
 

TCG 

 

 

 

TCG Specification 

TPM 2.0 Mobile Reference Architecture 

 

Family “2.0” 

Level 00 Revision 142 

16 December 2014 

 

 

Contact: admin@trustedcomputinggroup.org 

 

 

 

TCG Published 

Copyright © TCG 2006-2014 

 

 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page ii 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Copyright © 2006-2014 Trusted Computing Group, Incorporated. 

Disclaimers, Notices, and License Terms 
 
THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING 
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR 
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION 
OR SAMPLE.  
 
Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, 
relating to use of information in this specification and to the implementation of this specification, and TCG 
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of 
data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, 
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information 
herein. 
 
This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is 
granted herein other than as follows:  You may not copy or reproduce the document or distribute it to 
others without written permission from TCG, except that you may freely do so for the purposes of (a) 
examining or implementing TCG specifications or (b) developing, testing, or promoting information 
technology standards and best practices, so long as you distribute the document with these disclaimers, 
notices, and license terms.   
 
Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification 
licensing through membership agreements.  
 
Any marks and brands contained herein are the property of their respective owners. 

 
  

http://www.trustedcomputinggroup.org/


TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page iii 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Acknowledgements 

TCG acknowledges the following contributors to this specification:  

Alec Brusilovsky, Andreas Fuchs, Andrew Martin, Ariel Segall, Atul Shah, Carlin Covey, Carlton Northern, 

Cedric Colnot, David Wooten, Dean Liberty, Emily Ratliff, Gilles Peskine, Graeme Proudler, Hadi Nahari, 

Hervé Sibert, Ira McDonald, Jan-Erik Ekberg, Janne Uusilehto, John Mersh, John Padgette, Jon Geater, 

Joshua Schiffman, Kathleen McGill, Ken Nicolson, Michael Chan, Michael Peck, Niall O’Donoghue, Nicolas 

Ponsini, Paul England, Paul Waller, Rob Spiger, Ronald Aigner. 

 

 

 

 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page iv 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

CONTENTS 

1 Scope and Audience ............................................................................................................................. 1 

1.1 Key words ....................................................................................................................................... 1 
1.2 Statement Type............................................................................................................................... 1 
1.3 References ...................................................................................................................................... 1 
1.4 Document structure ........................................................................................................................ 2 

2 Basic Definitions .................................................................................................................................... 3 

2.1 Glossary .......................................................................................................................................... 3 

3 Introduction ............................................................................................................................................ 5 

3.1 Protected Environment-based TPM Implementation ...................................................................... 5 
3.2 Example Implementations .............................................................................................................. 5 

4 Mobile Device Architecture - INFORMATIVE ........................................................................................ 6 
5 Device Boot Sequences - INFORMATIVE ............................................................................................ 9 

5.1 Device Reset................................................................................................................................... 9 
5.2 Boot ROM ..................................................................................................................................... 10 
5.3 Secure Boot .................................................................................................................................. 10 

5.3.1 UEFI Secure Boot ................................................................................................................ 11 
5.3.2 Secure Boot PCR store ........................................................................................................ 11 

5.4 Measured Boot.............................................................................................................................. 12 

6 The Protected Environment................................................................................................................. 13 

6.1 Boot Time Requirements .............................................................................................................. 13 
6.2 Integrity level Requirements ......................................................................................................... 13 
6.3 Protected Environment Requirements .......................................................................................... 14 
6.4 Example Protected Environment Implementation - INFORMATIVE ............................................ 16 

7 TPM Mobile Implementation................................................................................................................ 17 

7.1 Use of Protected Environment Capabilities .................................................................................. 17 
7.2 Application Programming Interfaces ............................................................................................. 17 
7.3 Command Profiles ........................................................................................................................ 17 
7.4 Roots of Trust ............................................................................................................................... 18 

8 TPM Mobile Identity and Ownership ................................................................................................... 19 

8.1 TPM Mobile Installation ................................................................................................................ 19 
8.2 Platform Hierarchy Ownership ...................................................................................................... 19 
8.3 TPM Mobile Ownership ................................................................................................................ 19 
8.4 Low Power Modes ........................................................................................................................ 19 
8.5 TPM Mobile Startup ...................................................................................................................... 20 

8.5.1 TPM2_Shutdown .................................................................................................................. 20 

8.6 Platform Baseline Measurements ................................................................................................. 20 

A. Protected Environment using a hardware isolation mechanism - INFORMATIVE ............................. 22 

A.1 Communications Mechanism ........................................................................................................ 22 
A.2 Boot Sequence ............................................................................................................................. 23 

B. Protected Environment on a separate core in same ASIC - INFORMATIVE ..................................... 25 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page v 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

B.1 Communications Mechanism ........................................................................................................ 26 
B.2 Boot Sequence ............................................................................................................................. 26 
B.3 Roots of Trust ............................................................................................................................... 27 

C. Protected Environment in a separate ASIC - INFORMATIVE ............................................................ 28 

C.1 Protected Environment ASIC ........................................................................................................ 28 
C.2 Applications ASIC ......................................................................................................................... 29 
C.3 Communications Mechanism ........................................................................................................ 29 
C.4 Boot Sequence ............................................................................................................................. 29 
C.5 Roots of Trust ............................................................................................................................... 29 

C.5.1 PEA Roots of Trust ............................................................................................................... 29 
C.5.2 APPA Roots Of Trust ........................................................................................................... 30 

C.6 Example using a Secure Element to host the Protected Environment ......................................... 30 

D. Key Management in a fTPM - INFORMATIVE .................................................................................... 32 

D.1 Introduction ................................................................................................................................... 32 
D.2 Qualifying Information ................................................................................................................... 33 

D.2.1 Certificates ........................................................................................................................... 33 
D.2.2 Boot Sequence ..................................................................................................................... 33 
D.2.3 eFuses .................................................................................................................................. 34 
D.2.4 Symbols ................................................................................................................................ 34 

D.3 Generation of Protection Seeds.................................................................................................... 34 

D.3.1 Firmware Update .................................................................................................................. 35 
D.3.2 Firmware Identity .................................................................................................................. 41 

D.4 Supporting Multiple “Trusted” Applications ................................................................................... 43 
D.5 Deferred Processing of an Update ............................................................................................... 44 
D.6 Miscellaneous ............................................................................................................................... 44 
D.7 Immutability of ROM ..................................................................................................................... 46 
D.8 Remediation .................................................................................................................................. 46 





TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 1 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

1 Scope and Audience 

The Trusted Computing Group TPM 2.0 [1] Specification defines a Trusted Platform Module (TPM).  

This specification defines the reference architecture for the implementation of a TPM in modern mobile 

platforms. This TPM executes within a Protected Environment (Section 6) and is referred to as a TPM 

Mobile. 

The architecture allows any possible implementation of the Protected Environment that meets the security 

requirements defined in Section 6. Several example implementations (Annexes A, B and C) are included. 

The implementation examples in this document do not in any way limit the allowed implementations. 

Designers, developers and implementers of Trusted Computing technologies in mobile platforms are the 

target audience for this specification. 

This specification supports the use cases defined in [7]. 

1.1 Key words 

The upper-case key words “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” “MAY,” 

and “OPTIONAL” in this document indicate normative statements and are to be interpreted as described in 

[4]. 

1.2 Statement Type 

There are two distinctive kinds of text throughout this reference architecture: informative comments and 

normative statements.  

Most of the content consists of informative comments that explain why the architecture is as defined, but 

do not constrain implementation in any specific way. 

Normative statements SHALL be obeyed if a standards compliant implementation is to be created. 

Normative statements are indicated by the presence in a statement of any of the upper-case key words 

listed in Section 1.1. 

1.3 References 

[1] Trusted Computing Group, Trusted Platform Module, Version 2.0, Parts 1-4, 2013 

[2] GlobalPlatform Device Technology TEE System Architecture, GPD_SPE_009 [INFORMATIVE] 

[3] Unified EFI Forum, UEFI Specification version 2.3, [INFORMATIVE] 

[4] IETF, RFC 2119, March 1997 

[5] IETF, RFC 4122, July 2005 

[6] Trusted Computing Group, Virtualized Platform Architecture Specification, 2011 

[7] Trusted Computing Group, Mobile Trusted Module 2.0 Use Cases, March 2011 

[8] NIST SP 800-57 Part 1 rev 3, July 2012 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 2 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

[9] NIST SP 800-131A, January 2011 

[10] IETF, RFC 4086, June 2005 

[11] ISO/IEC 18031:2011 Information technology – Security techniques – Random bit generation 

Edition 2 

[12] TCG PC Client Platform TPM Profile (PTP) Specification, February 2014 

[13] TPM 2.0 Mobile Command Response Buffer Interface, February 2014 

[14] Global Platform Card Specification V2.2.1, June 2010 [INFORMATIVE] 

[15] ISO/IEC 7816-3:1997 Identification cards - Integrated circuit(s) cards with contacts - Part 3: 

Electronic signals and transmission protocols [INFORMATIVE] 

[16] ETSI TS 102 226 (Release 6) Smart cards; Remote APDU structure for UICC based applications, 

European Telecommunications Standards Institute Project Smart Card Platform (EP SCP), 2004 

[INFORMATIVE] 

[17] GlobalPlatform Java Card API and Export File for Card Specification v2.2.1 v1.5 [INFORMATIVE] 

[18] https://www.commoncriteriaportal.org/files/ppfiles/PP9911.pdf [INFORMATIVE] 

[19] http://globalplatform.org/compliance.asp [INFORMATIVE] 

1.4 Document structure 

This document is divided and organized into Sections so that concepts are introduced in a logical sequence. 

Section 2 contains a reference glossary defining the terms and definitions used throughout the specification. 

Section 3 contains an introduction to the concepts and the rationale for the specification. 

Section 4 provides an informative overview of typical mobile platform architectures. 

Section 5 defines the boot sequences used by various platforms.  

Section 6 defines the requirements, properties and capabilities that the Protected Environment needs to 

support to host a TPM Mobile.  

