state behavior.

5.1.3.7 SP_FROZEN

This status may be returned if a method is invoked from within a session to an SP that is in the Issued-
Frozen or Issued-Disabled-Frozen state, and the method is not permitted because of the limitations
placed on SP operation by the state behavior.

5.1.3.8 NO_SESSIONS_AVAILABLE

This status is returned if an attempt is made to open a session on a TPer on which the maximum
number of concurrent sessions available for use are already being used.

5.1.3.9 INDEX_CONFLICT

This occurs when a conflict between objects is created due to the attempt to create a second object
with a unique index that is already in use by another object. For instance, this status may be received
when attempting to create a table, when a table already exists with the name submitted in the
CreateTable invocation.

Revision 0.9 - draft - Draft Page 112 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.1.3.10 INSUFFICIENT_SPACE
This status is returned if an attempt is made to:

e Create an SP and there is insufficient space on the TPer to create the new SP

o Create a table and there is insufficient space in the SP to create the new table

o Create more rows in a table than is permitted by the TPer or by the table’s size settings.
Note that it is possible that re-invoking the method and requesting a smaller size for the SP or table
may enable the method to then complete properly.

5.1.3.11 INSUFFICIENT_ROWS

This command may be returned if an attempt is made to create a table or object, but the associated
metadata or support table rows (i.e., the Table, Column, Method, or ACE tables) cannot be created to
support the new object or table.

5.1.3.12 INVALID_COMMAND

This status is returned if a method call cannot execute due to attempted invocation of an invalid or
nonexistent method.

5.1.3.13 INVALID_PARAMETER

This status is returned if a method invocation has any invalid parameters. There are many situations in
which this error could be returned. Some of the specific situations where this could occur are:

o Columns specified in the CreateRow method invocation are not part of the table definition.
e If an attempt is made to set a cell to a value larger (or smaller) than that cell’s type allows.
o If a specified cell_block parameter value is not a valid cell_block for the method.

e If anincorrect credential type is parameterized.

5.1.3.14 INVALID_REFERENCE

This status is returned if a parameter (of either the invoking, i.e., table or object, parameter or the
invoked parameters) is to a table row that includes an invalid or incorrect reference to an object, SP,
table, or other table row.

5.1.3.15 INVALID_SECMSG_PROPERTIES

This status is returned if the host attempts to explicitly authenticate an authority for which the session
properties are not appropriate, for instance if the host requires secure messaging but secure messaging
is not in operation for the session, or if a different secure messaging type than is required by the
authority is in operation for the session.

5.1.3.16 TPER_MALFUNCTION

This status is returned when some operational failure has occurred within the TPer that has caused the
method invocation to fail.

5.1.3.17 TRANSACTION_FAILURE

This status is returned when a method fails due to a failure of the method due to the transactional
context in which it was invoked. An example of this is if a TPer is unable to process within the
transaction the amount of data supplied as a parameter of the method, which under other
circumstances the TPer would be able to process. The TPer in this case would return this status code
to indicate that the method failed due to the transactional context, not due to a problem with the method
invocation itself.

5.1.3.18 RESPONSE_OVERFLOW

This status is returned when a method fails if the method response and associated protocol overhead
do not fit entirely within the response buffer.

Revision 0.9 - draft - Draft Page 113 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.2 Session Manager Methods

5.2.1 Overview

Session Manager protocol layer methods permit a host to retrieve information about a TPer without
having to start a session, and provide the methods required to enable session startup.

Due to the nature of the Session Manager protocol layer methods, the responses to methods at this
protocol layer are formatted as methods from the TPer to the host. In the case of multiple method
invocations by a host to a TPer on the Session Manager layer, this mechanism allows the host to
identify the method to which a response is directed.

Session Manager methods are always invoked using an InvokingUID of SMUID, which is the reserved
UID 0x00 0x00 0x00 0x00 Ox00 Ox00 Ox00 OxFF. Session Manager methods may be listed in the
Method 1D table for each SP, but this is not required.

5.2.2 TPer Properties Method

5.2.2.1 Properties (Method)

The Properties method pertains to the exchange of session-related metadata and settings between
the host and the TPer prior to session start-up.

SMUID.Properties[HostProperties = list{name, value}]
=>
SMUID.Properties[Properties : list{name, value}, HostProperties = list{name, value}

1

This Session Manager layer method is used by the host to provide its communication properties to the
TPer and retrieve the communication properties of the TPer.

A list of name/value pairs may be provided as arguments when invoking the Properties method.

If the method is successfully invoked with an empty list of arguments, then the response is a list of
property names and values from the TPer. All property name/value pairs defined in this specification
shall be returned in the response, in addition to any other name/value pairs that the TPer may have.
The host application shall ignore any that it does not understand. The TPer shall return values for the
names described in Table 32 or in the associated SSC (the values in the SSC have precedence). The
values returned shall apply to all sessions started with the currently associated ComiD.

The properties to be returned are stored in the Properties table in the Admin SP. The format of this
table is defined in the Admin Template section of this specification (section 5.4.2.4). All of the property
name/value pairs, both specified and implementation-defined, shall be stored in the Properties table.

If the method is invoked with a list of parameters, the list of hame/value pairs that the TPer shall
recognize are MaxPacketSize, MaxComPacketSize, MaxResponseComPacketSize,
MaxIndTokenSize, and MaxAggTokenSize as described in Table 32. These parameters are used to
describe the communications capabilities that the host possesses, and apply to any sessions started
using the ComID associated with this Properties method invocation.

The TPer shall use these host properties when it is constructing responses to be transmitted to the
host. The host may omit properties as necessary, depending on the host's communications
capabilities. If the host specifies a value for a property that does not meet the minimum requirement as
defined in Table 32, then the TPer shall use the minimum value defined in Table 32 in place of the
value supplied by the host.

If the host includes property parameters to the Properties method invocation, then the TPer's
response shall include the communication property value settings it will use during the session (both for
its communications and the host's). These settings shall apply to all sessions started with the currently
associated ComID.

Revision 0.9 - draft - Draft Page 114 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

If a host includes property parameters to the Properties method invocation that the TPer does not
recognize or comprehend, the TPer shall ignore those parameters, and not return them in its response.

Because of the asynchronous nature of the Session Manager protocol layer and the possible different
ordering of responses to Session Manager layer methods, the response to this method is formatted as
a Properties method invocation so as to be identifiable as the response to the Properties method.

Table 32 Properties Method Response

|Pr0perty |Type |Description

|Sessi0nVersion |version |The version number of the TPer firmware.

MaxPacketSize uinteger_4 [The maximum size of a packet (including both data and
header), in bytes, that the communicator is able to receive.
This value shall be at least 256. A value of 0 indicates no
limit.

MaxComPacketSize uinteger_4 [The maximum size of an IF Command payload (includes

both the ComPacket header and payload) that the
communicator is able to receive. A value of O indicates no
limit.

MaxResponseComPacketSize

uinteger 4

The maximum length of an IF Command payload that the
communicator is able to generate. A value of 0 indicates
no limit.

MaxSessions

uinteger_2

The maximum number of simultaneous sessions
supported by the TPer. A value of 0 indicates no limit.

MaxReadSessions

uinteger_2

The maximum number of simultaneous Read-Only
sessions to any one SP supported by the TPer. A value of
0 indicates no limit.

MaxIndTokenSize

uinteger_4

The maximum size of a token (in bytes) in a single
subpacket that the communicator is able to accept. This
value shall be at least 256. A value of 0 indicates no limit.

MaxAggTokenSize

uinteger_4

The maximum aggregate size of a token spanning multiple
subpackets that the communicator is able to accept. This
value shall be at least 256. A value of 0 indicates no limit.

MaxAuthentications

uinteger_2

The maximum number of simultaneously authenticated
individual authorities per session that the TPer is able to
support. A value of 0 indicates no limit.

MaxTransactionLimit

uinteger_ 2

The maximum number of concurrently open transactions
that the TPer is able to support in a single session. A
value of 0 indicates no limit.

DefSessionTimeout

uinteger_8

The session timeout length (in milliseconds) used by the
TPer by default. A value of 0 indicates no limit.

MaxSessionTimeout

uinteger_8

The longest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

MinSessionTimeout

uinteger_8

The shortest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

DefTransTimeout

uinteger 4

The transmission timeout length (in milliseconds) used by
the TPer by default. A value of 0 indicates no limit.

MaxTransTimeout

uinteger_4

The longest transmission timeout length (in milliseconds)
permitted by the TPer. A value of 0 indicates no limit.

Revision 0.9 - draft -

Draft Page 115 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Property |Type |Description

MinTransTimeout uinteger_4 [The shortest transmission timeout length (in milliseconds)
permitted by the TPer. A value of 0 indicates no limit.

MaxComIDTime uinteger_8 [The timeout length (in milliseconds) used by the TPer after
it has assigned a ComID. A session using the associated
ComlID shall be started within this interval or the ComlID
shall transition from Issued to Inactive. . A value of 0
indicates no limit.

MaxComIDCMD uinteger_4 |SSC-dependent limit on the number of interface
commands that may be issued using a specific ComID. A
value of 0 indicates no limit. . A value of 0 indicates no
limit.

|ReaITimeCIock |boolean |Identifies if a real time clock is present on the TPer

5.2.3 Session Startup Methods
5.2.3.1 StartSession/SyncSession Methods

SMUID.StartSession[
HostSessionlD : uinteger_4,
SPID : SP_ref,

Write : boolean,

HostChallenge = challenge,
HostExchangeAuthority = Authority_ref,
HostExchangeCert = certificate,
HostSigningAuthority = Authority_ref,
HostSigningCert = certificate,
SessionTimeout = uinteger_8,
TransTimeout = uinteger_4,
InitialCredit = uinteger_2,
SignedHash = signed_hash]

=>

SMUID.SyncSession[
HostSessionlD : uinteger_4,
SPSessionlID : uinteger_4,
SPChallenge = challenge,
SPExchangeCert = certificate,
SPSigningCert = certificate,
TransTimeout = uinteger_4,
InitialCredit = uinteger_2,
SignedHash = signed_hash]

The HostSessionlD parameter in the StartSession invocation is the host-side session number
assigned and used by the host to identify this session. All further invocations in this series of method
invocations and responses will use this host-assigned session number in the HostSessionID parameter.

The SPID parameter in the StartSession invocation is the uid of the SP with which the host is
attempting to start a session. This is the uid of the SP in the Admin SP’s SP table.

The Write parameter determines the type of session that is being started. This value is True when a
Read-Write session is requested and False when a Read-Only session is requested.

If the Signing Authority (identified in the HostSigningAuthority parameter) calls out a C_PIN credential,
then the HostChallenge parameter is used by the host to submit a password for authentication.
Otherwise, this parameter is used to submit a nonce to the SP that, during secure session startup, will
return a response that will be based on the HostChallenge value and the authentication requirements of
the Signing Authority.

Revision 0.9 - draft - Draft Page 116 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The HostExchangeAuthority identifies the authority whose credential will be used to exchange keys
with the SP.

The optional HostExchangeCert parameter provides the certificate associated with the credential to be
used with the HostExchangeAuthority.

The HostSigningAuthority's credential is used to formulate a response to the SP's challenge, and is
used to sign the method hash.

See section 5.3.4.1.4 for more information on how authorities interact during session startup.
The optional HostSigningCert parameter provides attestation to the HostSigningAuthority's credential.

The SessionTimeout parameter is used to allow the host to provide a requested timeout value for the
session. The value, in milliseconds, shall be less than the TPer's MaxSessionTimeout property and
greater than the TPer's MinSessionTimeout property (see Table 32), as well as less than the value of
the SPSessionTimeout column in the SP’s SPInfo table. If no value is specified for this parameter,
then the SP's default value, stored in the SPInfo table's SPSeessionTimeout column, shall be used. If
no value exists as an SP default (i.e. the SPSessionTimeout column value is zero), then the TPer
default (as reported in the Properties method response, DefSessionTimeout) shall be used.

The TransTimeout parameter is used to allow the host to provide a requested timeout value for
acknowledgement. The value, in milliseconds, shall be less than the TPer's MaxTransTimeout property
and greater than the TPer's MinTransTimeout property (these values are reported as the results of the
Properties method — see Table 32).

If this capability is supported and no value is specified for this parameter, then the TPer's default value
(identified as the DefTransTimeout response to the Properties mehod), shall be used as the
transmission timeout value. For more information on the transmission timeout mechanism, see 3.4.6.3.

The InitialCredit parameter enables the host to provide an amount of credits to the TPer for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.4.6.4.

