

TCG

TCG Trusted Network Connect
TNC IF-IMV

Specification Version 1.0
Revision 3
3 May 2005
Published

Contact: admin@trustedcomputinggroup.org

TCG PUBLISHED
Copyright © TCG 2005

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page ii of 61
 TCG PUBLISHED

Copyright © 2005 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual
property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page iii of 61
 TCG PUBLISHED

Revision History
 Document started by Mark Anthony Beadles. 11/2004.
R1 First revision of final 1.0 version. Changes from IPR and Technical Review. 4/2005.
R2 Minor changes and typos. 4/05
R3 Cleaned for publication. 4/05

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page iv of 61
 TCG PUBLISHED

IWG TNC Document Roadmap

Infrastructure
Architecture:

Part I:
Interoperability

Architecture

Migration
and Backup

Credentials

Integrity
Information
Structure

IWG
Use Cases

TNC
Architecture

SKAE

Certificate
Profiles v1.0

Certificate
Profiles v2.0

Other
Use Cases

.....

TNC
Use Cases

Infrastructure
Architecture:

Part II: Integrity
Management

TLS-
Attestations

IF-IMC

IF-IMV

IF-TNCCS

Core
Integrity
Schema

IF-PTS

IF-M

IF-PEP

IF-T

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page v of 61
 TCG PUBLISHED

Acknowledgement

The TCG wishes to thank all those who contributed to this specification. This document builds on
numerous work done in the various working groups in the TCG.

Special thanks to the members of the TNC contributing to this document:

Mark Beadles (Editor) Endforce, Inc.
Kazuaki Nimura Fujitsu Limited
Steve Hanna Funk Software, Inc.
Paul Crandell Hewlett-Packard
Boris Balacheff Hewlett-Packard
Diana Arroyo IBM
Tina Bird InfoExpress, Inc.
Ned Smith Intel Corporation
Ravi Sahita Intel Corporation
Barbara Nelson iPass
John Vollbrecht Meetinghouse Data Communications
Paul Sangster Sun Microsystems, Inc.
Babak Salimi (TNC co-chair) Sygate Technologies, Inc.
Bryan Kingsford (TNC co-chair) Symantec
Thomas Hardjono VeriSign, Inc.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page vi of 61
 TCG PUBLISHED

Table of Contents
1 Scope and Audience.. 8
2 Purpose and Requirements... 9

2.1 Purpose of IF-IMV..9
2.2 Requirements...9

2.2.1 Non-Requirements ..10
2.3 Assumptions...10
2.4 Keywords ...10
2.5 API Naming Conventions...10
2.6 Features Provided by IF-IMV ...10

2.6.1 Integrity Check Handshake ...10
2.6.2 Connection Management ..10
2.6.3 Remediation and Handshake Retry ..10
2.6.4 Message Delivery..10
2.6.5 Reliability ...10
2.6.6 Batches..10
2.6.7 IMV Action Recommendation..10
2.6.8 Stateless IMVs...10
2.6.9 IMVs with Remote Servers..10

3 IF-IMV Abstract API.. 10
3.1 Platform and Language Independence..10
3.2 Extensibility ..10

3.2.1 API Version..10
3.2.2 Dynamic Function Binding...10
3.2.3 Vendor IDs...10
3.2.4 Vendor-Specific Functions ..10

3.3 Threading and Reentrancy ..10
3.4 Data Types...10

3.4.1 Basic Types...10
3.4.2 Derived Types ...10

3.5 Defined Constants..10
3.5.1 Boolean Values ...10
3.5.2 Result Code Values...10
3.5.3 Version Numbers...10
3.5.4 Network Connection ID Values ...10
3.5.5 Network Connection State Values...10
3.5.6 Handshake Retry Reason Values ...10
3.5.7 IMV Action Recommendation Values..10
3.5.8 IMV Evaluation Result Values...10
3.5.9 Vendor ID Values ..10
3.5.10 Message Subtype Values..10

3.6 Mandatory and Optional Functions ..10
3.7 IMV Functions ..10

3.7.1 TNC_IMV_Initialize (MANDATORY) ...10
3.7.2 TNC_IMV_NotifyConnectionChange (OPTIONAL)...10
3.7.3 TNC_IMV_ReceiveMessage (OPTIONAL) ...10
3.7.4 TNC_IMV_SolicitRecommendation (MANDATORY) ..10
3.7.5 TNC_IMV_BatchEnding (OPTIONAL) ..10
3.7.6 TNC_IMV_Terminate (OPTIONAL)...10

3.8 TNC Server Functions..10
3.8.1 TNC_TNCS_ReportMessageTypes (MANDATORY) ...10
3.8.2 TNC_TNCS_SendMessage (MANDATORY)..10
3.8.3 TNC_TNCS_RequestHandshakeRetry (MANDATORY) ..10
3.8.4 TNC_TNCS_ProvideRecommendation (MANDATORY) ..10

4 Platform Bindings .. 10

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page vii of 61
 TCG PUBLISHED

4.1 Microsoft Windows DLL Platform Binding..10
4.1.1 Finding, Loading, and Unloading IMVs ...10
4.1.2 Dynamic Function Binding...10
4.1.3 Threading ..10
4.1.4 Platform-Specific Bindings for Basic Types ..10
4.1.5 Platform-Specific Bindings for Derived Types...10
4.1.6 Additional Platform-Specific Derived Types ..10
4.1.7 Platform-Specific IMV Functions ...10
4.1.8 Platform-Specific TNC Server Functions ..10
4.1.9 Well-known Registry Key ..10

4.2 UNIX/Linux Dynamic Linkage Platform Binding...10
4.2.1 Finding, Loading, and Unloading IMVs ...10
4.2.2 Dynamic Function Binding...10
4.2.3 Format of /etc/tnc_config..10
4.2.4 Threading ..10
4.2.5 Platform-Specific Bindings for Basic Types ..10
4.2.6 Platform-Specific Bindings for Derived Types...10
4.2.7 Additional Platform-Specific Derived Types ..10
4.2.8 Platform-Specific IMV Functions ...10
4.2.9 Platform-Specific TNC Server Functions ..10

5 Security Considerations.. 10
5.1 Threat analysis...10

5.1.1 Registration and Discovery based threats ..10
5.1.2 Rogue IMV threats ..10
5.1.3 Rogue TNCS threats ...10
5.1.4 Threats Beyond IF-IMV ...10

5.2 Suggested remedies ..10
6 C Header File .. 10
7 Use Case Walkthrough .. 10

7.1 Configuration..10
7.2 TNCS Startup...10
7.3 TNCC Startup...10
7.4 Network Connect..10
7.5 Handshake Retry After Remediation ...10
7.6 Handshake Retry Initiated by TNCS..10
7.7 Sequence Diagram for Network Connect ..10
7.8 Sequence Diagram for Handshake Retry After Remediation ..10
7.9 Sequence Diagram for Handshake Retry Initiated by TNCS...10

8 Implementing a Simple IMV... 10
8.1 Decide on a Message Type and Format..10
8.2 TNC_IMV_Initialize ..10
8.3 TNC_IMV_ProvideBindFunction ..10
8.4 TNC_IMV_ReceiveMessage..10
8.5 TNC_IMV_SolicitRecommendation ...10
8.6 All Done!...10

9 References.. 10

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 8 of 61
 TCG PUBLISHED

1 Scope and Audience

The Trusted Network Connect Sub Group (TNC-SG) is defining an open solution architecture that
enables network operators to enforce policies regarding the security state of endpoints in order to
determine whether to grant access to a requested network infrastructure. This security
assessment of each endpoint is performed using a set of asserted integrity measurements
covering aspects of the operational environment of the endpoint.. Part of the TNC architecture is
IF-IMV, a standard interface between Integrity Measurement Verifiers and the TNC Server. This
document defines and specifies IF-IMV.

Architects, designers, developers and technologists who wish to implement, use, or understand
IF-IMV should read this document carefully. Before reading this document any further, the reader
should review and understand the TNC architecture as described in [1].

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 9 of 61
 TCG PUBLISHED

2 Purpose and Requirements

2.1 Purpose of IF-IMV
This document describes and specifies IF-IMV, a critical interface in the Trusted Computing
Group’s Trusted Network Connect (TNC) architecture. IF-IMV is the interface between Integrity
Measurement Verifiers (IMVs) and a TNC Server (TNCS). It is closely related to IF-IMC [4], the
interface between Integrity Measurement Clients (IMCs) and a TNC Client (TNCC).

IF-IMV is primarily used to receive integrity measurements sent from client-side Integrity
Measurement Collectors (IMCs) to corresponding Integrity Measurement Verifiers (IMVs) and to
enable message exchanges between the IMCs and the IMVs. These message exchanges occur
within Integrity Check Handshakes, each of which is an example of a TCG attestation protocol in
the context of the TNC architecture. It also allows IMVs to supply their recommendations to the
TNCS.

An API-based approach has been chosen as the preferred embodiment of IF-IMV, similar to IF-
IMC [4]. See Section 3 of this document for description of the abstract API and Section 4 for
specific platform bindings.

2.2 Requirements
The following are the requirements which IF-IMV must meet in order to successfully play its role
in the TNC architecture. These are stated as general requirements, with specific requirements
called out as appropriate.

a. Meets the needs of the TNC architecture

The API must support all the functions and use cases described in the TNC architecture as
they apply to the relationship between the TNC Server and IMV components.

Specific requirements include:

• The API must support multiple overlapping network connections and Integrity Check
Handshakes for a single TNCS from multiple TNCCs, and communication between
the TNCS and multiple IMVs.

• The API must allow an IMV to act as a front end for one or more back-end
applications or remote servers, or not to act as a front end at all, as determined by
the IMV implementer.

• IF-IMV must have some mechanism for IMVs to recommend isolation and
compliance information to the TNCS, so that isolation can properly be supported on
the network. This may stop short of an explicit mechanism for knowing which network
to assign for isolation, but there must be a way to pass intelligence from IMVs to the
TNCS.

• IMVs MUST be able to recommend initiation of an Integrity Check Handshake retry.

b. Secure

The integrity and confidentiality of communications between an IMC and an IMV must be
protected. The TNC Client and TNC Server are assumed to provide a secure
communications tunnel between the IMCs and the IMVs. The IMCs and IMVs may choose to
add other security mechanisms, but those are out of scope for this document.

Specific requirements include:

• The security considerations include requirements that unauthorized parties cannot
observe communications between the IMV and the TNC Server; that only authorized

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 10 of 61
 TCG PUBLISHED

IMVs can communicate with the TNC Server across IF-IMV and thence to the IMCs;
and that no party can cause denial of service to any of the system components. See
the Security Consideration section of this document for detailed discussion.

c. Efficient

The TNC architecture delays network access until the endpoint is determined to not pose a
security threat to the network based on its asserted integrity information. To minimize user
frustration, it is essential to minimize delays and make IMC-IMV communications as rapid
and efficient as possible. Efficiency in IF-IMV is also important when considering that TNCSs
and IMVs are server-side components which may be required to handle messages from
thousands to millions of remote clients.

d. Extensible

IF-IMV will need to expand over time as new features are added to the TNC architecture. For
instance, the TNC will soon add support for TPM integration. IF-IMV must allow new features
to be added easily, providing for a smooth transition and allowing newer and older
architectural components to continue to work together.

e. Scalable

IF-IMV is an interface in a critical server-side architecture and must support scalability levels
appropriate to this role. Enterprise and service provider deployments of TNC server
architectures may be required to support up to millions of clients and a corresponding load of
message transactions. IF-IMV should allow TNC Servers to employ load balancing, failover,
and other techniques to achieve scalability.

f. Reliable

Reliability of network operations is critical. IF-IMV will need to support reliable
communications, as well as reliable implementations and deployments of TNCSs and IMVs.
For example, it should be possible for vendors to implement redundancy features.

g. Easy to use and implement

IF-IMV should be easy for TNC Server and IMV vendors to use and implement. It should
allow them to enhance existing products to support the TNC architecture and integrate legacy
code without requiring substantial changes. IF-IMV should also make things easy for system
administrators and end-users. Components of the TNC architecture should plug together
automatically without requiring extensive manual configuration.

h. Platform-independent

Since there is a wide variety of platforms which are deployed in server-side systems, IF-IMV
must function on as many server platforms as possible. At least Windows, Linux (most
common flavors), and other UNIX variants must be supported. This implies that for the IF-IMV
API, specific platform binding(s) appropriate to the most common server platforms must be
defined.

i. Language-independent

IF-IMV must support the widest possible variety of languages: C, C++, C#, Java, Visual
Basic, assembly language, and others. Therefore, this specification defines an abstract API
and language-specific bindings.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 11 of 61
 TCG PUBLISHED

2.2.1 Non-Requirements
There are certain requirements that IF-IMV explicitly is not required to meet. This list may not be
exhaustive (complete).

a. There is no requirement that IF-IMV provide explicit mechanisms for redundancy and
failover. It is acceptable that vendor IMVs and TNCSs are able to provide proprietary
redundancy and failover mechanisms.

2.3 Assumptions
Here are the assumptions that IF-IMV API makes about other components in the TNC
architecture.

• Secure Message Transport

The TNC Client and TNC Server are assumed to provide a secure communications tunnel for
messages sent between the IMCs and the IMVs.

• Reliable Message Delivery

The TNC Client and TNC Server are assumed to provide reliable delivery for messages sent
between the IMCs and the IMVs. In the event that reliable delivery cannot be provided, the
TNC Client is expected to terminate the connection.

• TNCS provides Action Recommendations for access decision

It is assumed that the TNCS combines IMV Action Recommendations from multiple IMVs
(using whatever logic) and provides a final TNCS Action Recommendation to the entity which
makes the access decision. Outside the scope of this specification, there is assumed to be a
mechanism or mechanisms for the TNCS to thus communicate with this entity (which may
include, for example, NAAs and other PDP components). However, this mechanism is not
part of IF-IMV and will not be specified in this document. This may be defined in a future
phase of the TNC specifications process. Implementers are encouraged to become familiar
with the TNC architecture [1], which includes a detailed discussion of these entities and
interactions.

• Statefulness/Statelessness

TNCSs and IMVs may be stateless with respect to any individual TNCCs/IMCs, or they may
keep state. This is an implementation decision, not a requirement of the interface.

2.4 Keywords

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [2].

2.5 API Naming Conventions
To avoid name conflicts, all identifiers in the IF-IMV API have a name that begins with “TNC_”.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 12 of 61
 TCG PUBLISHED

Functions described in this document that are to be implemented by an IMV have a name that
begins with “TNC_IMV_”. This prefix is followed by words describing the operation performed by
the function.

Functions described in this document that are to be implemented by a TNC Server (known as
“callbacks") have a name that begins with “TNC_TNCS_”. This prefix is followed by words
describing the operation performed by the function.

Vendor-specific functions MUST have a name that begins with “TNC_XXX_” where XXX is
replaced by the vendor ID of the organization that defined the extension. See section 3.2.4 for
more information and requirements on vendor-specific functions.

2.6 Features Provided by IF-IMV
This section documents the features provided by IF-IMV.

2.6.1 Integrity Check Handshake
One of the primary functions of IF-IMV is to enable message exchanges between IMCs and IMVs
to share security state allowing the IMVs to factor the integrity of the IMC’s security software state
into the access control decision. These communications always take place within the context of
an Integrity Check Handshake. In such a handshake, the IMCs send a batch of messages
(typically, integrity measurements) to the IMVs and the IMVs optionally respond with a batch of
messages (remediation instructions, queries for more information, etc.). This dialog may go on for
some time until the IMVs decide on their Action Recommendations.