Section 7 defines the requirements that a TPM Mobile implementation needs to meet to operate securely 

within a Protected Environment. 

Section 8 deals with detailed TPM Mobile implementation aspects.  

Annexes A, B and C describe possible implementation models for the Protected Environment and the TPM 

Mobile, including system aspects arising from each model. 

https://www.commoncriteriaportal.org/files/ppfiles/PP9911.pdf
http://globalplatform.org/compliance.asp


TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 3 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

2 Basic Definitions 

2.1 Glossary 

Glossary Term Description 

Application-specific 
integrated circuit (ASIC) 

A microchip that is custom-designed for a specific application (in 
contrast to a general-purpose chip such as a microprocessor). 

Attestation The process of vouching for the accuracy of information. External 
entities can attest to protected locations and Roots of Trust. A 
platform can attest to its description of platform characteristics that 
affect the integrity (trustworthiness) of a platform. Both forms of 
attestation require reliable evidence of the attesting entity. 

Critical Security Parameter 
(CSP) 

Security-related information (for example, secret and private 
cryptographic keys, authentication data such as passwords and 
Personal Identification Numbers [PIN]) whose disclosure or 
modification can compromise the security of a cryptographic 
module. 

Device A shorthand in this document for a Mobile Device. 

Device Manufacturer (DM) 
 

The manufacturer or brand of a Device, typically an Original 
Equipment Manufacturer (OEM).  

Device Owner (DO) 
 

The legal owner of the device. The device owner could be an End 
User (consumer), an enterprise, a communications carrier, or some 
other entity. The Device Owner can customize all aspects of the TPM 
except the Platform Hierarchy.  

Direct Memory Access 
(DMA) 

A feature that enables certain hardware subsystems within a system 
to access system memory independently of the central processing 
unit (CPU). 

End User The ultimate consumer of mobile applications and services, 
particularly the user for whom the device is designed. The End User 
can also be the Device Owner. 

Endorsement Primary Seed 
(EPS) 

A primary seed (see Primary Seed) that the TPM uses to generate an 
endorsement hierarchy. 

Enhanced Authorization (EA) One of the mechanisms used in the TPM 2.0 Library Specification [1] 
to control access to the protected capabilities of the TPM. 

Fuse A mechanism of internal switches within the ASIC that can be 
electrically blown to enable write-once non-volatile storage of 
information within that ASIC. 

Integrity Measurement A value representing a platform characteristic that affects the 
integrity of a platform. 

Measured Boot A boot process where images are measured (for example by 
calculating their hashes) and the measurements are extended into 
the PCRs of a TPM. See Section 5.4 for more details. 

Mobile Device A physical entity encompassing all the hardware, firmware, 
software, and data necessary for it to function and provide services 
to an end user. Also known as a Mobile Platform. 

Platform Configuration 
Register (PCR) 

A shielded location within a TPM containing a digest of integrity 
measurements. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 4 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Primary Seed A large random value persistently stored in a TPM (see TPM 2.0 
Library Specification [1]). The TPM uses primary seeds to generate 
symmetric keys, asymmetric keys, other seeds, and proof values. 

Protected Environment A functional element that has its own execution and memory 
resources that are isolated from other components. See Section 6 
for details. 

Rich Operating System (Rich 
OS) 

An environment created for versatility and richness where, for 
example, device applications such as Android, Symbian OS, and 
Windows Phone are executed. It is open to third party download 
after the device is manufactured. Security is a concern here but is 
secondary to other issues. 

Root of Trust (RoT) A component that performs one or more security-specific functions, 
such as measurement, storage, reporting, verification, and/or 
update. It is trusted always to behave in the expected manner, 
because its misbehavior cannot be detected. Note: A platform 
should have a set of Roots of Trust with at least the minimum set of 
functions to enable a description of its characteristics that affect the 
trustworthiness of the platform. 

Root of Trust for 
Confidentiality (RTC) 

 A Root of Trust providing confidentiality for secrets stored in 
shielded locations accessed using protected capabilities. 

Root of Trust for Integrity 
(RTI) 

A Root of Trust providing integrity for integrity measurements 
stored in shielded locations accessed using protected capabilities. 

Root of Trust for 
Measurement (RTM) 

A Root of Trust that resets one or more PCRs, makes the initial 
integrity measurement, and extends it into a PCR. 

Root of Trust for Reporting 
(RTR) 

A Root of Trust that reliably provides authenticity and non-
repudiation services for the purposes of attesting to the origin and 
integrity of platform characteristics. 

Root of Trust for Storage 
(RTS) 

The combination of the RTC and RTI. 

Root of Trust for Update 
(RTU) 

A Root of Trust for Verification that verifies the integrity of update 
payloads and the authorization to perform the update. Upon 
successful verifications, it initiates the update process. 

Root of Trust for Verification 
(RTV) 

A Root of Trust that verifies an integrity measurement against a 
policy. 

Secure Boot A boot process where each image is validated before execution. See 
Section 5.3 for more details. 

TPM Installing Authority The authority that installed the TPM Mobile into the protected 
environment. Typically this is the Device Manufacturer and it could 
be another entity who has the appropriate management privilege in 
the Protected Environment. 

TPM Mobile A TPM that complies with this specification. 

Trusted Application (TA) An application that runs as an isolated process within the Protected 
Environment. 

Unified Extensible Firmware 
Interface(UEFI) 

A software interface between an operating system and platform 
firmware. See [3] for details 

Universally Unique IDentifier 
(UUID) 

An identifier conforming to RFC 4122 [5].  

http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Firmware


TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 5 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

3 Introduction 

The evolution of mobile computing has led to the emergence of smart devices that are in almost constant 

personal and business use, for example for access to email, to social media, to application stores, to 

financial institutions, and other uses. Device Manufacturers need to incorporate trusted computing 

mechanisms to secure and support these and other mobile use cases. Such security mechanisms include 

techniques to ensure device integrity, attestation, isolation and protected storage. 

The diversity of the mobile market place and the underlying computer architectures requires a model to 

support the TPM and to take advantage of the variety of security mechanisms, such as the protected 

environments provided by these platforms. 

This specification adapts the mechanisms specified in the TPM 2.0 Library Specification [1] to take 

advantage of as many of these new architectures as possible and to extend the Trusted Computing 

Architecture into the mobile space.  

3.1 Protected Environment-based TPM Implementation 

The foundation of this architecture is a TPM Mobile implemented as a Trusted Application running within a 

Protected Environment.  

This specification defines a set of requirements that the Protected Environment needs to meet to host a 

TPM Mobile (Section 6). There are no limitations on how the Protected Environment is implemented, 

providing the requirements are met. 

Some examples of Protected Environment implementations are: 

 Hardware isolation techniques 

 Hypervisor within or outside an OS 

 Separate cores within the same ASIC 

 Separate ASIC 

3.2 Example Implementations 

To aid the understanding of the architecture, three example implementation models of the Protected 

Environment are described in informative annexes A, B and C.  



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 6 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

4 Mobile Device Architecture - INFORMATIVE 

This section is an informative introduction to the security-related architectural components of a 

contemporary mobile device. The focus is on features implemented in hardware or closely related to 

hardware. Although the reference setting is mobile phones, the same spectrum of hardware features can 

be present in other mobile devices such as, for instance, music players and tablets.  

Figure 1 - Device with a Protected Environment 

Figure 1 illustrates an architecture that is present in many mobile devices, and which is suitable for an 

implementation of the TPM Mobile specification. Processor features isolate the Protected Environment from 

the code executing in the Rich OS within the mobile device.  

If the Protected Environment executes solely in on-chip memories, or if secure virtual memory techniques 

are used, the constructed isolation boundary resembles that of dedicated security hardware. If device 

secrets are protected by these mechanisms, their integrity and correctness is no longer contingent upon 

the integrity and correctness of any software component booted into the operating system or application 

domains.  

Protected 

Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating System



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 7 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Figure 2 - Device with hypervisor 

Figure 2 illustrates a hypervisor-enabled architecture that is useful for adding another operating system, 

such as a mobile protocol stack, to a mobile device running on single-core hardware. It has a significant 

advantage in reducing the exposure of secrets implemented in the hardware. Early in Secure Boot, the 

processor memory management unit (MMU) can be configured to give the hypervisor sole access to device 

secrets.  

Hypervisor-enabled architectures can use Secure Boot and hypervisor-provided isolation to implement the 

Protected Environment requirements defined in Section 6. A TPM can be run in such a Protected 

Environment and can act as the TPM for a single guest OS or for the hypervisor itself. 

This specification does not define the complete architecture necessary to support hypervisor-enabled 

environments. TCG has defined the architecture for such support; see [6] for more details.  

Figure 3 – Architecture with Hypervisor and Protected Environment 

Hypervisor

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating 

System

Operating 

System

Protected 

Environment

Hypervisor

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating 

System

Operating 

System

Protected Environment



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 8 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Figure 3 illustrates a combined architecture where a hypervisor is run above the Protected Environment. 

This requires a combination of the features of the hypervisor (Figure 2) and hardware isolated 

implementations (Figure 1).  

Figure 4 - Multi-core and multi processor architectures 

Three models using multiple processor cores are shown in Figure 4: 

 The code running on each processor core could be individually securely booted and be associated 

with a core-specific Protected Environment.  

 One or more processor cores could provide a secure, isolated environment for the Protected 

Environment while the other cores run the Rich OS.  

 It is also possible to place the Protected Environment in a separate ASIC to achieve isolation.  

The TPM Mobile Reference Architecture supports all of these implementation choices for the Protected 

Environment and all can support the implementation of a TPM Mobile. 

Note that the same ASIC can support all the architectures described in this section with no hardware 

changes. The only difference between these architectures is the software running on the ASIC. 

ASIC Hardware

Protected Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating System

Core 1 Core 2..n

Protected 

Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating System

Core 1 Core 2..n

Secure Boot

Protected 

Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC 

Hardware

Operating System

Core 1..n

Secure Boot



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 9 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

5 Device Boot Sequences - INFORMATIVE 

This section describes the various stages that can form the boot sequence of any device, but with particular 

relevance to those devices where support for the TPM is not included in hardware (that is, where there is 

no fixed location in device memory at which a TPM can be accessed). 