The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see section 3.4.4.7). This is a signed hash of all the
other parameters to the method, other than the SignedHash parameter. The purpose of this MAC is to
provide integrity during session startup, prior to the point when secure messaging begins.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the Host to the SP. The SP Control Authority, if referenced by the Host Control
Authority, identifies the hash type and signing type if hashing has been called out on messages from
the SP to the host (see section 3.4.4.7).

The HostSessionlD parameter in the SyncSession invocation is the same as that in the StartSession
invocation.

The SPSessionlD parameter in the SyncSession invocation is the TPer side session number, which is
assigned by the TPer.

The SPChallenge parameter is required if the StartSession invocation includes a
HostSigningAuthority that directly invokes a signing credential. Otherwise, this parameter will be
omitted.

The SPExchangeCert and SPSigningCert are the certificates for the credentials referenced by the
authorities that may be called out by the HostSigningAuthority specified in the StartSession
invocation.

The TransTimeout parameter in the SyncSession method is used by the TPer to report the Timeout
value it will use. This optional parameter shall be larger than the value of the TransTimeout parameter
of the StartSession method. This parameter is used to allow the TPer to provide a transmission
timeout value for acknowledgement larger than that requested by the host.

Revision 0.9 - draft - Draft Page 117 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The TransTimeout parameter value (measured in milliseconds) shall be less than the TPer's
MaxTransTimeout property and greater than the TPer's MinTransTimeout property (see Table 32).

If this capability is supported and no value is specified for this parameter in either the StartSession or
SyncSession methods, then the TPer's default value (identified as the DefTransTimeout response to
the Properties mehod), shall be used as the transmission timeout value. For more information on the
transmission timeout mechanism, see 3.4.6.3.

The InitialCredit parameter enables the TPer to provide an amount of credits to the host for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.4.6.4.

The SignedHash of the SyncSession method, if present, is the hash of the method’s parameter’s
signed by the response signing credential that is the credential referred to by the SPSigningAuthority.

5.2.3.2 StartTrustedSession/SyncTrustedSession Methods

SMUID.StartTrustedSession[

HostSessionlD : uinteger_4,

SPSessionlID : uinteger_4,

HostResponse = response,

HostEncryptSessionKey = session_key_encrypt,
HostlntegritySessionKey = session_key_integrity,
SignedHash = signed_hash]

=>

SMUID.SyncTrustedSession[

HostSessionlD : uinteger_4,

SPSessionlID : uinteger_4,

SPResponse = response,

SPEncryptSessionKey = session_key_encrypt,
SPIntegritySessionKey = session_key integrity,
SignedHash = signed_hash]

Note: The StartTrustedSession/SyncTrustedSession method exchange, if needed, can only occur
directly after the StartSession/SyncSession method exchange. If called any other time, the attempted
method invocation shall return an error result.

The HostResponse is included if the SyncSession method contained an SPChallenge argument. The
response is dictated by the credential of the HostSigningAuthority.

The HostEncryptSessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the host to the SP.

The HostIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP. This session keyset is used to create a MAC of the transmitted data (if
required) to aid in integrity assurance.

The SPResponse argument is included if the StartSession method contained a HostChallenge
argument. The response is dictated by the Operation column value and credential of the
SPSigningAuthority.

The SPEncryptSessionKey is the session keyset generated by the SP and encrypted with the key
used for exchange with the host (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the SP to the host.

The SPIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the host. This session keyset is used to create a MAC of the transmitted data
(if required) to aid in integrity assurance.

Revision 0.9 - draft - Draft Page 118 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

For details on using the session startup methods with Elliptic Curve parameters and EC-DH or EC-
MQV, see section 5.3.6.14 and 5.3.6.15 respectively.

5.2.3.3 CloseSession Method

SMUID.CloseSession[
RemoteSessionNumber : uinteger_4,
LocalSessionNumber : uinteger_4]

CloseSession is a Session Manager protocol layer method. The parameters are two unsigned integers:
the first parameter, RemoteSessionNumber, is the session number that was used by the
remote/receiving entity, and the second parameter, LocalSessionNumber, is the session number that
was used by the local/sending entity.

This method shall only be able to be transmitted by the TPer. If the session is currently active, the TPer
transmits this method to notify the host that it is aborting the session and all open un-committed
transactions. The host shall end a session by including an End of Session token in a tokenized
message to the TPer (see section 3.2.3.2.5 and 3.4.4.4).

5.3 Base Template

5.3.1 Overview
The Base Template defines the tables and methods that shall be incorporated into all SPs.

5.3.1.1 Base Template Tables and Methods Overview
Base Template tables can be categorically divided into the following groups:

o General Metadata tables — store an SP’s self-descriptive information, such as SP identification,
size, and version numbers.

e Table and Method Metadata tables — store data about the tables and methods that make up
this SP.

e Access Control tables — define which authorities have access to which table/method,
object/method, or SP/method combinations, and the secrets and authentication methods those
authorities require.

e Credential tables — define available encryption/decryption algorithms and authentication
mechanisms, and also store associated secrets or keys. Rows with a gray background in the
credential table description tables describe columns in tables that may be hidden in an
implementation-specific manner.

Base Template methods are divided into the following groups:

e Basic Table — enable creation of tables, addition and deletion of rows to tables, and
modification of table cell values.

o Access Control — define which authorities may execute which methods, request authentication,
and modify ACLs.

5.3.2 Data Structures

5.3.2.1 General Metadata Group - SPInfo (Array Table)
The table in this section describes the data that the SP keeps about itself.

Revision 0.9 - draft - Draft Page 119 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 33 SPInfo Table Description

|COIumn |Type |Description

RowNumber uinteger_4 [This is the row number for this row of this array table, as assigned and
maintained by the TPer. (Read-only)

\uID \uid \Unique identifier of this row of the SPInfo table (Read-only)

SPID uid Unique identifier of this SP as assigned in the Admin SP’s SP table.
(Read-only)

Name name Name of the SP. This shall be the same as the name recorded for this
SP in the Admin SP’s SP table. (Read-only)

Size uinteger_8 [Total space allocated for the SP at issuance, in bytes. This value will

be the same as the value of the Bytes column in the Admin SP’s SP
table. (Read-only)

SizelnUse uinteger_8 |In bytes, the amount of the allocated space that is in use (for tables).
(Read-only)

SPSessionTimeout |uinteger_4 |Length of timeout interval (in milliseconds) that this SP uses. (Read-
only)

Enabled boolean [True if the SP is Enabled, False if SP is Disabled. Initial access control

over modification of this column permits only the SP Owner (i.e. the
Admins class authority) to disable or reenable this SP. When the value
of this column is False, the operation of the SP is modified according to
5.3.5.1.

The SPInfo table of each SP contains information about the SP, and a copy of some relevant
information from the Admin SP. This table has exactly one row.

The SPID of the SPInfo table and the GUDID of the TPerlInfo table in the Admin SP form an
sp_guid that uniquely identifies the SP.

5.3.2.2 General Metadata Group - SPTemplates (Array Table)
The table in this section describes the data that the SP keeps about itself.

Table 34 SPTemplates Table Description
|Co|umn |Type |Description

RowNumber |uinteger_4 This is the row number for this row of this array table, as assigned and
maintained by the TPer. (Read-only)

|UID |uid |The unique identifier of this row of the SPTemplates table (Read-only)

TemplatelD [Template_ref |The UID of the template as assigned in the Template table of the Admin
SP. (Read-only)

Name name Name of the Template used as a component in the creation of this SP —
this will be the same as the Name recorded in the Admin SP’s Template
table for the associated template. (Read-only)

Version version_bytes_4 |Initially the 4-byte values will be 0x00 0x00 0x00 0x01. The values in
this table identiy the format of all other tables. The formats documented
here in this specification are all version 0x00 0x00 0x00 0x01 formats.
(Read-only)

The SPTemplates table is an array table that identifies the component templates used to form the SP.
There is one row for each Template used to create the SP, including a row for the Base Template for all
SPs, and one for the Admin Template in the Admin SP’s SPTemplates table.

Revision 0.9 - draft - Draft Page 120 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The value of the TemplatelD column is the UID assigned to this template in the Admin SP’s
Template table.

The value of the Name column is the same as the value of the Name column of the Admin SP’s
Template table for this template.

The value of the Version column refers to TCG defined versions of templates.

5.3.2.3 Table and Method Metadata Group - Table (Object Table)
The table in this section describes the metadata that the SP keeps about all of its tables.

Table 35 Table Table Description

|COIumn |Islndex |Type |Description

uID | uid The UID of this row in the Table table. (Read-only)

Name Yes name The name of the table. (Read-only for pre-personalization
tables)

CommonName |Yes name A name that may be shared among multiple table descriptor

objects. (Read-only for pre-personalization tables)

TemplatelD Yes SPTemplates_ref [This is this Template’s UID in the SPTemplates table. This
may be zeroes in the Admin SP. (Read-only)

|Kind | |tab|e_kind |The table type. (Read-only)

Column column_ref This is a reference to the Column table row of this table’s
first column. For byte tables this value will be 0. (Read-
only)

NumColumns uinteger_4 Number of columns in the table. For byte tables this will be
1. (Read-only)

|Rows | |uinteger_4 |Number of rows allocated for the table. (Read-only)

|RowsFree | |uinteger_4 |Number of free rows in the table. (Read-only)

RowBytes uinteger_4 Number of bytes in each row of the table. This includes

bytes devoted to overhead for system columns, type
identification, etc. (Read-only)

LastIiD uid UID for non-byte tables, this is the last uid assigned for that
table. (Read-only)

MinSize uinteger_4 Number of rows initially requested for this table. The table
can have the CreateRow method invoked on it this many
times. This column is user-settable (access control
permitting).

MaxSize uint 4 def 0 Host-defined maximum number of rows for this table. The
table will never have more than this many rows (though
there are cases in which the created table will not be
permitted by the system to have MaxSize rows). This
column is user-settable (access control permitting), but the
TPer may prevent the value in this column from being
changed. A value of 0 indicates no host-defined limit of
rows that may be created in this table.

The Table table contains one row for each table descriptor object, which store metadata about each of
the tables in the SP.

Revision 0.9 - draft - Draft Page 121 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

In the Table table of every SP, there shall be a row for each table that is issued into that SP. Each of
these rows shall have a CommonName column value. Each table at issuance shall have a CommonName
column value of the Template from which it was issued — this is the name of the Template from the
Admin SP’s SPTemplates table.

In issued SPs (SPs other than the Admin SP), the TemplatelD column value shall always be zeroes (a
Null UID reference). In the Admin SP, the value of the TemplatelD column may be zeroes. A value of
zeroes in the TemplatelD column of the Admin SP’s Table table indicates that that row is active in the
SP. Otherwise, the value of the TemplatelD column in a row of the Admin SPs Table table shall be the
uid of the row of the SPTemplates table to which that table belongs.

The Name-CommonName-Temp latelD column value combination shall be unique for each row in the table.

5.3.2.4 Table and Method Metadata Group - Column (Array Table)
The table in this section describes the Metadata that the SP keeps about all of its tables.

Table 36 Column Table Description

\Column Type \Description

RowNumber |uinteger_4 This is the row number for this row of this array table, as assigned
and maintained by the TPer. (Read-only)

\uID luid IUID of this row in the Column table. (Read-only)

|Name |name |Name of the column. (Read-only)

|CommonName |name |A name that may be shared among multiple columns. (Read-only)

Type Type_ref Type of the column’s data. (Read-only)

Isindex boolean_def false |The value of this column is True if this column is, or is part of, the

unique index for the table. If the value of this column is False, this
column is not a part of the table’s index. (Read-only)

|Byte |uinteger_4 |Offset of column from start of row. (Read-only)

Transactional |boolean_def true |ldentifies if the column is subject to transactional rollback.
(Read-only)

Next Column_ref Reference to the row of the Column table that represents the next

column in this column’s table. If this is the last column in the
containing table, then the value of this column is 0. (Read-only)

The Column table has one row for every column of every table except byte tables.

If the value of the Transactional column is False, then modifications to this column take effect
immediately, even if the method invocation that modifies the column is included in a transaction that
has not yet resolved. Changes to the column are not rolled back if the transaction containing the
modification is aborted. The value of this column for user-created table columns is True.

The value of the CommonName column for rows that exist upon issuance is the name of the Template
(from the SPTemplates table) to which that column belongs.

The SP implementation is free to have hidden system columns in any table, as long as those columns
do not interfere with host operations, including the operation of any methods invoked on that table.
These columns shall not be recorded in the Column table.

