

TCG

EMBED Word.Picture.6

TCG

TPM Main
Part 1 Design Principles
Specification Version 1.2
Revision 116
1 March 2011
TCG Published

Contact: admin@trustedcomputinggroup.com

TCG Published
Copyright © 2003-2011 Trusted Computing Group, Incorporated

1
2

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

3
4

mailto:admin@trustedcomputinggroup.com

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Copyright © 2003-2011 Trusted Computing Group, Incorporated.

Disclaimers, Notices, and License Terms
THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement
of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty
or otherwise, arising in any way out of use or reliance upon this specification or any
information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is
granted herein other than as follows: You may not copy or reproduce the document or distribute it to others
without written permission from TCG, except that you may freely do so for the purposes of (a) examining or
implementing TCG specifications or (b) developing, testing, or promoting information technology standards and
best practices, so long as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at
http://www.trustedcomputinggroup.org/">www.trustedcomputinggroup.org for information
on specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

ii TCG Published Revision 116 1 March 2011
TCG Published

5
6

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52
53
54
55
56

7
8

file:///C:%5CDocuments%20and%20Settings%5CAdministrator%5CLocal%20Settings%5CTemp%5Cnotes32C5CD%5Cwww.trustedcomputinggroup.org
file:///C:%5CDocuments%20and%20Settings%5CAdministrator%5CLocal%20Settings%5CTemp%5Cnotes32C5CD%5C%3Ca%20href=

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Change History

Version Date Description

Rev 50 Jun 2003 Started 30 Jun 2003 by David Grawrock
First cut at the design principles

Rev 52 Jul 2003 Started 15 Jul 2003 by David Grawrock
Moved

Rev 58 Aug 2003 Started 27 Aug 2003 by David Grawrock
All emails through 28 August 2003
New delegation from Graeme merged

Rev 62 Oct 2003 Approved by WG, TC and Board as public release of 1.2

Rev 63 Oct 2003 Started 2 Oct 2003 by David Grawrock
Kerry email 7 Oct “Various items in rev62”
kerry email 10 Oct “Other issues in rev 62”
Changes to audit generation

Rev 64 Oct 2003 Started 12 Oct 2003 by David Grawrock
Removed PCRWRITE usage in the NV write commands
Added locality to transport_out log
Disable readpubek now set in takeownership. DisableReadpubek now deprecated, as the functionality is moot.
Oshrats email regarding DSAP/OSAP sessions and the invalidation of them on delegation changes
Changes for CMK commands.
Oshrats email with minor 63 comments

Rev 65 Nov 2003 Action in NV_DefineSpace to ignore the Booleans in the input structure (Kerry email of 10/30
Transport changes from markus 11/6 email
Set rules for encryption of parameters for OIAP,OSAP and DSAP
Rewrote section on debug PCR to specify that the platform spec must indicate which register is the debug PCR
Orlando FtF decisions
CMK changes from Graeme

Rev 66 Nov 2003 Comment that OSAP tied to owner delegation needs to be treated internally in the TPM as a DSAP session
Minor edits from Monty
Added new GetCapability as requested by PC Specific WG
Added new DP section that shows mandatory and optional
Oshrat email of 11/27
Change PCR attributes to use locality selection instead of an array of BOOL’s
Removed transport sessions as something to invalidate when a resource type is flushed.
Oshrat email of 12/3
added checks for NV_Locked in the NV commands
Additional emails from the WG for minor editing fixes

Rev 67 Dec 2003 Made locality_modifier always a 1 size
Changed NV index values to add the reserved bit. Also noticed that the previous NV index values were 10 bytes not 8. Edited
them to correct size.
Audit changes to ensure audit listed as optional and the previous commands properly deleted
Added new OSAP authorization encryption. Changes made with new entity types, new section in DP (bottom of doc) and all
command rewritten to check for the new encryption

Rev 68 Jan 2004 Added new section to identify all changes made for FIPS. Made some FIPS changes on creating and loading of keys
Added change that OSAP encryption IV creation always uses both odd and even nonces
Added SEALX ordinal and changes to TPM_STORED_DATA12 and seal/unseal to support this

Revision 116 1 Marchy 2011 TCG Published iii
TCG Published

9
10
11

57

58

12
13

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Rev 69 Feb 2004 Fixup on stored_data12.
Removed magic4 from the GPIO
Added in section 34 of DP further discussion of versioning and getcap
DP todo section cleaned up
Changed store_privkey in migrate_asymkey
Moved text for getcapabilities – hopefully it is easier to read and follow through on now.

Rev 70 Mar 2004 Rewrite structure doc on PCR selection usage.
New getcap to answer questions regarding TPM support for pcr selection size

Rev 71 Mar 2004 Change terms from authorization data to AuthData.

Rev 72 Mar 2004 Zimmermann’s changes for DAA
Added TPM_Quote2, this includes new structure and ordinal
Updated key usage table to include the 1.2 commands
Added security properties section that links the main spec to the conformance WG guidelines (in section 1)

Rev 73 Apr 2004 Changed CMK_MigrateKey to use TPM_KEY12 and removed two input parameters
Allowed TPM_Getcapability and TPM_GetTestResult to execute prior to TPM_Startup when in failure mode

Rev 74 May 2004 Minor editing to reflect comments on web site.
Locked spec and submitted for IP review

Rev 76 Aug 2004 All comments from the WG
Included new SetValue command and all of the indexes to make that work

Rev 77 Aug 2004 All comments from the WG

Rev 78 Oct 2004 Comments from WG. Added new getcaps to report and query current TPM version

Rev 82 Jan 2005 All changes from emails and minutes (I think).

Rev 84 Feb 2005 Final changes for 1.2 level 2

Rev 88 Aug 2005 Eratta level 2 release candidate

Rev 91 Sept. 2005 Update to Figure 9 (b) in section 9.2 by Tasneem Brutch

Rev 100 May 2006 Clarified CTR mode

Rev 101 Aug 2006 Added deactivated rationale. Clarified number of sessions. Changed “set to NULL” to “set to zero”. Added NV index D bit
rationale. Added _INFO key rationale and clarified cases where _INFO keys act as _SHA1 keys.

Rev 102 Sept 2006 Minor typos only. No functional changes.

Rev 103 Oct 2006 Note that blobs encrypted in blocks must have integrity chaining. Merged two AIK sections. Self-test checks EK using
encryption, not signing.

Rev 104 Nov 2006 RNG must be NIST approved in FIPS mode. When ordinal says OSAP for ADIP, it means OSAP or DSAP.

Rev 105 Feb 2007 Removed informative reference to getting signed counter values.

Rev 106 April 2007 Updated TPM_TakeOwnership state diagram and text to remove deactivated. Indicated that _INFO ordinals are examples, not a
complete list.

Rev 107 July 2007 Explained that PCRs are still extended when disabled and deactivated. Removed restriction that
TPM_CreateEndorsementKeyPair is not allowed after TPM_CreateRevokableEK or TPM_RevokeTrust.

Rev 108 Aug 2007 Field upgrade should not affect shielded locations. TPM MUST support two key slots.

Rev 109 Oct 2007 Cleaned up Opt-in physical presence wording. Changed some physical presence terms to agree with Part 2.

Rev 110 May 2008 TPM_AUTH_PRIV_USE_ONLY name change and indication that it refers to reading the public key. Warning that ADIP with a
well known secret may require transport.

Rev 111 July 2008 TSC_ ordinals must be tested early. AddedMUST to self tests, but indicated that test methods are examples. Key contexts
cannot be flushed. Deleted unbind payload normative to agreee with part 3.

Rev 112 Jan 2009 Default exponent clarified, self-test failure cleared by TPM_Init, self-test failure must delete saved state

Rev 113 Jan 2009 No changes.

Rev 114 Jan 2009 No changes

iv TCG Published Revision 116 1 Marchy 2011
TCG Published

14
15

16
17

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Rev 116 Aug 2009 Audit happens at the end of the command. Audit occurs when deactivated to remove a corner case.

Revision 116 1 Marchy 2011 TCG Published v
TCG Published

18
19
20

59

21
22

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

vi TCG Published Revision 116 1 Marchy 2011
TCG Published

23
24

60

25
26

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Revision 116 1 Marchy 2011 TCG Published vii
TCG Published

27
28
29

61

30
31

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Table of Contents
1. Scope and Audience .. 1