2.6.2 Connection Management
A connection between a TNCC and a TNCS may include several Integrity Check Handshakes: an
initial handshake that ends with the endpoint being told to perform remediation such as applying
patches (which may involve rebooting the endpoint), a subsequent handshake once the
remediation is complete, and sometimes even later handshakes such as when policies change.
Handshakes for a given TNCC-TNCS pair cannot be nested. One such handshake must end
before another can begin. To optimize and manage handshakes, the TNCS provides connection
management features.

When a new TNCC-TNCS relationship is established, the TNCS chooses a network connection
ID to refer to that relationship. The TNCS informs the IMVs of the new network connection and
updates them whenever the state of the network connection changes. When a network
connection is complete, the TNCS notifies the IMVs that the network connection ID will be deleted
and then does so. Note that the connection ID is local to the TNCS (like a socket descriptor in
UNIX), not shared with the TNCC.

A TNC MAY maintain the same network connection ID across several Integrity Check
Handshakes between a particular TNCC-TNCS pair. There are two reasons to maintain a
network connection ID beyond a single Integrity Check Handshake. First, this allows the IMCs
and IMVs to maintain state information associated with an earlier handshake, avoiding the need
to resend data if it was sent in an earlier handshake and has not changed. Second, it allows an
IMV to request a handshake retry for a particular connection, as when policies change. The
TNCS MAY ensure that connection IDs persist long enough to permit handshake retry but this is
purely optional. In contrast, TNCCs SHOULD retain connection IDs so that handshakes can be
automatically retried after remediation is complete. It may seem problematic to have a TNCC
retain its connection ID for a connection and not have the TNCS retain its connection ID for that
connection. This does not actually cause problems since the connection IDs are local identifiers
(like a socket number) and are not shared by the TNCC and TNCS. The TNCS MUST use the
same connection ID for all IMVs when referring to a particular connection.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 13 of 61
 TCG PUBLISHED

2.6.3 Remediation and Handshake Retry
In several cases, it is useful to retry an Integrity Check Handshake. First, an endpoint may be
isolated until remediation is complete. Once remediation is complete, an IMC can inform the
TNCC of this fact and suggest that the TNCC retry the Integrity Check Handshake. Second, a
TNCS can initiate a retry of an Integrity Check Handshake (if the TNCS or IMV policies change or
as a periodic recheck). Third, an IMC or IMV can request a handshake retry in response to a
condition detected by the IMC or IMV (suspicious activity, for instance). In any case, it’s generally
desirable (but not always possible) to reuse state established by the earlier handshake and to
avoid disrupting network connectivity during the handshake retry.

To support handshake retries, the TNCS MAY maintain a network connection ID after an Integrity
Check Handshake has been completed. This network connection ID can then be used by the
TNCS to inform IMVs that it is retrying the handshake or by an IMV to request a retry (due to
policy change or another reason).

Handshake retry may not always be possible due to limitations in the TNCC, NAR, PEP, or other
entities. In other cases, retry may require disrupting network connectivity. For these reasons, IF-
IMV supports handshake retry and requires IMVs to handle handshake retries (which is usually
trivial) but does not require TNCSs to honor IMV requests for handshake retry. In fact, IF-IMV
requires an IMV to provide information about the reason for requesting handshake retry so that
the TNCS can decide whether it wants to retry (which may disrupt network access).

Note that remediation instructions are delivered from IMVs to IMCs through standard IMV-IMC
messages (see section 2.6.4, “Message Delivery”). There is no special support in IF-IMV for this
feature. IMVs SHOULD send remediation instructions to IMCs before returning an IMV Action
Recommendation and IMV Evaluation Result to the TNCS so the instructions are delivered before
the handshake is completed.

2.6.4 Message Delivery
One of the critical functions of the TNC architecture is conveying messages between IMCs and
IMVs. Each message sent in this way consists of a message body, a message type, and a
recipient type.

The message body is a sequence of octets (bytes). The TNCC and TNCS SHOULD NOT parse
or interpret the message body. They only deliver it as described below. Interpretation of the
message body is left to the ultimate recipients of the message, the IMCs or IMVs. A zero length
message is perfectly valid and MUST be properly delivered by the TNCC and TNCS just as any
other IMC-IMV message would be.

The message type is a four octet number that uniquely identifies the format and semantics of the
message. The method used to ensure the uniqueness of message types while providing for
vendor extensions is described below.

The recipient type is simply a flag indicating whether the message should be delivered to IMVs or
IMCs. Messages sent by IMCs are delivered to IMVs and vice versa. All messages sent by an
IMV through IF-IMV have a recipient type of IMC. All messages received by an IMV through IF-
IMV have a recipient type of IMV. The recipient type does not show up in IF-IMC or IF-IMV, but it
helps in explaining message routing.

The routing and delivery of messages is governed by message type and recipient type. Each IMC
and IMV indicates through IF-IMC and IF-IMV which message types it wants to receive. The
TNCC and TNCS are then responsible for ensuring that any message sent during an Integrity
Check Handshake is delivered to all recipients that have a recipient type matching the message’s
recipient type and that have indicated the wish to receive messages whose type matches the
message’s message type. If no recipient has indicated a wish to receive a particular message
type, the TNCC and TNCS can handle these messages as they like: ignore, log, etc.

WARNING: The message routing and delivery algorithm just described is not a one-to-one model.
A single message may be received by several recipients (for example, two IMVs from a single

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 14 of 61
 TCG PUBLISHED

vendor, two copies of an IMC, or nosy IMVs that monitor all messages). If several of these
recipients respond, this may confuse the original sender. IMCs and IMVs MUST work properly in
this environment. They MUST NOT assume that only one party will receive and/or respond to a
message.

IF-IMV allows an IMV to send and receive messages using this messaging system. Note that this
system should not be used to send large amounts of data. The messages will often be sent
through PPP or similar protocols that do not include congestion control and are not well suited to
bulk data transfer. If an IMC needs to download a patch (for instance), the IMV should indicate
this by reference in the remediation instructions. The IMC will process those instructions after
network access (perhaps isolated) has been established and can then download the patch via
HTTP or another appropriate protocol.

All messages sent with TNC_TNCS_SendMessage and received with
TNC_IMV_ReceiveMessage are between the IMC and IMV. The IMV communicates with the
TNCS by calling functions (standard and vendor-specific) in the IF-IMV, not by sending
messages. The TNCS should not interfere with communications between the IMC and IMVs by
consuming or blocking IMC-IMV messages.

A particular example of the message delivery provided by IF-IMV is the communication of
remediation instructions from the IMVs through the TNCS to the TNCC/IMCs. This is one
application of IMC-IMV message delivery and in all cases follows the normal IMV-IMC
communications path. IF-IMV provides support for communicating remediation instructions to an
endpoint using this mechanism. Since the normal IMC-IMV communications path is used to
communicate remediation instructions, this specification will not address further the details of how
remediation itself is done.

2.6.5 Reliability
For successful enterprise deployments, reliability of TNCSs and IMVs is important. To ensure this
reliability, organizations may employ redundant TNCSs. Organizations may also require active
failover as well as other features that provide a level of high availability for critical networks.
Vendors and enterprises wishing to implement their systems incorporating redundancy should
see the discussion of this topic in the TNC Architecture document [1].

2.6.6 Batches
IMC-IMV messages will frequently be carried over protocols (like EAP) that require participants to
take turns in sending (“half duplex”). To operate well over such protocols, the TNCC sends a
batch of messages and the TNCS responds with some messages.

To simplify the development of IMCs and IMVs, IF-IMC always groups IMC-IMV messages into
batches. IMCs always send the first batch of messages. IMVs can then respond with a batch of
messages, IMCs can respond to those, etc. If the underlying protocol is not half duplex, the
TNCC and TNCS still must send IMC-IMV messages in batches and take turns in delivering those
messages.

An IMV can only send a message in two circumstances: in response to a message received by
the IMV in a batch (when TNC_IMV_ReceiveMessage is called), and at the end of a batch
(when TNC_IMV_BatchEnding is called). In either of these circumstances, the IMV MAY send
one or more messages by calling TNC_TNCS_SendMessage once for each message to be sent
and then returning from TNC_IMV_ReceiveMessage or TNC_IMV_BatchEnding. Note that if
the IMV does not call TNC_TNCS_SendMessage before returning from
TNC_IMV_ReceiveMessage, or TNC_IMV_BatchEnding, this indicates that it does not want to
send any messages at this time. IMCs use a similar mechanism except that they can send
messages in three circumstances: during the initial batch, in response to a message received by
the IMC in a later batch, and at the end of a batch.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 15 of 61
 TCG PUBLISHED

If no IMCs want to send a message in a particular batch, the TNCC and TNCS will proceed to
complete the handshake. Similarly, if no IMVs want to send a message in a particular batch, the
TNCC and TNCS will proceed to complete the handshake. Therefore, an IMV that is not engaged
in a dialog with an IMC may well find that the handshake has ended.

To deliver IMC messages to IMVs, the TNCS calls TNC_IMV_ReceiveMessage. The IMV may
process the message immediately or queue it for later processing. However, if the IMV wants to
send a message in response, it must do so by calling the TNC_TNCS_SendMessage function
before returning from TNC_IMV_ReceiveMessage. Once all IMVs have finished sending their
messages for a batch, the TNCS will send those messages to the TNCC and await its response.
When this response is received, the TNCS will deliver to IMVs any messages sent by IMCs and
start accepting messages from IMVs.

As with all IMV functions, the IMV SHOULD NOT wait a long time before returning from
TNC_IMV_ReceiveMessage, or TNC_IMV_BatchEnding. A long delay might frustrate users or
exceed network timeouts (PDP, PEP or otherwise). IMVs that need to perform a lengthy process
may want to simply send a status message, indicating that they are working. The IMCs can
respond in the next batch with a status query and thus the handshake can be kept going.

Similarly, an IMV might expect to receive a “working” status message from an IMC during a
particular batch, and if so can respond in the next batch with a status query to the IMC to keep
that handshake going.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time for any reason,
including limited support for long conversations in underlying protocols, user or administrator
intervention, or policy. If this happens, the TNCS will return TNC_RESULT_ILLEGAL_OPERATION
from TNC_TNCS_SendMessage.

2.6.7 IMV Action Recommendation
One of the assumptions of the TNC architectural model is that IF-IMV provides a means for IMVs
to recommend action information to the TNCS, so that isolation can properly be supported on the
network. The TNCS then will combine these IMV Action Recommendations using some logic
(defined by the TNCS implementers) to come up with an overall TNCS Acition Recommendation.
Note that the TNCS may choose to ignore any IMV Action Recommendation, but each IMV must
be able to recommend an action. Potential choices for IMV Action Recommendations include:
recommend full (normal) access; recommend isolation (limited or quarantined access); and
recommend denial (no access). The mandatory function TNC_TNCS_ProvideRecommendation
is the mechanism within IF-IMV for an IMV to indicate its IMV Action Recommendation.

2.6.8 Stateless IMVs
A simple IMV (as described in section 8) can avoid maintaining per-IMC state. Such an IMV
(known as a “stateless IMV”) might receive two IMC messages in a single handshake (as when
two IMCs that send the same message are configured on one TNCC). This would cause the IMV
to provide two IMV Action Recommendations for a single handshake, which might confuse the
TNCS. A TNCS SHOULD be prepared to receive more than one IMV Action Recommendation
from an IMV for a single handshake. The TNCS MAY handle these multiple IMV Action
Recommendations in any way: ignoring the first, ignoring the last, combining them, logging a
message, refusing access, or anything else.

2.6.9 IMVs with Remote Servers
As an implementation choice, an IMV may consist of a “stub” DLL located on the TNCS host. This
stub can talk a vendor-specific protocol to back-end remote servers which implement, for
example, integrity verification or policy management functions. A “stub” IMV presents the full IF-
IMV interface, and may convert from IF-IMV interface to the vendor specific protocol. In this case,
it is of course the responsibility of the IMV vendors to provide the “stub” as well as any remote
server. Any redundancy or failover – indeed, all IMV functionality whatsoever – must be provided

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 16 of 61
 TCG PUBLISHED

within the “stub” and its vendor-specific protocol. IMVs also may, of course, be “standalone” and
collocated with the TNCS. In either case, the IMV is defined as that entity which speaks IF-IMV
to the TNCS, regardless of whether any remote server also exists.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 17 of 61
 TCG PUBLISHED

3 IF-IMV Abstract API
The IF-IMV Abstract API defines a small number of standard functions that an IMV can
implement. The TNC Server calls these functions when it needs the IMV to perform an action
(such as processing a message from an IMC). The API also defines certain functions that the
TNC Server implements (known as “callbacks”). The IMV calls these functions when it needs the
TNC Server to perform an action (such as sending a message to an IMC).

3.1 Platform and Language Independence
IF-IMV is a language-independent abstract API. It can be mapped to almost any programming
language. This section defines the abstract API, using C syntax (as defined in [3]) for ease of
comprehension.

Section 6 provides a C header file that serves as a binding for the C language with the Microsoft
Windows DLL platform binding. Bindings for other programming languages may be defined in the
future. However, many languages can use or implement libraries with C bindings. Implementers
SHOULD use the C language binding when possible for maximum compatibility with other IMVs
and TNC Servers on their platform. This specification does not provide a standard way to mix an
IMV written in one language with a TNCS written in another language, beyond the support that
may be provided by platform-specific bindings.

IF-IMV is also a platform-independent API. It is designed to support almost any platform.
Platform-specific bindings are described in section 4. The IF-IMV API definition sometimes uses
language like “unsigned integer of at least 32 bits.” To see the exact definition of this for a
particular platform (operating environment and/or language), see the platform-specific bindings.

3.2 Extensibility
To meet the Extensibility requirement defined above, the IF-IMV API includes several extensibility
mechanisms: an API version number, dynamic function binding, and vendor IDs.

3.2.1 API Version
This document defines version 1 of the TNC IF-IMV API. Future versions may be incompatible
due to removing, adding, or changing functions, types, and constants. However, the
TNC_IMV_Initialize function and its associated types and constants will not change so that
version incompatibilities can be detected. A TNCS or IMV can even support multiple versions of
the IF-IMV API for maximum compatibility. See section 3.7.1 for details.

3.2.2 Dynamic Function Binding
 Platforms that support IF-IMV SHOULD support dynamic function binding. This feature allows a
TNCS or IMV to define functions that go beyond those included in this API and allows the other
party to determine whether those functions are defined, call them if so, and handle their absence
gracefully. Dynamic function binding is needed to support optional and vendor-specific functions
and so that a TNCS or IMV can support multiple API versions.

On platforms that don’t define a Dynamic Function Binding mechanism, all optional functions
MUST be implemented, vendor-specific functions MUST NOT be implemented or used except by
private convention, and provisions must be made to insure that TNCSs and IMVs that support
different version numbers interact safely.

3.2.3 Vendor IDs
The IF-IMV API supports several forms of vendor extensions. IMV or TNCS vendors can define
vendor-specific functions and make them available to the other party. IMV or TNCS vendors can
define vendor-specific result codes. And IMV vendors can define vendor-specific message types
(for the messages sent between IMCs and IMVs).