5.3.2.5 Table and Method Metadata Group - Type (Object Table)

The Type table stores the information for all of the types used in the SP. All of the types predefined in
the Core Spec shall be included by default in the table.

Revision 0.9 - draft - Draft Page 122 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 37 Type Table Description

|COIumn |Is|ndex |Type |Description

uID | uid The UID of the type. (Read-only)

|Name |Yes |name |The name of the type. (Read-only)

|CommonName |Yes |name |This is a name that may be shared by multiple types. (Read-only)
Format type_def |This value will be O for a predefined type (integer, uinteger, bytes,

max bytes). Otherwise this specifies the format of the type. For
details, see the format specification, section 5.1.1. (Read-only)

Size | uinteger_2 [Size (in bytes) needed to store a value of this type. (Read-only)

Default ref_def 00 |This column defines the default value for the type. (Read-only for
pre-personalization types)

The Type table contains one row for each type in use in the SP. The host may add host-defined types
by invoking the CreateRow method on the Type table.

No user-defined types shall be removed by the Delete or DeleteRow methods unless the TPer is able
to verify that no column of that type is currently in use.

Types are often constructed of other types. The TPer shall prevent modification or removal of a type
object upon which another type is dependent.

The TPer shall also prevent type recursion.

The size of the Format column is SSC-dependent. The value of the Size column includes any
necessary overhead (such as for bytes{max=<n>} or for tagging a value of an Alternative_Type. The
TPer calculates the value of this column. It is an error for the host to specify a value for this column in
the CreateRow method invocation.

The Default column is used to identify the default value for that type. This default value is used when
the CreateRow method is invoked and a column that uses that type does not have a value specified in
the CreateRow invocation. The default value of the Default column is zeroes (a Null UID reference).

If the value of the Default column is zeroes then there shall be no default value for that type. A
CreateRow invocation on a table with a column of that type shall have a value for that column specified
in the method invocation, or the method invocation shall fail. Otherwise, the value of the Default
column shall be a uidref to a byte table that contains the default value for the type. The value in the
byte table shall be the same as required for messaging tokenization (see section 3.2.2.3), and shall be
type checked by the TPer whenever a CreateRow is invoked that uses that value (i.e., that does not
specify a value for a column of that type).

The format specification for specifying the value of the Format column is in section 5.1.1.

The Type table values that represent the built-in types, as well as all those types pre-defined in this
specification, are be found in Table 30.

5.3.2.6 Table and Method Metadata Group - MethodID (Array Table)

This table associates method names and uids. Each value in the Name column must be unique. Life
cycle permits this table to be read with the use of the Anybody authority, and prevents this table from
being written by any authority.

Table 38 MethodID Table Description
|Co|umn |Is|ndex |Type |Descripti0n

Revision 0.9 - draft - Draft Page 123 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex |Type |Descripti0n

RowNumber uinteger_4 This is the row number for this row of this
array table, as assigned and maintained by
the TPer. (Read-only)

uID | luid UID identifier of the method. (Read-only)

Name Yes name Name of this method. (Read-only for pre-
personalization methods)

CommonName |Yes name A name that may be shared among multiple
methods. (Read-only for pre-personalization
tables)

TemplatelD Yes SPTemplates_ref This is that Template’s UID in the

SPTemplates table. This may be zeroes in
the Admin SP. (Read-only)

In the MethodID table of every SP, there shall be a row for each method that may be invoked on that
SP. Each of these rows shall have a CommonName column value. Each row in the MethodID table shall
have a CommonName column value of the Template from which it was issued. This is the name of the
Template from the Admin SP’s SPTemplates table.

In issued SPs (SPs other than the Admin SP), the TemplatelD column value shall always be zeroes (a
Null UID reference). In the Admin SP, the value of the TemplatelD column may be zeroes. A value of
zeroes in the TemplatelD column of the Admin SP’s MethodID table indicates that that row is active in
the SP. Otherwise, the value of the TemplatelD column in a row of the Admin SPs MethodID table
shall be the uid of the row of the SPTemplates table to which that method belongs.

The Name-CommonName-TemplatelD column value combination shall be unique for each row in the table.

5.3.2.7 Table and Method Metadata Group - Method (Array Table)

The table in this section describes the Metadata that the SP keeps about its SP/method, table/method,
and object/method access control associations.

Table 39 Method Table Description

|Co|umn |Is|ndex |Type |Description

RowNumber uinteger_4 This is the row number for this row of this
array table, as assigned and maintained by
the TPer. (Read-only)

uiD uid Unique identifier of this row in the Method
table (Read-only)

InvokinglD Yes table_object_ref This is the uidref to the SP/Table/Object
portion of this access control association.
(Read-only)

MethodID Yes MethodID_ref UID identifier for the method part of this
access control association. (Read-only)

CommonName name A name that may be shared among multiple
access control associations (Read-only)

Revision 0.9 - draft - Draft Page 124 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Co|umn |Is|ndex |Type

|Description

ACL ACL

The ACL for this SP/method, table/method,
or object/method combination. This column
is modified/accessed via the methods
GetACL, RemoveACE, and AddACE. This
column shall not be modifiable directly via
the Set method.

Log log_select

Log whether this method succeeds, fails, or
both (or neither). This column shall be
disregarded if the Log Template has not
been issued into the SP.

AddACEACL ACL

This column holds the access control list
that permits controls invocation of the
AddACE method on the access control
association represented by this row in the
Method table.

RemoveACEACL ACL

This column holds the access control list
that permits controls invocation of the
RemoveACE method on the access control
association represented by this row in the
Method table.

GetACLACL ACL

This column holds the access control list
that permits controls invocation of the
GetACL method on the access control
association represented by this row in the
Method table.

DeleteMethodACL ACL

This column holds the access control list
that permits controls invocation of the
DeleteMethod method on the access control
association represented by this row in the
Method table.

AddACELog log_select

This column identifies the conditions under
which logging of the AddACE method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

RemoveACELog log_select

This column identifies the conditions under
which logging of the RemoveACE method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

GetACLLog log_select

This column identifies the conditions under
which logging of the GetACL method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

Revision 0.9 - draft -

Draft

Page 125 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Co|umn |Is|ndex |Type

|Description

DeleteMethodLog log_select

This column identifies the conditions under
which logging of the DeleteMethod method
invocation on this access control association
occurs. This column shall be disregarded if
the Log Template has not been issued into
the SP.

LogTo ref_def 00

{LogTableUID}

This identifies the log table to which log
entries for this access control association
are added. The default value of this column
is 00s, which indicates that this access
control association logs to the default log
table. This column shall be disregarded if
the Log Template has not been issued into
the SP.

The Method table contains SP/method, table/method, and object/method access control associations
and logging settings, and each access control association’s related meta-ACL access requirements and

meta-ACL logging settings.

New rows shall not be created in or deleted from the Method table directly. New rows are created in the
Method table as a side effect whenever a table is created or when a row in an object table is created.
Method table rows associated with a particular object or table are removed whenever that table or

object is deleted.

5.3.2.8 Access Control Metadata Group -

ACE (Object Table)

Table 40 ACE Table Description

|Co|umn |Is|ndex |Type |Descripti0n

\uID | luid \Unique identifier of this ACE object (Read-only)

Name Yes name Name of this ACE object (Read-only for pre-
personalization ACEs)

CommonName |Yes name Name that may be shared among multiple ACE objects
(Read-only for pre-personalization ACEs)

BooleanExpr AC_element A boolean expression of Authorities and/or Authority

Classes that authorizes the ACE if true. If the conditions
described in this access control element are true, then the
ACE is considered authenticated.

RowStart row_selection

The value of this column identifies the first row of the
restriction that this ACE identifies. If the value of this
column is 0, then this indicates the first row of the table.

RowEnd row_selection

The value of this column identifies the last row of the
restriction that this ACE identifies. This value shall be a
higher value than RowStart. If the value of this column is
0, then this indicates the last row of the table.

ColStart name

The value of this column identifies the first column of the
restriction that this ACE identifies. Columns are ordered
left to right in the order in which they appear in this
specification. If the value of this column is a zero length
bytes value, then this indicates the first column of the

table.

Revision 0.9 - draft -

Draft Page 126 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex |Type |Descripti0n

ColEnd name The value of this column identifies the last column of the
restriction that this ACE identifies. Columns are ordered
left to right in the order in which they appear in this
specification. If the value of this column is a zero length
bytes value, then this indicates the last column of the
table.

The ACE table has one row for each access control element that may be authenticated by the host.

In the case of invoked SP methods, values of the RowStart, RowEnd, ColStart, and ColEnd columns of
a referenced ACE object are ignored. In the case of table methods on object tables, or in the case of
object methods, RowStart and RowEnd reference an object UID and should be equivalent to each other.

The values for RowStart and RowEnd must be applicable to the table upon which a method requiring
authentication of this ACE is being invoked. If either the RowStart or RowEnd values are out of bounds
for the table, then the invoked method shall fail and return an error. This same restriction applies to the
ColStart and ColEnd column values as well.

5.3.2.9 Access Control Metadata Group - Authority (Object Table)

A Row of the Authority Table is called an Authority. An Authority is a specific use of a Credential and,
possibly, other Authorities. A Class Authority is an authority object referenced by multiple Individual
Authorities and does not use a Credential.

Table 41 Authority Table Description

|Co|umn |Is|ndex |Type |Description

|UID | |uid |Unique identifier of this authority. (Read-only)

Name Yes name Name of this authority. (Read-only for pre-
personalization authorities)

CommonName |Yes name Name common to several authorities. (Read-only for
pre-personalization authorities)

IsClass boolean If True, this row is a class authority. If False, this row is
an individual authority.

Class Authority_ref The value of this column designates the class to which
this authority belongs.

Enabled boolean When this value is True, this Authority or Authority

Class is Enabled. If the value of this column is False,
then this authority is disabled.

Secure messaging_type [This column identifies the type of secure messaging to
be used

HashAndSign hash_protocol Identifies if hash/sign of session startup method
parameters is required.

PresentCertificate boolean Determines if a certificate needs to be supplied with an
authority at session startup

Operation auth_method The operation to perform with the Credential (e.g.,
Exchange, Signing, SymK, HMAC, PIN, None).

Credential cred_object_uidref |This is the specific credential object to be used with this
authority.

Revision 0.9 - draft - Draft Page 127 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex |Type |Descripti0n

ResponseSign Authority_ref This column identifies the signing authority with which
the SP shall respond during session startup. This may
be self-referential.

ResponseExch Authority_ref This column identifies the exchange authority with which
the SP shall respond during session startup. This may
be self-referential.

ClockStart date This value identifies the date on which this authority
becomes valid.

ClockEnd date This value identifies the date on which this authority
expires/becomes invalid.

Limit uint_ 4 def O Sets a limit on the number of authentications for this
authority.

Uses uint 4 def 0 Total number of successful authentications with this

authority, including both successful Session start-up
invocations and Authenticate method invocations.

Log log_select These flags enable logging of different events that occur
when attempting to authenticate this authority.

LogTo ref_def 00 This identifies the log table to which log entries for
operations with this authority are added.

The Class column identifies the authority class of which an authority object is a member. Class
authorities may be members of another class authority. However, this shall only be valid if it extends to
one level. Class authorities are not permitted to be members of a class authority that is already a
member of another class authority. The TPer shall enforce this requirement. The value of this column
is only valid if the value of the IsClass column is True. The value of this column shall be a Null UID
reference if the authority is not a member of a class.

The Enabled column identifies if the authority object is active. All attempts to authenticate this authority
either directly, through the use of the Authenticate method, or indirectly, as in during session startup,
return an error if the value of this column is False. The default value of this column is True.

The Secure column identifies the type of secure messaging (if any) that is required by this authority,
and identifies the size of the key(s) that shall be generated during secure session startup if confidential
messaging is required. A value of “None” indicates secure messaging is not required and not
permitted. The value of this column shall be enforced when any attempt is made to authenticate this
authority, including the use of the Authenticate method. The options for this column, which are the
options defined for the messaging_type type, are identified in Table 42.

Note that the IV size for both the CCM and GCM modes is 12-bytes. The lower 8-bytes are directly
provided within the secure message. The upper 4-bytes of the IV are taken from the last 4-bytes of the
EncryptSessionKey parameters of the StartTrustedSession/SyncTrustedSession method pair. See
RFC 4106 (GCM) and RFC 4309 (CCM) for details. The EncryptSessionKey parameters of the
StartTrustedSession/SyncTrustedSession method pair need to be 4 bytes longer for the CCM and
GCM modes to accommodate the extra 4 bytes that are used as 'salt' within the IV.