1.1 Key words ... 1

1.2 Statement Type .. 1

2. Description ... 2

2.1 TODO (notes to keep the editor on track) .. 2

2.2 Questions ... 2

2.2.1 Delegation Questions ... 6

2.2.2 NV Questions ... 11

3. Protection ... 13

3.1 Introduction .. 13

3.2 Threat ... 14

3.3 Protection of functions .. 14

3.4 Protection of information ... 14

3.5 Side effects ... 15

3.6 Exceptions and clarifications .. 15

4. TPM Architecture ... 17

4.1 Interoperability .. 17

4.2 Components ... 17

4.2.1 Input and Output .. 18

4.2.2 Cryptographic Co-Processor .. 18

4.2.2.1 RSA Engine ... 19

4.2.2.2 Signature Operations ... 19

4.2.2.3 Symmetric Encryption Engine .. 20

4.2.2.4 Using Keys .. 20

4.2.3 Key Generation .. 21

4.2.3.1 Asymmetric – RSA .. 21

4.2.3.2 Nonce Creation .. 21

4.2.4 HMAC Engine .. 21

4.2.5 Random Number Generator ... 22

4.2.5.1 Entropy Source and Collector .. 23

4.2.5.2 State Register .. 24

4.2.5.3 Mixing Function ... 24

4.2.5.4 RNG Reset .. 24

4.2.6 SHA-1 Engine .. 25

4.2.7 Power Detection ... 25

viii TCG Published Revision 116 1 Marchy 2011
TCG Published

32
33

62
63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

34
35

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

4.2.8 Opt-In ... 26

4.2.9 Execution Engine ... 27

4.2.10 Non-Volatile Memory .. 28

4.3 Data Integrity Register (DIR) .. 28

4.4 Platform Configuration Register (PCR) ... 28

5. Endorsement Key Creation .. 31

5.1 Controlling Access to PRIVEK .. 32

5.2 Controlling Access to PUBEK ... 32

6. Attestation Identity Keys ... 33

7. TPM Ownership ... 34

7.1 Platform Ownership and Root of Trust for Storage ... 34

8. Authentication and Authorization Data ... 35

8.1 Dictionary Attack Considerations .. 36

9. TPM Operation ... 38

9.1 TPM Initialization & Operation State Flow .. 39

9.1.1 Initialization ... 39

9.2 Self-Test Modes ... 41

9.2.1 Operational Self-Test ... 43

9.3 Startup ... 47

9.4 Operational Mode ... 47

9.4.1 Enabling a TPM ... 48

9.4.2 Activating a TPM .. 50

9.4.3 Taking TPM Ownership .. 51

9.4.3.1 Enabling Ownership .. 52

9.4.4 Transitioning Between Operational States .. 53

9.5 Clearing the TPM ... 54

10. Physical Presence ... 56

11. Root of Trust for Reporting (RTR) .. 58

11.1 Platform Identity .. 58

11.2 RTR to Platform Binding .. 59

11.3 Platform Identity and Privacy Considerations ... 59

11.4 Attestation Identity Keys ... 59

11.4.1 AIK Creation ... 60

11.4.2 AIK Storage .. 61

12. Root of Trust for Storage (RTS) ... 62

12.1 Loading and Unloading Blobs ... 62

13. Transport Sessions and Authorization Protocols .. 63

Revision 116 1 Marchy 2011 TCG Published ix
TCG Published

36
37
38
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

39
40

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.1 Authorization Session Setup ... 66

13.2 Parameter Declarations for OIAP and OSAP Examples ... 67

13.2.1 Object-Independent Authorization Protocol (OIAP) ... 70

13.2.2 Object-Specific Authorization Protocol (OSAP) ... 74

13.3 Authorization Session Handles ... 78

13.4 Authorization-Data Insertion Protocol (ADIP) ... 79

13.5 AuthData Change Protocol (ADCP) ... 83

13.6 Asymmetric Authorization Change Protocol (AACP) .. 84

14. FIPS 140 Physical Protection ... 85

14.1 TPM Profile for FIPS Certification ... 85

15. Maintenance ... 86

15.1 Field Upgrade ... 87

16. Proof of Locality ... 89

17. Monotonic Counter .. 90

18. Transport Protection ... 93

18.1 Transport encryption and authorization .. 95

18.1.1 MGF1 parameters .. 97

18.1.2 HMAC calculation ... 97

18.1.3 Transport log creation .. 98

18.1.4 Additional Encryption Mechanisms .. 98

18.2 Transport Error Handling .. 98

18.3 Exclusive Transport Sessions ... 99

18.4 Transport Audit Handling .. 100

18.4.1 Auditing of wrapped commands ... 100

19. Audit Commands .. 101

19.1 Audit Monotonic Counter .. 103

20. Design Section on Time Stamping ... 104

20.1 Tick Components .. 104

20.2 Basic Tick Stamp .. 105

20.3 Associating a TCV with UTC .. 105

20.4 Additional Comments and Questions .. 107

21. Context Management ... 110

22. Eviction ... 112

23. Session pool ... 113

24. Initialization Operations ... 114

25. HMAC digest rules ... 116

26. Generic authorization session termination rules ... 117

x TCG Published Revision 116 1 Marchy 2011
TCG Published

41
42

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

43
44

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

27. PCR Grand Unification Theory ... 118

27.1 Validate Key for use .. 121

28. Non Volatile Storage .. 122

28.1 NV storage design principles .. 123

28.1.1 NV Storage use models ... 124

28.2 Use of NV storage during manufacturing .. 125

29. Delegation Model ... 127

29.1 Table Requirements .. 127

29.2 How this works ... 128

29.3 Family Table ... 130

29.4 Delegate Table ... 131

29.5 Delegation Administration Control .. 132

29.5.1 Control in Phase 1 .. 133

29.5.2 Control in Phase 2 .. 134

29.5.3 Control in Phase 3 .. 134

29.6 Family Verification .. 134

29.7 Use of commands for different states of TPM ... 136

29.8 Delegation Authorization Values ... 136

29.8.1 Using the authorization value .. 137

29.9 DSAP description ... 137

30. Physical Presence .. 141

30.1 Use of Physical Presence ... 141

31. TPM Internal Asymmetric Encryption ... 143

31.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1 ... 143

31.1.2 TPM_ES_RSAESPKCSV15 .. 144

31.1.3 TPM_ES_SYM_CTR .. 144

31.1.4 TPM_ES_SYM_OFB .. 144

31.2 TPM Internal Digital Signatures .. 145

31.2.1 TPM_SS_RSASSAPKCS1v15_SHA1 ... 145

31.2.2 TPM_SS_RSASSAPKCS1v15_DER ... 146

31.2.3 TPM_SS_RSASSAPKCS1v15_INFO .. 146

31.2.4 Use of Signature Schemes .. 146

32. Key Usage Table .. 148

33. Direct Anonymous Attestation .. 150

33.1 TPM_DAA_JOIN .. 150

33.2 TPM_DAA_Sign ... 152

33.3 DAA Command summary ... 152

Revision 116 1 Marchy 2011 TCG Published xi
TCG Published

45
46
47

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

48
49

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

33.3.1 TPM setup .. 153

33.3.2 JOIN ... 153

33.3.3 SIGN .. 157

34. General Purpose IO ... 160

35. Redirection ... 161

36. Structure Versioning ... 162

37. Certified Migration Key Type .. 164

37.1 Certified Migration Requirements ... 164

37.2 Key Creation ... 165

37.3 Migrate CMK to a MA ... 165

37.4 Migrate CMK to a MSA ... 166

38. Revoke Trust .. 167

39. Mandatory and Optional Functional Blocks .. 169

40. 1.1a and 1.2 Differences .. 172

xii TCG Published Revision 116 1 Marchy 2011
TCG Published

50
51

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

52
53

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

1. Scope and Audience
The TPM main specification is an industry specification that enables trust in computing
platforms in general. The main specification is broken into parts to make the role of each
document clear. A version of the specification (like 1.2) requires all parts to be a complete
specification.

A TPM designer MUST be aware that for a complete definition of all requirements necessary
to build a TPM, the designer MUST use the appropriate platform specific specification for all
TPM requirements.

1.1 Key words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10
normative statements are to be interpreted as described in [RFC-2119].

1.2 Statement Type
Please note a very important distinction between different sections of text throughout this
document. You will encounter two distinctive kinds of text: informative comment and
normative statements. Because most of the text in this specification will be of the kind
normative statements, the authors have informally defined it as the default and, as such,
have specifically called out text of the kind informative comment They have done this by
flagging the beginning and end of each informative comment and highlighting its text in
gray. This means that unless text is specifically marked as of the kind informative
comment, you can consider it of the kind normative statements.

For example:

Start of informative comment
This is the first paragraph of several paragraphs containing text of the kind informative
comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of
MUST does not require any action).

End of informative comment
This is the first paragraph of one or more paragraphs (and/or sections) containing the text
of the kind normative statements ...

To understand the TCG specification the user MUST read the specification. (This use of
MUST indicates a keyword usage and requires an action).

Revision 116 1 Marchy 2011 TCG Published 1
TCG Published

54
55
56

224
225
226
227
228
229
230
231

232
233
234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

57
58

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

2. Description
The design principles give the basic concepts of the TPM and generic information relative to
TPM functionality.

A TPM designer MUST review and implement the information in the TPM Main specification
(parts 1-4) and review the platform specific document for the intended platform. The
platform specific document will contain normative statements that affect the design and
implementation of a TPM.

A TPM designer MUST review and implement the requirements, including testing and
evaluation, as set by the TCG Conformance Workgroup. The TPM MUST comply with the
requirements and pass any evaluations set by the Conformance Workgroup. The TPM MAY
undergo more stringent testing and evaluation.

The question section keeps track of questions throughout the development of the
specification and hence can have information that is no longer current or moot. The
purpose of the questions is to track the history of various decisions in the specification to
allow those following behind to gain some insight into the committees thinking on various
points.

2.1 TODO (notes to keep the editor on track)

2.2 Questions
Start of informative comment
How to version the flag structures?

I suggest that we simply put the version into the structure and pass it back in the
structure. Add the version information into the persistent and volatile flag structures.

When using the encryption transport failures are easy to see. Also the watcher on the line
can tell where the error occurred. If the failure occurs at the transport level the response is
an error (small packet) and it is in the clear. If the error occurs during execution of the
command then the response is a small encrypted packet. Should we expand the packet size
or simply let this go through?

Not an issue.

Do we restrict the loading of a counter to once per TPM_Startup(Clear)?

Yes once a counter is set it must remain the same until the next successful startup.

Does the time stamp work as a change on the tag or as a wrapped command like the
transport protection.