Mobile devices incorporate some form of Secure Boot sequence to establish the secure foundation upon 

which subsequent secure device operations can be built.  

Many existing standards (for example in the areas of radio standards, payments, etc.) require that certain 

device values are stored and used securely, and that a mechanism is provided to ensure that devices boot 

in a way that minimizes the possibility that these important values are used incorrectly or replaced. In this 

specification, this mechanism is called Secure Boot. 

Figure 5 – Sequence of possible boot phases of a device 

The possible boot phases are illustrated in Figure 5.  

5.1 Device Reset 

At device reset, hardware initialization occurs. No software or firmware is executed at this time. 

Device Reset

Optional Extended 

Secure Boot

Measured Boot

Unmeasured Boot

Boot ROM

TPM 

Available

Normal Device 

operation

Secure Boot



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 10 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

5.2 Boot ROM 

Once the hardware is initialized, it starts to execute software that is stored in an area of Read-Only Memory 

(ROM) that is built into the ASIC containing the processor which is booting. The attack cost of modifying 

on-chip ROM is considerable and falls outside the bounds of most commercial threat models and security 

requirements. 

The software in the Boot ROM performs further hardware initialization and checks the integrity of secrets 

stored in write-once memory (such as Fuses). These secrets support higher-level software such as the 

Root of Trust for Storage (RTS) and the Protected Environment (if implemented in this ASIC) since they 

include unique keys for this device.  

The Boot ROM acts as the hardware Root of Trust for Verification (RTV) and forms the root of a transitive 

chain of verification. If any of the roots of trust are updatable, the Boot ROM acts as the Root of Trust for 

Update (RTU). 

The software in the Boot ROM locates the first boot phase software in some form of non-volatile storage 

(unless the system executes wholly from ROM). The Boot ROM could then perform the following sequence 

of operations: 

 Measures the located image and determines the validity of the measurement using an expected 

value based on keys and other data that are stored or derived from values stored in write-once 

memory. An example could be verification of the signature on the image using a key stored in non-

volatile write-once storage (such as Fuses). 

 Checks that the version number stored within the image is valid based on values stored in write-

once memory. For example, a check that the version number is greater than or equal to a value 

stored in non-volatile storage such as Fuses. 

 If all checks have passed, then the device executes the loaded software. If any checks fail, then 

the device can enter a remediation mode implemented in the boot ROM, or return to the reset state. 

5.3 Secure Boot 

The most widely understood and implemented boot mechanism on mobile devices is Secure Boot. 

In Secure Boot, each module of code acts as a proxy for the Root of Trust for Verification to form a transitive 

chain of verification tracing back to the Boot ROM (Section 5.2). This phase could also be referred to as 

Verified Boot, but the term Secure Boot is widely used in the Mobile industry; therefore this specification 

uses the term Secure Boot. 

The Secure Boot process is such that whenever an additional module of firmware code (or a data file in 

some cases) is loaded, the following steps are executed: 

 The code module is measured. 

 The validity of the measurement is determined based on information stored either in write-once 

memory or in previously verified code modules. 

 The version number stored in the code module is validated to ensure that it is the expected one. 

 If a suitable storage mechanism such as a TPM or a Secure Boot PCR Store (Section 5.3.2) is 

available, the measurement is extended into that storage mechanism, otherwise the measurement 

is discarded. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 11 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

 If any of these checks fail, the software enters a remediation mode defined by a previously validated 

code module, or returns to the reset state. 

If the Boot ROM (5.2) is immutable and trustworthy, code that fails validation cannot be launched during 

the Secure Boot process.  

Secure Boot is usually used only for the early-booted device firmware up to the point of launching the main 

operating system (OS) boot loader. The trustworthy OS loader, for example UEFI (Unified Extensible 

Firmware Interface) [3], can use either Secure Boot or Measured Boot as needed. 

The Secure Boot phase can 

 connect to an external TPM, or 

 create the Protected Environment within which it executes the TPM as a Trusted Application.  

5.3.1 UEFI Secure Boot 

Many platforms make use of a mechanism known as UEFI [3] to perform their boot sequence.  

UEFI includes a mechanism known as UEFI Secure Boot [3]. 

If the feature is enabled, the UEFI Secure Boot mechanism launches only drivers and images that are 

signed by a known key. If the resultant signature verification fails, the UEFI firmware initiates OEM-specific 

recovery to restore trusted firmware. 

This mechanism is very similar to the Secure Boot mechanism described in this document; it has similar 

security properties. Typically, Secure Boot validates the UEFI executables and then passes control to UEFI 

Secure Boot. This gives the Rich OS a secure platform upon which to build. 

5.3.2 Secure Boot PCR store 

The mechanism defined in this section is OPTIONAL. 

TPM functionality may not be available during the early phases of Secure Boot because the TPM or its 

communications mechanism is not yet available.  

A lower functionality alternative can be implemented on some devices that makes the Secure Boot process 

more verifiable. 

The Secure Boot PCR Store (SBPS) makes use of additional processing resources within the ASIC (such 

as a processor that is not otherwise used in the boot process) to securely maintain a single PCR-like value; 

that is, it acts as a Root of Trust for Integrity (RTI).  

If an SBPS is implemented: 

1. The SBPS MAY be implemented as a hardware peripheral. 

2. If the SBPS is implemented in software code then that code SHALL be protected to the level 

defined in Section 6.1. The code of the SBPS could for example be located in the Boot ROM or in 

the initial firmware loaded by the Boot ROM.  



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 12 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

3. The SBPS SHALL store a single PCR-like value of an appropriate strength as defined by Section 

6.1.  

4. The SBPS SHALL provide a mechanism to extend measurements to the stored value. 

5. Code executing during the Secure Boot phase SHALL extend every generated measurement into 

the value stored by the SBPS. 

6. The SBPS SHALL provide a mechanism to retrieve the stored value. 

7. Once the TPM Mobile is available the SBPS MAY be destroyed after its value has been extended 

into PCR0 in the TPM. 

5.4 Measured Boot 

Measured Boot is the process followed once a TPM is available during the boot process.  

A previously loaded module measures each module of code or data.  

The measurement is then extended into one or more PCRs within the TPM (where the measurements are 

stored).  

The code module is then executed or the data is used regardless of the value of the measurements.  

Once measurements are available in the TPM, it becomes possible to perform binding or attestation, as 

defined by the TPM 2.0 Library Specification [1].  



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 13 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

6 The Protected Environment 

A Protected Environment uses platform resources to provide an isolated execution environment. The 

isolated execution property of the Protected Environment distinguishes the Protected Environment from the 

Rich OS environment.  

A device can implement one or more Protected Environments using any mechanism that meets the 

requirements in this section. This includes implementations where the Protected Environment is located in 

a separate ASIC, or on a separate processor within the same ASIC, or in a special mode of the main 

processor. 

Protected Environments execute Trusted Applications that are secured by the Protected Environment from 

interference from other Trusted Applications and from code executing outside the Protected Environment.  

All implementations of trusted services in a Protected Environment such as storage, measurement and 

verification depend on the underlying Roots of Trust.  

The following sub-sections define the properties of the Protected Environment. The properties, rather than 

a particular implementation, define the Protected Environment. The implementation could be of any form, 

as long as it matches the requirements. 

6.1 Boot Time Requirements 

At boot time, the device SHALL implement the Device Reset (Section 5.1), Boot ROM (Section 5.2), Secure 

Boot (Section 5.3), Measured Boot (Section 5.4), and Normal Device Operation phases.  

Once the TPM is instantiated, the device MAY continue the Secure Boot phase (Section 5.3) and then the 

measurements are passed to Measured Boot.  

6.2 Integrity level Requirements 

The integrity of the Protected Environment and its associated resources MAY be protected in many ways 

and this specification does not constrain the implementation to any particular solution. 

TPM Mobile

Protected Environment Interface for Trusted 

Applications

Secrets Cryptography
Secure 

Storage
Others...

Application

Protected Environment Interface

TPM 

Interface

Application

Protected 

Environment

Rich Operating 

System

TPM 

Interface

Figure 6 - Architecture of a Protected Environment running a TPM Mobile 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 14 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

The level of integrity protection relies on the type of device implementing the Protected Environment and 

the cryptographic strength [8] of the trusted services that depend on the underlying Roots of Trust.  

Where parts of the Protected Environment are protected by cryptographic means, the protection provided 

SHALL match or exceed the greater of the following: 

 An equivalent cryptographic strength [8] of 112 bits [9].  

 The largest cryptographic strength [8] by which any Trusted Application (including the TPM) 

executing within the Protected Environment stores or manipulates. 

Where the integrity of Protected Environment resources relies on non-cryptographic means (such as the 

use of ROM, physical separation, etc.), the supplied protection SHALL be sufficient to defeat all software 

attacks and at least simple hardware attacks.  

The resources within the system that SHALL be protected to the security level defined above and can 

include the following: 

 Hardware Roots of Trust. 

 Protected Environment integrity. 

 Protected Environment-provided non-volatile storage. 

 Protected Environment non-volatile storage rollback: all unauthorized attempts to modify current 

data or re-instate old data SHALL be detected. 

6.3 Protected Environment Requirements 

1. All Protected Environment capabilities SHALL be protected by a transitive chain of trust from the 

Roots of Trust on the processor where the Protected Environment executes. 

2. Trusted Applications instantiated in the Protected Environment SHALL be protected by a transitive 

chain of trust from the Roots of Trust on the processor where the Protected Environment executes. 

3. The Protected Environment SHALL provide execution resources for Trusted Applications that are 

isolated from entities external to the Protected Environment with a level of protection as defined by 

Section 6.2.  

4. The Protected Environment SHALL be protected from all other execution environments with a level 

of protection as defined by Section 6.1. 

5. The integrity of the Protected Environment SHALL be protected to the level defined by Section 6.1.  

6. The Protected Environment SHALL verify the integrity and authenticity of each Trusted Application 

executable image before execution with a level of assurance as defined by Section 6.1.  