Table 42 Secure Column Values

|Co|umn value |Algorithm |Secure Messaging Type ‘
0 'None 'None |
1 IHMAC_SHA_256 [Integrity only |
2 'HMAC_SHA_384 Integrity only \

Revision 0.9 - draft - Draft Page 128 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Co|umn value |Algorithm |Secure Messaging Type
3 'HMAC_SHA_512 Integrity only

4 IRSASSA-PSS_1024 (PKCS #1 v1.5) Integrity only

5 IRSASSA-PSS_2048 (PKCS #1 v1.5) Integrity only

6 IRSASSA-PSS_3072 (PKCS #1 v1.5) Integrity only

7 IRSASSA-PSS_1024 (PKCS #1 v2.1) Integrity only

8 IRSASSA-PSS_2048 (PKCS #1 v2.1) Integrity only

9 IRSASSA-PSS_3072 (PKCS #1 v2.1) Integrity only

110 [ECDSA_256_SHA_256 Integrity only

111 [ECDSA_384_SHA 384 Integrity only

112 [ECDSA_512_SHA 512 Integrity only

113 ICMAC_128 with 128-bit MAC Integrity only

114 ICMAC_256 with 128-bit MAC Integrity only

115 \GMAC_128 with 128-bit MAC and 96-bit IV |Integrity only

116 IGMAC_256 with 128-bit MAC and 96-bit IV |Integrity only

117 /AES_CBC_128 \Confidentiality only

118 /AES_CBC_256 Confidentiality only

119 /AES_CBC_128 with HMAC_SHA_256 |Integrity and Confidentiality
120 /AES_CBC_256 with HMAC_SHA_256 Integrity and Confidentiality
121 /AES_CBC_256 with HMAC_SHA_384 Integrity and Confidentiality
122 /AES_CBC_256 with HMAC_SHA_512 |Integrity and Confidentiality
123 /AES_CCM_128 with 128-bit MAC Integrity and Confidentiality
124 /AES_CCM_256 with 128-bit MAC Integrity and Confidentiality
125 /AES_GCM_128 with 128-bit MAC Integrity and Confidentiality
126 /AES_GCM_256 with 128 bit MAC Integrity and Confidentiality

The value of the HashAndSign column determines if hashing and signing of session startup method
parameters is required. If the value of this column is other than “None”, a signed hash is to be used
during session startup. The value of the Operation column and the type of the credential referenced in
the Credential column (and the hash protocol identified in that credential) determine the type of the
hashing and signing. Note that HashAndSign is only enforced for a particular authority during session
startup. Otherwise, this attribute is ignored (for instance, during an Authenticate method invocation).
For additional information see section 3.4.4.7 and section 5.3.4.1.4.

If the value of the PresentCertificate column is True, the authority is a public key authority, and the
credential contains a certificate chain, then it shall be required that a certificate chain associated with
this authority is sent as a parameter of the session startup protocol. If any of those conditions is False,
no certificate is required to be sent. See the TCG Certificates Specification for more information on
certificates.

The value of the Credential column identifies the specific credential object to be used with this
authority. For a class authority, the value of this column shall be zeroes (a Null UID reference).

The value of the ResponseSign column identifies the authority with which the TPer shall respond in the
SyncSession method of the session startup method exchange. The authority referenced in this column

Revision 0.9 - draft - Draft Page 129 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

identifies the authority to be used by the TPer as the SP Signing Authority. If the value of this column is
00s, then no SP Signing Authority shall be used for initiating that session.

The value of the ResponseExch column identifies the authority with which the TPer shall respond in the
SyncSession method of the session startup method exchange. The authority referenced in this column
identifies the authority to be used by the TPer as the SP Exchange Authority. If the value of this column
is 00s, then no SP Exchange Authority shall be used for initiating that session.

An authority is automatically enabled starting on the date defined in the ClockStart column if the TPer
has a trusted date. A value of all O’s indicates no start date, and the authority shall be authenticatable
until the date in the ClockEnd column is reached. If the Clock Template has not been issued with this
SP, then the value of this column shall be disregarded, and should be set to all zeroes. Any authority
with a non-zero ClockStart date shall not be authenticatable if the ClockTime table’s TrustMode
column is “Timer”.

An authority is automatically disabled starting on the date defined in the ClockEnd column if the TPer
has a trusted date. A value of all zero indicates no end date, and the authority’s ability to be
authenticated shall not expire. If the Clock Template has not been issued with this SP, then the value of
this column shall be disregarded, and should be set to all zeroes. Any authority with a non-zero
ClockEnd date shall not be authenticatable if the ClockTime table’s TrustMode column is “Timer”

The Limit column defines a limit on the number of times that an authority may be authenticated, either
explicitly or implicitly. This value represents the maximum number of total successful authentications
with this authority, including session start-up invocations and Authenticate method invocations. A
value of 0 shall mean no limit. The default value of the Limit column is 0.

The value of the Uses column identifies the number of times an authority has been authenticated. If the
value of Uses is equal to the value of Limit for this authority and the value of the Limit column is not
0, then this authority shall not be authenticatable, and attempts to authenticate shall result in an error
response. This value is not subject to transactional rollbacks. The default value of the Uses column is
0.

The value of the Log column identifies when uses of this authority (i.e., authentications and
authentication attempts) are logged. This logging is only applicable when authentications are done in
establishing a session or in augmenting the authorities on it (via the Authenticate method), not when
authentication is tested on a method. If the Log Template has not been issued into the SP, then this
column is disregarded and should be set to zero.

The LogTo column identifies the Log table to which events related to this authority (session startups and
authentications) are logged. The default value of this column is a Null UID reference, which indicates
that this authority’s operations log to the default log table (see section 5.7). This column shall be
disregarded if the Log Template has not been issued into the SP.

5.3.2.10 Access Control Metadata Group - Certificates (Object Table)

Table 43 Certificates Table Description

|Co|umn |Is|ndex |Type |Description
\uID | \uid UID of this row of the Certificates table (Read-only)
|Name |Yes |name |Name of this certificate
|CommonName |Yes |name |Name that may be shared among multiple Certificates.
This is the uidref to the byte table that holds the certificate data

CertData ‘ ‘byte_table_ref

for this Certificates object.

|CertSize | |uinteger_4 |Number of bytes actually used in the certificate.

For composition and formatting of a certificate chain, see the TCG Certificates Specification.

Revision 0.9 - draft - Draft Page 130 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.2.11 Credential Table Group - C_PIN (Object Table)

Table 44 C_PIN Table Description

|Co|umn |Is|ndex |Type |Description

\UID | \uid \Unique identifier of this C_PIN object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-personalization
C_PIN objects)

CommonName |Yes name A name that may be shared among multiple C_PIN objects
(Read-only for pre-personalization C_PIN objects)

|PIN |password |Password string.

CharSet ref_def_00 |uidref to the byte table that holds the char set for the PIN. If the

value of this column is zeroes, then the default character set is
used with the GenKey method. (Read-only)

|TryLimit | |uinteger_4 |Maximum number of failed tries before always failing.

|Tries | |uinteger_4 |Current number of failed tries.

Persistence boolean |lIdentifies if value of Tries column is persistent through power

cycles

The C_PIN table contains one row for each password credential.

If the value of the CharSet column is zeroes (a Null UID reference), then the default character set used
when creating a new PIN column value with the GenKey method shall be made up of the set of valid
ASCII printable characters as defined in RFC 1345. The default value of the CharSet column is zeroes.

If not 00s, then the value of the CharSet column is a uidref to a byte table that contains the character
set to be used when the GenKey method is invoked on this C_PIN object to generate a new password.

If the CharSet column value is not zeroes, it shall be a uid to a byte table in which shall be defined a
character set to be used when creating a new PIN column value with the Genkey method. The
character set defined in the byte table shall be made up of a subset of the set of valid ASCII printable
characters as defined in RFC 1345.

The default value of the TryLimit column when a new C_PIN object is created is 0. The value 0 in this
column indicates that there is no limit on the number of tries for that object.

The default value of the Tries column when a new C_PIN object is created is 0. If the value of the
TryLimit column is not 0, then the value of the Tries column is incremented by the TPer on every
failed Authenticate, including the implicit Authenticate if the authority is a Signing Authority invoked
during session startup.

When the value of the Tries column is equal to the value of the TryLimit column, and the TryLimit
column is not equal to O, further attempts to authenticate using this credential will always fail (until the
value of the Tries column is reset), but Tries will not increment beyond TryLimit.

The value of the Tries column is set to 0 by the TPer upon successful invocation of the Authenticate
method or implicit session startup authentication of the authority referencing this C_PIN object.

The value of the Tries column may be reset from the host by successful invocation of the Set method
on that cell to set the value to 0 (access control must be properly fulfilled).

Additionally, the value of the Tries column will be reset to 0 after a power cycle if the value of the
Persistence column is False. Otherwise, the value of the Tries column will persist across power
cycles.

If TryLimit is O, there is no limit to the number of Tries, and Tries shall remain 0.

Revision 0.9 - draft - Draft Page 131 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Note: The value of the Tries column is not subject to transactional rollback when changed by the TPer.
The TPer shall be able to set the Tries column value during a Read-Only session, but the host shall
only be able to set this column during a Read-Write session.

The C_PIN object with UID=0x00 0x00 0x00 0Ox0B 0x00 0x00 0x00 0x01 and Name=“SID” is the
default SID object.

5.3.2.12 Credential Table Group - C_RSA_1024 (Object Table)

Table 45 C_RSA_1024 Table Description

|Co|umn |Is|ndex |Type |Description

uib uid This is the unique identifier for this object. (Read-
only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among C_RSA_1024
objects (Read-only for pre-personalization objects)

Format padding_type This column defines the type of padding used with
RSA encryption.

|Pu_Exp | |uinteger_128 |RSA Public Exponent

Mod | |uinteger_128 IRSA Public Modulus

|Pr_Exp | |uinteger_1 28 |RSA Private Exponent

|P | |umteger_64 p and g, the primes from the key generation,

Q | uinteger_64

|Dmp1 | |uinteger_64 d mod (p-1) and d mod (g-1) (often known as dmp1

Dmaq1 | uinteger_64 and dmq1)

|Iqmp | |uinteger_64 |(1/q) mod p (often known as igmp)

Hash hash_protocol If a referencing authority has a HashAndSign
column value of True, this column identifies the
hash algorithm to create the session startup
method parameter MAC to be signed by this
credential.

ChainLimit int_1 def O The chaining limit for using a chained down key
from this one. —1 indicates no limit. 0, no chain, is
the default.

Certificate Certificates_ref Certificate(s) — provides a chained set of
unencoded X.509 certificates if needed to prove an
ancestor authority

5.3.2.13 Credential Table Group - C_RSA_2048 (Object Table)

Table 46 C_RSA_2048 Table Description
|COIumn |Islndex |Type |Description

uid This is the unique identifier for this object. (Read-

uiD
‘ ‘ only for pre-personalization objects)

Revision 0.9 - draft - Draft Page 132 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex |Type |Description

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple
C_RSA _2048 objects (Read-only for pre-
personalization objects)

Format padding_type This column defines the type of padding used with
RSA encryption.

|Pu_Exp | |uinteger_256 |RSA Public Exponent

Mod | \uinteger_256 IRSA Public Modulus

|Pr_Exp | |uinteger_256 |RSA Private Exponent

|p | |umteger_1 28 p and q, the primes from the key generation

|q | |uinteger_1 28

|Dmp1 | |uinteger_1 28 d mod (p-1) and d mod (g-1) (often known as dmp1

Dmgq1 | uinteger_128 and dmq1)

|Iqmp | |uinteger_1 28 |(1/q) mod p (often known as igmp)

Hash hash_protocol If a referencing authority has a HashAndSign
column value of True, this column identifies the
hash algorithm to create the session startup
method parameter MAC to be signed by this
credential.

ChainLimit int_1_def O The chaining limit for using a chained down key
from this one. —1 indicates no limit. 0, no chain, is
the default.