While possibly easier at the HW level the tag mechanism seems to be harder at the SW
level as to what commands are sent to the TPM. The issue of how the SW presents the
TS session to the SW writer is not an issue. This is due to the fact that however the
session is presented to the SW writer the writer must take into account which
commands are being time stamped and how to manage the log etc. So accepting a
mechanism that is easy for the HW developer and having the SW manage the interface is
a sufficient direction.

2 TCG Published Revision 116 1 Marchy 2011
TCG Published

59
60

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

61
62

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

When returning time information do we return the entire time structure or just the time
and have the caller obtain all the information with a GetCap call?

All time returns will use the entire structure with all the details.

Do we want to return a real clock value or a value with some additional bits (like a
monotonic value with a time value)?

Add a count value into the time structure.

Do we need NTP or is SNTP sufficient?

The TPM will not run the time protocol itself. What the TPM will do is accept a value
from outside software and a hash of the protocols that produced the value. This allows
the platform to use whatever they want to set the value from secure time to the local PC
clock.

Can an owner destroy a TPM by issuing repeated CreateCounter commands?

A TPM may place a throttle on this command to avoid burn issues. It MUST not be
possible to burn out the TPM counter under normal operating conditions. The
CreateCounter command is limited to only once per successful
TPM_Startup(ST_CLEAR).

This answer is now somewhat moot as the command to createcounter is now owner
authorized. This allows the owner to decide when to authorize the counter creation. As
there are only 4 counters available it is not an issue with having the owner continue to
authorize counters.

What happens to a transport session (log etc.) on an S3?

Should these be the same as the authorization sessions? The saving of a transport
session across S3 is not a security concern but is a memory concern. The TPM MUST
clear the transport session on TPM_Startup(CLEAR) and MAY clear the session on
TPM_Startup(any).

While you can’t increment or create a new counter after startup can you read a counter
other than the active one?

You may read other counters

When we audit a command that is not authorized should we hash the parameters and
provide that as part of the audit event, currently they are set to null.

We should hash parameters of non-authorized commands

There is a fundamental problem with the encryption of commands in the transport and
auditing. If we cover a command we have no way to audit, if we show the command then it
isn’t protected. Can we expose the command (ordinal) and not the parameters?

If the owner has requested that a function be audited then the execute transport return
will include sufficient information to produce the audit entry.

How to set the time in the audit structure and tell the log what is going on.

The time in the audit structure is set to nulls except when audit occurs as part of a
transport session. In that case the audit command is set from the time value in the TPM.

Is there a limit to the number of locality modifiers?

Revision 116 1 Marchy 2011 TCG Published 3
TCG Published

63
64
65

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

66
67

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Yes, the TPM need only support a maximum of 4 modifiers. The definition of the
modifiers is always a platform specific issue.

How do we evict various resources?

There are numerous eviction routines in the current spec. We will deprecate the various
types and move to TPM_Flushxxx for all resource types.

Can you flush a saved context?

Yes, you must be able to invalidate saved contexts. This would be done by making sure
that the TPM could not load any saved context.

What is the value of maintaining the clock value when the time is not incrementing? Can
this be due to the fact that the time is now known to be at least after the indicated time?

Moot point now as we don’t keep the clock value at

Should we change the current structures and add the tag?

TODO

Can we have a bank of bits (change bit locality) for each of the 4 levels of locality?

Now

How do we find out what sessions are active? Do we care?

I would say yes we care and we should use the same mechanism that we do for the keys.
A GetCap that will return the handles.

Can we limit the transport sessions to only one?

No, we should have as a minimum 2 sessions. One gets into deadlocks and such so the
minimum should be 2.

Changed: The deadlock is with authorization sessions, not transport.

Does the TPM need to keep the audit structure or can it simply keep a hash?

The TPM just keeps the audit digest and no other information.

What happens to an OSAP session if the key associated with it is taken off chip with a
"SaveContext"? What happens if the key saveContext occurs after an OSAP auth context
that is already off chip? How do you later connect the key to the auth session (without
having to store all sorts of things on chip)? Are we really honestly convinced that we've
thought of all the possible ramifications of saving and restoring auth sessions? And is it
really true that all the things we say about a saved auth session do/should apply to a saved
key (which is to say is there really a single loadContext command and a single context
structure)?

Saved context a reliable indication of the linkage between the OSAP and the key. When
saving save auth then key, on load key then auth. Auth session checks for the key and if
not found fails.

Why is addNonce an output of 16.5 loadContext?

If it's wrong, it's a little late to find out now - why not have it as an input and have the
TPM return an error if the encrypted addNonce doesn't match the input? The thought
was that the nonce area might not be a nonce but was information that the caller could

4 TCG Published Revision 116 1 Marchy 2011
TCG Published

68
69

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

70
71

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

put in. If they use it as a nonce fine, but they could also use it as a label or sequence
number or … any value the caller wanted

Is there a memory endurance problem with contextNonceSession?

contextNonceSession does not have to be saved across S3 states so there is no
endurance problem.

Is there a memory endurance problem with contextNonceKey?

contextNonceKey only changes on TPM_Startup(ST_Clear) so it’s endurance is the same
as a PCR.

The debate continues about restoring a resource’s handle during TPM_LoadContext.

Debate ends by having the load context be informed of what the loaders opinion is about
the handle. The requestor can indicate that it wishes the same handle and if the TPM
can perform that task it does, if it cannot then the load fails.

Interesting attack is now available with the new audit close flag on get audit signed. Anyone
with access to a signing key can close the audit log. The only requirement on the command
is that the key be authorized. While there is no loss of information (as the attacker can
always destroy the external log) does the closing of a log make things look different. This
does enable a burn out attack. The ability to closeAudit enables a new DenialOfService
attack.

Resolution: The TPM Owner owns the audit process, so the TPM Owner should have
exclusive control over closeAudit. Hence the signing key used to closeAudit must be an
AIK. Note that the owner can choose to give this AIK’s AuthData value to the OS, so that
the OS can automatically close an audit session during platform power down. But such
operations are outside this specification.

Should we keep the E function in the tick counter?

From Graeme, I would prefer to see these calculations deleted. The calculation starts
with one assertion and derives a contradictory assertion. Generally, there seems little
value in trying to derive an equality relationship when nothing is known about the path
to and from the Time Authority.

What is the difference between DIR_Quote and DirReadSigned?

Appears to be none so DIR_Quote deleted

The tickRate parameter associates tick with seconds and has no way to indicate that the
rate is greater than one second. Is this OK?

Do we need to allow for tick rates that are slower than once per second. We report in
nanoseconds.

The TPM MUST support a minimum of 2 authorization sessions. Where do we put this
requirement in the spec?

Can we find a use for the DIR and BIT areas for locality 0?

They have no protections so in many ways they are just extra. We leave this as it is as
locality 0 may mean something else on a platform other than a PC.

How do we send back the transport log information on each execute transport?

Revision 116 1 Marchy 2011 TCG Published 5
TCG Published

72
73
74

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

75
76

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

It is 64 byes in length and would make things very difficult to include on every
command. Change wrappedaudit to be input params, add output parms and the caller
has all information necessary to create the structure to add into the digest.

The transport log structure is a single structure used both for input and output with the
only difference being the setting of ticks to 0 on input and a real value on output, do we
need two structures.

I believe that a single structure is fine

For TPM_Startup(ST_Clear) I added that all keys would be flushed. Is this right?

Yes

Why have 2 auths for release transport signed? It is an easy attack to simply kill the
session.

The reason is that an attacker can close the session and get a signature of the session
log. We are currently not sure of the level of this attack but by having the creator of the
session authorize the signing of the log it is completely avoided.

19.3 Action 3 (startup/state) doesn't reference the situation where there is no saved state.
My presumption is that you can still run startup/clear, but maybe you have to do a
hardware reset?

DWG I don't think so. This could be an attack and a way to get the wrong PCR values
into the system. The BIOS is taking one path and may not set PCR values. Hence the
response is to go into failed selftest mode.

What happens to a transport session if a command clears the TPM like revokeTrust

This is fine. The transport session is not complete but the session protected the
information till the command that changed the TPM. It is impossible to get a log from
the session or to sign the session but that is what the caller wanted.

End of informative comment

2.2.1 Delegation Questions
Start of informative comment
Is loading the table by untrusted process ok? Does this cause a problem when the new table
is loaded and permissions change?

Yes, the fill table can be done by any process. A TPM Owner wishing to validate the table
can perform the operations necessary to gain assurance of the table entries.

Are the permissions for a table row sensitive?

Currently we believe not but there are some attack models that knowing the permissions
makes the start of the attack easier. It does not make the success of the attack any
easier. Example if I know that a single process is the only process in the table that has
the CreateAIK capability then the attacker only attempts to break into the single process
and not all others.

What software is in use to modify the table?

6 TCG Published Revision 116 1 Marchy 2011
TCG Published

77
78

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
449
450
451
452
453
454

79
80

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The table can be updated by any software or process given the capability to manage the
table. Three likely sources of the software would be a BIOS process, an applet of a
trusted process and a standalone self-booting (from CD-ROM) management application.

Who holds the TPM Owner password?

There is no change to the holding of the TPM Owner token. The permissions do allow the
creation of an application that sets the TPM Owner token to a random value and then
seals the value to the application.

How are these changes created such that there is minimal change to the current TPM?

This works by using the current authorization process and only making changes in the
authorization and not for each and every command.

What about S3 and other events?

Permissions, once granted, are non-volatile.

The permission bit to changeOwnerAuth (bit 11) gives rise to the functionality that the SW
that has this bit can control the TPM completely. This includes removing control from the
TPM Owner as the TPM Owner value will now be a random value only known to SW. There
are use models where this is good and bad, do we want this functionality?