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 18 of 61
 TCG PUBLISHED

In each of these cases, SMI Private Enterprise Numbers are used to provide a separate identifier
space for each vendor. IANA provides a registry for SMI Private Enterprise Numbers at
http://www.iana.org/assignments/enterprise-numbers. Any organization (including non-profit
organizations, governmental bodies, etc.) can obtain one of these numbers at no charge and
thousands of organizations have done so. Within this document, SMI Private Enterprise Numbers
are known as “vendor IDs”. Vendor ID zero (0) is reserved for identifiers defined by the TNC.
Vendor ID 16777215 (0xffffff) is reserved for use as a wildcard. For details of how vendor IDs are
used to support vendor-specific functions, result codes, and message types, see sections 3.2.4,
3.4.2.12, and 3.4.2.7.

3.2.4 Vendor-Specific Functions
The IMV and TNC Server MAY extend the IF-IMV API by defining vendor-specific functions that
go beyond those described here. An IMV or TNC Server MUST work properly if a vendor-specific
function is not implemented by the other party and MUST ignore vendor-specific functions that it
does not understand. To determine whether a vendor-specific function has been implemented,
use the dynamic function binding mechanism defined in the platform binding.

Vendor-specific functions MUST have a name that begins with “TNC_XXX_” where XXX is
replaced by the vendor ID of the organization that defined the extension. The vendor ID is
converted to ASCII numbers or the equivalent, using a decimal representation whose initial digit
MUST NOT be zero (0). For instance, the organization owning the vendor ID 1 could define a
vendor-specific function named “TNC_1_ProcessMapping”. Avoid defining names longer than
31 characters since some platforms do not support such long names well. If a vendor-specific
function is designed to be implemented by only one TNC component, then it is helpful to put the
name of this component in the function name after the vendor ID. For instance, a function named
“TNC_1_IMV_Reinstall” is clearly intended to be implemented by IMVs.

3.3 Threading and Reentrancy
The TNCS MUST be reentrant (able to receive and process a function call even when one is
already underway). IMV DLLs also MUST be reentrant.

The TNC Server and all IMV DLLs MUST be thread-safe. This means that any IF-IMV function
can be called at any time even if other threads are also calling an IF-IMV function. The TNCS and
IMVs may employ semaphores or other synchronization mechanisms to protect critical sections of
code, but these mechanisms SHOULD be employed sparingly using best practices appropriate to
the platform to maintain good performance in a highly multi-threaded server environment.

3.4 Data Types

3.4.1 Basic Types
These types are the most basic ones used by the IF-IMV API. They are defined in a platform-
dependent and language-dependent manner to meet the requirements described in this section.
Consult section 4 to see how these types are defined for a particular platform and language.

Type Definition

TNC_UInt32 Unsigned integer of at least 32 bits

TNC_BufferReference Reference to buffer of octets

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 19 of 61
 TCG PUBLISHED

3.4.2 Derived Types
These types are defined in terms of the more basic ones defined in section 3.4.1. They are
described in the following subsections.

Type Definition Usage

TNC_IMVID TNC_UInt32 IMV ID

TNC_ConnectionID TNC_UInt32 Network Connection ID

TNC_ConnectionState TNC_UInt32 Network Connection State

TNC_RetryReason TNC_UInt32 Handshake retry reason

TNC_IMV_Action_Recommendation TNC_UInt32 IMV Action Recommendation

TNC_IMV_Evaluation_Result TNC_UInt32 IMV Evaluation Result

TNC_MessageType TNC_UInt32 Message type

TNC_MessageTypeList Platform-
specific

Reference to list of
TNC_MessageType

TNC_VendorID TNC_UInt32 Vendor ID

TNC_Subtype TNC_UInt32 Message subtype

TNC_Version TNC_UInt32 IF-IMV API version number

TNC_Result TNC_UInt32 Result code

3.4.2.1 IMV ID
When a TNC Server loads an IMV, it assigns it an IMV ID (represented by the TNC_IMVID type).
This allows the IMV to identify itself when calling TNCS functions. The IMV ID is a TNC_UInt32
chosen by the TNCS and passed to the TNC_IMV_Initialize function. It is valid until the
TNCS calls TNC_IMV_Terminate for this IMV.

There is no internal structure to an IMV ID and there are no reserved values. The TNCS can
choose any value for the IMV ID and the IMV MUST NOT attach any significance to the value
chosen.

3.4.2.2 Network Connection ID
 A TNCS will commonly be negotiating with several different TNCCs at once (when several
endpoints are simultaneously conducting Integrity Check Handshakes). Each of these TNCC-
TNCS pairs is referred to as a “network connection”.

To help the IMV track which IMC-IMV messages go with which network connection and perform
other connection management tasks, the TNCS chooses a network connection ID (represented
by the TNC_ConnectionID type) that identifies a particular network connection. This connection
ID is local to the TNCS and not shared with the TNCC. It’s like a socket descriptor in UNIX. When
a network connection is created, the TNCS chooses a network connection ID and then passes
the network connection ID to the IMV as a parameter to the
TNC_IMV_NotifyConnectionChange function with a newState of
TNC_CONNECTION_STATE_CREATE. This informs the IMV that a new network connection has
begun. The network connection ID then becomes valid.

The IMV and TNCS use this network connection ID to refer to the network connection when
delivering messages and performing other operations relevant to the network connection. This
helps ensure that IMV messages are sent to the right TNCC and IMCs, helps ensure that the IMV
Action Recommendation is associated with the right endpoint, and helps the IMV match up
messages from IMCs with any state the IMV may be maintaining from earlier parts of that IMC-

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 20 of 61
 TCG PUBLISHED

IMV conversation (even extending across multiple Integrity Check Handshakes in a single
network connection).

The TNCS notifies IMVs of changes in network connection state (handshake success, handshake
failure, etc.) by calling the TNC_IMV_NotifyConnectionChange function. When a network
connection is finished, the TNCS first notifies IMVs of this by calling the
TNC_IMV_NotifyConnectionChange function with the network connection ID and a
newState of TNC_CONNECTION_STATE_DELETE. The network connection ID then becomes
invalid and any information associated with it can be deleted. Once a network connection enters
the TNC_CONNECTION_STATE_DELETE state, it cannot transition to any other state.

As described in section 2.6.3 above, it is sometimes desirable to retry an Integrity Check
Handshake (when remediation is complete, for instance). Some TNCSs will not support this but
all IMVs MUST do so. To indicate that a network connection retry is beginning, a TNCS notifies
the IMVs by calling the TNC_IMV_NotifyConnectionChange function with the network
connection ID and a newState of TNC_CONNECTION_STATE_HANDSHAKE. This means that an
Integrity Check Handshake will soon begin.

An IMV can ask the TNCS to retry an Integrity Check Handshake by calling the
TNC_TNCS_RequestConnectionRetry function. For details on this, see the description of that
function.

There is no internal structure to a network connection ID. There is one reserved value:
TNC_CONNECTIONID_ANY (0xFFFFFFFF). The TNCS can choose any other value for a network
connection ID that does not conflict with another valid network connection ID for the same TNCS-
IMV pair. It can even choose a network connection ID that was used by a previous network
connection that has now been deleted and is invalid. The IMV MUST NOT attach any significance
to the value chosen. The network connection ID chosen by a TNCS for a particular network
connection need not match the network connection ID chosen by the TNCC for that same
connection. This is a local identifier only used between the TNCS and the IMVs.

3.4.2.3 Network Connection State
The TNCS uses the TNC_IMV_NotifyConnectionChange function to notify IMVs of changes
in network connection state. The network connection state is represented as a TNC_UInt32. The
TNCS MUST pass one of the values listed in section 3.5.4. The TNCS MUST NOT use any other
network connection state value with this version of the IF-IMV API.

3.4.2.4 Handshake Retry Reason
The IMV can ask the TNCS to retry an Integrity Check Handshake by calling the
TNC_TNCS_RequestHandshakeRetry function. One of the parameters to that function is a
TNC_RetryReason. This type is represented as a TNC_UInt32. The IMV MUST pass one of
the values listed in section 3.5.6. The IMV MUST NOT use any other handshake retry reason
value with this version of the IF-IMV API.

3.4.2.5 IMV Action Recommendation
After evaluating the endpoint’s integrity, each IMV supplies an IMV Action Recommendation and
IMV Evaluation Result to the TNCS by calling the TNC_TNCS_ProvideRecommendation
function. One call to TNC_TNCS_ProvideRecommendation suffices to pass both of these values.
The type used to communicate the IMV Action Recommendation is
TNC_IMV_Action_Recommendation. This type is represented as a TNC_UInt32. The IMV
MUST pass one of the values listed in section 3.5.7. The IMV MUST NOT use any other IMV
Action Recommendation value with this version of the IF-IMV API.

3.4.2.6 IMV Evaluation Result
After evaluating the endpoint’s integrity, each IMV supplies an IMV Action Recommendation and
IMV Evaluation Result to the TNCS by calling the TNC_TNCS_ProvideRecommendation

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 21 of 61
 TCG PUBLISHED

function. One call to TNC_TNCS_ProvideRecommendation suffices to pass both of these values.
The type used to communicate the IMV Evaluation Result is TNC_IMV_Evaluation_Result.
This type is represented as a TNC_UInt32. The IMV MUST pass one of the values listed in
section 3.5.8. The IMV MUST NOT use any other IMV Evaluation Result value with this version of
the IF-IMV API. This document does not specify what the TNCS does with this value. It may log it.

3.4.2.7 Message Type
 As described in section 2.6.4, the TNC architecture routes messages between IMCs and IMVs
based on their message type. Each message has a message type that uniquely identifies the
format and semantics of the message. A message type is a 32-bit number. In the IF-IMV API, this
number is represented as a TNC_UInt32.

To ensure the uniqueness of message types while providing for vendor extensions, vendor-
specific message types are formed by placing a vendor-chosen message subtype in the least
significant 8 bits of the message type and the vendor’s vendor ID in the most significant 24 bits of
the message type. Message types standardized by the TCG will have the reserved value zero (0)
in the most significant 24 bits.

The vendor ID TNC_VENDORID_ANY (0xffffff) and the subtype TNC_SUBTYPE_ANY (0xff)
are reserved as wild cards as described in section 3.8.1. An IMC MUST NOT send messages
whose message type includes one of these reserved values.

The TNC_TNCS_FormMessageType function converts a vendor ID and a subtype into a
message type. The TNC_TNCS_ParseMessageType function does the reverse. There’s no
magic here. They only perform simple bit-wise operations (shift and or). But the may be
convenient for the IMV to use.

TNC Clients and TNC Servers MUST properly deliver messages with any message type (as
described in section 2.6.4).

3.4.2.8 Message Type List
The TNC_MessageTypeList type represents a list of message types. Its exact representation is
platform-specific, but will typically be a pointer or reference to an array of TNC_MessageTypes.

3.4.2.9 Vendor ID
The TNC_VendorID type represents a 24-bit vendor ID as described in section 3.2.3. It is
represented as a TNC_UInt32, but only values from 0 to 16777215 (0xffffff) are valid. This type
is used when forming and parsing message types. For a full description of vendor IDs, see
section 3.2.3.

The message type TNC_VENDORID_ANY (0xffffff) is reserved as a wild card as described in
section 3.8.1. IMVs may request messages with this vendor ID to indicate that they want to
receive messages whose message type includes any vendor ID. However, an IMV MUST NOT
send messages whose message type includes this reserved value and a TNCS MUST NOT
deliver such messages.

3.4.2.10 Message Subtype
The TNC_MessageSubtype type represents an 8-bit message subtype. It is represented as a
TNC_UInt32, but only values from 0 to 255 are legal. This type is used when forming and
parsing message types.

The message subtype TNC_SUBTYPE_ANY (0xff) is reserved as a wild card as described in
section 3.8.1. IMVs may request messages with this message subtype to indicate that they want
to receive messages whose message subtype has any value. However, an IMV MUST NOT send
messages whose message subtype includes this reserved value and a TNCS MUST NOT deliver
such messages.

3.4.2.11 Version

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 22 of 61
 TCG PUBLISHED

The TNC_Version type represents an API version number. See sections 3.2.1 and 3.7.1 for
details on how this is used.

3.4.2.12 Result Code
Each function in the IF-IMV API returns a result code of type TNC_Result to indicate success or
the reason for failure. As noted above, a result code is represented as a TNC_UInt32, an
unsigned integer of at least 32 bits in length. To form a vendor-specific result code, place a
vendor-chosen subcode in the least significant 8 bits of the integer and the vendor’s vendor ID in
the next most significant 24 bits of the result code (the most significant 24 bits if the integer is 32
bits long). All result codes defined in this specification (listed in section 3.5.2) have the reserved
value zero (0) in the most significant 24 bits.

IMVs and TNCSs MUST be prepared for any function to return any result code. Vendor-specific
result codes are always permissible and new standard result codes may be defined without
changing the version number of the IF-IMV API. Any unknown non-zero result code SHOULD be
treated as equivalent to TNC_RESULT_OTHER.

3.5 Defined Constants
This section describes the constants defined in the abstract IF-IMV API.

3.5.1 Boolean Values
There are only two permissible values of the type TNC_Boolean: TNC_TRUE and TNC_FALSE.
These values are used to indicate Boolean values.

3.5.2 Result Code Values
Each function in the IF-IMV API returns a result code of type TNC_Result to indicate success or
reason for failure. Here is the set of standard result codes defined by this specification. Vendor-
specific result codes are always permissible and new standard result codes may be defined
without changing the version number of the IF-IMV API. IMVs and TNCSs MUST be prepared for
any function to return any result code. Any unknown non-zero result code SHOULD be treated as
equivalent to TNC_RESULT_OTHER. IMCs or TNCCs MAY communicate errors to users, log
them, ignore them, or handle them in another way that is compliant with this specification.

If an IMV function returns TNC_RESULT_FATAL, then the IMV has encountered a permanent
error. The TNCS SHOULD call TNC_IMV_Terminate as soon as possible. The TNCS MAY then
try to reinitialize the IMC with TNC_IMV_Initialize or try other measures such as unloading
and reloading the IMV and then reinitializing it.

If a TNCS function returns TNC_RESULT_FATAL, then the TNCS has encountered a permanent
error.

Result Code Definition

TNC_RESULT_SUCCESS Function completed successfully

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_ALREADY_INITIALIZED TNC_IMV_Initialize was called twice
without a call to TNC_IMV_Terminate

TNC_RESULT_NO_COMMON_VERSION No common IF-IMV API version between
IMV and TNC Server

TNC_RESULT_CANT_RETRY TNCS cannot attempt handshake retry

TNC_RESULT_WONT_RETRY TNCS refuses to attempt handshake retry

TNC_RESULT_INVALID_PARAMETER Function parameter is not valid

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 23 of 61
 TCG PUBLISHED

TNC_RESULT_ILLEGAL_OPERATION Illegal operation attempted

TNC_RESULT_OTHER Unspecified error

TNC_RESULT_FATAL Unspecified fatal error

3.5.3 Version Numbers
As noted in section 3.2.1, this specification defines version 1 of the TNC IF-IMV API. Future
versions of this specification will define other version numbers. See section 3.7.1 for a description
of how version numbers are handled.

Version Number Definition

TNC_IMV_VERSION_1 The version of IF-IMV API defined here

3.5.4 Network Connection ID Values
The reserved value TNC_CONNECTIONID_ANY MUST NOT be used as a normal network
connection ID. Instead, it may be passed to TNC_TNCS_RequestHandshakeRetry to indicate
that handshake retry is requested for all current network connections.