Certificate Certificates_ref Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove
signing from an ancestor authority

5.3.2.14 Credential Table Group - C_AES_128 (Object Table)

Table 47 C_AES_128 Table Description

|Co|umn |Is|ndex |Type |Description

\UID | \uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_AES_128
objects (Read-only for pre-personalization objects)

Key bytes_16 Key

|Mode |symmetric_mode |Defines the mode with which this credential shall be used.

|FeedbackSize |feedback_size |Feedback size for CFB mode

bytes 16 The value in this column provides the IV for the
Encrypt/Decrypt method (unless the IV parameter in the

Encryptlnit/Decryptinit method is invoked).

|
|
|
ResidualData ‘
|

|Hash |hash_protocol |Defines the hash protocol to be used with this credential

Revision 0.9 - draft - Draft Page 133 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The Mode column defines the encryption mode with which this credential shall be used. Valid values
are ECB, CBC, CFB, OFB, GCM, CCM, CTR and MediaEncryption. MediaEncryption mode permits a
vendor-specific encryption mode. Having a mode other than MediaEncryption does not prevent this
credential from being used as a media encryption key. For additional information on media encryption,
see 5.8.

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the Encryptinit/Decryptinit method is invoked). The TPer then sets this value as the
last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’'s mode, as defined in Table 48.

The Hash column defines the hash protocol to be used with this credential.

Table 48 C_AES 128 ResidualData Column Values

|M0de |Co|umn Value

[ECB All 00’s

|CBC |The ciphertext of the last block encrypted/decrypted

CFB The (128 — FeedbackSize) LSBs of the last input to the Encrypt/Decrypt method,
concatenated with the ciphertext of the last block encrypted/decrypted

|OFB |The last output block of the Encrypt/Decrypt method

|CTR |The last input block to the Encrypt/Decrypt method + 1

|GCM |The last input block to the Encrypt/Decrypt method + 1

|CCM |The last input block to the Encrypt/Decrypt method + 1

|MediaEncryption |Vendor specific

5.3.2.15 Credential Table Group - C_AES_256 (Object Table)

Table 49 C_AES_ 256 Table Description

|Co|umn |Is|ndex |Type |Description

|UID | |uid |This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName (Yes name A name that may be shared among multiple C_AESS 256
objects (Read-only for pre-personalization objects)

Key bytes_32 Key

|Mode |symmetric_mode |Defines the mode with which this credential shall be used.

ResidualData bytes 32 The value in this column provides the IV for the
Encrypt/Decrypt method (unless the IV parameter in the

Encryptlnit/Decryptinit method is invoked).

|
|

|FeedbackSize | |feedback_size |Feedback size for CFB mode
|

|Hash |hash_protocol |Defines the hash protocol to be used with this credential

The Mode column defines the encryption mode with which this credential shall be used. Valid values
are ECB, CBC, CFB, OFB, GCM, CCM, CTR and MediaEncryption. MediaEncryption mode permits a
vendor-specific encryption mode. Having a mode other than MediaEncryption does not prevent this
credential from being used as a media encryption key. For additional information on media encryption,
see 5.8.

Revision 0.9 - draft - Draft Page 134 of 265

TCG Storage Architecture Core Specification

Specification Version 1.0

TCG Copyright 2007

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the Encryptinit/Decryptinit method is invoked). The TPer then sets this value as the
last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’'s mode, as defined in Table 50.

The Hash column defines the hash protocol to be used with this credential.

Table 50 C_AES 256 ResidualData Column Values

|Mode |Co|umn Value

[ECB |All 00’s

|CBC |The ciphertext of the last block encrypted/decrypted

CFB The (256 — FeedbackSize) LSBs of the last input to the Encrypt/Decrypt method,
concatenated with the ciphertext of the last block encrypted/decrypted

|OFB |The last output block of the Encrypt/Decrypt method

|CTR |The last input block to the Encrypt/Decrypt method + 1

|GCM |The last input block to the Encrypt/Decrypt method + 1

|CCM |The last input block to the Encrypt/Decrypt method + 1

|MediaEncryption |Vendor specific

5.3.2.16 Credential Table Group - C_EC_160 (Object Table)

Table 51 C_EC 160 Table Description

|Co|umn |Is|ndex |Type |Description

|UID | |uid |This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_160
objects (Read-only for pre-personalization objects)

|p | |uinteger_20 |Modu|us

|r | |uinteger_20 |Order of the curve

|b | |uinteger_20 |Curve coefficient (y*=x’-3x+b mod p)

|x | |uinteger_20 |Base point x-coordinate

|y | |uinteger_20 |Base point y-coordinate

|a|pha | |uinteger_20 |Private key

|u | |uinteger_20 |Pub|ic key x-coordinate: (u, v) = a (x,y)

v | uinteger_20 |Public key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol |The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

Revision 0.9 - draft -

Draft Page 135 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Description

Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

|Co|umn |Is|ndex |Type

Certificate

Certificates_ref

Table 52 represents the set of elliptic curve domain parameters as specified in AACS “Introduction and
Common Cryptographic Elements”. The entries p, r, b, x and y are represented in decimal format.
These are example values for a curve that may be used with the C_EC_160 table. These values are set
as the default values for the associated columns when a new row is created in the C_EC 160 table and
when values for those columns are not specified at table creation. These default values are not
represented by a Type table entry — the TPer shall be required to keep track of these values and set
them as defaults for new objects, as necessary.

Table 52 AACS Values for C_ EC 160

|CoanﬂVawe

p 1900812823637587646514106462588455890498729007071
Ir 1900812823637587646514106555566573588779770753047
b 1366394034647231750324370400222002566844354703832
x 1264865613959729647018113670854605162895977008838
ly 151841075954883162510413392745168936296187808697

5.3.2.17 Credential Table Group - C_EC_192 (Object Table)

Table 53 C_EC 192 Table Description

|Co|umn |Is|ndex |Type |Description

\uID | uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_192
objects (Read-only for pre-personalization objects)

|p | |uinteger_24 |Modu|us

|r | |uinteger_24 |Order of the curve

b | uinteger_24 |Curve coefficient (y>=x’-3x+b mod p)

|x | |uinteger_24 |Base point x-coordinate

|y | |uinteger_24 |Base point y-coordinate

|a|pha | |uinteger_24 |Private key

|u | |uinteger_24 |Public key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_24 |Pub|ic key y-coordinate: (u, v) = a (X,y)

Hash hash_protocol [The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

Revision 0.9 - draft - Draft Page 136 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Co|umn |Is|ndex |Type |Description

Certificate Certificates_ref |Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from

an ancestor authority

Table 54 represents the set of elliptic curve domain parameters that is the fixed set known as P-192 in
FIPS 186-3 and secp192r1 in SEC2. The entries p, r, b, x and y represented in that table are example
values for a curve that may be used with the C_EC_192 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_192 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry — the TPer shall be required to keep track of these values and set them as defaults for
new objects, as necessary.

Table 54 FIPS P-192 Values for C_ EC 192

|Cownwﬂvmue

‘p ‘EF;EEFEFZEFﬁFEFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF
r \FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831
|b |64210519 E59C80E7 OFA7ESAB 72243049 FEBS8DEEC C146B9B1
x /188DASOE B0O3090F6 7CBF20EB 43A18800 FAFFOAFD 82FF1012
y (07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

5.3.2.18 Credential Table Group - C_EC_224 (Object Table)

Table 55 C_EC 224 Table Description

|Co|umn |Is|ndex |Type |Description
\uID | uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_224
objects (Read-only for pre-personalization objects)

|p | |uinteger_28 |Modu|us

|r | |uinteger_28 |Order of the curve

b | uinteger_28 |Curve coefficient (y>=x’-3x+b mod p)

|x | |uinteger_28 |Base point x-coordinate

|y | |uinteger_28 |Base point y-coordinate

|a|pha | |uinteger_28 |Private key

|u | |uinteger_28 |Public key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_28 |Pub|ic key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol |The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

Revision 0.9 - draft - Draft Page 137 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Description

Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

|Co|umn |Is|ndex |Type

Certificate

Certificates_ref

Table 56 represents the set of elliptic curve domain parameters that is the fixed set known as P-224 in
FIPS 186-3 and secp224r1 in SEC2. The entries p, r, b, x and y represented in that table are example
values for a curve that may be used with the C_EC_224 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_224 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry — the TPer shall be required to keep track of these values and set them as defaults for
new objects, as necessary.

Table 56 FIPS P-224 Values for C_EC 224

|Cmunm|Vmue

‘p ‘EF;EEFEFzngFEFFF FFFFFFFF FFFFFFFF 00000000 00000000 00000001
Ir \FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 EOBSFO3E 13DD2945 5C5C2A3D
|b |B4050A85 0CO4B3AB F5413256 5044BOB7 D7BFD8BA 270B3943 2355FFB4
X IB70EOCBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21
ly IBD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 85007E34

5.3.2.19 Credential Table Group - C_EC_256 (Object Table)

Table 57 C_EC_256 Table Description

|Co|umn |Is|ndex |Type |Description
\uID | uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_256
objects (Read-only for pre-personalization objects)

|p | |uinteger_32 |Modu|us

|r | |uinteger_32 |Order of the curve

b | uinteger_32 |Curve coefficient (y>=x’-3x+b mod p)

|x | |uinteger_32 |Base point x-coordinate

|y | |uinteger_32 |Base point y-coordinate

|a|pha | |uinteger_32 |Private key

|u | |uinteger_32 |Public key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_32 |Pub|ic key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol |The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

Revision 0.9 - draft - Draft Page 138 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Cdumn

|Is|ndex |Type

|Description

Certificate

Certificates_ref

Certificate(s) -

provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 58 represents the set of elliptic curve domain parameters is the fixed set known as P-256 in FIPS
186-3 and secp256r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_256 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC 256 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry — the TPer shall be required to keep track of these values and set them as defaults for new

objects, as necessary.

Table 58 FIPS P-256 Values for C_EC 256

|Co|umn |Va|ue

p FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF
FFFFFFFE = 2256 _ 2224 + 2192 + 296 -1

r FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCEGFAAD A7179E84 F3B9CAC2
FC632551

b 5AC635D8 AA3AQ3E7 B3EBBD55 769886BC 651D06B0 CC53BOF6 3BCE3C3E
27D2604B

X 6B17D1F2 E12C4247 F8BCEG6E5 63A440F2 77037D81 2DEB33A0 F4A13945
D898C296

y 4FE342E2 FE1A7F9B 8EE7EB4A 7COF9E16 2BCE3357 6B315ECE CBB64068
37BF51F5

5.3.2.20 Credential Table Group - C_EC_384 (Object Table)

Table 59 C_EC 384 Table Description

|Co|umn |Is|ndex |Type |Description
\uID | uid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_384
objects (Read-only for pre-personalization objects)

|p | |uinteger_48 |Modu|us

|r | |uinteger_48 |Order of the curve

b | uinteger_48 |Curve coefficient (y>=x’-3x+b mod p)

|x | |uinteger_48 |Base point x-coordinate

|y | |uinteger_48 |Base point y-coordinate

|a|pha | |uinteger_48 |Private key

|u | |uinteger_48 |Public key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_48 |Pub|ic key y-coordinate: (u, v) = a (x,y)

Revision 0.9 - draft -

Draft Page 139 of 265

TCG Storage Architecture Core Specification

TCG Copyright 2007

Specification Version 1.0

|Cdumn

|Is|ndex |Type

|Descripti0n

Hash

The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

hash_protocol

ChainLimit

The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

integer_1

Certificate

Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Certificates_ref

Table 60 represents the set of elliptic curve domain parameters is the fixed set known as P-384 in FIPS
186-3 and secp384r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_384 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC 384 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry — the TPer shall be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 60 FIPS P-384 Values for C_ EC_ 384

|Co|umn |Va|ue

p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FEFFFFFF
FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF = 2384 _ 2128 _ 29 . 232 _
1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81
F4372DDF 581A0DB2 48BOA77A ECEC196A CCC52973

b B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F
5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

X AAB7CA22 BESB0537 8EBIC71E F320AD74 6E1D3B62 8BA79B98 59F741E0
82542A38 5502F25D BF55296C 3A545E38 72760AB7

y 3617DE4A 96262C6F 5SD9E98BF 9292DC29 F8F41DBD 289A147C E9DA3113
BSFOBSCO OA60B1CE 1D7E819D 7A431D7C 9OEAOESF

5.3.2.21 Credential Table Group - C_EC 521 (Object Table)

Table 61 C_EC 521 Table Description

|Co|umn |Is|ndex |Type |Description

\uID | uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_521
objects (Read-only for pre-personalization objects)

|p | |uinteger_66 |Modu|us

|r | |uinteger_66 |Order of the curve

b | uinteger_66 |Curve coefficient (y>=x’-3x+b mod p)

|x | |uinteger_66 |Base point x-coordinate

|y | |uinteger_66 |Base point y-coordinate

Revision 0.9 - draft -

Draft Page 140 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex |Type |Descripti0n

|a|pha | |uinteger_66 |Private key

|u | |uinteger_66 |Pub|ic key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_66 |Public key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol |[The value of this column identifies the hash type used for

ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.
Certificate Certificates_ref |Certificate(s) — provides a (possibly chained) set of

unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 62 represents the set of elliptic curve domain parameters is the fixed set known as P-521 in FIPS
186-3 and secp521r1 in SEC2. The entries p, r, b, x and y represented in that table are example values
for a curve that may be used with the C_EC_521 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC 521 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry — the TPer shall be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 62 FIPS P-521 Values for C_ EC 521

|Co|umn |Va|ue

P O1FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FRFFFFFF FEFFFFFF
FFFFFFFF FFFFFFFF = 2521 - 1

r O1FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FRFFFFFF
FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8 899C47AE
BB6FB71E 91386409

b 0051 953EB961 8E1COAL1F 929A21A0 B685S40EE A2DA725B 99B315F3 B8B48991
8EF109E1 56193951 EC7E937B 1652COBD 3BB1BFO7 3573DF88 3D2C34F1
EF451FD4 6B503F00

X 00C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 053FB521 F828AF60
6B4D3DBA A14B5E77 EFE75928 FE1DC127 A2FFA8DE 3348B3C1 856A429B
FO7E7E31 C2ES5BD66

y 0118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449 579B4468 17AFBD17
273E662C 97EE7299 5EF42640 C550B901 3FADO761 353C7086 A272C240
88BE9476 9FD16650

5.3.2.22 Credential Table Group - C_EC_163 (Object Table)

Table 63 C_EC 163 Table Description

|Co|umn |Is|ndex ‘Type ‘Description
\UID | luid This is the unique identifier for this object. (Read-only)
Name Yes name This is the name of this object. (Read-only for pre-

personalization objects)

Revision 0.9 - draft - Draft Page 141 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

|Co|umn |Is|ndex ‘Type ‘Description

CommonName |Yes name A name that may be shared among multiple C_EC_163 objects
(Read-only for pre-personalization objects)

|k1 | |uinteger_1 |High non-leading, non-constant term of irreducible pentanomial

k2 uinteger_1 Middle non-leading, non-constant term of irreducible
pentanomial

|k3 | |uinteger_1 |Low non-leading, non-constant term of irreducible pentanomial

|r | ‘uinteger_21 ‘Order of the curve

la | uinteger_1 |Curve coefficient (y* +xy = x* + ax’ + b), must be zero or one

b | uinteger_21 |Curve coefficient (y* +xy = x> + ax’ + b)

Ix | uinteger_21 |Base point x-coordinate

|y | |uinteger_21 |Base point y-coordinate

|a|pha |]uinteger_21 ‘Private key

|u | |uinteger_21 |Public key x-coordinate: (u, v) = a (x,y)

|v | ‘uinteger_21 ‘Public key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol |The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this one. —
1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref |Certificate(s) — provides a (possibly chained) set of unencoded

X.509 certificates if needed to prove signing from an ancestor
authority

Table 64 represents the set of elliptic curve domain parameters that is the fixed set known as K-163 in
FIPS 186-3 and sect163k1 in SEC2. The entries k1, k2, k3, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_163 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_ 163 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry — the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 64 FIPS K-163 Values for C EC 163

\Column |Value

k1 07

k2 06

k3 03

r (04 00000000 00000000 00020108 A2EOCCOD 99FBASEF
a 01

b (00 00000000 00000000 00000000 00000000 00000001
x (02 FE13C053 7BBC11AC AAO7D793 DE4EGDSE 5CO4EEES
ly (02 89070FBO 5D38FF58 321F2E80 0536D538 CCDAA3D9

Revision 0.9 - draft -

Draft Page 142 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.2.23 Credential Table Group - C_EC_ 233 (Object Table)

Table 65 C_EC 233 Table Description

|Co|umn |Islndex |Type |Description

|UID | |uid |This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_233
objects (Read-only for pre-personalization objects)

|k | |uinteger_2 |Non—|eading, non-constant term of irreducible trinomial

|r | |uinteger_30 |Order of the curve

a | uinteger_1 ICurve coefficient (y* +xy = x° + ax® + b), must be zero or one

b | uinteger_30 |Curve coefficient (y* +xy = x* + ax’ + b)

|x | |uinteger_30 |Base point x-coordinate

|y | |uinteger_30 |Base point y-coordinate

|a|pha | |uinteger_30 |Private key

|u | |uinteger_30 |Public key x-coordinate: (u, v) = a (x,y)

|v | |uinteger_30 |Pub|ic key y-coordinate: (u, v) = a (X,y)

Hash hash_protocol [The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this
one. —1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref |Certificate(s) — provides a (possibly chained) set of
unencoded X.509 certificates if needed to prove signing from
an ancestor authority

Table 66 represents the set of elliptic curve domain parameters that is the fixed set known as K-233 in
FIPS 186-3 and sect233k1 in SEC2. The entries k, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_233 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_233 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry — the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 66 FIPS K-233 Values for C_ EC 233

|Co|umn |Va|ue

k 4A (= 74 in decimal)

Ir (0080 00000000 00000000 00000000 00069D5B BI15BCD4 6EFBLAD5 F173ABDF
a 00

b (0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
x (0172 32BA853A 7E731AF1 29F22FF4 149563A4 19C26BF5 OA4COD6E EFAD6126
ly (01DB 537DECE8 19B7F70F 555A67C4 27A8CD9B F18AEB9B 56E0C110 56FAE6A3

Revision 0.9 - draft - Draft Page 143 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.2.24 Credential Table Group - C_EC 283 (Object Table)

Table 67 C_EC 283 Table Description

(Column Isindex Type Description

lUID | \uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_EC_283 objects
(Read-only for pre-personalization objects)

|k1 | |uinteger_1 |High non-leading, non-constant term of irreducible pentanomial

k2 uinteger_1 Middle non-leading, non-constant term of irreducible
pentanomial

|k3 | |uinteger_1 |Low non-leading, non-constant term of irreducible pentanomial

|r | ‘uinteger_36 ‘Order of the curve

la | uinteger_1 Curve coefficient (y* +xy = x° + ax” + b), must be zero or one

b | uinteger_36 |Curve coefficient (y* +xy = x + ax’ + b)

|x | |uinteger_36 |Base point x-coordinate

|y |]uinteger_36 \Base point y-coordinate

|a|pha |]uinteger_36 ‘Private key

|u | |uinteger_36 |Public key x-coordinate: (u, v) = a (x,y)

|v | ‘uinteger_36 ‘Public key y-coordinate: (u, v) = a (x,y)

Hash hash_protocol [The value of this column identifies the hash type used for
ECDSA (message digesting), for ECDH and ECMQV (key
derivation), and for creation of the MAC of session startup
methods if a referencing authority requires HashAndSign for
session startup methods.

ChainLimit integer_1 The chaining Limit for using a chained down key from this one. —
1 indicates no limit. 0, no chain, is the default.

Certificate Certificates_ref |Certificate(s) — provides a (possibly chained) set of unencoded
X.509 certificates if needed to prove signing from an ancestor
authority

Table 68 represents the set of elliptic curve domain parameters that is the fixed set known as K-283 in
FIPS 186-3 and sect283k1 in SEC2. The entries k1, k2, k3, r, a, b, x and y represented in that table are
example values for a curve that may be used with the C_EC_283 table. These values are set as the
default values for the associated columns when a new row is created in the C_EC_283 table and when
values for those columns are not specified at table creation. These default values are not represented
by a Type table entry — the TPer shall be required to keep track of these values and set them as
defaults for new objects, as necessary.

Table 68 FIPS K-283 Values for C_EC 283

|Co|umn |Va|ue

k1 [0C (= 12 in decimal) |
k2 07 |
k3 05 |

Revision 0.9 - draft -

Draft Page 144 of 265

TCG Storage Architecture Core Specification
Specification Version 1.0

TCG Copyright 2007

|Co|umn |Va|ue

r

O1FFFFFF
2EDO7577

FFFFFFFF
265DFF7F

FFFFFFFF
94451E06

FFFFFFFF
1E163C61

FFFFESAE

a

|00

b

00000000
00000000

00000000
00000000

00000000
00000000

00000000
00000001

00000000

0503213F
23C1567A

78CA4488
16876913

3F1A3B81
BOC2AC24

62F188ES5
58492836

53CD265F

01CCDA38
E8184698

OF1C9E31
E4596236

8D90F95D
4E341161

O7E5426F
77DD2259

E87E45CO

5.3.2.25 Credential Table Group — C_HMAC_160 (Object Table)

Table 69 C_ HMAC 160 Table Description

|Co|umn |Is|ndex |Type |Description

|UID | |uid |This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName (Yes name A name that may be shared among multiple C_HMAC_160
objects (Read-only for pre-personalization objects)

Key | bytes 20 Key

|Hash | |hash_protocol |Defines the hash protocol to be used with this credential

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.26 Credential Table Group — C_HMAC_256 (Object Table)

Table 70 C_HMAC 256 Table Description

|Co|umn |Is|ndex |Type |Description

\UID | luid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_HMAC_256
objects (Read-only for pre-personalization objects)

Key | bytes_32 |Key

|Hash | |hash_protocol |Defines the hash protocol to be used with this credential

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

Revision 0.9 - draft - Draft Page 145 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.27 Credential Table Group — C_HMAC_384 (Object Table)

Table 71 C_HMAC 384 Table Description

|COIumn |Is|ndex |Type |Description

\uID | \uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_HMAC 384
objects (Read-only for pre-personalization objects)

|Key | |bytes_48 |Key

|Hash | |hash_protoco| |Defines the hash protocol to be used with this credential

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.2.28 Credential Table Group — C_HMAC_512 (Object Table)

Table 72 C_HMAC _512 Table Description

|Co|umn |Is|ndex |Type |Description

\uID | \uid This is the unique identifier for this object. (Read-only)

Name Yes name This is the name of this object. (Read-only for pre-
personalization objects)

CommonName |Yes name A name that may be shared among multiple C_HMAC 512
objects (Read-only for pre-personalization objects)

|Key | |bytes_64 |Key

|Hash | |hash_protoco| |Defines the hash protocol to be used with this credential

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation or a host-invoked HMAC operation (as enabled by the Crypto Template).

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations (see the Crypto Template section for additional details).

See FIPS-198 for details on matching key size to hash protocol selection.

5.3.3 Methods

This section details the methods provided to an SP by the Base Template.

Revision 0.9 - draft - Draft Page 146 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.3.1 SP Method Group - DeleteSP (Method)

SPUID.DeleteSP[]
=>
[Result : boolean]

This method is used to delete the SP to which the DeleteSP method has been invoked.

The TPer owner is able to delete an SP by opening a session to the Admin SP and invoking the Delete
method on the SP object in the Admin SP’s SP table. However, the SP owner probably cannot delete
the SP in this way, and instead uses this method.

This method operates within a Read-Write session to the SP that is being deleted. The SP will not be
deleted until the session is successfully closed. Upon successful deletion of the SP, the following
changes are made:

o0 The row in the Admin SP’s SP table that represents this SP is deleted.

0 The value of the Instances column of the Admin SP’s Template table is reduced by 1 for each
of the Templates that had been issued into the SP being deleted.

0 The SP itself is deleted. The means of deletion is implementation-specific. Once the SP has
been deleted, the Host shall no longer have the capability to open sessions to the SP.

o Any TPer functionality affected by the existence of the SP based on the templates incorporated
into it is modified as defined in the appropriate Template reference section of the Core Spec.

Since an SP may be disabled by the SP owner or frozen by the TPer owner, this method shall be
invokable on a disabled/frozen SP, as the entity that caused entry to the disabled or frozen state may
not be available or have appropriate permission to reenable/unfreeze the SP prior to deletion (access
control must still be fulfilled). See section 4

This method shall only be successfully invoked in a Read-Write session.

53.3.11 Fails
e If the method is invoked from within a Read-Only session.

5.3.3.2 Basic Table Method Group - CreateTable (SP Method)

SPUID.CreateTable[
NewTableName : name,
Kind : table kind,
GetSetACL : ACL,
Columns : columns,
MinSize : uinteger_4,
MaxSize = uinteger_4,
HintSize = uinteger_4,
CommonName = name]

=>

[UID = uid, Rows : uinteger_4]

This method is used to create a new table in an SP. For a byte table, all rows exist at table creation. For
the other table types, no rows will exist, but are inserted using the CreateRow method.