Pros and cons of physical enable table when TPM Owner is present – Pro physically present
user can make SW play fair. Con – physically present user can override the desires of a TPM
Owner.

Do we need to reset TPM_PERMISSION_KEY at some time?

We know that the key is NOT reset on TPM_ClearOwner.

What is the meaning of using permission table in an OIAP and OSAP mode?

Delegate table can be used in either OIAP or OSAP mode.

Can you grant permissions without assigning the permissions to a specific process?

Yes, do a SetRow with a PCR_SELECTION of null and the permissions are available to
any process.

Do we need a ClearTableOwner?

I would assert that we do not need this command. The TPM Owner can perform SetRow
with NULLS four times and creates the exact same thing. Not having this command
lowers the number of ordinals the TPM is required to support.

There are some issues with the currently defined behavior of familyID and the
verificationCount.

Talked to David for 30 mins. We decided that maxFamilyID is set to zero at
manufacture, and incremented for every FamTable_SetRow

It is the responsibility of DelTable_SetRow to set the appropriate familyID

DelTable_SetRow fails if the provided familyID is not active and present somewhere in
the FamTable

FillTable works differently. It effectively resets the family table (invalidating all active
rows) and sets up as many rows as are needed based on the number of families specified
in FillTable

Revision 116 1 Marchy 2011 TCG Published 7
TCG Published

81
82
83

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

84
85

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

This still needs a bit of work. Presumably the caller of FillTable uses a “fake” familyID,
and this is changed to the actual familyID when the fill happens

There are some issues with the verificationCount.

Uber-issue. If none of the rows in the table are allowed to create other rows and export
them, then the “sign” of the table is meaningful

If one of the rows is allowed to create and export new rows, is there any real meaning to
“the current set of exported rows?” (i.e. SW can just up and make new rows).

Should section 4.4, TPM_DelTable_ClearTable), section 4.5 (TPM_DelTable_SetEnable), and
section 4.7 (TPM_DelTable_Set_Admin) all say “there must be UNAMBIGUOUS evidence of
the presence of physical access…” Is this okay?

Answer: No, group agreed to change UNAMBIGUOUS to BEST EFFORT in all three
sections.

Is FamilyID a sensitive value?

If so, why? Agreement: FamilyID is not a sensitive value.

Should TPM_TakeOwnership be included in permissions bits (see bit 12 in section 3.1)?

Enables a better administrative monitor and may enable user to take ownership easier.
Agreement leave it in and change informative comments to reflect the reasons.

[From the TPM_DelTable_SetRow command informative comments]: Note that there are two
types of rights: family rights (you can either edit your family’s rows or grab new rows) and
administrative rights.

This is really just an editor’s note, not a question to be resolved.

[From the TPM_DelTable_ExportRow command informational comments]:

Does not effect content of exported row left behind in the table;

Valid for all rows in the table;

Does not need to be OwnerAuth’d;

Family Rights are that family can only export a row from rows 0-3 if row belongs to the
family, but rows 4 and upwards can be exported by any Trusted Process, without any
family checking being done. This is really just an editor’s note, not a question to be
resolved.

When a Family Table row is set, the verificationCount is set to 1, make sure that is
consistently used in all other command actions.

Done.

SetEnable and SetEnableOwner enable and disable all rows in a table, not just the rows
belong to the family of the process that used the SetEnable and/or SetEnableOwner
commands. This is also true for SetAdmin and SetAdminOwner. Can anybody come up with
a use scenario where that causes any problems?

In command actions where the TPM must walk the delegation table looking for a
configuration that matches the command input parameters (PCRinfo and/or authValues)
and there are rows in the table with duplicate values, what does the TPM do? Is there any

8 TCG Published Revision 116 1 Marchy 2011
TCG Published

86
87

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

88
89

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

reason not to use the rule “the TPM starts walking the table starting with the first row and
use the first row it finds with matching values”?

Answer to this question may mean change to pseudo code in section 2.3, Using the
AuthData Value, which currently shows the TPM walking the delegation table, starting
with the first row, and using the first row it finds with matching values.

What familyID value signals a family table row that is not in use/contains invalid values?

To get consistency in all the command Actions that use this, that FamilyID value has
been edited in all places to be NULL, instead of 0. Yes, FamilyID value of NULL signals a
family table row that is not in use or contains invalid values.

From section 2.4, Delegate Table Fill and Enablement: “The changing of a TPM Owner does
not automatically clear the delegate table. Changing a TPM Owner does disable all current
delegations, including exported rows, and requires the new TPM Owner to re-enable the
delegations in the table. The table entry values like trusted process identification and
delegations to that process are not effected by a change in owner. THE AUTHDATA VALUES
DO NOT SURVIVE THE OWNERSHIP CHANGE.” Question: If this is true, no delegations
work after a change of owner. How does the new owner set new AuthData values?

The simple way of handling this is to get AdminMonitor to own backing up delegations at
first owner install and then be run by new owner, and AdminMonitor uses FillTable, to
handle “Owner migration.” Or, for another use option, is for second owner to pick-up
PCR-ID’s and delegations bits from previous owner – what is the most straight-forward
way to do this?

In section 3.1 (Delegate Definitions bit map table), several commands that do not require
owner authorization are in the table and can be delegated: TPM_SetTempDeactivated (bit
15), TPM_ReadPubek (bit 7), and TPM_LoadManuMaintPub (bit 3), Why?

In section 3.3 it is stated, “The Family ID resets to NULL on each change of TPM Owner.”
This invalidates all delegations. Is this what we want?

You don’t have to blow away FamilyID to blow away the blobs, because key is gone. So
this is not required – can eliminate these actions.

In section 3.12, why is TPM_DELEGATE_LABEL included in the table?

In section 4.2 (TPM_DelTable_FillTable), is it okay to delete requirement that delegate table
be empty? Also, in Action 14, now that we have both persistent and volatile tableAdmin
flags, should this command set volatile tableAdmin flag to FALSE upon completion?

The delegate table does not need to be empty to use the TPM_DelTable_FillTable
command, Also, a paragraph has been added to Informative comment for
TPM_DelTable_FillTable that points out usefulness of immediately following
TPM_DelTable_FillTable with TPM_Delegate_TempSetAdmin, to stop table administration
in the current boot cycle.

In section 4.15 (TPM_FamTable_IncrementCount), why does this command require
TPMOwner authorization, as currently documented in section 4.15?

IncrementCount is gated by tableAdmin, which seems sufficient, and use of ownerauth
makes it difficult to automatically verify a table using a CDROM.

In section 4.3 (TPM_DelTable_FillTableOwner), in the Action 3d, use OTP[80] = MFG(x1) in
place of oneTimePad[n] = SHA1(x1 || seed[n]))?,

Revision 116 1 Marchy 2011 TCG Published 9
TCG Published

90
91
92

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

93
94

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

yes.

In section 4.9 (TPM_DelTable_SetRow), is invalidateRow input parameter really needed?

It is only used in action 5. Couldn’t action 5 simply read “Set N1 -> familyID = NULL”?

There is no easy way to generate a blob that can be used to delegate migration authority for
a user key.

This is because the TPM does not store the migration authority on the chip as the
migration command involves an encrypted key, not a loaded one. One could invent a
‘CreateMigrationDelegationBlob’ that took the encrypted key as input and generated the
encrypted delegation blob as output, but it would not be pretty. Sorry Dave.

If a delegate row in NV memory (nominally 4 rows) is to refer to a user key (instead of owner
auth), then it needs to include a hash of the public key. It could be that the NV table is
restricted to owner auth delegations, this would save 80 bytes of NV store and also simplify
the LoadBlob command.

Maybe would simplify other things. I would definitely NOT permit user keys in the table
to be run with the legacy OSAP and OIAP ordinals.

A few more GetCapability values are also required, the usual constants that we discussed
and also the two readTable caps.

TBD Verify that Delegate Table Management commands (see section 2.8) cover all the
functionality of obsolete or updated commands.

Redefine bits 16 and above in Delegation Definitions table (section 3.1). In particular, can
new command set (with TPM_FAMILY_OPERATION options as defined in section 3.20) be
delegated individually and appropriately. Also, how many user key authorized commands
will be delegated?

Is new TPM_FAMILY_FLAGS field of family table (defined in section 3.5) sensitive data?

DSAP informative comment needs to be completed (section 4.1). In particular, does the
statement “The DSAP command works like OSAP except it takes an encrypted blob – an
encrypted delegate table row -- as input” sufficient? Or do some particular differences
between DSAP and OSAP have to be pointed out in this informative comment??

The TPM_Delegate_LoadBlob[Owner] commands cannot be used to load key delegation blobs
into the TPM. Is another ordinal required to do that?

Is it okay for TPM_Delegate_LoadBlob[Owner] commands to ignore enable/disable
use/admin flags in family table rows?

Is it wise to delegate TPM_DelTable_ConvertBlob command (defined in section 4.11)? Does
current definition of this command support section 2.7 scenarios?

Is there a privacy problem with DelTable_ReadRow since the contents may not be identical
from TPM to TPM?

Are DSAP sessions being pooled with the other sessions? if so, can one save\load them by
context functions? if not, then there should be a restriction in saveContext.

DSAP are "normal" authorization sessions and would save/load with OIAP and OSAP
sessions

End of informative comment

10 TCG Published Revision 116 1 Marchy 2011
TCG Published

95
96

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

97
98

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

2.2.2 NV Questions
Start of informative comment
You would set this by using a new ordinal that is unauthorized and only turns the flag on to
lock everything. Yet another ordinal? Do we need it? Is this an important functionality for
the uses we see?