Network Connection ID Value Definition

TNC_CONNECTIONID_ANY All current network connections

3.5.5 Network Connection State Values
This is the complete set of permissible values for the TNC_Connection_State type in this
version of the IF-IMV API.

Network Connection State Value Definition

TNC_CONNECTION_STATE_CREATE Network connection created

TNC_CONNECTION_STATE_HANDSHAKE Handshake about to start

TNC_CONNECTION_STATE_ACCESS_ALLOWED Handshake completed. Requested
access allowed.

TNC_CONNECTION_STATE_ACCESS_ISOLATED Handshake completed. Isolated
access allowed.

TNC_CONNECTION_STATE_ACCESS_NONE Handshake completed. No network
access allowed.

TNC_CONNECTION_STATE_DELETE About to delete network
connection ID. Remove all
associated state.

3.5.6 Handshake Retry Reason Values
This is the complete set of permissible values for the TNC_Retry_Reason type in this version of
the IF-IMV API.

Handshake Retry Reason Value Definition

TNC_RETRY_REASON_IMV_IMPORTANT_POLICY_CHANGE IMV policy has changed. It
recommends handshake retry
even if network

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 24 of 61
 TCG PUBLISHED

connectivity must be
interrupted

TNC_RETRY_REASON_IMV_MINOR_POLICY_CHANGE IMV policy has changed. It
requests handshake retry
but not if network
connectivity must be
interrupted

TNC_RETRY_REASON_IMV_SERIOUS_EVENT IMV has detected a serious
event and recommends
handshake retry even if
network connectivity must
be interrupted

TNC_RETRY_REASON_IMV_MINOR_EVENT IMV has detected a minor
event. It requests
handshake retry but not if
network connectivity must
be interrupted

TNC_RETRY_REASON_IMV_PERIODIC IMV wishes to conduct a
periodic recheck. It
recommends handshake retry
but not if network
connectivity must be
interrupted

3.5.7 IMV Action Recommendation Values
This is the complete set of permissible values for the TNC_IMV_Action_Recommendation type
in this version of the IF-IMV API.

IMV Action Recommendation Value Definition

TNC_IMV_ACTION_RECOMMENDATION_ALLOW IMV recommends allowing
access

TNC_IMV_ACTION_RECOMMENDATION_NO_ACCESS IMV recommends no
access

TNC_IMV_ACTION_RECOMMENDATION_ISOLATE IMV recommends limited
access. This access may
be expanded after
remediation

TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMENDATION IMV does not have a
recommendation

3.5.8 IMV Evaluation Result Values
This is the complete set of permissible values for the TNC_IMV_Evaluation_Result type in
this version of the IF-IMV API.

IMV Evaluation Result Value Definition

TNC_IMV_EVALUATION_RESULT_COMPLIANT AR complies with policy

TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MINOR AR is not compliant with
policy. Non-compliance is

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 25 of 61
 TCG PUBLISHED

minor.

TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MAJOR AR is not compliant with
policy. Non-compliance is
major.

TNC_IMV_EVALUATION_RESULT_ERROR IMV is unable to determine
policy compliance due to
error

TNC_IMV_EVALUATION_RESULT_DONT_KNOW IMV does not know whether
AR complies with policy

3.5.9 Vendor ID Values
These are reserved vendor ID values. Other vendor IDs between 1 and 16777214 (0xfffffe) may
be used as described in section 3.4.2.9. Note that vendor IDs are assigned by IANA as described
in section 3.2.3.

Vendor ID Value Value Definition

TNC_VENDORID_TCG 0 Reserved for TCG-defined values

TNC_VENDORID_ANY 0xffffff Wild card matching any vendor ID

3.5.10 Message Subtype Values
This is a reserved message subtype value. Other message subtypes between 0 and 254 may be
used as described in section 3.4.2.10. Note that message subtypes are assigned by vendors as
described in section 3.4.2.7.

Message Subtype Value Value Definition

TNC_SUBTYPE_ANY 0xff Wild card matching any message
subtype

3.6 Mandatory and Optional Functions
Some of the functions in the IF-IMV API are marked as mandatory below. Mandatory functions
MUST be implemented. The rest are marked as optional and need not be implemented. An IMV
or TNC Server MUST work properly if one or more optional functions are not implemented by the
other party. To determine whether an optional function has been implemented, use the Dynamic
Function Binding mechanism defined in most platform bindings. On platforms that don’t define a
Dynamic Function Binding mechanism, all optional functions MUST be implemented.

3.7 IMV Functions
These functions are implemented by the IMV and called by the TNC Server.

3.7.1 TNC_IMV_Initialize (MANDATORY)

TNC_Result TNC_IMV_Initialize(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_Version minVersion,
/*in*/ TNC_Version maxVersion,
/*out*/ TNC_Version *pOutActualVersion);

Description:

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 26 of 61
 TCG PUBLISHED

The TNC Server calls this function to initialize the IMV and agree on the API version number to
be used. It also supplies the IMV ID, an IMV identifier that the IMV must use when calling TNC
Server callback functions. All IMVs MUST implement this function.

The TNC Server MUST NOT call any other IF-IMV API functions for an IMV until it has
successfully completed a call to TNC_IMV_Initialize(). Once a call to this function has
completed successfully, this function MUST NOT be called again for a particular IMV-TNCS pair
until a call to TNC_IMV_Terminate has completed successfully.

The TNC Server MUST set minVersion to the minimum IF-IMV API version number that it
supports and MUST set maxVersion to the maximum API version number that it supports. The
TNC Server also MUST set pOutActualVersion so that the IMV can use it as an output
parameter to provide the actual API version number to be used. With the C binding, this would
involve setting pOutActualVersion to point to a suitable storage location.

The IMV MUST check these to determine whether there is an API version number that it supports
in this range. If not, the IMV MUST return TNC_RESULT_NO_COMMON_VERSION. Otherwise, the
IMV SHOULD select a mutually supported version number, store that version number at
pOutActualVersion, and initialize the IMV. If the initialization completes successfully, the IMV
SHOULD return TNC_RESULT_SUCCESS. Otherwise, it SHOULD return another result code.

If an IMV determines that pOutActualVersion is not set properly to allow the IMV to use it as
an output parameter, the IMV SHOULD return TNC_RESULT_INVALID_PARAMETER. With the C
binding, this might involve checking for a NULL pointer. IMVs are not required to make this check
and there is no guarantee that IMVs will be able to perform it adequately (since it is often
impossible or very hard to detect invalid pointers).

Input Parameter Description

imvID IMV ID assigned by TNCS

minVersion Minimum API version supported by TNCS

maxVersion Maximum API version supported by TNCS

Output Parameter Description

pOutActualVersion Mutually supported API version number

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NO_COMMON_VERSION No common API version supported by IMV and
TNC Server

TNC_RESULT_ALREADY_INITIALIZED TNC_IMV_Initialize has already been called
and TNC_IMV_Terminate has not

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

Other result codes Other non-fatal error

3.7.2 TNC_IMV_NotifyConnectionChange (OPTIONAL)

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 27 of 61
 TCG PUBLISHED

TNC_Result TNC_IMV_NotifyConnectionChange(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID
/*in*/ TNC_ConnectionState newState);

Description:

The TNC Server calls this function to inform the IMV that the state of the network connection
identified by connectionID has changed to newState. Section 3.5.5 lists all the possible
values of newState for this version of the IF-IMV API. The TNCS MUST NOT use any other
values with this version of IF-IMV.

IMVs that want to track the state of network connections or maintain per-connection data
structures SHOULD implement this function. Other IMVs MAY implement it.

If the state is TNC_CONNECTION_STATE_CREATE, the IMV SHOULD note the creation of a new
network connection.

If the state is TNC_CONNECTION_STATE_HANDSHAKE, an Integrity Check Handshake is about to
begin.

If the state is TNC_CONNECTION_STATE_DELETE, the IMV SHOULD discard any state pertaining
to this network connection and MUST NOT pass this network connection ID to the TNC Server
after this function returns (unless the TNCS later creates another network connection with the
same network connection ID).

The imvID parameter MUST contain the IMV ID value provided to TNC_IMV_Initialize. The
connectionID parameter MUST contain a valid network connection ID. IMVs MAY check these
values to make sure they are valid and return an error if not, but IMVs are not required to make
these checks. The newState parameter MUST contain one of the values listed in section 3.5.5.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID whose state is changing

newState New network connection state

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.3 TNC_IMV_ReceiveMessage (OPTIONAL)

TNC_Result TNC_IMV_ReceiveMessage(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 28 of 61
 TCG PUBLISHED

/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

Description:

The TNC Server calls this function to deliver a message to the IMV. The message is contained in
the buffer referenced by message and contains the number of octets (bytes) indicated by
messageLength. The type of the message is indicated by messageType. The message MUST be
from an IMC (or a TNCC or other party acting as an IMC).

The IMV SHOULD send any IMC-IMV messages it wants to send as soon as possible after this
function is called and then return from this function to indicate that it is finished sending
messages in response to this message.

As with all IMV functions, the IMV SHOULD NOT wait a long time before returning from
TNC_IMV_ReceiveMessage. To do otherwise would risk delaying the handshake indefinitely. A
long delay might frustrate users or exceed network timeouts (PDP, PEP or otherwise).

The IMV should implement this function if it wants to receive messages. Most IMVs will do so,
since they will base their IMV Action Recommendations on measurements received from the
IMC. However, some IMVs may base their IMV Action Recommendations on other data such as
reports from intrusion detection systems or scanners. Those IMVs need not implement this
function.

The IMV MUST NOT ever modify the buffer contents and MUST NOT access the buffer after
TNC_IMV_ReceiveMessage has returned. If the IMV wants to retain the message, it should
copy it before returning from TNC_IMV_ReceiveMessage.

The imvID parameter MUST contain the IMV ID value provided to TNC_IMV_Initialize. The
connectionID parameter MUST contain a valid network connection ID. The message
parameter MUST contain a reference to a buffer containing the message being delivered to the
IMC. The messageLength parameter MUST contain the number of octets in the message. If the
value of the messageLength parameter is zero (0), the message parameter may be NULL with
platform bindings that have such a value. The messageType parameter MUST contain the type
of the message. It MUST match one of the TNC_MessageType values previously supplied by the
IMV to the TNCS in the IMV’s most recent call to TNC_TNCS_ReportMessageTypes. IMVs
MAY check these parameters to make sure they are valid and return an error if not, but IMVs are
not required to make these checks.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID on which message was
received

message Reference to buffer containing message

messageLength Number of octets in message

messageType Message type of message

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 29 of 61
 TCG PUBLISHED

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.4 TNC_IMV_SolicitRecommendation (MANDATORY)

TNC_Result TNC_IMV_SolicitRecommendation(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID);

Description:

The TNC Server calls this function at the end of an Integrity Check Handshake (after all IMC-IMV
messages have been delivered) to solicit recommendations from IMVs that have not yet provided
a recommendation. If an IMV is not able to provide a recommendation at this time, it SHOULD
call TNC_TNCS_ProvideRecommendation with the recommendation parameter set to
TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMENDATION. If an IMV returns from this
function without calling TNC_TNCS_ProvideRecommendation, the TNCS MAY consider the
IMV’s Action Recommendation to be
TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMENDATION. The TNCS MAY take other
actions, such as logging this IMV behavior, which is erroneous.

All IMVs MUST implement this function.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time for any reason,
including limited support for long conversations in underlying protocols, user or administrator
intervention, or policy. If this happens, the TNCS will return TNC_RESULT_ILLEGAL_OPERATION
from TNC_TNCS_SendMessage and call TNC_TNCS_SolicitRecommendation to elicit IMV
Action Recommendations based on the data they have gathered so far.

The imvID parameter MUST contain the IMV ID value provided to TNC_IMV_Initialize. The
connectionID parameter MUST contain a valid network connection ID. IMVs MAY check these
values to make sure they are valid and return an error if not, but IMVs are not required to make
these checks.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID for which a
recommendation is requested

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 30 of 61
 TCG PUBLISHED

3.7.5 TNC_IMV_BatchEnding (OPTIONAL)

TNC_Result TNC_IMV_BatchEnding(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID);

Description:

The TNC Server calls this function to notify IMVs that all IMC messages received in a batch have
been delivered and this is the IMV’s last chance to send a message in the batch of IMV
messages currently being collected.. An IMV MAY implement this function if it wants to perform
some actions after all the IMC messages received during a batch have been delivered (using
TNC_IMV_ReceiveMessage). For instance, if an IMV has not received any messages from an
IMC it may conclude that its IMC is not installed on the endpoint and may decide to call
TNC_TNCS_ProvideRecommendation with the recommendation parameter set to
TNC_IMV_ACTION_RECOMMENDATION_NO_ACCESS.

An IMV MAY call TNC_TNCS_SendMessage from this function. As with all IMV functions, the IMV
SHOULD NOT wait a long time before returning from TNC_IMV_BatchEnding. To do otherwise
would risk delaying the handshake indefinitely. A long delay might frustrate users or exceed
network timeouts (PDP, PEP or otherwise).

The imvID parameter MUST contain the IMV ID value provided to TNC_IMV_Initialize. The
connectionID parameter MUST contain a valid network connection ID. IMVs MAY check these
values to make sure they are valid and return an error if not, but IMVs are not required to make
these checks.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID for which a batch is ending

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.6 TNC_IMV_Terminate (OPTIONAL)

TNC_Result TNC_IMV_Terminate(
/*in*/ TNC_IMVID imvID);

Description:

The TNC Server calls this function to close down the IMV. For example, this function will typically
be called when all work is complete and the TNCS is preparing to shut down or when the IMV
reports TNC_RESULT_FATAL. Once a call to TNC_IMV_Terminate is made, the TNC Server

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 31 of 61
 TCG PUBLISHED

MUST NOT call the IMV except to call TNC_IMV_Initialize (which may not succeed if the
IMV cannot reinitialize itself). Even if the IMV returns an error from this function, the TNC Server
MAY continue with its unload or shutdown procedure.

The imvID parameter MUST contain the IMV ID value provided to TNC_IMV_Initialize.
IMVs MAY check if imvID matches the value previously passed to TNC_IMV_Initialize and
return TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

Input Parameter Description

imvID IMV ID assigned by TNCS

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8 TNC Server Functions
These functions are implemented by the TNC Server and called by the IMV.

3.8.1 TNC_TNCS_ReportMessageTypes (MANDATORY)

TNC_Result TNC_TNCS_ReportMessageTypes(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_MessageTypeList supportedTypes,
/*in*/ TNC_UInt32 typeCount);

Description:

An IMV calls this function to inform a TNCS about the set of message types the IMV is able to
receive. Often, the IMV will call this function from TNC_IMV_Initialize. With the Windows
DLL binding or UNIX/Linux Dynamic Linkage binding, TNC_TNCS_ReportMessageTypes will
typically be called from TNC_IMV_ProvideBindFunction since an IMV cannot call the TNCS
with those platform bindings until TNC_IMV_ProvideBindFunction is called.