The NewTableName parameter is the name for this table. The NewTableName-CommonName
combination shall be unique within the Table table.

The Kind parameter identifies the table’s type (object, array, or byte).

GetSetACL is the list of ACEs placed in the access control lists of the GetACL, AddACE, and
RemoveACE methods for the methods available on the new table.

The Columns parameter defines the columns of the new table. For byte tables this parameter must be
an empty list.

Revision 0.9 - draft - Draft Page 147 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The MinSize parameter is used to define the initial number of rows allocated for the new table.

The optional MaxSize parameter defines the host-requested maximum number of rows that can be
created for the table.

The optional HintSize parameter is used to suggest a number of rows to be created for the table.

The method returns the UID of the table, and the number of rows allocated.

5.3.3.2.1 Fails

o |f a table with the specified name already exists.

o If there isn’t space in the SP for the new table.

o If metadata/support tables (i.e. Table, Column, Method, and ACE) are not all able to create all
required rows to support this table.

e |If TPer determines MinSize is too large.

5.3.3.3 Basic Table Method Group - Delete (Object Method)

ObjectUID.Delete[]
=>
[Result : boolean]

Successful invocation of this method deletes the object upon which this method was invoked.

Upon successful deletion of an object, rows in the Method table where this object’s UID appears in the
Type column shall be deleted.

In the case of successful invocation of this method on a table descriptor object (a row in the Table
table), the associated table is deleted. The rows in the Method table where the table’s or table
descriptor object’s UID appear in the InvokinglID column are deleted. The rows in the Column table
that are associated with the table are also deleted.

If invoked on an SP object (a row in the Admin SP’s SP table), the SP is deleted. Deleting an SP in this
fashion has the same effects as detailed in 5.3.3.1.

5.3.33.1 Fails
o If the object does not exist.

5.3.3.4 Basic Table Method Group - CreateRow (Table Method)

TableUID_CreateRow[
Data : row_data]
=>
[Result : createrow_result]

This method inserts one or multiple rows into a table. This method is not available on byte tables. The
list of refs and/or uidrefs returned is the list of all row references and/or UIDs of the rows created.

If a row with the specified indexed column values already exists in the table in which the new row is
being created, it is deleted before the new row is inserted. Access control must be satisfied on the
Delete or DeleteRow method for that row for the “overwrite” to occur. If ACLs do not permit the row to
be deleted, an error is returned and the table is unchanged (no new row is created).

When a row in an object table is created, a number of Method table rows are created that correspond to
the default methods permitted for the created object. ACLs are set on those methods, and in the meta-
ACL methods associated with those methods, as follows:

0 Using the HostSigningAuthority from the StartSession method, if provided.
o0 Otherwise, using the HostExchangeAuthority from the StartSession method, if provided.

o0 Otherwise, using the Anybody Authority.

Revision 0.9 - draft - Draft Page 148 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

A value for a row’s UID column, or any other system column, cannot be specified.

Note that CreateRow may be limited in some instances based on required default values for some table
columns, and may be required to make certain validity checks when creating rows for some tables.
These instances will be called out in the pertinent Template Reference sections.

53.34.1 Fails

e When the table is full (i.e. MaxSize of the table was reached).

e If a row where the indexed column value combination already exists that is the same as that
requested in the method cannot be over-written

e Columns specified are not part of table definition.

o Attempts to create more rows than may be allocated

o If all required associated rows are not able to be created in all related tables (i.e. the Table,
Method, Column, and ACE tables)

5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)

TableUID.DeleteRow[
Where : row_selection,
Count = uinteger_4]
=>
[Result : boolean]

This method is used to delete table rows. This method shall not be able to be successfully invoked on
byte tables.

Invoking this method deletes Count rows, beginning with the row addressed by the value in the Where
parameter.

If not provided, Count shall default to 1.

Count is not permitted for object tables (adjacency has no meaning), and shall be disregarded by the
TPer. Only one row in an object table at a time may be deleted by invocation of this method — that row
is identified in the row_selection parameter.

For side effects of deleting objects, see the description of the Delete method (section 5.3.3.3).

5.3.35.1 Fails

o If the addressed row does not exist.
e If Count is specified as 0.
e If Count is specified and there are not Count rows starting at Where.

5.3.3.6 Basic Table Method Group - Get (Table and Object Method)

TableUID.Get[
ObjectUID.Get[
Cellblock : cell_block]
=>
[Result : get_result]

This method is used to fetch the values of selected table cells.

The Cellblock parameter defines the scope of the data that the method is attempting to retrieve by
identifying the rectangular range of cell values on which the method should operate.

Successful invocation of this method shall only return the values that are readable based on the
currently authenticated authorities and ACE restrictions for this method. It is not an error to request
columns that are restricted by an authenticated ACE.

If multiple row values are returned from an array table, rows shall be returned from the lowest
numbered row to the highest numbered row. Column name-value pairs shall be returned in the order in

Revision 0.9 - draft - Draft Page 149 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

which they are listed in the Column table, with the first column linked from the Table’s table descriptor
object in the Table table. This first column links to the second column in its Next column, and so forth.

When an ACE with row and column restrictions is used on a table that puts the row or column
restrictions out of bounds for that table, an authentication failure error is returned.

If the method is invoked on a byte table, the return type is ByteColumns. If the method is invoked on a
non-byte table, the return type is Columns.

5.3.3.6.1 Fails

If table/object doesn’t exist.

If the object method’s Cellblock parameter contains row values.

If the method is invoked on a Byte table and has column values in the Cellblock parameter.

If the any of the Cellblock parameter values are out of bounds for the table upon which it was
invoked.

5.3.3.7 Basic Table Method Group - Set (Table and Object Method)

TableUID.Set[
ObjectUID.Set[
Where : cell_block,
Values : set_values]
=>
[Result : boolean]

This method is used to change the values of selected table cells. Unlike with the Get method, if any of
the cells cannot be written, Set shall return an error. Either all the changes will be made, or none of
them will be made.

The Where parameter defines the location of the cells whose values the method is attempting to
change. It is an error for the object method’'s Where parameter to contain row information. Attempting
to invoke the Set method on a range of objects (a range of rows in an object table) with the table
method shall result in an error.

5.3.3.7.1 Fails

If the table/object doesn’t exist.

If an attempt is made to change the value of an UID or other system cell.

If an attempt is made to set a cell to a value larger than that cell’s type allows.

If the method is invoked on a byte table and the cell_block parameter contains Column values
Set is restricted by an access control limitation on any of the rows and columns requested.

5.3.3.8 Basic Table Method Group - Next (Table Method)

TableUID.Next[
Where
Count

row_selection,
uinteger_4]

==
[Result : next_result]

When successfully invoked on an array table, the Next method returns zero or more row number/uidref
pairs currently in use in the table following the specified Where row, iterating sequentially (by
RowNumber column value) through the table rows. If Where is not specified, the first row of the table is
the first row number returned. If Count is not specified, it defaults to 1. If there are fewer than Count
rows defined after the indicated starting row, only the defined row numbers are returned.

Since object tables are unordered, the iteration that results from successful invocation of this method on
an object table will cause the method to “visit” the rows in the table in some undefined order. The
method invocation returns zero or more uidrefs “following” the specified Where row, iterating through
the table. If a value for the Where parameter is not specified in the method invocation, iteration starts at
the “beginning” of the table.

Revision 0.9 - draft - Draft Page 150 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

The list of returned uidrefs that result from invocation of the Next method on an object table returns
those uidrefs in an arbitrary order. Results are not guaranteed to be consistent if the object table is
modified between calls to Next. The implementation is required to visit all rows of an object table only if
the table is not changed during the iteration.

5.3.3.8.1 Fails
e |f the table/object doesn't exist.

5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)

SPUID.GetFreeSpace[]
=>
[uinteger_8, Table_ref _rows_list]

The GetFreeSpace method is an SP method that enables the host to retrieve the number of rows that
can be additionally created in each table.

Invoking GetFreeSpace returns two values. The first return value is the approximate amount of free
space (in bytes) available in the SP. The second is a list containing the UID of each table descriptor
object and the number of rows that can be additionally created for each table (separately) under current
conditions of the SP and the TPer. This number may change in subsequent invocations of this method,
based on modifications subsequent to the method invocation.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system can generate per table.

5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)

TableObjectUID.GetFreeRows[]
=>
[uinteger_4]

The GetFreeRows method is a table method that enables the host to retrieve the number of rows that
may be additionally created in a table.

When GetFreeRows is invoked, the TPer returns only the number of rows that can be additionally
created for that table.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system can generate per table.

5.3.3.10.1 Fails
¢ When the table TableObjectUID does not exist in the SP.

5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)

MethodTableUID.DeleteMethod[
InvokinglD : table_object_ref,
MethodID : MethodID_ref]

=>

[Result : boolean]

Successful invocation of the DeleteMethod method removes the indicated SP/method, table/method, or
object/method access control association from the Method table. The association that is deleted from
the Method table is the row where the InvokinglD column value is the InvokinglD parameter of the
method, and the value of the MethodID column is the uid referenced in the MethodID parameter of the
DeleteMethod invocation.

The DeleteMethod method is typically used during personalization, and allows the personalizing host to
prevent the usage of certain methods on certain tables, objects, or the SP by removing the access
control association that permits the method to be invoked.

Revision 0.9 - draft - Draft Page 151 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

This does not remove the capability of invoking the indicated method from the SP entirely. It only
removes the indicated access control association that allows the method to be invoked in that particular
fashion.

5.3.3.11.1 Fails
e |f the Type/Method combination does not exist.

5.3.3.12 Access Control Method Group - Authenticate (SP Method)

SPUID.Authenticate[
Authority : Authority_ref,
Challenge = challenge]
=>
[typeOr{ Success : boolean,
Response : response }]

Authorities invoked during session startup are implicitly authenticated. The Authenticate method is
used to explicitly authenticate an authority within a session, i.e., after a session has already
successfully begun.

The implementation may limit the number of authorities that may be authenticated at any one time (as
recorded in the MaxAuthentications value of the Properties method). If the authentication attempt
would cause the MaxAuthentications property value to be exceeded for the session, a properly invoked
Authenticate method shall return a status of SUCCESS and a result of False.

5.3.3.12.1 Fails

e |f the authority called out in the method invocation does not exist.

o |f the secure messaging required by the authority is not in effect.

o |If the Challenge in the first Authenticate method invocation does not match that expected by
the TPer.

e |f the Challenge returned in the second Authenticate invocation does not match that expected
by the TPer.

5.3.3.13 Access Control Method Group - GetACL (Meta-Method)

MethodTableUID.GetACL[
InvokinglD : table_object_ref,
MethodID : MethodID_ref]

=>

[ACL - ACL]

This method is used to retrieve the contents of an access control association’s ACL, which are stored in
the Method table. This method returns a response of type "ACL", which is a list of uidrefs to ACE
objects.

The InvokingID parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the Method 1D table.

5.3.3.13.1 Fails
o If the Type/Method combination does not exist.

Revision 0.9 - draft - Draft Page 152 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

5.3.3.14 Access Control Method Group - AAddACE (Meta-Method)

MethodTableUID.AddACE[
InvokignlD : table_object_ref,
MethodID : MethodlID_ref,
ACE : ACE_table_ref]

=>

[Result : boolean]

This method is used to add an ACE to an existing SP/method, table/method, or object/method access
control association, which is a row in the Method table.

The InvokinglD parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the Method 1D table.

The ACE parameter is a uidref to the ACE to be added to the ACL column of the appropriate Method
table row.

5.3.3.14.1 Fails

If the Type/Method combination does not exist.

If the ACE does not exist in the ACE table.

If the ACE already exists in the ACL of the invoked access control association.
If the ACL of the invoked access control association is full.

5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)

MethodTableUID.RemoveACE[
InvokinglD : table_object_ref,
MethodID : MethodlID_ref,
ACE : ACE_table_ref]

=>

[Result : boolean]

This method is used to remove an ACE from an ACL in an existing SP/method, table/method, or
object/method access control association, which are rows in the Method table.

The InvokingID parameter is the uidref to this SP (always 00 00 00 00 00 00 00 01), the table, or the
object of the access control association.

The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the Method 1D table.

The ACE parameter is a uidref to the ACE to be removed from the ACL column of the appropriate
Method table row.

5.3.3.15.1 Fails

o If the Type/Method combination does not exist.
¢ If the ACE does not exist in the ACE table.