Yes this allows us to have "close" to write once functionality. What the functionality
would be is that the RTM would assure that the proper information is present in the
TPM and then "lock" the area. One could create this functionality by having the RTM
change the authorization each time but then you would need to eat more NV store so
save the sealed AuthData value. I think that is easier to have an ordinal than eat the NV
space and require a much more complex programming model.

Is it OK to have an element partially written?

Given that we have chunks there has to be a mechanism to allow partial writes.

If an element is partially written, how does a caller know that more needs to be written?

I would say the use model that provides the ability to write – read, in a loop is just not
supported. Get it all written and then do the read.

Usage of the lock bit: as you wrote, the RTM would assure that the proper information is
present in the TPM and then "lock" the area. so why in action #4 we should also check
bWritten when the lock bit is set? should be as action #3b of TPM_NV_DefineSpace, if lock
is set - return error

[Grawrock, David] Not quite, the use model I was trying to create was the one where the
TPM was locked and the user was attempting to add a new area. If the locked bit doesn't
allow for writing once to a new area, one must reboot to perform the write and also tell
the RTM what the value to write must be. So this allows the creator of an area to write it
once and then it flows with the locked bit.

Can you delete a NV value with only physical presence?

 [Grawrock, David] You can't delete with physical presence, you must use owner
authorization. This I think is a reasonable restriction to avoid burn problems.

Why is there no check on the writes for a TPM Owner?

The check for an owner occurred during the TPM_NV_DefineSpace. It is imperative that
the TPM_NV_DefineSpace set in place the appropriate restrictions to limit the potential
for attacks on the NV storage area.

Description of maxNVBufSize is confusing to me. Why is this value related to the input size?
And since there is no longer any 'written' bits, why is there a maximum area size at all?

[Grawrock, David] This is a fixed size and set by the TPM manufacturer. I would see
values like the input buffer, transport sessions etc all coming up with the max size the
TPM can handle. This does NOT indicate what is available on the TPM right now. The
TPM could have 4k of space but max size would be 782 and would always report that
number. If the available space fell to 20 bytes this value would still be 782.

If the storage area is an opaque area to the TPM (as described), then how does the TPM
know what PCR registers have been used to seal a blob?

Revision 116 1 Marchy 2011 TCG Published 11
TCG Published

99
100

101
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

102
103

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The VALUES of the area are opaque, the attributes to control access are not. So if the
attributes indicate that PCR restrictions are in place the TPM keeps those PCR values as
part of the index attributes. This in reality seals the value as there is no need for
tpmProof since the value never leaves the TPM.

End of informative comment

12 TCG Published Revision 116 1 Marchy 2011
TCG Published

104
105

659
660
661
662
663

106
107

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. Protection

3.1 Introduction
Start of informative comment
The Protection Profile in the Conformance part of the specification defines the threats that
are resisted by a platform. This section, “Protection,” describes the properties of selected
capabilities and selected data locations within a TPM that has a Protection Profile and has
not been modified by physical means.

This section introduces the concept of protected capabilities and the concept of shielded
locations for data. The ordinal set defined in part II and III is the set of protected
capabilities. The data structures in part II define the shielded locations.

• A protected capability is one whose correct operation is necessary in order for the
operation of the TCG Subsystem to be trusted.

• A shielded location is an area where data is protected against interference and prying,
independent of its form.

This specification uses the concept of protected capabilities so as to distinguish platform
capabilities that must be trustworthy. Trust in the TPM depends critically on the protected
capabilities. Platform capabilities that are not protected capabilities must (of course) work
properly if the TCG Subsystem is to function properly.

This specification uses the concept of shielded locations, rather than the concept of
“shielded data.” While the concept of shielded data is intuitive, it is extraordinarily difficult
to define because of the imprecise meaning of the word “data.” For example, consider data
that is produced in a safe location and then moved into ordinary storage. It is the same data
in both locations, but in one it is shielded data and in the other it is not. Also, data may not
always exist in the same form. For example, it may exist as vulnerable plaintext, but also
may sometimes be transformed into a logically protected form. This data continues to exist,
but doesn't always need to be shielded data - the vulnerable form needs to be shielded data,
but the logically protected form does not. If a specific form of data requires protection
against interference or prying, it is therefore necessary to say “if the data-D exists, it must
exist only in a shielded location.” A more concise expression is “the data-D must be extant
only in a shielded location.”

Hence, if trust in the TCG Subsystem depends critically on access to certain data, that data
should be extant only in a shielded location and accessible only to protected capabilities.
When not in use, such data could be erased after conversion (using a protected capability)
into another data structure. Unless the other data structure was defined as one that must
be held in a shielded location, it need not be held in a shielded location.

End of informative comment
1. The data structures described in part II of the TPM specifications MUST NOT be

instantiated in a TPM, except as data in TPM-shielded-locations.

2. The ordinal set defined in part II and III of the TPM specifications MUST NOT be
instantiated in a TPM, except as TPM-protected-capabilities.

Revision 116 1 Marchy 2011 TCG Published 13
TCG Published

108
109

110

664

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

111
112

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

3. Functions MUST NOT be instantiated in a TPM as TPM-protected-capabilities if they do
not appear in the ordinal set defined in part II and III of the TPM specifications.

3.2 Threat
Start of informative comment
This section, “Threat,” defines the scope of the threats that must be considered when
considering whether a platform facilitates subversion of capabilities and data in a platform.

The design and implementation of a platform determines the extent to which the platform
facilitates subversion of capabilities and data within that platform. It is necessary to define
the attacks that must be resisted by TPM-shielded locations and TPM-protected capabilities
in that platform.

The TCG specifications define all attacks that are resisted by the TPM. These attacks must
be considered when determining whether the integrity of TPM-protected capabilities and
data in TPM-shielded locations can be damaged. These attacks must be considered when
determining whether there is a backdoor method of obtaining access to TPM-protected
capabilities and data in TPM-shielded locations. These attacks must be considered when
determining whether TPM-protected capabilities have undesirable side effects.

End of informative comment
1. For the purposes of the “Protection” section of the specification, the threats that MUST

be considered when determining whether the TPM facilitates subversion of TPM-
protected-capabilities or data in TPM-shielded-locations SHALL include

a. The methods inherent in physical attacks that fail if the TPM complies with the
“physical protection” requirements specified by TCG

b. All methods that require execution of instructions in a computing engine in the
platform

3.3 Protection of functions
Start of informative comment
A TPM-protected-capability must be used to modify TPM-protected capabilities. Other
methods must not be allowed to modify TPM-protected capabilities. Otherwise, the integrity
of TPM-protected capabilities is unknown.

End of informative comment
1. A TPM SHALL NOT facilitate the alteration of TPM-protected-capabilities, except by TPM-

protected capabilities.

3.4 Protection of information
Start of informative comment
TPM-protected capabilities must provide the only means from outside the TPM to access
information represented by data in TPM-shielded-locations. Otherwise, a rogue can reveal
data in TPM-shielded-locations, or create a derivative of data from TPM-shielded-locations
(in a way that maintains some or all of the information content of the data) and reveal the
derivative.

14 TCG Published Revision 116 1 Marchy 2011
TCG Published

113
114

704
705

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

728
729
730
731
732
733
734
735

736
737
738
739
740
741
742

115
116

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

End of informative comment
1. A TPM SHALL NOT export data that is dependent upon data structures described in part

II of the TPM specifications, other than via a TPM-Protected-Capability.

3.5 Side effects
Start of informative comment
An implementation of a TPM-protected capability must not disclose the contents of TPM-
shielded locations. The only exceptions are when such disclosure is inherent in the
definition of the capability or in the methods used by the capability. For example, a
capability might be designed specifically to reveal hidden data or might use cryptography
and hence always be vulnerable to cryptanalysis. In such cases, some disclosure or risk of
disclosure is inherent and cannot be avoided. Other forms of disclosure (by side effects, for
example) must always be avoided.

End of informative comment
1. The implementation of a TPM-protected-capability in a TPM SHALL NOT facilitate the

disclosure or the exposure of information represented by data in TPM-shielded–
locations, except by means unavoidably inherent in the TPM definition.

3.6 Exceptions and clarifications
Start of informative comment
These exceptions to the blanket statements in the generic “protection” requirements (above)
are fully compatible with the intended effect of those statements. These exceptions affect
TCG-data that is available as plain-text outside the TPM and TCG-data that can be used
without violating security or privacy. These exceptions are valuable because they approve
use of TPM resources by vendor-specific commands in particular circumstances.

These clarifications to the blanket statements of the generic “protection” requirements
(above) do not materially change the effect of those statements, but serve to approve specific
legitimate interpretations of the requirements.

End of informative comment
1. A Shielded Location is a place (memory, register, etc.) where data is protected against

interference and exposure, independent of its form

2. A TPM-Protected-Capability is an operation defined in and restricted to those identified
in part II and III of the TPM specifications.

3. A vendor specific command or capability MAY use the standard TCG owner/operator
authorization mechanism

4. A vendor specific command or capability MAY utilize a TPM_PUBKEY structure stored on
the TPM so long as the usage of that TPM_PUBKEY structure is authorized using the
standard TCG authorization mechanism.

5. A vendor specific command or capability MAY use a sequence of standard TCG
commands. The command MUST propagate the locality used for the call to the used
TCG commands or capabilities, or set locality to 0.

Revision 116 1 Marchy 2011 TCG Published 15
TCG Published

117
118

119
743
744
745

746
747
748
749
750
751
752
753
754
755
756
757
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

120
121

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

6. A vendor specific command or capability that takes advantage of exceptions and
clarifications to the “protection” requirements MUST be defined as part of the security
target of the TPM. Such a vendor specific command or capability MUST be evaluated to
meet the Platform Specific TPM and System Security Targets.