A list of message types is contained in the supportedTypes parameter. The number of types in
the list is contained in the typeCount parameter. If the value of the typeCount parameter is
zero (0), the supportedTypes parameter may be NULL with platform bindings that have such a
value. The imvID MUST contain the value provided to TNC_IMV_Initialize. TNCSs MAY
check if imvID matches the value previously passed to TNC_IMV_Initialize and return
TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

All TNC Servers MUST implement this function. The TNC Server MUST NOT ever modify the list
of message types and MUST NOT access this list after TNC_TNCS_ReportMessageTypes has
returned. Generally, the TNC Server will copy the contents of this list before returning from this
function. TNC Servers MUST support any message type.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 32 of 61
 TCG PUBLISHED

Note that although all TNC Servers must implement this function, some IMVs may never call it if
they don’t support receiving any message types. This is acceptable. In such a case, the TNC
Server MUST NOT deliver any messages to the IMV.

If an IMV requests a message type whose vendor ID is TNC_VENDORID_ANY and whose subtype
is TNC_SUBTYPE_ANY it will receive all messages with any message type. This message type is
0xffffffff. If an IMV requests a message type whose vendor ID is NOT TNC_VENDORID_ANY
and whose subtype is TNC_SUBTYPE_ANY, it will receive all messages with the specified vendor
ID and any subtype. . If an IMV calls TNC_TNCS_ReportMessageTypes more than once, the
message type list supplied in the latest call supplants the message type lists supplied in earlier
calls.

Input Parameter Description

imvID IMV ID assigned by TNCS

supportedTypes Reference to list of message types supported by
IMV

typeCount Number of message types supported by IMV

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8.2 TNC_TNCS_SendMessage (MANDATORY)

TNC_Result TNC_TNCS_SendMessage(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

Description:

An IMV calls this function to give a message to the TNCS for delivery. The message is contained
in the buffer referenced by the message parameter and contains the number of octets (bytes)
indicated by the messageLength parameter. . If the value of the messageLength parameter is
zero (0), the message parameter may be NULL with platform bindings that have such a value.
The type of the message is indicated by the messageType parameter. The imvID parameter
MUST contain the value provided to TNC_IMV_Initialize and the connectionID parameter
MUST contain a valid network connection ID. TNCSs MAY check these values to make sure they
are valid and return an error if not, but TNCSs are not required to make these checks.

All TNC Servers MUST implement this function. The TNC Server MUST NOT ever modify the
buffer contents and MUST NOT access the buffer after TNC_TNCS_SendMessage has returned.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 33 of 61
 TCG PUBLISHED

The TNC Server will typically copy the message out of the buffer, queue it up for delivery, and
return from this function.

The IMV MUST NOT call this function unless it has received a call to
TNC_IMV_ReceiveMessage or TNC_IMV_BatchEnding for this connection and the IMV has
not yet returned from that function. If the IMV violates this prohibition, the TNCS SHOULD return
TNC_RESULT_ILLEGAL_OPERATION. If an IMV really wants to communicate with an IMC at
another time, it should call TNC_TNCS_RequestHandshakeRetry.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time for any reason,
including limited support for long conversations in underlying protocols, user or administrator
intervention, or policy. If this happens, the TNCS will return TNC_RESULT_ILLEGAL_OPERATION
from TNC_TNCS_SendMessage and call TNC_TNCS_SolicitRecommendation to elicit IMV
Action Recommendations based on the data they have gathered so far.

The TNC Server MUST support any message type. However, the IMC MUST NOT specify a
message type whose vendor ID is 0xffffff or whose subtype is 0xff. These values are reserved for
use as wild cards, as described in section 3.8.1. If the IMC violates this prohibition, the TNCC
SHOULD return TNC_RESULT_INVALID_PARAMETER.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID on which message should
be sent

message Reference to buffer containing message

messageLength Number of octets in message

messageType Message type of message

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_ILLEGAL_OPERATION Message send attempted at illegal time

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8.3 TNC_TNCS_RequestHandshakeRetry (MANDATORY)

TNC_Result TNC_TNCS_RequestHandshakeRetry(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_RetryReason reason);

Description:

An IMV calls this function to ask a TNCS to retry an Integrity Check Handshake. The IMV MUST
pass its IMV ID as the imvID parameter, a network connection ID as the connectionID
parameter, and one of the handshake retry reasons listed in section 3.5.6 as the reason

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 34 of 61
 TCG PUBLISHED

parameter. If the network connection ID is TNC_CONNECTIONID_ANY, then the IMV requests an
Integrity Check Handshake retry on all current network connections.

TNCSs MAY check the parameters to make sure they are valid and return an error if not, but
TNCSs are not required to make these checks. The reason parameter explains why the IMV is
requesting a handshake retry. The TNCS MAY use this in deciding whether to attempt the
handshake retry. As noted in section 2.6.3, TNCSs are not required to honor IMV requests for
handshake retry (especially since handshake retry may not be possible or may interrupt network
connectivity). An IMV MAY call this function at any time, even if an Integrity Check Handshake is
currently underway. This is useful if the IMV suddenly gets important information but has already
finished its dialog with the IMC, for instance. As always, the TNCS is not required to honor the
request for handshake retry.

If the TNCS cannot attempt the handshake retry, it SHOULD return the result code
TNC_RESULT_CANT_RETRY. If the TNCS could attempt to retry the handshake but chooses not
to, it SHOULD return the result code TNC_RESULT_WONT_RETRY. If the TNCS intends to retry
the handshake, it SHOULD return the result code TNC_RESULT_SUCCESS. The IMV MAY use
this information in displaying diagnostic and progress messages.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID for which handshake retry is
requested

reason Reason why handshake retry is requested

Result Code Condition

TNC_RESULT_SUCCESS TNCS intends to retry the handshake

TNC_RESULT_CANT_RETRY TNCS cannot attempt the handshake retry

TNC_RESULT_WONT_RETRY TNCS won’t attempt the handshake retry

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8.4 TNC_TNCS_ProvideRecommendation (MANDATORY)

TNC_Result TNC_TNCS_ProvideRecommendation(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_IMV_Action_Recommendation recommendation,
/*in*/ TNC_IMV_Evaluation_Result evaluation);

Description:

An IMV calls this function to deliver its IMV Action Recommendation and IMV Evaluation Result to
the TNCS. The TNCS SHOULD use the recommendation value in determining its own TNCS
Action Recommendation or decision about endpoint access. The TNC specifications do not
specify how the TNCS does the recommendation value but it is certainly essential to have a

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 35 of 61
 TCG PUBLISHED

recommendation from the IMV. The TNC specifications also do not specify what the TNCS does
with the evaluation value. It may log it.

The IMV MUST pass its IMV ID as the imvID parameter, a valid network connection ID as the
connectionID parameter, one of the IMV Action Recommendation values listed in section 3.5.7
as the recommendation parameter, and one of the IMV Evaluation Result values listed in
section 3.5.8 as the evaluation parameter. TNCSs MAY check these values to make sure they
are valid and return an error if not, but TNCSs are not required to make these checks.

The IMV should deliver its IMV Action Recommendation as soon as possible so that the TNCS
can proceed with determining its own TNCS Action Recommendation. If the IMV receives a
message from an IMC and is able to decide on an IMV Action Recommendation and deliver it to
the TNCS before returning from TNC_IMV_ReceiveMessage, it SHOULD do so. However, as
always the IMV SHOULD return promptly to avoid a long delay that might frustrate users or
exceed network timeouts (PDP, PEP or otherwise).

An IMV SHOULD NOT expect that it will be able to send IMC-IMV messages after calling
TNC_TNCS_ProvideRecommendation. The TNCS may decide to terminate the handshake
immediately based on the IMV Action Recommendation. For instance, IMVs SHOULD send
remediation instructions before calling TNC_TNCS_ProvideRecommendation.

However, a TNCS MAY continue to deliver messages after an IMV calls
TNC_TNCS_ProvideRecommendation, especially if other IMVs continue the dialog after the
one IMV has rendered its decision. The IMV MUST be prepared for this. It MAY simply ignore
these late messages or it MAY consider them and even change its recommendation by calling
TNC_TNCS_ProvideRecommendation again. In this case, the TNCS SHOULD use the last
recommendation received from an IMV during a particular handshake. However, the TNCS is not
required to do this.

If an IMV does not provide a recommendation earlier, the TNCS will call
TNC_IMV_SolicitRecommendation at the end of an Integrity Check Handshake (after all
IMC-IMV messages have been delivered). The IMV SHOULD then call
TNC_TNCS_ProvideRecommendation to deliver its recommendation. If the IMV calls this
function when there is no active handshake on the specified network connection, the TNCS
SHOULD return TNC_RESULT_ILLEGAL_OPERATION. If an IMV really needs to communicate a
recommendation at another time, it should call TNC_TNCS_RequestHandshakeRetry.

Input Parameter Description

imvID IMV ID assigned by TNCS

connectionID Network connection ID for which recommendation
is being supplied

recommendation IMV’s Action Recommendation

evaluation IMV Evaluation Result

Result Code Condition

TNC_RESULT_SUCCESS TNCS intends to retry the handshake

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_ILLEGAL_OPERATION Recommendation provided at an illegal time

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 36 of 61
 TCG PUBLISHED

Other result codes Other non-fatal error

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 37 of 61
 TCG PUBLISHED

4 Platform Bindings
As noted above, IF-IMV is a platform-independent API. It is designed to support almost any
platform. In order to ensure compatibility within a single platform, this section defines how IF-IMV
SHOULD be implemented on specific platforms.

Note that if taking the “stub” approach, then IF-IMV represents an API between a TNCS and an
IMV stub DLL on the same platform, although the “actual” IMV may be located remotely on a
different platform.

It is assumed that platform bindings will only be created for platforms which are appropriate to a
role as servers. For example, IF-IMV bindings for handheld and 16-bit consumer operating
systems will not be specified as it is assumed that there will be limited (if any) implementation of
TNCSs on such systems.

4.1 Microsoft Windows DLL Platform Binding
Microsoft Windows is a popular platform with many variations. This binding is intended to support
only 32- or 64-bit Windows versions (e.g., Windows NT, Windows 2000, Windows 2003, or
Windows XP). It is not intended to support 16-bit Windows (Windows 3.X and Windows for
Workgroups), nor is it directly intended to support Windows CE, Windows 95/98/Me, or other
such versions of Windows.

Implementations on one of these platforms SHOULD use this binding when possible for
maximum compatibility with other IMVs or TNC Servers on the platform. However, some
languages (such as Java) cannot easily implement or load DLLs. Implementations in such a
language may choose not to use this binding or may write custom code to support this binding.

4.1.1 Finding, Loading, and Unloading IMVs
The loading of IMVs is parallel to the process for loading IMCs within IF-IMC, with only minor
differences in behavior. With the Microsoft Windows DLL platform binding, each IMV is
implemented as a DLL. This IMV DLL may be either a “stub” IMV DLL or a full IMV; this
distinction is immaterial to the operation of the API.

When the DLL is installed, it is stored in a directory that can only be accessed by privileged users.
The full path of the DLL is stored in a well-known registry key (defined in section 4.1.9) that can
only be changed by privileged users. The TNC Server gets the value of this key and loads the
IMVs using the LoadLibrary system call. Then it uses the GetProcAddress function call to
access the IMV’s functions, as described in section 4.1.2. The TNCS MUST always call the
TNC_IMV_Initialize function first. When it is done using an IMV, the TNC Server calls
TNC_IMV_Terminate and then unloads the IMV DLL using the FreeLibrary system call. The
TNCS MUST listen for changes to the well-known registry key so that it can load and unload
IMVs dynamically. However, the TNCS SHOULD delay before making changes based on registry
key changes since it is common for these changes to come in batches within a few seconds
during an install process. Unlike a TNCC, a TNCS MUST NOT ignore such changes.

4.1.2 Dynamic Function Binding
The Microsoft Windows DLL platform binding does support dynamic function binding. To
determine whether an IMV function is defined, a TNC Server will pass the function name to
GetProcAddress. If the result is NULL, the function is not defined. Otherwise, the function is
defined and the TNCS can call it using the function pointer returned. This is common practice on
Windows.

A similar mechanism is used to allow an IMV to determine whether a TNCS function is defined. In
fact, this mechanism is the only way that the IMV can call a TNCS function with this platform
binding. A platform-specific mandatory IMV function named TNC_IMV_ProvideBindFunction
is defined below. For instructions on how this function is used, see its description.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 38 of 61
 TCG PUBLISHED

IMV and TNCS functions can be implemented in and called from many languages. With C++,
extern “C” should be used to ensure that C linkage conventions are used for IMV and TNCS
functions exposed through this API.

4.1.3 Threading
Unlike IMCs, IMV DLLs are required to be thread-safe. The IMV DLL MAY create threads. The
TNC Server MUST be thread-safe. This allows the IMV DLL to do work in background threads
and call the TNC Server when messages are ready to send (for instance).

4.1.4 Platform-Specific Bindings for Basic Types
With the Microsoft Windows DLL platform binding, the basic data types defined in the IF-IMV
abstract API are mapped as follows:

typedef unsigned long TNC_UInt32;

The TNC_UInt32 type is mapped to a four byte unsigned value.

typedef unsigned char *TNC_BufferReference;

The TNC_BufferReference type is mapped to a pointer. The value NULL is allowed for a
TNC_BufferReference only where explicitly permitted in this specification.

4.1.5 Platform-Specific Bindings for Derived Types
With the Microsoft Windows DLL platform binding, the platform-specific derived data types
defined in the IF-IMV abstract API are mapped as follows:

typedef TNC_MessageType *TNC_MessageTypeList;

The TNC_MessageTypeList type is mapped to a pointer. The value NULL is allowed for a
TNC_MessageTypeList only where explicitly permitted in this specification.

4.1.6 Additional Platform-Specific Derived Types
The Microsoft Windows DLL platform binding for the IF-IMV API defines several additional
derived data types.

4.1.6.1 Function Pointers
Function pointer types are defined for all the functions contained in the abstract API and platform
binding. This makes it easy to cast function pointers returned by GetProcAddress or
TNC_TNCS_BindFunction to the right type and ensure that the compiler performs type
checking on arguments.

typedef TNC_Error (*TNC_IMV_InitializePointer)(
 TNC_IMVID imvID,
 TNC_Version minVersion,
 TNC_Version maxVersion,
 TNC_Version *pOutActualVersion);

typedef TNC_Error (*TNC_IMV_NotifyConnectionChangePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionStatus newStatus);

typedef TNC_Error (*TNC_IMV_ReceiveMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 39 of 61
 TCG PUBLISHED

 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Result (*TNC_IMV_SolicitRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMV_BatchEndingPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);

typedef TNC_Error (*TNC_IMV_TerminatePointer)(
 TNC_IMVID imvID);

typedef TNC_Error (*TNC_TNCS_ReportMessageTypesPointer)(
 TNC_IMVID imvID,
 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);

typedef TNC_Error (*TNC_TNCS_SendMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Error (*TNC_TNCS_RequestHandshakeRetryPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);

typedef TNC_Error (*TNC_TNCS_ProvideRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_IMV_Action_Recommendation recommendation);

typedef TNC_Error (*TNC_TNCS_BindFunctionPointer)(
 TNC_IMVID imvID,
 char *functionName,
 void **pOutfunctionPointer);

typedef TNC_Error (*TNC_IMV_ProvideBindFunctionPointer)(
 TNC_IMVID imvID,
 TNC_TNCS_BindFunctionPointer bindFunction);

4.1.7 Platform-Specific IMV Functions
The Microsoft Windows DLL platform binding for the IF-IMV API defines one additional function
that MUST be implemented by IMVs implementing this platform binding.