7. The Protected Environment SHALL provide evidence identifying every device firmware and 

software component that is used to support and implement the Protected Environment. This 

evidence SHALL be sufficient to identify at least the manufacturer and the version of each 

component (see Section 8.6).  

8. The Protected Environment SHALL provide Trusted Applications access to non-volatile storage 

locations protected to the level defined in Section 6.1. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 15 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

9. The Protected Environment SHALL ensure the integrity and confidentiality of its non-volatile 

storage locations to the level defined in Section 6.1.  

10. The Protected Environment SHALL protect information stored in the non-volatile storage locations 

provided to a Trusted Application, whether cryptographically or by other means, such that only the 

owning Trusted Application and the Protected Environment can access the information. 

11. The Protected Environment SHALL prevent replay or rollback of the provided non-volatile storage 

locations.  

12. The Protected Environment SHALL report error messages to the accessing Trusted Application 

when attempts to access data in its protected storage locations fail. 

13. The Protected Environment SHALL ensure that any provided cryptographic functions have the 

same isolation properties as described in Section 6.1. 

14. The Protected Environment SHALL provide Trusted Applications with access to an entropy source 

that complies with IETF RFC 4086 [10]and ISO/IEC 18031:2011 [11].  

15. The Protected Environment SHALL provide Trusted Applications with a trusted source of time of 

day information that meets the requirements of the TPM 2.0 Library Specification [1]. 

16. If the Protected Environment provides debug facilities (for example, for troubleshooting live 

devices) these facilities SHALL NOT allow information stored either in the run time memory of 

Trusted Applications or that stored in non-volatile storage locations by Trusted Applications to be 

divulged. 

17. The Protected Environment SHALL ensure that modified versions of the Protected Environment or 

any of the software that supports the Protected Environment are verified and authenticated to the 

level defined in Section 6.1 before such modified versions are installed. 

18. The Protected Environment SHALL ensure that new or modified versions of Trusted Applications 

are verified and authenticated to the level defined in Section 6.1 before they are installed.  

19. The Protected Environment SHALL prevent rollback of software implementing the Protected 

Environment and Trusted Applications to older versions. 

20. The Protected Environment SHOULD provide the capability to run multiple Trusted Applications 

concurrently. If multiple Trusted Applications can be run concurrently: 

a. The Protected Environment SHALL provide isolation between these Trusted Applications 

to the level specified in Section 6.1. 

b. The Protected Environment SHOULD provide a mechanism to enable communication 

between Trusted Applications that is secured to the level defined in Section 6.1.  

c. The Protected Environment SHOULD provide a reliable indication of whether 

communications to a Trusted Application originate from within or outside the Protected 

Environment. 

d. The Protected Environment SHOULD provide a reliable indication of the source Trusted 

Application when communicating between Trusted Applications. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 16 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

6.4 Example Protected Environment Implementation - INFORMATIVE 

An example implementation of a Protected Environment is a Trusted Execution Environment (TEE) as 

defined by GlobalPlatform [2].  

Figure 7 - TPM Mobile implemented using a GlobalPlatform TEE as the Protected Environment 

A GlobalPlatform compliant TEE that: 

 is certified to a suitable level of protection as defined in 6.1  

 includes the anti-rollback features 

should be capable of meeting all the Protected Environment requirements. 

Such a TEE can therefore host a TPM Mobile. Figure 7 illustrates such an implementation. GlobalPlatform 

standards [2] define all the interfaces apart from the TPM Interface that the TCG defines.  

This specification does not require that the Protected Environment in which the TPM Mobile executes is 

compliant with GlobalPlatform standards. Commercial products such as Trusted Operating Systems could 

be available that already implement the standards. 

TPM Mobile

TEE Interface for Trusted Applications

Trusted OS

Secrets Cryptography
Secure 

Storage
Others...

Trusted 

Application

Trusted 

Application

Application

TEE Interface

ApplicationTPM 

Interface

Application

TEE

Rich Operating 

System



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 17 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

7 TPM Mobile Implementation 

This section describes the details of a TPM Mobile implementation and its relationship to the Protected 

Environment and other entities. 

7.1 Use of Protected Environment Capabilities 

The TPM Mobile SHOULD use the capabilities provided by the Protected Environment as defined in Section 

6. 

 The TPM Mobile SHOULD execute as a Trusted Application within a Protected Environment. 

 The TPM Mobile SHOULD use the non-volatile storage mechanism defined by the Protected 

Environment to store its non-volatile data. 

 If the Protected Environment provides cryptographic mechanisms then the TPM Mobile SHOULD 

make use of these where appropriate. 

 The TPM Mobile SHOULD accept commands from the Rich OS using the communications 

mechanism provided by the Protected Environment.  

 A TPM Mobile SHOULD protect the separation and integrity of TPM resources, NV storage, and 

other TPM assets owned by any specific application (in the Protected Environment, in the  

Rich OS, or elsewhere) from disclosure to or modification by any other application. 

 The TPM Mobile SHOULD use the entropy source provided by the Protected Environment for 

random number generation. 

 The TPM Mobile SHOULD use the time of day information provided by the Protected Environment. 

7.2 Application Programming Interfaces 

The TPM Mobile SHOULD use the interface provided by the Protected Environment to receive commands 

and return responses. 

 The TPM Mobile SHOULD implement one or more of the application programming interfaces 

defined by TCG for use by applications running in the Rich OS, such as the TPM 2.0 Mobile 

Command Response Buffer Interface [13] 

7.3 Command Profiles 

This architecture supports TPM Mobile implementing the TPM 2.0 Library Specification [1] and any platform 

profile(s) of that specification which TCG MAY publish in the future. Devices that are compatible at an 

application level to those running on PCs SHALL implement the profile defined in [12]. Embedded devices 

using other profiles are also supported. 

A TPM Mobile SHALL implement at least one TCG-defined profile. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 18 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

7.4 Roots of Trust 

The architecture defined in this specification, whereby the TPM Mobile executes within a Protected 

Environment that is logically isolated from the Rich OS, has intrinsic consequences for the system’s Roots 

of Trust. 

One consequence of this architecture is that many of the Roots of Trust are verifiable, for example, by the 

RTV during Secure Boot. Something can be considered a Root of Trust only if it is unverifiable; that is, it is 

intrinsically trusted. Whether or not something is technically a Root of Trust, the component that implements 

that function is for practicality referred to as a Root of Trust. 

Since it is isolated from the Rich OS, the Protected Environment MAY use a separate set of Roots of Trust 

to ensure its correctness and security.  

Root Of Trust Protected Environment Rich OS 

Root of Trust For Measurement (RTM) Yes Yes 

Root of Trust For Confidentiality 
(RTC) 

Yes No, not required 

Root of Trust For Integrity (RTI) Yes No, not required 

Root of Trust For Verification (RTV) Yes Yes 

Root of Trust for Reporting (RTR) Yes, in the TPM Mobile 
implementation 

No, not required 

Root of Trust for Update (RTU) Yes Yes 

7-1 Roots of Trust and where they are used 

In some implementations, these Roots of Trust MAY be shared (for example Annex A) but in many cases 

at least some of them are discrete (for example Annex B and Annex C).  

All of the Roots of Trust (apart from the RTR) SHOULD be provided by the platform and SHOULD be based 

on trust of the device Boot ROM and non-volatile write-once storage. In some cases Roots of Trust MAY 

be based on certification of the platform supporting the Protected Environment (for example by use of a 

Secure Element as in Section C.6). 

The RTM is located in two locations: in the TPM initialization code and in the Rich OS code that extends 

the PCRs once the TPM is available. The Protected Environment RTM provides information about the 

firmware running on the processor that supports the Protected Environment. The Rich OS RTM extends 

PCR 0 with information about the firmware running on the processor that supports the Rich OS 

environment.  

The RTV and RTU can be located in one or two locations; this depends solely on whether the Protected 

Environment executes on the same or a different processor to the Rich OS. 

The executable code that forms the RTC is located within the Protected Environment implementation and 

it is verified by the chain of trust that traces back to the RTV. The RTC makes use of device-specific values 

that are stored in non-volatile write-once memory when the device is manufactured. These device-specific 

values are used to derive the keys used to protect the non-volatile storage provided by the Protected 

Environment.  



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 19 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

8 TPM Mobile Identity and Ownership 

8.1 TPM Mobile Installation 

Typically, the Device Manufacturer installs the TPM Mobile. In some cases, where the platform includes a 

suitable Protected Environment that can install additional Trusted Applications, the TPM Mobile MAY be 

installed at a later point by a suitable authority. The authority that installs the TPM could also be a Mobile 

Network Operator or an Enterprise. 

The TPM Installing Authority is responsible for the management of TPM Mobile updates. Updates MAY 

make use of the TPM 2.0 Library Specification [1] field update mode but could also use other mechanisms 

associated with the Protected Environment. 

8.2 Platform Hierarchy Ownership 

The TPM Installing Authority SHALL own the platform hierarchy of the TPM Mobile if it is implemented.  

The TPM Installing Authority specifies the hierarchy enable, authValue and authPolicy for the platform 

hierarchy. The values of the hierarchy enable, authValue and authPolicy required by the TPM Installing 

Authority are established when the TPM Mobile is initialized, as defined in Section 8.5.  

If the TPM Installing Authority does not wish to use the platform hierarchy, it can be disabled by clearing 

the hierarchy enable. 

8.3 TPM Mobile Ownership 

The Device Owner owns the TPM Mobile.  

In typical use, device ownership is pre-configured at the time of device manufacture and is modifiable only 

by tools supplied by the TPM Installing Authority. If Endorsement Key certificates are required during device 

manufacture, they SHALL be signed by the TPM Installing Authority. 

8.4 Low Power Modes 

The TPM 2.0 Library Specification [1] specifies a system with a very simple low power model consisting 

essentially of ON and OFF modes. The TPM Mobile SHOULD preserve the TPM Mobile state (resources, 

NV storage, keys) across all low power transitions (except OFF). 