7. If a TPM employs vendor-specific cipher-text that is protected against subversion to the
same or greater extent as internal TPM-resources stored outside the TPM with TCG-
defined methods, that vendor-specific cipher-text does not necessarily require protection
from physical attack. If a TPM location stores only vendor-specific cipher-text that does
not require protection from physical attack, that location can be ignored when
determining whether the TPM complies with the "physical protection" requirements
specified by TCG.

16 TCG Published Revision 116 1 Marchy 2011
TCG Published

122
123

782
783
784
785
786
787
788
789
790
791
792

124
125

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

4. TPM Architecture

4.1 Interoperability
Start of informative comment
The TPM must support a minimum set of algorithms and operations to meet TCG
specifications.

Algorithms

RSA, SHA-1, HMAC

The algorithms and protocols are the minimum that the TPM must support. Additional
algorithms and protocols may be available to the TPM. All algorithms and protocols
available in the TPM must be included in the TPM and platform credential.

The reason to specify these algorithms is two fold. The first is to know and understand the
security properties of selected algorithms; identify appropriate key sizes and ensure
appropriate use in protocols. The second reason is to define a base level of algorithms for
interoperability.

End of informative comment

4.2 Components
Start of informative comment
The following is a block diagram Figure 4:a shows the major components of a TPM.

Figure 4:a - TPM Component Architecture

Revision 116 1 Marchy 2011 TCG Published 17
TCG Published

Key Generation

I/O

C2

Cryptographic Co-Processor C0

C1

Opt-In

Power Detection

RNG

Communication Bus

C7

C6

C4

HMAC Engine

SHA-1 Engine

Execution Engine

Volatile Memory

Non-Volatile Memory

C3

C8

C5

C10
C9

Rev 0.3

126
127

128

793

794
795
796
797
798
799
800
801
802
803
804
805
806
807

808
809
810
811

812

129
130

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

4.2.1 Input and Output
Start of informative comment
The I/O component, Figure 4:a C0, manages information flow over the communications
bus. It performs protocol encoding/decoding suitable for communication over external and
internal buses. It routes messages to appropriate components. The I/O component enforces
access policies associated with the Opt-In component as well as other TPM functions
requiring access control.

The main specification does not require a specific I/O bus. Issues around a particular I/O
bus are the purview of a platform specific specification.

End of informative comment
1. The number of incoming operand parameter bytes must exactly match the

requirements of the command ordinal. If the command contains more or fewer bytes
than required, the TPM MUST return TPM_BAD_PARAMETER.

4.2.2 Cryptographic Co-Processor
Start of informative comment
The cryptographic co-processor, Figure 4:a C1, implements cryptographic operations within
the TPM. The TPM employs conventional cryptographic operations in conventional ways.
Those operations include the following:

Asymmetric key generation (RSA)

Asymmetric encryption/decryption (RSA)

Hashing (SHA-1)

Random number generation (RNG)

The TPM uses these capabilities to perform generation of random data, generation of
asymmetric keys, signing and confidentiality of stored data.

The TPM may symmetric encryption for internal TPM use but does not expose any
symmetric algorithm functions to general users of the TPM.

The TPM may implement additional asymmetric algorithms. TPM devices that implement
different algorithms may have different algorithms perform the signing and wrapping.

If the TPM uses RSA with the required key length (2048 bits for storage keys), the output of
all commands for key or data blob generation (e.g., TPM_CreateWrapKey, TPM_Seal,
TPM_Sealx, TPM_MakeIdentity) consists of only one block. However, if the TPM uses other
asymmetric algorithms that result in more than one output block for these commands, the
integrity of the blobs must be protected by the TPM (by means of appropriate chaining
mechanisms).

End of informative comment
1. The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve.

18 TCG Published Revision 116 1 Marchy 2011
TCG Published

131
132

813

814
815
816
817
818
819
820
821
822
823
824
825
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

133
134

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

a. These algorithms may be in use for wrapping, signatures and other operations. There
is no guarantee that these keys can migrate to other TPM devices or that other TPM
devices will accept signatures from these additional algorithms.

b. If the output key or data blob generated with a storage key consists of more than one
block, the TPM MUST protect the integrity of the blob by means of appropriate
chaining mechanisms.

2. All storage keys MUST be of strength equivalent to a 2048 bits RSA key or greater. The
TPM SHALL NOT load a storage key whose strength less than that of a 2048 bits RSA
key.

3. All AIK MUST be of strength equivalent to a 2048 bits RSA key, or greater.

4.2.2.1 RSA Engine
Start of informative comment
The RSA asymmetric algorithm is used for digital signatures and for encryption.

For RSA keys the PKCS #1 standard provides the implementation details for digital
signature, encryption and data formats.

There is no requirement concerning how the RSA algorithm is to be implemented. TPM
manufacturers may use Chinese Remainder Theorem (CRT) implementations or any other
method. Designers should review P1363 for guidance on RSA implementations.

For keys that are required to be 2048-bit RSA keys, the default 216+1 exponent will be
required. This guarantees the strength of the key without walking a hierarchy that cannot
necessarily be walked reliably.

End of informative comment
1. The TPM MUST support RSA.

2. The TPM MUST use the RSA algorithm for encryption and digital signatures.

3. The TPM MUST support key sizes of 512, 1024, and 2048 bits. The TPM MAY support
other key sizes.

a. The minimum RECOMMENDED key size is 2048 bits.

b. In FIPS mode, the minimum key size MUST be 1024.

4. The TPM MUST support an RSA public exponent of 216+1. The TPM MAY support other
exponent values.

5. TPM devices that use CRT as the RSA implementation MUST provide protection and
detection of failures during the CRT process to avoid attacks on the private key.

4.2.2.2 Signature Operations
Start of informative comment
The TPM performs signatures on both internal items and on requested external blobs. The
rules for signatures apply to both operations.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 19
TCG Published

135
136

137
850
851
852
853
854
855
856
857
858
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

882
883
884
885
886

138
139

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

1. The TPM MUST use the RSA algorithm for signature operations where signed data is
verified by entities other than the TPM that performed the sign operation.

2. The TPM MAY use other asymmetric algorithms for signatures; however, there is no
requirement that other TPM devices either accept or verify those signatures.

3. The TPM MUST use P1363 for the format and design of the signature output.

4.2.2.3 Symmetric Encryption Engine
Start of informative comment
The TPM uses symmetric encryption to encrypt authentication information, provide
confidentiality in transport sessions and provide internal encryption of blobs stored off the
TPM.

For authentication and transport sessions, the mandatory mechanism is a Vernam one-
time-pad with XOR. The mechanism to generate the one-time-pad is MGF1 and the nonces
from the session protocol. When encrypting authorization data, the authorization data and
the nonces are the same size, 20 bytes, so a direct XOR is possible.

For transport sessions the size of data is larger than the nonces so there needs to be a
mechanism to expand the entropy to the size of the data. The mechanism to expand the
entropy is the MGF1 function from PKCS#1. This function provides a known mechanism
that does not lower the entropy of the nonces.

AES may be supported as an alternate symmetric key encryption algorithm.

Internal protection of information can use any symmetric algorithm that the TPM designer
feels provides the proper level of protection.

The TPM does not expose any of the symmetric operations for general message encryption.

End of informative comment

4.2.2.4 Using Keys
Start of Informative comments:
Keys can be symmetric or asymmetric.

As the TPM does not have an exposed symmetric algorithm, the TPM is only a generator,
storage device and protector of symmetric keys. Generation of the symmetric key would use
the TPM RNG. Storage and protection would be provided by the BIND and SEAL capabilities
of the TPM. If the caller wants to ensure that the release of a symmetric key is not exposed
after UNBIND/UNSEAL on delivery to the caller, the caller should use a transport session
with confidentiality set.

For asymmetric algorithms, the TPM generates and operates on RSA keys. The keys can be
held only by the TPM or in conjunction with the caller of the TPM. If the private portion of a
key is in use outside of the TPM it is the responsibility of the caller and user of that key to
ensure the protections of the key.

The TPM has provisions to indicate if a key is held exclusively for the TPM or can be shared
with entities off of the TPM.

End of informative comments.

20 TCG Published Revision 116 1 Marchy 2011
TCG Published

140
141

887
888
889
890
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

142
143

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

1. A secret key is a key that is a private asymmetric key or a symmetric key.

2. Data SHOULD NOT be used as a secret key by a TCG protected capability unless that
data has been extant only in a shielded location.

3. A key generated by a TCG protected capability SHALL NOT be used as a secret key
unless that key has been extant only in a shielded location.

4. A secret key obtained by a TCG protected capability from a Protected Storage blob
SHALL be extant only in a shielded location.

4.2.3 Key Generation
Start of informative comment
The Key Generation component, Figure 4:a C2, creates RSA key pairs and symmetric keys.
TCG places no minimum requirements on key generation times for asymmetric or
symmetric keys.

End of informative comment

4.2.3.1 Asymmetric – RSA
The TPM MUST generate asymmetric key pairs. The generate function is a protected
capability and the private key is held in a shielded location. The implementation of the
generate function MUST be in accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If
additional asymmetric algorithms are available, they MUST use the definitions from P1363
for the underlying basis of the asymmetric key (for example, elliptic curve fitting).