4.1.7.1 TNC_IMV_ProvideBindFunction (MANDATORY)

TNC_Error TNC_IMV_ProvideBindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_TNCS_BindFunctionPointer bindFunction);

Description:

IMVs implementing the Microsoft Windows DLL platform binding MUST define this additional
platform-specific function. The TNC Server MUST call the function immediately after calling
TNC_IMV_Initialize to provide a pointer to the TNCS bind function. The IMV can then use
the TNCS bind function to obtain pointers to any other TNCS functions.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 40 of 61
 TCG PUBLISHED

The imvID parameter MUST contain the value provided to TNC_IMV_Initialize. The
bindFunction parameter MUST contain a pointer to the TNCS bind function. IMVs MAY check
if imvID matches the value previously passed to TNC_IMV_Initialize and return
TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

Input Parameter Description

imvID IMV ID assigned by TNCS

bindFunction Pointer to TNC_TNCS_BindFunction

Error Code Condition

TNC_ERROR_SUCCESS Success

TNC_ERROR_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_ERROR_OTHER Unspecified non-fatal error

TNC_ERROR_FATAL Unspecified fatal error

Other error codes Other non-fatal error

4.1.8 Platform-Specific TNC Server Functions
The Microsoft Windows DLL platform binding for the IF-IMV API defines one additional function
that MUST be implemented by TNC Servers implementing this platform binding.

4.1.8.1 TNC_TNCS_BindFunction (MANDATORY)

TNC_Error TNC_TNCS_BindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ char *functionName,
/*out*/ void **pOutFunctionPointer);

Description:

TNC Servers implementing the Microsoft Windows DLL platform binding MUST define this
additional platform-specific function. An IMV can use this function to obtain pointers to other
TNCS functions. To obtain a pointer to a TNCS function, an IMV calls
TNC_TNCS_BindFunction. The IMV obtains a pointer to TNC_TNCS_BindFunction from
TNC_IMV_ProvideBindFunction.

The IMV MUST set the imVID parameter to the IMV ID value provided to
TNC_IMV_Initialize. TNCSs MAY check if imvID matches the value previously passed to
TNC_IMV_Initialize and return TNC_RESULT_INVALID_PARAMETER if not, but they are not
required to make this check. The IMV MUST set the functionName parameter to a pointer to a C
string identifying the function whose pointer is desired (i.e. "TNC_TNCS_SendMessage"). The
IMV MUST set the pOutFunctionPointer parameter to a pointer to storage into which the
desired function pointer will be stored. If the TNCS does not define the requested function, NULL
MUST be stored at pOutFunctionPointer. Otherwise, a pointer to the requested function MUST be
stored at pOutFunctionPointer. In either case, TNC_ERROR_SUCCESS SHOULD be returned.
Once an IMV obtains a pointer to a particular function, the TNCS MUST always return the same
function pointer value to that IMV for that function name. This requirement does not apply across
IMV termination and reinitialization.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 41 of 61
 TCG PUBLISHED

Input Parameter Description

imvID IMV ID assigned by TNCS

functionName Name of function whose pointer is requested

Output Parameter Description

pOutFunctionPointer Requested function pointer

Error Code Condition

TNC_ERROR_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_ERROR_OTHER Unspecified non-fatal error

TNC_ERROR_FATAL Unspecified fatal error

Other error codes Other non-fatal error

4.1.9 Well-known Registry Key
As discussed above, a well-known registry key is used by the TNCS to load IMVs. For Windows
platforms, this key is defined within the HKEY_LOCAL_MACHINE hive as follows. (The HKLM
hive is used since there will often be no logged on user to give context for any other hive.)

• HKEY_LOCAL_MACHINE

 Software

 Trusted Computing Group

 TNC

 IMVs

 [Human readable name of IMV], 0..n

Each IMV key contains an (unordered) set of values, as follows:

• the value “Path” is a REG_SZ String which contains the fully qualified path to an IMV DLL to
be loaded.

• the optional value “Description” is a REG_SZ String which contains a vendor-specific human-
readable description of the IMV DLL

The name and description are for ease of administration and may be ignored by the TNCS,
except for human interface purposes; only the Path data matters.

4.2 UNIX/Linux Dynamic Linkage Platform Binding
NOTE: This binding is still preliminary and under review. A UNIX/Linux static linkage binding may
be defined in addition to or instead of this binding.

UNIX and Linux operating systems are used for servers, desktops, and even embedded devices.
There are hundreds of varieties of UNIX and Linux dating back to the 1970s. One platform
binding cannot support them all. However, this binding supports all varieties of Linux that conform
to the Linux Standard Base 1.0.0 or later and all varieties of UNIX that conform to UNIX 98 or any
version of the Single UNIX Specification. This includes most varieties of UNIX and Linux currently
in use.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 42 of 61
 TCG PUBLISHED

Implementations on one of these platforms SHOULD use this binding when possible for
maximum compatibility with other IMVs and TNC Servers on the platform. However, some
languages (such as Java) cannot easily implement or load shared libraries. Implementations in
such a language may choose not to use this binding or to write custom code to support this
binding.

4.2.1 Finding, Loading, and Unloading IMVs
With the UNIX/Linux Dynamic Linkage platform binding, each IMV is implemented as a
dynamically loaded executable file (also known as a shared object or DLL). When the IMV is
installed, its executable file should be stored in a directory that can only be accessed by
privileged users. Then an entry is created in the /etc/tnc_config file that gives the full path of
the executable file. See section 4.2.3 for details on the format of this file.

The TNC Server opens the /etc/tnc_config file, reads the entries in the file, and determines
which of them should be loaded (using optional local configuration). For each IMV to be loaded,
the TNC Server passes the full path of the executable file to the dlopen system call. The value
passed as the mode parameter to the dlopen system call is platform-specific and not specified
here. The TNC Server uses the dlsym function call to access the IMV’s functions, as described
in section 4.2.2. The TNCS MUST always call the TNC_IMV_Initialize function first. When it
is done using an IMV, the TNC Server calls TNC_IMV_Terminate and then unloads the IMV
executable file using the dlclose system call.

If the TNCS receives a HUP signal (which may be sent with the kill command), the TNCS
SHOULD check the /etc/tnc_config file for changes and load or unload IMVs as needed to
match the latest list.

4.2.2 Dynamic Function Binding
The UNIX/Linux Dynamic Linkage platform binding does support dynamic function binding. To
determine whether an IMV function is defined, a TNC Server will pass the function name to
dlsym. If the result is NULL, the function is not defined. Otherwise, the function is defined and the
TNCS can call it using the function pointer returned. This is common practice on UNIX and Linux.

A similar mechanism is used to allow an IMV to determine whether a TNCS function is defined. In
fact, this mechanism is the only way that the IMV can call a TNCS function with this platform
binding. A platform-specific mandatory IMV function named TNC_IMV_ProvideBindFunction
is defined below. For instructions on how this function is used, see its description.

IMV0 and TNCS functions can be implemented in and called from many languages. With C++,
extern “C” should be used to ensure that C linkage conventions are used for IMV and TNCS
functions exposed through this API.

4.2.3 Format of /etc/tnc_config
The /etc/tnc_config file specifies the set of IMVs available for TNCSs to load. TNCSs are
not required to load these IMVs. A TNCS may be configured to ignore this file, load a subset of
the IMVs listed here, load a superset of those IMVs, or (most common) load the IMVs in the list.
This provides a simple, standard way for the list of IMVs to be specified but allows TNCCs to be
configured to only load a particular set of trusted IMVs.

The /etc/tnc_config file is a UTF-8 file. However, TNCCs are only required to support US-
ASCII characters (a subset of UTF-8). If a TNCC encounters a character that is not US-ASCII and
the TNCC can not process UTF-8 properly, the TNCC SHOULD indicate an error and not load the
file at all. In fact, the TNCC SHOULD respond to any problem with the file by indicating an error
and not loading the file at all.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 43 of 61
 TCG PUBLISHED

All characters specified here are specified in standard Unicode notation (U+nnnn where nnnn are
hexadecimal characters indicating the code points.

The /etc/tnc_config file is composed of zero or more lines. Each line ends in U+000A. No
other control characters (characters with the Unicode category Cc) are permitted in the file.

A line that begins with U+0023 is a comment. All other characters on the line should be ignored.
A line that does not contain any characters should also be ignored.

A line that begins with “IMV ” (U+0049, U+004D, U+0043, U+0020) specifies an IMV that may be
loaded. The next character MUST be U+0022 (QUOTATION MARK). This MUST be followed by
a human-readable IMV name (potentially zero length) and another U+0022 character
(QUOTATION MARK). Of course, the IMV name cannot contain a U+0022 (QUOTATION
MARK). But it can contain spaces or other characters. After the U+0022 that terminates the
human-readable name MUST come a space (U+0020) and then the full path of the IMV
executable file (up to but not including the U+000A that terminates the line). The path to the IMV
executable file MUST NOT be a partial path.

The /etc/tnc_config file must not contain IMVs with the same human-readable name. An
IMV that encounters such a file SHOULD indicate the error and MAY not load the file at all. It
MAY also change the IMV names to make them unique. Identical full paths are permitted but the
TNCC MAY ignore entries with identical paths if they will cause problems for it.

A line that is not empty and does not begin with U+0023 or with “IMV ” (U+0049, U+004D,
U+0043, U+0020) SHOULD be ignored by the TNCC unless otherwise specified by a future
version of this binding. This provides for future extensions to this file format.

Here is a specification of the file format using ABNF as defined in [5].

tnc_config = *line
line = (comment / empty / imc / imv / other) %x0A
comment = %x23 *(%x01-09 / %x0B-22 / %x24-1FFFFF)
empty = ""
imc = %x49.4D.43.20.22 name %x22.20 path ; ignored for IF-IMV
imv = %x49.4D.56.20.22 name %x22.20 path
name = *(%x01-09 / %x0B-21 / %x23-1FFFFF)
path = *(%x01-09 / %x0B-1FFFFF)
other = 1*(%x01-09 / %x0B-1FFFFF) ; But match more specific rules first

Here is a sample file specifying one IMV named “AV” located at /usr/bin/myav/av.so.

Simple TNC config file

IMV "AV" /usr/bin/myav/av.so

4.2.4 Threading
Unlike IMC’s, IMV executable files are required to be thread-safe. The IMV MAY create threads.
The TNC Server MUST be thread-safe. This allows the IMV DLL to do work in background
threads and call the TNC Server when messages are ready to send (for instance).

4.2.5 Platform-Specific Bindings for Basic Types
With the UNIX/Linux Dynamic Linkage platform binding, the basic data types defined in the IF-
IMV abstract API are mapped as follows:

typedef unsigned long TNC_UInt32;

The TNC_UInt32 type is mapped to a four byte unsigned value.

typedef unsigned char *TNC_BufferReference;

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 44 of 61
 TCG PUBLISHED

The TNC_BufferReference type is mapped to a pointer. The value NULL is allowed for a
TNC_BufferReference only where explicitly permitted in this specification.

4.2.6 Platform-Specific Bindings for Derived Types
With the UNIX/Linux Dynamic Linkage platform binding, the platform-specific derived data types
defined in the IF-IMV abstract API are mapped as follows:

typedef TNC_MessageType *TNC_MessageTypeList;

The TNC_MessageTypeList type is mapped to a pointer. The value NULL is allowed for a
TNC_MessageTypeList only where explicitly permitted in this specification.

4.2.7 Additional Platform-Specific Derived Types
The UNIX/Linux Dynamic Linkage DLL platform binding for the IF-IMV API defines several
additional derived data types.

4.2.7.1 Function Pointers
Function pointer types are defined for all the functions contained in the abstract API and platform
binding. This makes it easy to cast function pointers returned by dlsym or
TNC_TNCS_BindFunction to the right type and ensure that the compiler performs type
checking on arguments.

typedef TNC_Error (*TNC_IMV_InitializePointer)(
 TNC_IMVID imvID,
 TNC_Version minVersion,
 TNC_Version maxVersion,
 TNC_Version *pOutActualVersion);

typedef TNC_Error (*TNC_IMV_NotifyConnectionChangePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionStatus newStatus);

typedef TNC_Error (*TNC_IMV_ReceiveMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Result (*TNC_IMV_SolicitRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMV_BatchEndingPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);

typedef TNC_Error (*TNC_IMV_TerminatePointer)(
 TNC_IMVID imvID);

typedef TNC_Error (*TNC_TNCS_ReportMessageTypesPointer)(
 TNC_IMVID imvID,
 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);

typedef TNC_Error (*TNC_TNCS_SendMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 45 of 61
 TCG PUBLISHED

 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Error (*TNC_TNCS_RequestHandshakeRetryPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);

typedef TNC_Error (*TNC_TNCS_ProvideRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_IMV_Action_Recommendation recommendation);

typedef TNC_Error (*TNC_TNCS_BindFunctionPointer)(
 TNC_IMVID imvID,
 char *functionName,
 void **pOutfunctionPointer);

typedef TNC_Error (*TNC_IMV_ProvideBindFunctionPointer)(
 TNC_IMVID imvID,
 TNC_TNCS_BindFunctionPointer bindFunction);

4.2.8 Platform-Specific IMV Functions
The UNIX/Linux Dynamic Linkage platform binding for the IF-IMV API defines one additional
function that MUST be implemented by IMVs implementing this platform binding.

4.2.8.1 TNC_IMV_ProvideBindFunction (MANDATORY)

TNC_Error TNC_IMV_ProvideBindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_TNCS_BindFunctionPointer bindFunction);

Description:

IMVs implementing the UNIX/Linux Dynamic Linkage platform binding MUST define this
additional platform-specific function. The TNC Server MUST call the function immediately after
calling TNC_IMV_Initialize to provide a pointer to the TNCS bind function. The IMV can then
use the TNCS bind function to obtain pointers to any other TNCS functions.

The imvID parameter MUST contain the value provided to TNC_IMV_Initialize. The
bindFunction parameter MUST contain a pointer to the TNCS bind function. IMVs MAY check
if imvID matches the value previously passed to TNC_IMV_Initialize and return
TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

Input Parameter Description

imvID IMV ID assigned by TNCS

bindFunction Pointer to TNC_TNCS_BindFunction

Error Code Condition

TNC_ERROR_SUCCESS Success

TNC_ERROR_NOT_INITIALIZED TNC_IMV_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_ERROR_OTHER Unspecified non-fatal error

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 46 of 61
 TCG PUBLISHED

TNC_ERROR_FATAL Unspecified fatal error

Other error codes Other non-fatal error

4.2.9 Platform-Specific TNC Server Functions
The Microsoft Windows DLL platform binding for the IF-IMV API defines one additional function
that MUST be implemented by TNC Servers implementing this platform binding.

4.2.9.1 TNC_TNCS_BindFunction (MANDATORY)

TNC_Error TNC_TNCS_BindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ char *functionName,
/*out*/ void **pOutFunctionPointer);

Description:

TNC Servers implementing the UNIX/Linux Dynamic Linkage platform binding MUST define this
additional platform-specific function. An IMV can use this function to obtain pointers to other
TNCS functions. To obtain a pointer to a TNCS function, an IMV calls
TNC_TNCS_BindFunction. The IMV obtains a pointer to TNC_TNCS_BindFunction from
TNC_IMV_ProvideBindFunction.