Mobile platforms support much richer low power models that differ considerably in functionality from those 

defined by the TPM 2.0 Library Specification [1]. 

The common feature of Mobile Platform low power models is that application processes, often including 

Trusted Applications running in the Protected Environment, are by design wholly unaware of the power 

state of the system.  

The state of applications is maintained by the system through any low power transitions.  

Consequently, the TPM Mobile SHALL implement the same low power model as the overall system. 

Applications have an arbitrary set of state active in the TPM Mobile at the point that a low power transition 

occurs and expect state to be preserved over the transition.  

TPM Mobile need not be aware of low power transitions of the platform. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 20 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

8.5 TPM Mobile Startup 

The TPM Mobile SHOULD be started only when the device is booted. There is often no equivalent to the 

TPM 2.0 Library [1] TPM restart and TPM resume operations. All TPM Mobile start ups SHOULD be 

equivalent to TPM reset if TPM restart and TPM resume are not supported. 

Many mobile devices do not have an equivalent of the PC BIOS that, in the TPM 2.0 Library Specification 

[1], is assumed to take ownership of the TPM’s platform hierarchy as soon as the device starts up. If the 

platform hierarchy is implemented, a mechanism is needed that puts the platform hierarchy into a secure 

state as soon as it is started, to avoid the platform hierarchy being left in an insecure state. 

If the TPM2_Startup command is not implemented, the TPM Mobile SHALL perform a set of initialization 

actions before executing the first received command from any application. This is equivalent to receiving 

the _TPM2_Init and TPM2_Startup messages, as defined in the TPM 2.0 Library Specification [1]. 

If the TPM2_Startup command is not implemented the initialization actions perform the following functions: 

 The TPM Mobile SHALL check the integrity of the resources that it uses. This can include data 

stored in Protected Environment-provided non-volatile storage that is used by the TPM Mobile and 

other resources. 

 The TPM Mobile SHALL perform self tests on all implemented cryptographic algorithms using the 

mechanisms defined by the TPM 2.0 Library Specification [1], unless the Protected Environment 

has already performed such self tests.  

 If the platform hierarchy is implemented the TPM Mobile SHALL set the hierarchy enable, 

authValue and authPolicy (see TPM 2.0 Library Specification [1]) for the platform hierarchy as 

specified by the TPM Installing Authority). See Section 8.2 for details. 

 The TPM Mobile SHALL set PCR 0 to 0.  

 To identify the firmware supporting the protected environment, the version information in the TPM 

capabilities TPM_PT_VERSION_NUMBER_1 and TPM_PT_VERSION_NUMBER_2  SHALL be 

set as defined in Section 8.6. 

If the TPM2_Startup command is implemented, it behaves as defined in the TPM 2.0 Library Specification 

[1]. The PCRs SHALL be set as defined in Section 8.6. 

8.5.1 TPM2_Shutdown 

There are circumstances when the system could know that a system shutdown is imminent (for example 

when there is an extremely low battery indication).  

The TPM Mobile SHALL support the TPM2_Shutdown command to force any pending non-volatile memory 

updates to be written to secure storage. This ensures that intended device behaviour continues when the 

TPM reboots.  

8.6 Platform Baseline Measurements 

The validity of the firmware executed on the platform before the TPM Mobile starts is of vital importance to 

the integrity of the whole platform. 

There are several relevant sets of firmware identifying information: 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 21 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

 The firmware identification information that supports the Protected Environment: This is written to 

the TPM_PT_VERSION_NUMBER_1 and TPM_PT_VERSION_NUMBER_2 properties in the 

TPM. This value is set by the TPM Mobile initialization code. For example, this could be a truncated 

hash. 

 The identification information of the boot code and firmware that loads the Rich OS: This is 

extended into PCR 0 by the RTM in the Rich OS that executes as soon as a connection to the TPM 

Mobile is available. The TPM Mobile initialization code sets PCR 0 to 0. 

The TPM Installing Authority SHALL make information available that defines the valid values for PCR 0 and 

the version number properties. This can be achieved via certificates signing the values or by any other 

mechanism that allows the capability and PCR values to be verified.  



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 22 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

A. Protected Environment using a hardware isolation mechanism - 
INFORMATIVE 

In this model (shown in Figure 8) the Protected Environment and the Rich OS share the same processors. 

The separation of the Protected Environment from the Rich OS is achieved by a hardware isolation 

mechanism that meets the requirements defined in Section 6.  

 Figure 8 – Protected Environment using hardware isolation 

Implementation options are: 

 A logically separate trusted operating system running within the Protected Environment that hosts 

a Trusted Application implementing the TPM Mobile  

 The TPM is an integral part of the Protected Environment. 

In this model the Boot ROM, boot sequence, RTV and RTU are shared by the Protected Environment and 

the Rich OS. 

A.1 Communications Mechanism 

Communications with the TPM Mobile makes use of the mechanism provided by the Protected 

Environment. This mechanism is typically based on shared memory. 

The mechanism used to communicate with Trusted Applications executing in the Protected Environment 

may not be fully available until the Rich OS has completed its boot sequence. During the Rich OS boot 

sequence an alternative, lower functionality, communications mechanism may be used. The state of the 

TPM Mobile must be preserved over the transition to the full functionality mechanism. 

Protected Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating System

Core 1 Core 2..n



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 23 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

A.2 Boot Sequence 

Figure 9 – A possible boot process when a hardware isolation mechanism is in use 

There are many options for how to implement the boot sequence of a system where the Protected 

Environment and the Rich OS share the same set of processors. Figure 9 shows one possible boot 

sequence. 

Typically in the boot sequence, the Protected Environment initializes first since it can complete its boot 

sequence without interference from code executing in the Rich OS. The Protected Environment also 

reserves the resources it requires, leaving the remainder for use by the Rich OS. 

Boot ROM Hardware stored secrets

Reset

Initial Firmware

Trusted Operating System

TPM Mobile code

OS code

Verifies

Verifies

Verifies

Rich OS boot code

Initial Protected Environment 

communications driver

Initial TPM Mobile driver

Verifies

Verifies

Verifies

Uses

Loads

Hardware secured

Secure Boot

UEFI Secure Boot or other OS boot 

mechanism

Measured or un-Measured Boot as 

required by Rich OS

Rich OS Protected 

Environment

Low level OS drivers

Verifies

Final Protected Environment 

communications driver

Final TPM Mobile driver

Uses

Uses

Uses

Loads

Loads

Application Code

Loads

Uses

Uses

Uses

Uses

Uses

Uses



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 24 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

When the Protected Environment initialization is completed, the Rich OS boot process starts. The Rich OS 

boot procedure is the same as that in an isolated ASIC, except that a different communication mechanism 

is used with the TPM Mobile. 

 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 25 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

B. Protected Environment on a separate core in same ASIC - INFORMATIVE 

Figure 10 - Protected Environment in separate core in same ASIC 

In this model, shown in Figure 10, the Protected Environment executes on a separate core (the Protected 

Environment Core (PEC)) within the same ASIC as the core on which the Rich OS operates (the Application 

Core (APPC)).  

The security of this model depends critically on the degree of integration between the PEC and the APPC. 

Implementation options include: 

 One of a cluster of identical cores acts as the PEC. The PEC then shares cache, memory and 

peripherals with the APPC. A hardware isolation mechanism provides sufficient separation 

between the PEC and the APPC to meet the requirements in Section 6. The boot sequence of the 

PEC and the APPC are shared as in Annex A. 

 A core that may already perform some other task within the device acts as the PEC. This core 

could be responsible for implementing power control, wireless connectivity or any other function. 

The boot sequence and Roots of Trust could be strongly linked between the PEC and the APPC, 

or could be independent. Typically access to shared peripherals, such as non-volatile storage, is 

via the APPC rather than the PEC. 

The requirements for isolation between the Protected Environment and other entities, as defined in Section 

6, also apply for isolating Trusted Applications running in the Protected Environment from any firmware or 

software implementing additional functions on the PEC.  

If the PEC does all of the following: 

 Boots independently of the APPC 

Protected 

Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC Hardware

Operating System

Core 1 Core 2..n

Secure Boot

APPCPEC



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 26 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

 Does not share memory or cache with the APPC, apart from a mailbox 

 May share non-volatile storage with the APPC 

 Does not share peripherals with the APPC 

then this model is the equivalent of implementing the Protected Environment in a separate external ASIC 

as described in Annex C.  

If the PEC meets any of the following conditions: 

 Interacts with the boot process of the APPC in some way other than possibly initiating it 

 Shares memory or cache with the APPC even if separated by a hardware isolation mechanism 

 Shares peripherals with the APPC 

then the model defined in this section applies. 

B.1 Communications Mechanism 

If the PEC is in the same cluster of cores as the APPC, communication is likely to be via shared memory 

and some interrupt scheme. 

If the PEC is on a loosely coupled core, it can use any communications mechanism that meets the 

requirements in Section 6. This communications mechanism could involve shared memory, a mailbox 

register, or potentially a full DMA (Direct Memory Access) link. 

B.2  Boot Sequence 

If the PEC is in the same cluster of cores as the APPC, the boot sequence is likely to be similar to that 

described in Section A.2, with the sole difference being that the Protected Environment runs on a separate 

core. The PEC and the APPC often share the same Boot ROM. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 27 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Figure 11 – Possible Boot sequence where PEC is also the power controller for the APPC 

If the PEC resides on a separate core from the APPC, the boot sequence is likely to be complex. The PEC 

may have to boot to a certain state before the APPC starts booting. The PEC may not be able to complete 

Protected Environment initialization until the APPC is able to reference non-volatile storage; the PEC’s final 

boot phase may have to wait until the TPM Mobile is used during Rich OS boot. Figure 11 is an example 

of how complex the boot sequence can be. 

B.3 Roots of Trust  

If the PEC is in the same cluster of cores as the APPC, the Boot ROM, boot sequence, RTV and RTU are 

shared by the Protected Environment and the Rich OS. 

In more complex cases some Roots of Trust may be shared, while others may not.  