5.3.3.16 Key Related Method Group - GenKey (Object Method)
This section describes the method used for key creation.

CredentialObjectUID.GenKey[
PublicExponent = uinteger_4,
PinLength = uinteger_1]

=>

[Result : boolean]

An existing Credential object is filled in with new key material. This method fills in the new key as
appropriate for the type of the credential on which the method was invoked.

Revision 0.9 - draft - Draft Page 153 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

If this method is invoked on an RSA object (C_RSA 1024 or C_RSA 2048) and the optional
PublicExponent parameter is not specified, then the keys shall be calculated using the public
exponent 2216+1 (65537). The key randomly generated with this method for RSA keys is a 1 followed
by n-1 random bytes, where n is the size of the key.

If this method is invoked on a C_PIN object, then a new value with PinLength characters is generated
and stored in that C_PIN object’'s Password column. The character set used to generate the C_PIN
value is referenced in the C_PIN table’s CharacterSet column, or the default character set if the C_PIN
table’s CharacterSet column is 00s (see C_PIN table description in section 5.3.2.11).

If PinLength is not specified in the method invocation, the default value is 32. The maximum permitted
value for the PinLength parameter is 32. Successful invocation of this method on a C_PIN object sets
the value of that object’s Tries column to 0.

5.3.3.16.1 Fails

o |If the credential object does not exist.
e If a bad exponent is included.
e If PinLength is greater than the size of the Password column in the C_PIN table.

5.3.4 Description
5.3.4.1 Authentication

534.1.1 Credential Tables

Credential tables represent an extensible basis for providing the public and private parts of
authentication mechanisms and key stores. Each credential table represents a different mechanism or
key store type and each row a different authentication or key using the mechanism or key store
represented by the table. The credential tables supported shall be reflected in the CryptoSuite table
in the Admin SP.

Credential tables contain secrets that might need to never leave the TPer. Normal ACLs can prevent
that in the case of an attack that comes in over the interface. To help protect against an attack in which
the TPer electronics are changed, some column values may be hidden in storage by the TPer. In the
credential table definitions, marked columns (those shaded gray) may be hidden. The hiding of those
columns and the means by which they are hidden are implementation-specific.

5.3.4.1.2 Authorities

Authorities are objects in the Authority table. Each authority object is made up of columns that
identify the authentication method for that authority, the necessary credentials for authenticating, and
whether secure messaging is required during session startup for, or authentication of, that authority.

Authorities are made up of two types — Class and Individual.

Class authorities are a convenient grouping method provided to simplify simultaneous modification of
multiple access control elements. Class authorities may be members of another class authority, but
this shall not be permitted to expand beyond a single level. The TPer shall enforce that class
authorities are not permitted to be members of a class authority that is already a member of another
class authority. Class authorities shall not be permitted to reference credentials or secure messaging
requirements. Class authorities cannot be directly authenticated — authentication attempts that
reference class authorities shall always fail.

Individual authorities may be members of class authorities. Each individual authority shall only be a
member of a single class. When an individual authority is authenticated, either from session startup or
explicitly via the Authenticate method, the class authority that the individual authority references is
considered to be authenticated also. If that class authority also references a class, then the class
authority referenced by the initial class authority is also considered to be authenticated.

The authorities required by the Base Template are enumerated in Table 73.

Revision 0.9 - draft - Draft Page 154 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

Table 73 Default Base Template Authorities

Name uiD Common Name |IsClass |Class Operation
Anybody 0000000900000001 |Anybody False Sign

Admins 00 00 00 0900 0000 02 |[Admin True

Makers 00 00 00 09 00 00 00 03 |Maker True

MakerSymK |00 00 00 09 00 00 00 04 |Maker False Makers |SymK
MakerPuK 00 00 000900000005 |Maker False Makers (Sign

SID 0000000900000006 |TPerOwner False Password
TPerSign 0000000900000007 |TPerSign False TPerSign
TPerExch 00 00 00 09 00 00 00 08 |TPerExch False TPerExchange
AdminExch 0000000900000009 |Admin False Admins |Exchange

The Anybody authority may used as the Host Signing Authority during session startup, and when used
in this way allows session startup without providing a proof or secret. If a value is included in the
StartSession method's HostChallenge parameter where the Anybody authority is called out as the
HostSigningAuthority, the HostChallenge parameter shall be ignored by the TPer.

The Anybody authority is always considered "authenticated" within a session, even if the Anybody
authority was not specifically called out during session startup. Invocations of the Authenticate
method that use the Anybody authority shall always succeed. Values in the Challenge parameter of
that Authenticate method shall be ignored.

The members of the Makers authority class permit the manufacturer of the TPer to open an
authenticated session to the TPer. The MakerPuK (i.e., Manufacturer) authority only has the
Manufacturer Public Key (not the private) and a Certificate attesting to this, which is signed by the
Manufacturer.

The SID authority is used by the TPer owner to authenticate to the Admin SP and perform operations
such as freezing or deleting SPs.

A copy of the SID is also present in each SP. This SID authority and credential provides the
personalizing host with a default password authority that can be used to open sessions or verify
physical presence. When an SP is issued or created, the value of the Password column of the C_PIN
credential object referenced by the SID authority is the same as the value of the Password column of
the C_PIN credential object referenced by the SID authority in the Admin SP. Modifications to the SID
authority’s referenced C_PIN credential object in some SP (even the Admin SP) do not affect any other
SP.

The authorities TPerSign and TPerExch are references to the TPer’s signing and exchange keys, and
allow a host with knowledge of the TPer’s credentials to open a secure session with an authenticated
TPer. In the Admin SP Authority table, the Credential column contains the reference to locate the
appropriate credential for use with this authority.

These TPerSign and TperExch authorities are present in the Authority table of each SP. The
credentials to which these authorities contain references are represented by objects in the appropriate
credential tables. The actual key values may be stored in only a single location, but the implementation
shall maintain appropriate references to these credentials so that they are usable in each SP on the
TPer.

Revision 0.9 - draft - Draft Page 155 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

In all SPs, the values TPerSign and TPerExchange in the Authority table’s Operation column
indicate that the signing or exchange operation is to be performed with the TPer credentials as
referenced in the Admin SP’s Authority table.

The AdminExch authority represents the initial credential value submitted during issuance. This is the
authority that enables the host to open a secure, implicitly authenticated session to the host's SP and
personalize that SP. In the case of the Authority table in the Admin SP, the Base Template Authority
AdminExch shall be disabled. At issuance, prior to personalization, the AdminExch authority has a
RespExch column value set to the AdminExch authority's UID.

5.3.4.1.3 Authority Operations

The Operation column of the Authority table identifies the authentication method for which an
authority object shall be used.

The value of an Operation for a given authority shall match the purpose for which that authority is
being used during session startup. For instance, an authority with an Operation value of Signing or
None shall only be able to be successfully invoked during session startup as either a
HostSigningAuthority or SPSigningAuthority.

The operation types and their requirements are as follows:

e None — This describes an authority that, while invoked during session startup, does not actually
authenticate during session startup, but may be used to reference, for instance, a response
signing or exchange authority. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or
SPSigningAuthority. Referencing an authority with this Operation column value as an
exchange authority shall result in an error.

e Password — This describes an authority that shall be invoked and authenticated with its
referenced C_PIN credential, either during session startup or using the Authenticate method.
If invoked during session startup, this authority shall be referenced as the HostSigningAuthority
or the SPSigningAuthority. Referencing an authority with this Operation column value in
another authority parameter of the session startup methods shall result in an error.

e Sign — This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced public key (RSA/EC) credential, either during session startup
or using the Authenticate method. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or as the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods shall result in an error. The Sign operation
encompasses both Signing and Verification activities — the TPer shall perform the correct
operation based on context.

e Exchange — This describes an authority that shall be invoked during session startup, and shall
be referenced as the HostExchangeAuthority or the SPExchangeAuthority. Referencing an
authority with this Operation column value in another authority parameter of the session
startup methods shall result in an error. The credential referenced by this authority shall be
used to encrypt session keys for transmission to the other party involved in the session. This
authority shall not be able to be authenticated explicitly using the Authenticate method.

e SymK — This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced symmetric key credential, either during session startup or
using the Authenticate method. If invoked during session startup, an authority with this
Operation column value shall be referenced as the HostSigningAuthority or the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods shall result in an error.

e HMAC - This describes an authority that shall be invoked and authenticated using a challenge
and response with its referenced HMAC key credential and the referenced HMAC algorithm,

Revision 0.9 - draft - Draft Page 156 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

either during session startup or using the Authenticate method. The HMAC credential
referenced by the authority using this operation identifies the hash algorithm used to generate
the HMAC. If invoked during session startup, an authority with this Operation column value
shall be referenced as the HostSigningAuthority or the SPSigningAuthority. Referencing an
authority with this Operation column value in another authority parameter of the session
startup methods shall result in an error.

e TPerSign — This describes the signing authority that represents the TPer, which enables the
host to verify the TPer credentials. This authority shall be invoked and authenticated using a
challenge and response with its referenced public key (RSA/EC) credential, either during
session startup or using the Authenticate method. If invoked during session startup, an
authority with this Operation column value shall be referenced as the HostSigningAuthority or
as the SPSigningAuthority. Referencing an authority with this Operation column value in
another authority parameter of the session startup methods shall result in an error. The Sign
operation encompasses both Signing and Verification activities — the TPer shall perform the
correct operation based on context. The TPer signing credential contains certificate chains that
establish the validity of this authority.

e TPerExchange — This describes the exchange authority that represents the TPer. This
authority enables the host to establish a secure session with an SP using the TPer’s exchange
authority. Referencing an authority with this Operation column value in another authority
parameter of the session startup methods shall result in an error. The credential referenced by
this authority shall be used to encrypt session keys for transmission to the other party involved
in the session. This authority shall not be able to be authenticated explicitly using the
Authenticate method. The TPer exchange credential contains certificate chains that establish
the validity of this authority.

5.3.4.1.4 Session Startup

Session startup involves the exchange of either two or four methods between the host and the SP with
which the host is attempting to start the session.

The properties of the session — i.e., whether secure messaging is required, the secure messaging type,
and the type of message authentication — are controlled by values in the columns of authority objects
referenced as parameters to the methods, and are determined independently for each communicator.

When the StartSession method is invoked, the authorities to be used for that session are referenced
as parameters. The following identifies the order of authority precedence in the StartSession
invocation. For the invoked host authorities, the following list defines the “Host Control Authority” that
identifies the Host-to-SP session property requirements, including the secure messaging properties for
communications from the host to the SP:

1. HostSigningAuthority

2. If no HostSigningAuthority is invoked, then the HostExchangeAuthority will be the “Host
Control Authority”.

3. If neither the HostSigningAuthority nor the HostExchangeAuthority invoked, then there
will be no “Host Control Authority”.

For SP response authorities referenced from the “Host Control Authority”, the following list defines the
“SP Control Authority” that identifies the SP-to-Host session property requirements, including the
secure messaging properties for communications from the SP to the host:

1. SPSigningAuthority

2. If no SPSigningAuthority is referenced, then the SPExchangeAuthority will be the “SP
Control Authority”.

3. If neither the SPSigningAuthority nor the SPExchangeAuthority invoked, then there will
be no “SP Control Authority”.

Revision 0.9 - draft - Draft Page 157 of 265

TCG Storage Architecture Core Specification TCG Copyright 2007
Specification Version 1.0

If the StartSession method fails, the return result is formatted as a SyncSession method invocation
from the TPer, using only the Host and SP parameters, with a non-Success status code.

If the StartTrustedSession method fails, the return result is formatted as a SyncTrustedSession
method invocation from the TPer, using only the Host and SP parameters, with a non-Success status
code.

5.3.4.1.5 Secure Messaging Control

As indicated in section 5.3.4.1.4, control of secure messaging for a session is determined
independently for each communicator. The authorities invoked in the StartSession method determine
the secure messaging types and algorithms requires, and, based on the authorities included in the
session startup, the encrypting credential used to exchange session key(s) for secure messaging.

If the Host Signing Authority is invoked in StartSession, this authority determines if secure messaging
is required on messages from the Host to the TPer, and of what type the secure messaging will be. In
this circumstance, the Host Signing Authority is the “Host Control Authority” for messaging from the
Host to the TPer.

If the Host Signing Authority is not present, and the Host Exchange Authority is present, the Host
Exchange Authority determines if secure messaging is required on messages from the Host to the
TPer, and of what type the secure messaging will be. In this circumstance, the Host Exchange
Authority is the “Host Control Authority” for messaging fr