The IMV MUST set the imVID parameter to the IMV ID value provided to
TNC_IMV_Initialize. TNCSs MAY check if imvID matches the value previously passed to
TNC_IMV_Initialize and return TNC_RESULT_INVALID_PARAMETER if not, but they are not
required to make this check. The IMV MUST set the functionName parameter to a pointer to a C
string identifying the function whose pointer is desired (i.e. "TNC_TNCS_SendMessage"). The
IMV MUST set the pOutFunctionPointer parameter to a pointer to storage into which the
desired function pointer will be stored. If the TNCS does not define the requested function, NULL
MUST be stored at pOutFunctionPointer. Otherwise, a pointer to the requested function MUST be
stored at pOutFunctionPointer. In either case, TNC_ERROR_SUCCESS SHOULD be returned.

Input Parameter Description

imvID IMV ID assigned by TNCS

functionName Name of function whose pointer is requested

Output Parameter Description

pOutFunctionPointer Requested function pointer

Error Code Condition

TNC_ERROR_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_ERROR_OTHER Unspecified non-fatal error

TNC_ERROR_FATAL Unspecified fatal error

Other error codes Other non-fatal error

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 47 of 61
 TCG PUBLISHED

5 Security Considerations
This section describes the security threats related to IF-IMV and suggests methods to address
these threats. The components involved in IF-IMV are one or more Trusted Network Connect
Servers (TNCS) and one or more Integrity Measurement Verifiers (IMVs). These are logical
components; the TNCS and IMVs reside on the same host. The IF-IMV is the interface between
the TNCS and the IMVs.

A multitude of remote distributed endpoints is often more difficult to manage securely than a small
number of centralized servers; therefore, it is highly recommended that IMV and TNCS
implementers read and understand the Security Considerations of the IF-IMC [4] in addition to the
considerations in this document.

5.1 Threat analysis

5.1.1 Registration and Discovery based threats
The TNCS discovers which IMVs can be loaded on a host via a platform-specific binding, for
example, on the Windows platform using a windows registry key and on the Linux or Unix
platform using a configuration file. On Windows, this implies the registry keys are typically created
when the IMVs are installed, requiring the IMV installer to possess sufficient privileges on the
platform. Similarly the TNCS must have sufficient privileges to read the relevant keys. Based on
the IMVs discovered in the registry, the TNCS loads the code referenced by the registry entries.
On Linux and UNIX, analogous privilege requirements apply for accessing the configuration file.
Any party with sufficient privileges to modify the relevant registry key or configuration file can
mount the following attacks on the registration process:

- It can add an invalid IMV (Spoofing)
- It can remove a valid IMV, perhaps replacing it with rogue/modified versions of code

(Tamper)
Similar attacks can also be mounted by modifying the code of an IMV or critical data upon which
the IMV depends.

The ability to add an invalid IMV can have considerable impact, as detailed in the next section.

5.1.2 Rogue IMV threats
If a rogue IMV is installed and then loaded by a valid TNCS, it may be able to misuse IF-IMV in
the following ways:

- Overwrite TNCS or IMV memory
- Violate IF-IMV API requirements such as passing illegal or unexpected argument values
- Perform illegal operations so that the TNCS is terminated by the operating system
- Perform improper operations with the TNCS’ privileges
- Attack other components (such as the NAA or remote servers) using the privileges or

credentials of the TNCS or other IMVs
- Send invalid messages to IMCs or IMVs, leading to IMC or IMV crashes or compromise,

excessive IMC or IMV resource consumption, or unauthorized or malicious remediation
- Monitor IMC-IMV messages and disclose them or use them for attacks on the AR (“IMV

Spyware”).
- Issue a large number of, or particularly expensive, interface API calls to the TNCS

(Denial of service of the TNCS)
- Provide incorrect IMV Action Recommendations, causing valid clients to be rejected or

invalid clients to be let on the network
- Provide incorrect IMV Evaluation Results, causing the system state to not reflect the true

compliance state of the endpoint
- Spoof TNCS calls to an IMV and provide incorrect handshake or compliance data to

IMVs
- Spuriously request handshake retries (Denial of service)

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 48 of 61
 TCG PUBLISHED

- Lock up TNCS threads by not returning from function calls (Denial of service)
- Use vendor-specific extensions to IF-IMV to perform other attacks

5.1.3 Rogue TNCS threats
If a rogue TNCS loads a valid IMV, it may be able to misuse IF-IMV in the following ways:

- Overwrite IMV memory
- Violate IF-IMV API requirements such as passing illegal or unexpected argument values
- Attack other components (such as the NAA or remote servers) using the credentials of an

IMV
- Send invalid messages to IMCs or IMVs, leading to IMC or IMV crashes or compromise,

excessive IMC or IMV resource consumption, or unauthorized or malicious remediation
- Monitor IMC-IMV messages and disclose them or use them for attacks on the AR
- Issue a large number of, or particularly expensive, interface API calls to an IMV, possibly

causing denial of service of a remote server
- Provide incorrect TNCS Action Recommendations to a NAA, causing valid clients to be

rejected or invalid clients to be let on the network
- Spuriously request or perform handshake retries (Denial of service)
- Use vendor-specific extensions to IF-IMV to perform other attacks

5.1.4 Threats Beyond IF-IMV
IF-IMV is part of the larger TNC architecture. Successful attacks against other parts of the TNC
architecture will generally result in negative effects for IMVs, TNCSs, and the system as a whole.
See the Security Considerations section of the TNC Architecture document for an analysis of
considerations that pertain to other parts of the TNC architecture.

5.2 Suggested remedies
As demonstrated by the attacks listed above, it is critical that only authorized IMVs be loaded by a
TNCS and only authorized TNCSs be allowed to load an IMV. There are well known methods to
control what code is loaded by a TNCS:

• Generate a cryptographic hash on the code image and verify it against a list of good hashes
• Verify the software publisher using certificates
• Control access to the IMV registration mechanism (registry or configuration file)
• Control access to IMV code and critical data files
• Employ a TNCS-specific list of authorized IMVs

Similar checks can be performed by the operating system before loading the TNCS.

The addition of a Platform Trust Service (PTS) may provide the above listed services and may
also use hardware such as the Trusted Platform Module (TPM) to establish a trusted load path on
a platform which is rooted in hardware. In short, every loader entity on the platform is measured
before it loads another component, and the measured loaders are expected to log their
measurements with corresponding verification signatures in the TPM.

Information disclosure attacks can be prevented by creating security associations between IMCs
and IMVs. This does not preclude an additional security association between a NAR and a NAA.

To prevent/detect denial of service attacks, API usage from registered IMVs can be monitored.

“IMV spyware” attacks can often be prevented administratively; for example, by prohibiting
unknown programs from making unauthorized network connections, or by monitoring the disk for
log files created by unknown IMVs which are simply logging messages.
Note that invalid handshake retries can be mitigated by only allowing a retry on a valid session
that is associated with each particular IMV ID.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 49 of 61
 TCG PUBLISHED

This specification requires that all valid IMVs be installed to a protected system directory. The
loading of a rogue IMV can be mitigated (not prevented) by requiring privileged access to the
registry key or config file. Note, however, that some (usually legacy) operating systems have no
concept of a "protected" directory, registry, or file, and thus are provided no protection from this
scenario. Note that this approach requires best practices for the use of protected directories and
registries; if a user has any administrative access to these objects, they are vulnerable to a social
engineering approach to causing a Trojan IMV to be installed.

IMV implementers who choose a stub-to-backend-server implementation must take care not to
make the stub-to-server communications the “weak link” in the security chain. They should
choose protocols which maintain integrity and confidentiality as required, while taking into
account the need for efficiency.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 50 of 61
 TCG PUBLISHED

6 C Header File
This section provides a C header file that serves as a binding for the IF-IMV API with the C
language and the Microsoft Windows DLL platform binding. As noted in section 3.1, implementers
SHOULD use the C language binding when possible for maximum compatibility with other IMCs
and TNC Clients on their platform.

/* tncifimv.h
 *
 * Trusted Network Connect IF-IMV API version 1.00
 * Microsoft Windows DLL Platform Binding C Header
 * May 3, 2005
 */

#ifndef _TNCIFIMV_H
#define _TNCIFIMV_H

#ifdef __cplusplus
extern "C" {
#endif

#ifdef WIN32
#ifdef TNC_IMV_EXPORTS
#define TNC_IMV_API __declspec(dllexport)
#else
#define TNC_IMV_API __declspec(dllimport)
#endif
#else
#define TNC_IMV_API
#endif

/* Basic Types */

typedef unsigned long TNC_UInt32;
typedef unsigned char *TNC_BufferReference;

/* Derived Types */

typedef TNC_UInt32 TNC_IMVID;
typedef TNC_UInt32 TNC_ConnectionID;
typedef TNC_UInt32 TNC_ConnectionState;
typedef TNC_UInt32 TNC_RetryReason;
typedef TNC_UInt32 TNC_IMV_Action_Recommendation;
typedef TNC_UInt32 TNC_IMV_Evaluation_Result;
typedef TNC_UInt32 TNC_MessageType;
typedef TNC_MessageType *TNC_MessageTypeList;
typedef TNC_UInt32 TNC_VendorID;
typedef TNC_UInt32 TNC_MessageSubtype;
typedef TNC_UInt32 TNC_Version;
typedef TNC_UInt32 TNC_Result;

/* Function pointers */

typedef TNC_Result (*TNC_IMV_InitializePointer)(
 TNC_IMVID imvID,
 TNC_Version minVersion,
 TNC_Version maxVersion,

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 51 of 61
 TCG PUBLISHED

 TNC_Version *pOutActualVersion);
typedef TNC_Result (*TNC_IMV_NotifyConnectionChangePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionState newState);
typedef TNC_Result (*TNC_IMV_ReceiveMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);
typedef TNC_Result (*TNC_IMV_SolicitRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);
typedef TNC_Result (*TNC_IMV_BatchEndingPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID);
typedef TNC_Result (*TNC_IMV_TerminatePointer)(
 TNC_IMVID imvID);
typedef TNC_Result (*TNC_TNCS_ReportMessageTypesPointer)(
 TNC_IMVID imvID,
 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);
typedef TNC_Result (*TNC_TNCS_SendMessagePointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);
typedef TNC_Result (*TNC_TNCS_RequestHandshakeRetryPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);
typedef TNC_Result (*TNC_TNCS_ProvideRecommendationPointer)(
 TNC_IMVID imvID,
 TNC_ConnectionID connectionID,
 TNC_IMV_Action_Recommendation recommendation,
 TNC_IMV_Evaluation_Result evaluation);
typedef TNC_Result (*TNC_TNCS_BindFunctionPointer)(
 TNC_IMVID imvID,
 char *functionName,
 void **pOutfunctionPointer);
typedef TNC_Result (*TNC_IMV_ProvideBindFunctionPointer)(
 TNC_IMVID imvID,
 TNC_TNCS_BindFunctionPointer bindFunction);

/* Result Codes */

#define TNC_RESULT_SUCCESS 0
#define TNC_RESULT_NOT_INITIALIZED 1
#define TNC_RESULT_ALREADY_INITIALIZED 2
#define TNC_RESULT_NO_COMMON_VERSION 3
#define TNC_RESULT_CANT_RETRY 4
#define TNC_RESULT_WONT_RETRY 5
#define TNC_RESULT_INVALID_PARAMETER 6
/* reserved for TNC_RESULT_CANT_RESPOND: 7 */
#define TNC_RESULT_ILLEGAL_OPERATION 8

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 52 of 61
 TCG PUBLISHED

#define TNC_RESULT_OTHER 9
#define TNC_RESULT_FATAL 10

/* Version Numbers */

#define TNC_IFIMV_VERSION_1 1

/* Network Connection ID Values */

#define TNC_CONNECTIONID_ANY 0xFFFFFFFF

/* Network Connection State Values */

#define TNC_CONNECTION_STATE_CREATE 0
#define TNC_CONNECTION_STATE_HANDSHAKE 1
#define TNC_CONNECTION_STATE_ACCESS_ALLOWED 2
#define TNC_CONNECTION_STATE_ACCESS_ISOLATED 3
#define TNC_CONNECTION_STATE_ACCESS_NONE 4
#define TNC_CONNECTION_STATE_DELETE 5

/* Handshake Retry Reason Values */

/* reserved for TNC_RETRY_REASON_IMC_REMEDIATION_COMPLETE: 0 */
/* reserved for TNC_RETRY_REASON_IMC_SERIOUS_EVENT: 1 */
/* reserved for TNC_RETRY_REASON_IMC_INFORMATIONAL_EVENT: 2 */
/* reserved for TNC_RETRY_REASON_IMC_PERIODIC: 3 */
#define TNC_RETRY_REASON_IMV_IMPORTANT_POLICY_CHANGE 4
#define TNC_RETRY_REASON_IMV_MINOR_POLICY_CHANGE 5
#define TNC_RETRY_REASON_IMV_SERIOUS_EVENT 6
#define TNC_RETRY_REASON_IMV_MINOR_EVENT 7
#define TNC_RETRY_REASON_IMV_PERIODIC 8

/* IMV Action Recommendation Values */

#define TNC_IMV_ACTION_RECOMMENDATION_ALLOW 0
#define TNC_IMV_ACTION_RECOMMENDATION_NO_ACCESS 1
#define TNC_IMV_ACTION_RECOMMENDATION_ISOLATE 2
#define TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMENDATION 3

/* IMV Evaluation Result Values */

#define TNC_IMV_EVALUATION_RESULT_COMPLIANT 0
#define TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MINOR 1
#define TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MAJOR 2
#define TNC_IMV_EVALUATION_RESULT_ERROR 3
#define TNC_IMV_EVALUATION_RESULT_DONT_KNOW 4

/* Vendor ID Values */

#define TNC_VENDORID_TCG 0
#define TNC_VENDORID_ANY ((TNC_VendorID) 0xffffff)

/* Message Subtype Values */

#define TNC_SUBTYPE_ANY ((TNC_MessageSubtype) 0xff)

/* IMV Functions */

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 53 of 61
 TCG PUBLISHED

TNC_IMV_API TNC_Result TNC_IMV_Initialize(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_Version minVersion,
/*in*/ TNC_Version maxVersion,
/*in*/ TNC_Version *pOutActualVersion);

TNC_IMV_API TNC_Result TNC_IMV_NotifyConnectionChange(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_ConnectionState newState);

TNC_IMV_API TNC_Result TNC_IMV_ReceiveMessage(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference messageBuffer,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

TNC_IMV_API TNC_Result TNC_IMV_SolicitRecommendation(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID);

TNC_IMV_API TNC_Result TNC_IMV_BatchEnding(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID);

TNC_IMV_API TNC_Result TNC_IMV_Terminate(
/*in*/ TNC_IMVID imvID);

TNC_IMV_API TNC_Result TNC_IMV_ProvideBindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_TNCS_BindFunctionPointer bindFunction);

/* TNC Server Functions */

TNC_Result TNC_TNCS_ReportMessageTypes(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_MessageTypeList supportedTypes,
/*in*/ TNC_UInt32 typeCount);

TNC_Result TNC_TNCS_SendMessage(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

TNC_Result TNC_TNCS_RequestHandshakeRetry(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_RetryReason reason);

TNC_Result TNC_TNCS_ProvideRecommendation(
/*in*/ TNC_IMVID imvID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_IMV_Action_Recommendation recommendation,

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 54 of 61
 TCG PUBLISHED

/*in*/ TNC_IMV_Evaluation_Result evaluation);

TNC_Result TNC_TNCS_BindFunction(
/*in*/ TNC_IMVID imvID,
/*in*/ char *functionName,
/*in*/ void **pOutfunctionPointer);

#ifdef __cplusplus
}
#endif

#endif

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 55 of 61
 TCG PUBLISHED

7 Use Case Walkthrough
This section provides an informative (non-binding) walkthrough of a typical TNC use case,
showing how IF-IMV supports the use case. The text describing IF-IMV usage is in bold.
Sequence diagrams that illustrate the main parts of this walkthrough are included at the end of
this section.