PEC APPC

PEC Boot ROM

APPC Boot ROM

APPC Initial Firmware

PEC Initial Firmware

Boots

Loads and Verifies

Loads

PEC Initial Firmware 

Executing

Checked by PEC Boot ROM

Protected Environment

TPM Mobile

Loads and checks

Loads and checks

OS Initial Boot

Loads and checks

Protected Environment Driver

TPM Driver

Normal OS boot

Loads and checks

Uses

Loads and checks

Uses

Uses

Reset



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 28 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

C. Protected Environment in a separate ASIC - INFORMATIVE 

Figure 12 shows this model in a schematic form. In this model the Protected Environment is not located in 

the same ASIC as the application processors; a communications link is necessary between the Applications 

ASIC (APPA) and the Protected Environment ASIC (PEA). 

The presence of the PEA implies a different boot procedure since the boot process of the two ASICs is 

independent. The only time when the boot states of the APPA and PEA interact is when the Rich OS running 

on the APPA connects to the TPM Mobile running in the Protected Environment. 

C.1 Protected Environment ASIC 

The PEA could perform additional functions (for example power control or modem functionality) in addition 

to facilitating the Protected Environment. Trusted Applications running in the Protected Environment are 

isolated from the firmware or software implementing these additional functions to the level defined in 

Section 6.2 

A second TPM Mobile instance could be instantiated for use by the additional features running on the PEA. 

The PEA could possibly host a different Rich OS with its own TPM Mobile in addition to that supporting the 

APPA; that is, the PEA implements a system as defined in annex A. 

The PEA typically includes non-volatile storage within the ASIC; if it uses external non-volatile storage, this 

is typically independent of that used by the APPA.  

The PEA boots independently of the APPA. When the PEA boots is implementation defined. If for example 

the additional functions of the PEA control the power state of the APPA, the PEA must obviously boot first.  

ASIC Hardware

Protected 

Environment

Secure Boot

Native 

Applications

Interpreter

Interpreted 

Applications

ASIC 

Hardware

Operating System

Core 1..n

Secure Boot

APPAPEA

Figure 12 – Protected Environment in a separate ASIC 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 29 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

The latest point at which the PEA can boot is when the APPA connects to the TPM Mobile running in the 

Protected Environment. 

C.2 Applications ASIC 

The APPA is a standard application processor chip that runs a Rich OS or in some cases an embedded 

OS (for example, in a Smart Meter using a Secure Element [14] as the PEA). 

The APPA boots using a standard boot sequence (Section 5). The Secure Boot phase (Section 5.3) 

connects to the TPM Mobile running in the PEA.  

C.3 Communications Mechanism 

The communications mechanism between the APPA and the PEA is implementation dependent. The only 

requirement is that it transports messages from the APPA to the TPM Mobile running on the PEA and 

responses from the TPM Mobile to the APPA. 

C.4 Boot Sequence 

In this model, the boot sequences of the APPA and the PEA are wholly separate.  

If the PEA does not support a Rich OS, a simple boot sequence is sufficient. The PEA is likely to solely use 

a Boot ROM (Section 5.2) and Secure Boot (Section 5.3); there is no need for any other boot phases. For 

best security the PEA ideally boots from internal non-volatile memory.  

The APPA follows a standard boot sequence as defined in Section 5, using the TPM Mobile implemented 

within the Protected Environment in the PEA once it is available. 

C.5 Roots of Trust 

C.5.1 PEA Roots of Trust 

The PEA implements the following Roots of Trust: 

 Root of Trust for Confidentiality – The RTC is located within the code of the Protected Environment 

and the TPM Mobile running within it. If the protected storage is within the ASIC, further protection 

may not be required. If the protected storage is external to the ASIC, values in non-volatile storage 

determine the key used when encrypting non-volatile values. 

 Root of Trust for Integrity – The RTI is not required on the PEA unless it implements an SBPS 

(Section 5.3.2) and when the SBPS acts as an RTI 

 Root of Trust for Measurement – The RTM is located within the TPM Mobile initialization code that 

executes within the Protected Environment. Its code is verified by the transitive chain of verification 

tracing back to the RTV in the Boot ROM.  

 Root of Trust for Reporting – The RTR is located within the TPM Mobile code and it depends on 

the protected storage provided by the RTC. It only appears once the TPM Mobile is running. It is 

not used on the PEA. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 30 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

 Root of Trust for Update – The RTU is located in the Boot ROM of the PEA along with non-volatile 

write-once storage within the ASIC. The RTU validates firmware updates. 

 Root of Trust for Verification – The RTV is located within the Boot ROM of the PEA along with some 

non-volatile write-once storage within the PEA. Based on this and using the Secure Boot 

mechanism (Section 5.3), a chain of verification then extends up to the implementation of the 

Protected Environment and beyond into the Trusted Applications running in the Protected 

Environment. 

C.5.2 APPA Roots Of Trust 

The APPA implements the following Roots of Trust: 

 Root of Trust for Confidentiality – The RTC is provided by the TPM Mobile.  

 Root of Trust for Integrity – If the PEA implements an SBPS (Section 5.3.2), the SBPS acts as an 

RTI until the TPM Mobile becomes available. The TPM Mobile acts as the RTI for the APPA once 

it is available. 

 Root of Trust for Measurement – The RTM is located within the Rich OS code at the point where 

the connection to the TPM Mobile becomes available. Its code is verified by the chain of trust 

leading back to the RTV. 

 Root of Trust for Reporting – The RTR is provided by the TPM Mobile once it becomes available.  

 Root of Trust for Update – The RTU is located in the Boot ROM of the APPA along with non-volatile 

write-once storage within the ASIC. The RTU validates firmware updates. 

 Root of Trust for Verification – The RTV is located within the Boot ROM of the APPA along with 

some non-volatile write-once storage within the ASIC. A chain of verification based on this then 

extends up to at least the point where the TPM Mobile becomes available to the Rich OS. 

C.6 Example using a Secure Element to host the Protected Environment 

A Secure Element (SE) is an example of an external ASIC that hosts a Protected Environment.  

Secure Elements are highly secure ASICs designed to maintain high value assets (for example, financial 

secrets in credit cards, access secrets for Mobile Networks) in mobile devices, even in hostile environments. 

The electrical and mechanical interfaces and security mechanisms of Secure Elements are defined by a 

number of ISO [15], ETSI [16] and GlobalPlatform [14] standards. Common Criteria certification [18] and 

compliance testing [19] are required. Secure Elements are protected against both hardware and software 

attacks. 

A set of standards from GlobalPlatform [17] define an execution environment within an SE where it executes 

programs written in a subset of Java. Secure Elements implementing these standards are known as 

JavaCards. 

The capabilities and protection level offered by JavaCards exceed the requirements for a Protected 

Environment as defined in Section 6. Secure storage is provided within the SE but is limited by the available 

resources. The amount of memory available for programs varies. A TPM Mobile executing in such a 

Protected Environment must be written in Java. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 31 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

The JavaCard environment is tightly controlled. All management is performed by Trusted Service Managers 

(TSM) that are remote entities. The TSM creates a secure VPN using a shared key provisioned at the time 

of device manufacture to send the SE management commands; the SE accepts management commands 

only over this VPN.  

The external interface to an SE is based on the exchange of Application Protocol Data Unit (APDU) 

messages with a maximum length of 256 bytes and it is necessary to map the TPM 2.0 Library Specification 

interface [1] on top of this mechanism. 

No details of the SE boot sequence are available. Common Criteria certification [18] and compliance testing 

[19] ensures that the SE boot sequence is secure. 

  



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 32 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

D. Key Management in a fTPM - INFORMATIVE 

D.1 Introduction 

This annex addresses the issues of key management in an fTPM. An fTPM is a TPM that is implemented 

as an application in a Protected Environment where the Protected Environment has to be reconstituted on 

each device reset. 

In a discrete TPM, the resources used by the TPM are identifiable when the device is reset. For an fTPM, 

a Verified Boot is used to bring up the fTPM and allocate its resources. After the TPM application is running 

within the Protected Environment, normal system boot may continue as if the TPM were a discrete device 

(with the only difference being the physical interface). 

A TPM has a considerable amount of persistent state that needs to be stored in some non-volatile (NV) 

memory. In a discrete TPM, NV memory is normally within the same package as the TPM processor so 

that memory can be considered to be a Shielded Location. However, in an fTPM system, the TPM firmware 

does not always have full control over access to NV. This means that the fTPM is required to encrypt and 

integrity protect the data in NV. Encryption of the NV data requires a key and, depending on how it is done, 

integrity protection may also need a key (such as an HMAC key). Since there is no permanent memory 

dedicated to the TPM where the TPM’s keys can be stored, a method is needed to regenerate TPM-specific 

keys on each boot. 

The key generation process has a few requirements for the keys that the TPM uses to protect its NV data; 

1) Only the correct Protected Environment and TPM Application may re-generate the keys. A device 

may support multiple different Protected Environments and multiple versions of TPMs but only a 

specific combination of Protected Environment and TPM can be allowed to access the NV 

protection keys for that TPM. 

2) A method is needed to allow data to be migrated when the firmware in the Protected Environment 

or the firmware in the TPM are updated. The NV keys used by the TPM are, according to 

requirement 1, required to be bound to a specific set of firmware. This means that, when the 

firmware changes, the keys change. In some instances, it might be desirable for all the TPM state 

to be lost on a firmware upgrade if that upgrade was to fix a severe security problem. However, if 

the update is simply to add a feature, losing TPM state would not provide an acceptable user 

experience. So, any key management scheme must provide a secure way to allow TPM state 

migration to new firmware while preventing migration to old, possibly compromised, firmware. 

It is probable that a security problem will be found in the code of the TPM, the Protected Environment, or 

the code used to boot the Protected Environment. Updating the firmware to repair the problem is only half 

of the problem of re-establishing trust in the device. The other part is knowing that the problem has been 

fixed. It needs to be possible for at least one trustworthy entity to be able to validate that the TPM firmware 

has been updated (that entity could then issue a new certificate for the device). Without this, if the device 

compromise is serious enough, there would be no way of ever re-establishing trust in the device short of 

taking the device back to the manufacturer. 