4.2.3.2 Nonce Creation
The creation of all nonce values MUST use the next n bits from the TPM RNG.

4.2.4 HMAC Engine
Start of informative comment
The HMAC engine, Figure 4:a C3, provides two pieces of information to the TPM: proof of
knowledge of the AuthData and proof that the request arriving is authorized and has no
modifications made to the command in transit.

The HMAC definition is for the HMAC calculation only. It does not specify the order or
mechanism that transports the data from caller to actual TPM.

The creation of the HMAC is order dependent. Each command has specific items that are
portions of the HMAC calculation. The actual calculation starts with the definition from
RFC 2104.

RFC 2104 requires the selection of two parameters to properly define the HMAC in use.
These values are the key length and the block size. This specification will use a key length
of 20 bytes and a block size of 64 bytes. These values are known in the RFC as K for the key
length and B as the block size.

The basic construct is

Revision 116 1 Marchy 2011 TCG Published 21
TCG Published

144
145

146
926
927
928
929
930
931
932

933
934
935
936
937
938

939
940
941
942
943
944
945

946
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

147
148

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

H(K XOR opad, H(K XOR ipad, text))

where

H = the SHA1 hash operation

K = the key or the AuthData

XOR = the xor operation

opad = the byte 0x5C repeated B times

B = the block length

ipad = the byte 0x36 repeated B times

text = the message information and any parameters from the command

End of informative comment
The TPM MUST support the calculation of an HMAC according to RFC 2104.

The size of the key (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104)
MUST be 64 bytes.

The order of the parameters is critical to the TPM’s ability to recreate the HMAC. Not all of
the fields are sent on the wire for each command for instance only one of the nonce values
travels on the wire. Each command interface definition indicates what parameters are
involved in the HMAC calculation.

4.2.5 Random Number Generator
Start of informative comment
The Random Number Generator (RNG) component, Figure 6:a C4 is the source of
randomness in the TPM. The TPM uses these random values for nonces, key generation,
and randomness in signatures.

The RNG consists of a state-machine that accepts and mixes unpredictable data and a post-
processor that has a one-way function (e.g. SHA-1). The idea behind the design is that a
TPM can be good source of randomness without having to require a genuine source of
hardware entropy.

The state-machine can have a non-volatile state initialized with unpredictable random data
during TPM manufacturing before delivery of the TPM to the customers. The state-machine
can accept, at any time, further (unpredictable) data, or entropy, to salt the random
number. Such data comes from hardware or software sources – for example; from thermal
noise, or by monitoring random keyboard strokes or mouse movements. The RNG requires a
reseeding after each reset of the TPM. A true hardware source of entropy is likely to supply
entropy at a higher baud rate than a software source.

When adding entropy to the state-machine, the process must ensure that after the addition,
no outside source can gain any visibility into the new state of the state-machine. Neither
the Owner of the TPM nor the manufacturer of the TPM can deduce the state of the state-
machine after shipment of the TPM. The RNG post-processor condenses the output of the
state-machine into data that has sufficient and uniform entropy. The one-way function
should use more bits of input data than it produces as output.

22 TCG Published Revision 116 1 Marchy 2011
TCG Published

149
150

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001

151
152

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Our definition of the RNG allows implementation of a Pseudo Random Number Generator
(PRNG) algorithm. However, on devices where a hardware source of entropy is available, a
PRNG need not be implemented. This specification refers to both RNG and PRNG
implementations as the RNG mechanism. There is no need to distinguish between the two
at the TCG specification level.

The TPM should be able to provide 32 bytes of randomness on each call. Larger requests
may fail with not enough randomness being available.

End of informative comment
1. The RNG for the TPM will consist of the following components:

a. Entropy source and collector

b. State register

c. Mixing function

2. The RNG capability is a TPM-protected capability with no access control.

3. The RNG output may or may not be shielded data. When the data is for internal use by
the TPM (e.g., generation of tpmProof or an asymmetric key), the data MUST be held in a
shielded location. The RNG output for internal use MUST not be known outside the
TPM. In particular, it MUST not be known by the TPM manufacturer. When the data is
for use by the TSS or another external caller, the data is not shielded.

4. In FIPS mode, the RNG MUST be a NIST approved RNG. The NIST self-test requirements
MUST be satisfied.

4.2.5.1 Entropy Source and Collector
Start of informative comment
The entropy source is the process or processes that provide entropy. These types of sources
could include noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes
the output. The collector differs from the mixing function in that the collector may have
special code to handle any bias or skewing of the raw entropy data. For instance, if the
entropy source has a bias of creating 60 percent 1s and only 40 percent 0s, then the
collector design takes that bias into account before sending the information to the state
register.

End of informative comment
1. The entropy source MUST provide entropy to the state register in a manner that provides

entropy that is not visible to an outside process.

a. For compliance purposes, the entropy source MAY be outside of the TPM; however,
attention MUST be paid to the reporting mechanism.

2. The entropy source MUST provide the information only to the state register.

a. The entropy source may provide information that has a bias, so the entropy collector
must remove the bias before updating the state register. The bias removal could use
the mixing function or a function specifically designed to handle the bias of the
entropy source.

Revision 116 1 Marchy 2011 TCG Published 23
TCG Published

153
154

155
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

156
157

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

b. The entropy source can be a single device (such as hardware noise) or a combination
of events (such as disk timings). It is the responsibility of the entropy collector to
update the state register whenever the collector has additional entropy.

4.2.5.2 State Register
Start of informative comment
The state register implementation may use two registers: a non-volatile register rngState
and a volatile register. The TPM loads the volatile register from the non-volatile register on
startup. Each subsequent change to the state register from either the entropy source or the
mixing function affects the volatile state register. The TPM saves the current value of the
volatile state register to the non-volatile register on TPM power-down. The TPM may update
the non-volatile register at any other time. The reasons for using two registers are:

To handle an implementation in which the non-volatile register is in a flash device;

To avoid overuse of the flash, as the number of writes to a flash device are limited.

End of informative comment
1. The state register is in a TPM shielded-location.

a. The state register MUST be non-volatile.

b. The update function to the state register is a TPM protected-capability.

c. The primary input to the update function SHOULD be the entropy collector.

2. If the current value of the state register is unknown, calls made to the update function
with known data MUST NOT result in the state register ending up in a state that an
attacker could know.

a. This requirement implies that the addition of known data MUST NOT result in a
decrease in the entropy of the state register.

3. The TPM MUST NOT export the state register.

4.2.5.3 Mixing Function
Start of informative comment
The mixing function takes the state register and produces output. The mixing function is a
TPM protected-capability. The mixing function takes the value from a state register and
creates the RNG output. If the entropy source has a bias, then the collector takes that bias
into account before sending the information to the state register.

End of informative comment
1. Each use of the mixing function MUST affect the state register.

a. This requirement is to affect the volatile register and does not need to affect the non-
volatile state register.

4.2.5.4 RNG Reset
Start of informative comment
The resetting of the RNG occurs at least in response to a loss of power to the device.

24 TCG Published Revision 116 1 Marchy 2011
TCG Published

158
159

1042
1043
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076
1077
1078

160
161

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

These tests prove only that the RNG is still operating properly; they do not prove how much
entropy is in the state register. This is why the self-test checks only after the load of
previous state and may occur before the addition of more entropy.

End of informative comment
1. The RNG MUST NOT output any bits after a system reset until the following occurs:

a. The entropy collector performs an update on the state register. This does not include
the adding of the previous state but requires at least one bit of entropy.

b. The mixing function performs a self-test. This self-test MUST occur after the loading
of the previous state. It MAY occur before the entropy collector performs the first
update.

4.2.6 SHA-1 Engine
Start of informative comment
The SHA-1, Figure 4:a C5, hash capability is primarily used by the TPM, as it is a trusted
implementation of a hash algorithm. The hash interfaces are exposed outside the TPM to
support Measurement taking during platform boot phases and to allow environments that
have limited capabilities access to a hash functions. The TPM is not a cryptographic
accelerator. TCG does not specify minimum throughput requirements for TPM hash
services.

End of informative comment
1. The TPM MUST implement the SHA-1 hash algorithm as defined by FIPS-180-1.

2. The output of SHA-1 is 160 bits and all areas that expect a hash value are REQUIRED
to support the full 160 bits.

3. The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start
command and a TPM_SHA1Complete command SHALL be a variable number (possibly
0) of TPM_SHA1Update commands.

a. The TPM_SHA1Update commands can occur in a transport session.

4. Throughout all parts of the specification the characters x1 || x2 imply the
concatenation of x1 and x2

4.2.7 Power Detection
Start of informative comment
The power detection component, Figure 4:a C6, manages the TPM power states in
conjunction with platform power states. TCG requires that the TPM be notified of all power
state changes.

Power detection also supports physical presence assertions. The TPM may restrict
command-execution during periods when the operation of the platform is physically
constrained. In a PC, operational constraints occur during the power-on self-test (POST)
and require Operator input via the keyboard. The TPM might allow access to certain
commands while in a constrained execution mode or boot state. At some critical point in the
POST process, the TPM may be notified of state changes that affect TPM command
processing modes.

Revision 116 1 Marchy 2011 TCG Published 25
TCG Published

162
163

164
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

165
166

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

4.2.8 Opt-In
Start of informative comment
The Opt-In component, Figure 4:a C7, provides mechanisms and protections to allow the
TPM to be turned on/off, enabled/disabled, activated/deactivated. The Opt-In component
maintains the state of persistent and volatile flags and enforces the semantics associated
with these flags.

The setting of flags requires either authorization by the TPM Owner or the assertion of
physical presence at the platform. The platform’s manufacturer determines the techniques
used to represent physical-presence. The guiding principle is that no remote entity should
be able to change TPM status without either knowledge of the TPM Owner or the Operator is
physically present at the platform. Physical presence may be asserted during a period when
platform operation is constrained such as power-up.