7.1 Configuration
1. The IT administrator configures any addressing and security information needed for server-

side components (PEP, NAA, TNCS, and IMVs) to securely contact each other. The manner
in which the PEP, NAA, and TNCS find each other is not specified. The client-side
components (TNCC and IMCs) find each other automatically using Microsoft Windows
registry or a configuration file modified at install time.

2. The IT administrator configures policies in the NAA, TNCS, and IMVs for what sorts of user
authentication, platform authentication, and integrity checks are required when.

7.2 TNCS Startup
1. When the TNCS starts up, the TNCS loads the IMVs. [IF-IMV] The details of the load

process are platform-specific. With the Microsoft Windows DLL binding, the TNCS
reads a protected registry key to find the IMV DLLs, then loads them. During the load
process, the TNCS may check the integrity of the IMVs. This is optional.

2. The TNCS initializes the IMVs through IF-IMV. [IF-IMV] The TNCS calls
TNC_IMV_Initialize for each IMV. The IMV performs any initialization it may need to,
such as connecting to a remote server process or starting threads. Most IMVs will call
TNC_TNCS_ReportMessageTypes to indicate which message types they would like to
receive. With some platform bindings, this callback must wait until the next step when
the Dynamic Function Binding mechanism is functional.

3. [IF-IMV] The TNCS performs any other platform-specific initialization needed. With the
Microsoft Windows DLL binding, the TNC Server calls the
TNC_IMV_ProvideBindFunction function to give each IMV a pointer to the bind
function (TNC_TNCS_BindFunction) used for Dynamic Function Binding.

7.3 TNCC Startup
1. When the TNCC starts up, the TNCC loads the IMCs.

2. The TNCC initializes the IMCs through IF-IMC.

7.4 Network Connect
1. The endpoint’s NAR attempts to connect to a network protected by a PEP, thus triggering an

Integrity Check Handshake. There are other ways that an Integrity Check Handshake can be
triggered, but this will probably be the most common. For those other ways, the next few
steps may be significantly different.

2. The PEP sends a network access decision request to the PDP (NAA or TNCS). Depending
on configuration, the PEP may contact the NAA first or the TNCS. The ordering of user
authentication, platform authentication, and integrity check is also subject to configuration.
Here we present what will probably be the most common order: first user authentication, then
platform authentication, then integrity check.

3. The NAA performs user authentication with the NAR. Based on the NAA’s policy, the user
identity established through this process may be used to make immediate access decisions
(like deny). If an immediate access decision has been made, skip to step 16. User
authentication may also involve having the NAR authenticate the NAA.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 56 of 61
 TCG PUBLISHED

4. The NAA informs the TNCS of the connection request, providing the user identity and other
useful info (service requested, etc.).

5. The TNCS performs platform authentication with the TNCC, if required by TNCS policy. This
includes verifying the IMC hashes collected during TNCC Setup. If an immediate access
decision has been made, skip to step 16. Platform authentication may be mutual so the
TNCC can be sure it’s talking to a secure server.

6. The TNCC uses IF-IMC to fetch IMC messages.

7. The TNCS uses IF-IMV to inform each IMV that an Integrity Check Handshake has started.
[IF-IMV] If this is a new network connection, the TNCS calls
TNC_IMV_NotifyConnectionChange with the newState parameter set to
TNC_CONNECTION_STATE_CREATE to indicate that a new network connection has been
created. Then the TNCS calls TNC_IMV_NotifyConnectionChange with the newState
parameter set to TNC_CONNECTION_STATE_HANDSHAKE.

8. The TNCC passes the IMC messages to the TNCS. This and all other TNCC-TNCS
communications can be sent directly but they will often be relayed through one or more of the
NAR, PEP, and NAA.

9. The TNCS passes each IMC message to the matching IMV or IMVs through IF-IMV (using
message types associated with the IMC messages to find the right IMV). If there are no IMC
messages, skip to step 13. [IF-IMV] The TNCS delivers the IMC messages to the IMVs by
calling TNC_IMV_ReceiveMessage. The IMVs may call TNC_TNCS_SendMessage
before returning from TNC_IMV_ReceiveMessage if they want to send a response.
When the TNCS has delivered all the IMC messages to the IMVs, it calls
TNC_IMV_BatchEnding to inform them of this fact. The IMVs may call
TNC_TNCS_SendMessage before returning from TNC_IMV_BatchEnding if they want to
send a message to an IMV.

10. Each IMV analyzes the IMC messages. If an IMV needs to exchange more messages
(including remediation instructions) with an IMC, it provides a message to the TNCS and
continues with step 11. If an IMV is ready to decide on an IMV Action Recommendation and
IMV Evaluation Result, it gives this result to the TNCS through IF-IMV. If there are no more
messages to be sent to the IMC from any of the IMVs, skip to step 13. [IF-IMV] As
described in the previous step, IMVs send messages by calling
TNC_TNCS_SendMessage before returning from TNC_IMV_ReceiveMessage and
TNC_IMV_BatchEnding. IMVs give their results to the TNCS by calling
TNC_TNCS_ProvideRecommendation at any time.

11. The TNCS sends the messages from the IMVs to the TNCC.

12. The TNCC sends the IMV messages on to the IMCs through IF-IMC so they can process the
messages and respond. Skip to step 8.

13. If there are any IMVs that have not given an IMV Action Recommendation to the TNCS, they
are prompted to do so through IF-IMV. [IF-IMV] The TNCS gives this prompt by calling
TNC_IMV_SolicitRecommendation. The IMVs provide their recommendations by
calling TNC_TNCS_ProvideRecommendation.

14. The TNCS considers the IMV Action Recommendations supplied by the IMVs and uses an
integrity check combining policy to decide what its TNCS Action Recommendation should be.

15. The TNCS sends its TNCS Action Recommendation to the NAA. The NAA may ignore or
modify this recommendation based on its policies but will typically abide by it.

16. The NAA sends a copy of its final network access decision response to the TNCS. The TNCS
may send a copy of the network access decision to the TNCC. The TNCS also informs the
IMVs of the network access decision response via IF-IMV. [IF-IMV] The TNCS calls
TNC_IMV_NotifyConnectionChange with the newState parameter set to

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 57 of 61
 TCG PUBLISHED

TNC_CONNECTION_STATE_ACCESS_ALLOWED,
TNC_CONNECTION_STATE_ACCESS_ISOLATED, or
TNC_CONNECTION_STATE_ACCESS_NONE.

17. The NAA sends its network access decision response to the PEP.

18. The PEP implements the network access decision response. During this process, the NAR is
typically informed of the decision. The TNCC may be informed by the NAR or may discover
that a new network has come up.

19. If step 6 was not executed, the network connect process is complete. Otherwise, the TNCC
informs the IMCs of the network access decision response via IF-IMC.

20. If the IMCs need to perform remediation, they perform that remediation. Then they continue
with Handshake Retry After Remediation. If no remediation was needed, the use case ends
here.

7.5 Handshake Retry After Remediation
1. When an IMC completes remediation, it informs the TNCC that its remediation is complete

and requests a retry of the Integrity Check Handshake through IF-IMC.

2. The TNCC decides whether to initiate an Integrity Check Handshake retry (possibly
depending on policy, user interaction, etc.). Depending on limitations of the NAR, the TNCC
may need to disconnect from the network and reconnect to retry the Integrity Check
Handshake. In that case (especially if the previous handshake resulted in full access), it may
decide to skip the handshake retry. However, in many cases the TNCC will be able to retry
the handshake without disrupting network access. It may even be able to retain the state
established in the earlier handshake. If the TNCC decides to skip the retry, the use case ends
here.

3. The TNCC initiates a retry of the handshake. Skip to step 1, 3, or 5 of the Network Connect
section above, depending on which steps are needed to initiate the retry.

7.6 Handshake Retry Initiated by TNCS
1. The TNCS can recheck the security state of the AR periodically or when integrity policies

change (such as when a new patch is required) by requesting another Integrity Check
Handshake with the TNCC. The handshake retry can be done through the PEP or by
communicating directly with the TNCC. State from the previous handshake may be retained
or not. An IMV can also request an integrity handshake retry through IF-IMV. If the TNCS
decides to skip the Integrity Check Handshake retry, the use case ends here. [IF-IMV] An
IMV requests a handshake retry by calling TNC_TNCS_RequestHandshakeRetry. The
TNCS makes the ultimate decision about whether to retry the handshake. As noted
above, the handshake retry may disrupt network connectivity so the TNCS may decide
to skip it. In that case, the use case ends here.

2. The TNCS initiates a retry of the handshake. Skip to step 3 or 5 of the Network Connect
section above, depending on whether user authentication will be done in the retry.

7.7 Sequence Diagram for Network Connect
The following sequence diagram (Figure 1) illustrates the Network Connect use case, as
described in section 7.4.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 58 of 61
 TCG PUBLISHED

HANDSHAKE

IMC TNCC TNCS

IMV

TNC_IMV_NotifyConnectionChange

New access

request starting

Connection closed

TNC_TNCS_ReportMessageTypes

TNC_IMV_Initialize

TNC_TNCS_SendMessage

TNC_IMV_ReceiveMessage

IF-TNCCS

Request

Reply

NAR

TNC_IMV_NotifyConnectionChange

TNCC_IMV_Terminate

IF-IMC

Discover, Load IMVs using
platform specific binding

TNC_IMV_ReceiveMessage

IF-IMC

TNC_TNCS_ProvideRecommendation

NAA

TNCS-
NAA
interface

TNCC-NAR

interface

TNCC-NAR

interface

imvID, minVersion, maxVersion, /*out*/ pOutActualVersion

imvID, supportedTypes, typeCount

imvID, connectionID, newState = CREATE

imvID, connectionID, message, messageLength, messageType

imvID, connectionID, message, messageLength, messageType

imvID, connectionID, message, messageLength, messageType

imvID, connectionID, recommendation = SUCCESS

imvID, connectionID, newState = DELETE

imvID

Reply

Request
IF-IMC TNCC-NAR

interface

TNC_IMV_NotifyConnectionChange
imvID, connectionID, newState = ACCESS_ALLOWED,
ACCESS_ISOLATED, or ACCESS_NONE

TNC_IMV_NotifyConnectionChange
imvID, connectionID, newState = HANDSHAKE

TNC_IMV_BatchEnding
imvID, connectionID

TNC_IMV_BatchEnding
imvID, connectionID

Figure 1 – IF-IMV Network Connect Sequence Diagram

7.8 Sequence Diagram for Handshake Retry After Remediation
The following sequence diagram (Figure 2) illustrates the Handshake Retry After Remediation
use case, as described in section 7.5.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 59 of 61
 TCG PUBLISHED

IMC TNCC TNCS IMV

Vendor specific Remediation (may be via isolated network)

Verification process as shown in Figure 1

IF-IMC
IF-TNCCS Request

Figure 2 – IF-IMV Handshake Retry After Remediation Sequence Diagram

7.9 Sequence Diagram for Handshake Retry Initiated by TNCS
The following sequence diagram (Figure 3) illustrates the Handshake Retry Initiated by TNCS use
case, as described in section 7.6.

NAANARIMC TNCC TNCS IMVs

Verification process as shown in Figure 1

Optional Remediation process as shown in figure 2

TNC_TNCS_RequestHandshakeRetry
imvID, connectionID, reason

integrity check handshake retry request
(may revoke access privileges)

Access Request
Start event

Figure 3 – IF-IMV Handshake Retry Initiated by TNCS

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 60 of 61
 TCG PUBLISHED

8 Implementing a Simple IMV
This section provides a brief informative (non-binding) description of how to implement a simple
IMV, one that only checks an IMC’s integrity report against a policy and decides based on a
recommendation based on this.

This example assumes that you’re using the Microsoft Windows DLL platform binding. If not,
replace the instructions in section 8.3 about TNC_IMV_ProvideBindFunction with your
platform’s Dynamic Function Binding mechanism.

8.1 Decide on a Message Type and Format
First, you must decide what message type you will use to receive your value from the IMC and
what the format of the message will be. This may involve getting a Vendor ID as described in
section 3.2.3. Then implement the following functions as described here.

8.2 TNC_IMV_Initialize
All IMVs must implement the TNC_IMV_Initialize function. In your implementation,
determine whether you support any of the listed IF-IMV API versions. If not, return
TNC_RESULT_NO_COMMON_VERSION. If so, store the mutually agreed upon version number at
pOutActualVersion and initialize the IMV. Return TNC_RESULT_SUCCESS if all goes well and
TNC_RESULT_FATAL otherwise. Normally, you might store your IMV ID for later use but in this
example all of your code is called by the TNCC so you have the IMV ID as a parameter to all your
functions.

8.3 TNC_IMV_ProvideBindFunction
Use the bind function to get a pointer to TNC_TNCS_ReportMessageTypes. Then use this
pointer to call TNC_TNCS_ReportMessageTypes and report which message types you want to
receive. Also use the bind function to get a pointer to TNC_TNCS_ProvideRecommendation for
later use. This is the only state you need to keep. Return TNC_RESULT_SUCCESS unless an error
occurs. In that case, return TNC_RESULT_FATAL.

8.4 TNC_IMV_ReceiveMessage
When you receive a message from an IMC, evaluate it against your policy and then report your
recommendation by calling the TNC_TNCS_ProvideRecommendation function using the
pointer that you saved earlier. If TNC_TNCS_ProvideRecommendation returns an error, then
return that. Otherwise, return TNC_RESULT_SUCCESS.

8.5 TNC_IMV_SolicitRecommendation
If you never received a message from an IMC, you will be prompted to supply a recommendation
by a call to TNC_IMV_SolicitRecommendation. Probably you will want to recommend against
network access since your IMC is not loaded. In any case, report your recommendation by calling
the TNC_TNCS_ProvideRecommendation function using the pointer that you saved earlier. If
TNC_TNCS_ProvideRecommendation returns an error, then return that. Otherwise, return
TNC_RESULT_SUCCESS.

8.6 All Done!
That’s it! You’ve implemented your first IMV. If you need to do anything special on termination,
you can implement TNC_IMV_Terminate. But many IMVs won’t need to.

TNC IF-IMV TCG Copyright
Specification Version 1.0

Revision 3 Published Page 61 of 61
 TCG PUBLISHED

9 References

[1] Trusted Computing Group, TNC Architecture for Interoperability, Specification Version
1.0, May 2005.

[2] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, Internet
Engineering Task Force RFC 2119, March 1997.

[3] ISO, ISO/IEC 9899:1999, Programming Languages – C, 1999.

[4] Trusted Computing Group, TNC IF-IMC, Specification Version 1.0, Revision 1, May 2005.

[5] Crocker, D., P. Overell, “Augmented BNF for Syntax Specifications: ABNF”, Internet
Engineering Task Force RFC 2234, November 1997.