The representation of policy is complex and is vendor specific. The policy could, for example, require that 

each module be cryptographically signed by a specific signing key (normally a key known only to the device 

manufacturer). The policy could also be that a digest of the code match a value that is on a manifest (list of 

digests). Regardless of the method of validating a measurement of the boot code, a measurement is made 

and verified against policy. Typically, the policy will require that the measurement be a digest of the code 

in a certificate that is signed by the boot authority (or a designee of the boot authority). In addition to the 

digest of the code, the certificate would include the name of the module and its version number. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 33 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Section 5.3.2 describes an optional hardware PCR for recording the measurements made during measured 

boot. The method in 5.3.2 has limited value as there is no process by which the PCR measurements may 

be used reliably if the code that implements the PCR policy has been compromised. This annex describes 

a process of using these measurements to provide strong protections for the secrets used by a Protected 

Environment and “Trusted” Applications. Additionally, the methods in this annex enable reliable verification 

of the firmware running in a Protected Environment. 

D.2 Qualifying Information 

D.2.1 Certificates 

The key generation processes in this annex rely on certificates. These certificates contain the values used 

by the Verified/Secure Boot process to determine if code to be executed is in policy for the device. This 

certificate would minimally contain a digest of the code to be executed and a signature over that code. For 

this implementation, it is also required that the certificate contain the name and version number of the 

module. 

When a drawing or text indicates that a certificate is used in a computation, this does not mean that the 

entire certificate value has to be used. However, the value used must either contain the digest, name, and 

version number of the code to be executed or a value that is cryptographically bound to those values (such 

as a hash of the required values). 

Before a certificate is used for key generation, validation of the associated code must be complete. That is, 

keys for code should not be generated unless it is known that the code will be run. 

D.2.2 Boot Sequence 

In the illustrated examples, the following boot sequence is assumed: 

 ROM – Immutable code that cannot be modified after device manufacturer. 

 Initial Firmware – Mutable code that completes preparation of the hardware and loads the 

Protected Environment. 

 Protected Environment – Mutable code that host “Trusted” Applications The Protected 

Environment is able to protect its memory from access from any code not part of the Protected 

Environment including “Trusted” Applications. 

 “Trusted” Application – An application that is run within the protected environment. Only the 

application and the Protected Environment can directly access keys and data used by the “Trusted” 

Application. Note: this definition means that the fTPM’s Shielded Locations are accessible to the 

Protected Environment. The Protected Environment is required not to modify the Shielded locations 

of the fTPM because the Protected Environment does not provide Protected Capabilities as defined 

in the TPM 2.0 specification. 

Other boot sequences are allowed with more or fewer steps. Each step that is present should have the 

same behaviour with respect to key generation as any other step. 

NOTE The key generation scheme only applies to certified units. If a certified unit has several 

different steps as part of its execution, then it would still only count as a single unit for 

purposes of the key generation scheme 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 34 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

D.2.3 eFuses 

The illustrations refer to eFuses but any technology with equivalent functionality may be substituted. 

A mechanism to disable access to eFuses is required. The ROM code will disable eFuses access and erase 

any copy of the eFuses from memory before passing control to any other code. 

D.2.4 Symbols 

In the drawings associated with the description of the various methods, a special symbol is used to 

represent a one-way function involving two inputs. The symbol is: 

y

x

f

 
The methods in this section do not require that the one-way function be implemented using a specific 

algorithm. It could be, for example, an encryption function, a hash function, or an HMAC function. However, 

the presumption is that, if the chosen function uses a key, then the x input is the key value. If the function 

is an extend operation, then the x input represents the ‘current’ value of the parameter to be extended and 

y is the input to extend by: 

 f := H(x || y)  (1) 

D.3 Generation of Protection Seeds 

Figure 13 shows how the protection seeds would be generated for each stage of the boot process. 

NOTE The input to a stage is a seed because crypto-hygiene may require that this value be used 

in a key-derivation function before being used for either encryption or integrity protection. 

Each stage combines its seed (received from the previous stage) with the certificate of the next stage to 

produce the protection seed for the next stage (the description of the process is simplified by treating the 

eFuses value as an input from the prior stage). 

It should be obvious from the drawing that if a certificate contains the digest of a next stage, then any 

change to a next stage will cause the seed for that stage, and all subsequent stages, to change. Since the 

eFuses value is unique to each device, the seed value of each stage is unique to the device and the digest 

of each prior stage. 

It is required that each stage erase its input seed value before it begins execution of the next stage. This 

makes it impractical for any subsequent stage to generate key values that might be used by different 

versions of the code. For example, without access to IF_Seed, a malicious Protected Environment cannot 

compute the PE_Seed for a non-malicious version of the code. 

NOTE Access to eFuses value is required to be disabled before the ROM code exits. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 35 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

R
O

M
 C

o
d

e
In

itial Firm
w

are
P

ro
tected

 En
viro

n
m

en
t

Initial 
Fimware 

Certificate

Protected 
Environment 

Certificate

“Trusted” 
Application 
Certificate

IF_Seed

PE_Seed

“Tru
sted

” A
p

p
licatio

n

Seed used to generate 
encryption and integrity 
keys for the latest version 
of application state

eFuses

TA_Seed

 

Figure 13 — Generating Protection Keys 

As will be illustrated later, a ROM implementation may generate IF_Seed using a value other than eFuses. 

D.3.1 Firmware Update 

The implementation of Figure 13 does not address the second requirement for the confidentiality protection 

– support for firmware updates. This is because a change to a certificate will change the seed values for all 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 36 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

subsequent seeds. If, for example, the Initial Firmware is changed, then the seeds in the Initial firmware, 

Protected Environment, and all “Trusted” Applications will change. This means that stages that are not 

changed would no longer be able to access their protected data. 

Figure 14 illustrates the process for rekeying after a firmware update. The process uses the current 

certificates for the code and the certificate for the code replaced during the update process. This allows 

computation of the seeds for the previous firmware and the current firmware. When the system has booted 

following a firmware update, and each code component has re-encrypted its data, the old certificate can be 

removed and the next boot can follow the normal sequence and generate a single seed per stage. 

NOTE  In the figure, the “[C]” designation indicates that the certificate for the current firmware is 

being used. The “[P]” designation indicates that a certificate for a previous version of the 

firmware is being used. “[P]” is used rather than “[C-1]” because the numeric value of the 

version number might not be one less than the current version number. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 37 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

R
O

M
 C

o
d

e
In

itial Firm
w

are
P

ro
tected

 En
viro

n
m

en
t

IF Cert[C]

PE Cert[P]

IF Cert[P]

App Cert[C] App Cert[P]

IF_Seed[C] IF_Seed[P]

PE_Seed[P]

“Tru
sted

” A
p

p
licatio

n

Seed used to 
generate encryption 
and integrity keys for 
the latest version of 
application state

Seed used to generate keys 
for access previous version of 
application state.

 eFuses

TA_ Seed[C]

PE_ Seed[C]

TA_ Seed[P]

 

Figure 14 — Rekeying After Firmware Update  

In order to make this process secure, the verification code at each stage needs to: 

1) Verify that the new code and its certificate are valid (no change from normal processing); 

2) Verify that the same entity signed both the old and new certificates; 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 38 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

3) Verify that the signature of the old certificate is valid (see note below); 

4) Verify that the names of the code are the same; and 

5) Verify that the version number for the new code is greater than the version number for the old code. 

NOTE It may not be necessary to validate the signature of the old certificate if the entire certificate 

is always included as input to the key generation rather than just the signature block. If only 

the signature block is used in key generation, then the verifier needs to ensure that the 

signature block is properly associated with the other data (name, version number, etc.). If 

all of the verified data is included in the key computation, then no substitution is possible 

and the signature does not have to be checked. 

Figure 14 shows the worst case for rekeying where all stages have an update. .Figure 16 illustrates a partial 

rekeying when the Initial Firmware has change and a “Trusted” Application has changed but the Protected 

Environment code remains the same. If a stage has only one input seed and the next stage has not 

changed, then the stage will only have one output seed. However, if the stage has two input seeds, then 

there will be two output seeds regardless of whether there is a code change in the subsequent stage. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 39 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

R
O

M
 C

o
d

e
In

itial Firm
w

are
P

ro
tected

 En
viro

n
m

en
t

IF Cert[N]

PE Cert[P]

IF Cert[P]

App Cert[N] App Cert[M]

IF_Seed[N] IF_Seed[P]

PE_Seed[P]

“Tru
sted

” A
p

p
licatio

n

Seed used to 
generate encryption 
and integrity keys for 
the latest version of 
application state

Seed used to generate keys 
for access previous version of 
application state.

 eFuses

TA_ Seed[N]

PE_ Seed[N]

TA_ Seed[P]

 

Figure 15 — Partial Rekeying 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 40 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

Figure 16 illustrates how the system would boot if a “Trusted” Application were the only code updated. 

“Tru
sted

” A
p

p
licatio

n

Seed used to 
generate encryption 
and integrity keys for 
the latest version of 
application state

Seed used to generate keys 
for access previous version of 
application state.

TA_ Seed[C] TA_ Seed[P]

R
O

M
 C

o
d

e
In

itial Firm
w

are
P

ro
tected

 En
viro

n
m

en
t

IF Cert[C]

PE_Cert[C]

App Cert[C] App Cert[P]

IF_Seed[C]

PE_Seed[C]

eFuses

 

Figure 16 — Rekeying After Application Update  



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 41 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

D.3.2 Firmware Identity 

As explained in the introduction, being able to perform firmware updates is only part of the problem. The 

other is proving that the update has been applied. Depending on the severity of the flaw being addressed 

by the update, there might be no existing means of proving that the update has been done.  

Figure 16 shows a process for producing a verifiable firmware identity. The process for generating the 

firmware identity is similar to the process for generating the data protection seed values. The eFusesB value 

used in this process is not the same as the eFuses value used to seed the protection keys but, otherwise, 

 the process is identical. In addition, as with the protection seeds, the input to each stage is erased from 

memory before the next stage begins execution. 

NOTE Access to eFusesB is required to be disabled before the ROM code exits. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 42 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

R
O

M
 C

o
d

e
In

itial Firm
w

are
P

ro
te

cte
d

 En
viro

n
m

e
n

t
“Tru

ste
d

” A
p

p
licatio

n

Secret used to validate 
the current version of 
the firmware

Initial Firmare 
Certificate

IF_Identity

PE_Identity

TA_ Identity

eFusesB

Protected 
Environment 

Certificate

“Trusted” 
Application 
Certificate

 

Figure 17 — Generation of Identity Secret  

The value generated through this process should remain secret. It is intended to be used in a protocol that 

allows the device manufacturer (or their designee) to verify the firmware that is running on a device. As with 

the encryption key values, the identity will change with any change to firmware in the boot path. As long as 

the ROM erases the root values and disables access to eFusesB, it is impractical to generate an identify 

value that is valid for a collection of firmware other than the one on the device. 

NOTE A malicious Initial Firmware could use a false value for the Protected Environment 

Certificate and generate a set of keys that are not accurate. However, the malicious Initial 

Firmware will not have the same certificate value as non-malicious code. So the keys and 

identity values generated in the system with malicious firmware cannot match the keys and 

identity values generated in a non-malicious system. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 43 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

In a TPM, the TPM’s TA_Identity (TPM_Identity) would be associated with one of the TPM_RH_AUTH_xx 

values (TPM_RH_AUTH_00 in the reference design). This handle would be used as the Bind value in 

TPM2_StartAuthSession(). This will cause the TPM to compute a sessionSecret value that is based on the 

value of TPM_Identity and the session nonces. This secret value will be unique to a device and firmware 

combination. A device manufacture would know the eFusesB value for a device and, with a list of firmware 

versions, be able to compute the expected value of TA_Identity for the TPM. The device manufacturer 

could, by getting the correct HMAC from the TPM, know that the TPM is running the “advertised” firmware. 

To perform the necessary computation, the device manufacturer needs to be able to know the eFusesB 

value used by a device. This means that there must be some unique identifier on the device that can be 

read allowing the correct eFusesB value to be accessed. One way of doing this is to use the eFusesB value 

in a one-way function to produce a value that can be accessed by anyone. Suggested implementations are 

shown in Figure 18. For either of these, the manufacturer, could retain the value of eFusesB and be able to 

compute the DevicePublicID and the associated firmware identities values. For option A, the manufacturer 

would have the option of storing DevicePublicID and IdentityRoot as an alternative to storing the eFusesB 

value. 

“DeviceID”

R
O

M
 C

o
d

e

eFusesB

“Identity”

Initial Firmare 
Certificate

IF
_I

d
e

n
ti

ty

D
e

vi
ce

P
u

b
lic

ID

Id
e

n
ti

ty
R

o
o

t

“DeviceID”

R
O

M
 C

o
d

eeFusesB

Initial Firmare 
Certificate

A B

D
e

vi
ce

P
u

b
lic

ID

IF
_I

d
e

n
ti

ty

 

Figure 18 — Identity eFuses Sharing 

NOTE The quoted values (“DeviceID” and “Identity”) could be, but are not required to be, literal 

strings. They represent values chosen by the device manufacturer to differentiate the 

generated values. 

D.4 Supporting Multiple “Trusted” Applications  

A trusted application receives an encryption seed (or seeds) and the identity value for the application. The 

keys and identity are unique to a device and the firmware in the boot path of the application. The Protected 

Environment may support any number of “Trusted” Applications. 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 44 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

P
ro

tected
 En

viro
n

m
en

t

App1 Cert

PE_Seed

PE_Identity

App2 Cert AppZ Cert

“Trusted” Application 1 “Trusted” Application 2 “Trusted” Application Z

...

...

...

 

Figure 19 — Key Distribution for Multiple “Trusted” Applications   

D.5 Deferred Processing of an Update 

The certificates for “Trusted” Applications may be maintained by the Protected Environment and not be part 

of the update process for the Initial Firmware or Protected Environment update. In the normal course of an 

update, when the Protected Environment and all the “Trusted” Applications have re-encrypted their 

protected data, the certificate database would be updated indicating that the next boot can use the single 

seed path. The Protected Environment may, instead, keep a database of all of the certificates for its 

applications as part of its protected state. When a “Trusted” application runs, the Protected Environment 

can check its database to see if the application has been run since being updated. If not, the Protected 

Environment may provide the pairs of protection keys that the application needs in order to update its 

database.  

D.6 Miscellaneous 

This section contains variations for processing and eFuses handling by the ROM  

NOTE Some of the figures show how an RPMB HMAC key (RpmbAccessKey) can be generated 

from the eFuses values. These are illustrative only. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 45 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

“RPMBkey”

R
O

M
 C

o
d

e

eFuses

“Encrypt”

Initial Firmare 
Certificate

IF
Se

e
d

R
p

m
b

A
cc

e
ss

K
e

y

En
cr

yp
tR

o
o

t

“RPMBkey”

R
O

M
 C

o
d

eeFuses

Initial Firmare 
Certificate

IF
_S

e
e

d

R
p

m
b

A
cc

e
ss

K
e

y

A B

 

Figure 20 — Integrity/Confidentiality Fuse Sharing  

Both of these implementations use the eFuses value as a key value input into a one-way function. This 

means that knowing the RpbmAccessKey does not allow computation of IF_Seed. 

The “B” implementation seems to be the obviously better choice because of implementation complexity but 

there are other factors that might make the “A” implementation the better choice (see Figure 21).  

The preferred implementation is shown in Figure 21 where the protection values and the identity values are 

derived from different eFuses values. The assumption is that the device manufacturer will retain knowledge 

of the value of eFusesB for identification and certification purposes but the value of eFusesA would not be 

retained, so the manufacturer would not know the encryption keys derived from those fuses.  

“RPMBkey”

R
O

M
 C

o
d

e

“DeviceID”

eFusesA

Initial Firmare 
Certificate

eFusesB*

IF
_S

e
e

d

IF
_I

d
e

n
ti

y

R
p

m
b

A
cc

e
ss

K
e

y

D
e

vi
ce

P
u

b
lic

ID

* Denotes a value 
stored in the 
manufacturer’s 
secure database

 

Figure 21 — Preferred Use of eFuses 



TPM 2.0 Mobile Reference Architecture   

Family “2.0” TCG Published Page 46 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

If the device does not have enough eFuses to allocate to two different seed values, then the implementation 

in Figure 22 is a possibility. 

“RPMBkey” “FirmwareID”
R

O
M

 C
o

d
e

“DeviceID”

eFuses

“Encrypt”

Cert(IFC) Cert(IFC)

R
p

m
b

A
cc

e
ss

K
e

y

En
cr

yp
t 

R
o

o
t

Id
e

n
ti

ty
R

o
o

t*

D
e

vi
ce

P
u

b
lic

ID
*

* Denotes a value 
stored in the 
manufacturer’s 
secure database

 

Figure 22 — Alternative Fuse Use 

If the arrangement in Figure 22 is used, then it is not permitted for the manufacturer to retain the eFuses 

value as this would give the device manufacturer the ability to access user secret data. Instead, the 

manufacturing process would have to produce an IdentityRoot, pair that with the DevicePublicID value, and 

somehow communicate these values to a secure database. With the arrangement in Figure 21, the 

manufacturer could specify the desired value for eFusesB and allow the device to generate a random value 

for eFusesA that is never known outside of the ROM. 

D.7 Immutability of ROM 

If the amount of code needed for full verification of Initial Firmware is too large to fit into the available ROM 

space on an SoC, then the code has to be split with some of the code remaining in ROM and the remainder 

in external flash (or equivalent). Any data stored in external flash is subject to modification but it is still 

possible to have it be considered as immutable if any change to the code would result in a boot failure. 

The code in the ROM on the SoC could simply be enough code to load and hash check the code in external 

flash. During the manufacturing process, the flash version of ROM for the platform could be installed and 

eFuses blown to indicate the required hash for the flash ROM. This would allow the same SoC to have any 

number of different ROM versions without having to change the ROM on the SoC itself. 

If the code in flash can be changed after manufacturing and have the boot process continue without 

remediation, then the code is not ROM and has to be validated against a certified value.  

D.8 Remediation 

The generation of the protection seeds and identity values uses certificates that need to be verified. When 

the certificate associated with the current version of the firmware is not valid then it is expected that the 

device will enter remediation code where it is possible to re-flash the firmware and put it back in a valid 

state. Before starting remediation, all secrets (including eFuses values) are required to be erased from 

memory. 



TPM 2.0 Mobile Reference Architecture   

  
  

Family “2.0” TCG Published Page 47 

16 December 2014 Copyright © TCG 2006-2014 Level 00 Revision 142 

NOTE It may possible to recover the firmware in a device without losing the secrets used by the 

Protected Environment or the “Trusted” Applications. If the firmware can be put into a state 

that allows the proper protection seed values to be created, then the secrets need not be 

lost. 

A second failure case occurs when the certificate for the current version of some stage is not compatible 

with the certificate for the previous version of the stage. This failure could occur because different signing 

keys are used, the names for the code do not match, or the version number of the previous version is not 

less than the current version. For any of these failures, the boot may continue but the seed values from a 

stage may only use the current certificate for the stage that is changed. Referring to Figure 15, the Initial 

Firmware would use the current certificate value whether there was no change to the Protected 

Environment or the previous certificate did not validate against the current certificate. 

This handling of mismatched certificates allows recovery of a system after a very severe security problem 

– loss or disclosure of a vendor’s signing key. Previous versions of the firmware are no longer trusted 

because the signing key cannot be trusted. However, new firmware can be issued using a new signing 

key.. Secrets based on the compromised firmware are lost but the device can be re-provisioned; and, if the 

identity chain is implemented, the device can be recertified. 

NOTE The reason that the old secrets are discarded is that an attacker could have issued a 

malicious version of software signed with a stolen signing key. This firmware may have 

disclosed all of the secrets in a device so those secrets need to be discarded. 

 