Non-Volatile Flags:

physicalPresenceLifetimeLock

physicalPresenceHWEnable

physicalPresenceCMDEnable

Volatile Flags:

physicalPresenceLock

physicalPresence

The notation physicalPresenceV indicates the physical presence state that ordinals refer to
when they say, for example, “if physical presence is asserted”.

26 TCG Published Revision 116 1 Marchy 2011
TCG Published

167
168

1119

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

169
170

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The following truth table explains the conditions in which the physicalPresenceV flag may
be altered:

Persistent / Volatile P P P V

Control Flags
ph

ys
ica

lP
re

se
nc

eL
ife

tim
eL

oc
k

ph
ys

ica
lP

re
se

nc
eH

W
En

ab
le

ph
ys

ica
lP

re
se

nc
eC

M
DE

na
bl

e

ph
ys

ica
lP

re
se

nc
eL

oc
k

Volatile Access
Semantics to

Physical Presence
Flag

- F F -
No access to physicalPresenceV flag.

- F - T

- - T F Access to physicalPresenceV flag through TCS_PhysicalPresence command enabled.

- T - - Access to physicalPresenceV flag through hardware signal enabled.

- T T F Access to physicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
enabled.

Persistent Access
Semantics to

Physical Presence
Flag

T F F - Access to physicalPresenceV flag permanently disabled.

T F T T Access to physicalPresenceV flag disabled until TPM_Startup(ST_CLEAR).

T F T F Exclusive access to physicalPresenceV flag through TCS_PhysicalPresence command
permanently enabled.

T T F - Exclusive access to physicalPresenceV flag through hardware signal permanently enabled.

T T T F Access to physicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
permanently enabled.

Table 4:a - Physical Presence Semantics

TCG also recognizes the concept of unambiguous physical presence. Conceptually, the use
of dedicated electrical hardware providing a trusted path to the Operator has higher
precedence than the physicalPresenceV flag value. Unambiguous physical presence may be
used to override physicalPresenceV flag value under conditions specified by platform
specific design considerations.

Additional details relating to physical presence can be found in sections on Volatile and
Non-volatile memory.

End of informative comment

4.2.9 Execution Engine
Start of informative comment
The execution engine, Figure 4:a C8, runs program code to execute the TPM commands
received from the I/O port. The execution engine is a vital component in ensuring that
operations are properly segregated and shield locations are protected.

Revision 116 1 Marchy 2011 TCG Published 27
TCG Published

171
172

173
1141
1142
1143

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

1154
1155
1156
1157
1158

174
175

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

4.2.10 Non-Volatile Memory
Start of informative comment
Non-volatile memory component, Figure 4:a C9, is used to store persistent identity and
state associated with the TPM. The NV area has set items (like the EK) and also is available
for allocation and use by entities authorized by the TPM Owner.

The TPM designer should consider the use model of the TPM and if the use of NV storage is
a concern. NV storage does have a limited life and using the NV storage in a high volume
use model may prematurely wear out the TPM.

There is no requirement for the TPM to protect against wear out by detecting that a write of
the same value need not be performed. Applications should avoid frequent writes of the
same value. For example, precede a TPM_SetCapability with a TPM_GetCapability and skip
the write if the TPM already holds the desired value.

End of informative comment

4.3 Data Integrity Register (DIR)
Start of informative comment
The DIR were a version 1.1 function. They provided a place to store information using the
TPM NV storage.

In 1.2 the DIR are deprecated and the use of the DIR should move to the general purpose
NV storage area.

The TPM must still support the functionality of the DIR register in the NV storage area.

End of informative comment
1. A TPM MUST provide one Data Integrity Register (DIR)

a. The TPM DIR commands are deprecated in 1.2

b. The TPM MUST reserve the space for one DIR in the NV storage area

c. The TPM MAY have more than 1 DIR.

2. The DIR MUST be 160-bit values and MUST be held in TPM shielded-locations.

3. The DIR MUST be non-volatile (values are maintained during the power-off state).

a. A TPM implementation need not provide the same number of DIRs as PCRs.

4.4 Platform Configuration Register (PCR)
Start of informative comment
A Platform Configuration Register (PCR) is a 160-bit storage location for discrete integrity
measurements. There are a minimum of 16 PCR registers. All PCR registers are shielded-
locations and are inside of the TPM. The decision of whether a PCR contains a standard
measurement or if the PCR is available for general use is deferred to the platform specific
specification.

28 TCG Published Revision 116 1 Marchy 2011
TCG Published

176
177

1159

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193
1194

178
179

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

A large number of integrity metrics may be measured in a platform, and a particular
integrity metric may change with time and a new value may need to be stored. It is difficult
to authenticate the source of measurement of integrity metrics, and as a result a new value
of an integrity metric cannot be permitted to simply overwrite an existing value. (A rogue
could erase an existing value that indicates subversion and replace it with a benign value.)
Thus, if values of integrity metrics are individually stored, and updates of integrity metrics
must be individually stored, it is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The PCR is designed to hold an unlimited number of measurements in the register. It does
this by using a cryptographic hash and hashing all updates to a PCR. The pseudo code for
this is:

PCRi New = HASH (PCRi Old value || value to add)

There are two salient properties of cryptographic hash that relate to PCR construction.
Ordering – meaning updates to PCRs are not commutative. For example, measuring (A then
B) is not the same as measuring (B then A).

The other hash property is one-way-ness. This property means it should be computationally
infeasible for an attacker to determine the input message given a PCR value. Furthermore,
subsequent updates to a PCR cannot be determined without knowledge of the previous PCR
values or all previous input messages provided to a PCR register since the last reset.

If the TPM is disabled or deactivated, commands that extend a PCR (e.g., TPM_Extend,
TPM_SHA1CompleteExtend) return a PCR value of all zeros, and commands that use the
PCRs (e.g., TPM_PCRRead) are not available. However, the commands that extend a PCR
still update the PCR correctly and return success. For disabled, this is because the TPM
may become enabled later, and so must not miss a measurement. For deactivated, this is
because resource limited code like the CRTM will perform extends and may not be able to
handle a deactivated error case.

End of informative comment
1. The PCR MUST be a 160-bit field that holds a cumulatively updated hash value

2. The PCR MUST have a status field associated with it

3. The PCR MUST be in the RTS and should be in volatile storage

4. The PCR MUST allow for an unlimited number of measurements to be stored in the PCR

5. The PCR MUST preserve the ordering of measurements presented to it

6. A PCR MUST be set to the default value as specified by the PCRReset attribute

7. A TPM implementation MUST provide 16 or more independent PCRs. These PCRs are
identified by index and MUST be numbered from 0 (that is, PCR0 through PCR15 are
required for TCG compliance). Vendors MAY implement more registers for general-
purpose use. Extra registers MUST be numbered contiguously from 16 up to max – 1,
where max is the maximum offered by the TPM.

8. The TCG-protected capabilities that expose and modify the PCRs use a 32-bit index,
indicating the maximum usable PCR index. However, TCG reserves register indices 230
and higher for later versions of the specification. A TPM implementation MUST NOT
provide registers with indices greater than or equal to 230. In this specification, the
following terminology is used (although this internal format is not mandated).

Revision 116 1 Marchy 2011 TCG Published 29
TCG Published

180
181

182
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

183
184

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

9. The PSS MUST define at least define one measurement that the RTM MUST make and
the PCR where the measurement is stored.

10.A TCG measurement agent MAY discard a duplicate event instead of incorporating it in a
PCR, provided that:

11.A relevant TCG platform specification explicitly permits duplicates of this type of event to
be discarded

12.The PCR already incorporates at least one event of this type

13.An event of this type previously incorporated into the PCR included a statement that
duplicate such events may be discarded. This option could be used where frequent
recording of sleep states will adversely affect the lifetime of a TPM, for example.

14.PCRs and the protected capabilities that operate upon them MAY NOT be used until
power-on self-test (TPM POST) has completed. If TPM POST fails, the TPM_Extend
operation will fail; and, of greater importance, the TPM_Quote operation and TPM_Seal
operations that respectively report and examine the PCR contents MUST fail. At the
successful completion of TPM POST, all PCRs MUST be set to their default value (either
0x00…00 or 0xFF…FF). Additionally, the UINT32 flags MUST be set to zero.

30 TCG Published Revision 116 1 Marchy 2011
TCG Published

185
186

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

187
188

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

5. Endorsement Key Creation
Start of informative comment
The TPM contains a 2048-bit RSA key pair called the endorsement key (EK). The public
portion of the key is the PUBEK and the private portion the PRIVEK. Due to the nature of
this key pair, both the PUBEK and the PRIVEK have privacy and security concerns.

The TPM has the EK generated before the end customer receives the platform. The Trusted
Platform Module Entity (TPME) that causes EK generation is also the entity that will create
and sign the EK credential attesting to the validity of the TPM and the EK. The TPME is
typically the TPM manufacturer.

The TPM can generate the EK internally using the TPM_CreateEndorsementKey or by using
an outside key generator. The EK needs to indicate the genealogy of the EK generation.

Subsequent attempts to either generate an EK or insert an EK must fail.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an
Owner has taken ownership of that platform, it SHALL exist only in storage to which access
is controlled and is available to authorized entities.

End of informative comment
1. The EK MUST be a 2048-bit RSA key

a. The public portion of the key is the PUBEK

b. The private portion of the key is the PRIVEK

c. The PRIVEK SHALL exist only in a TPM-shielded location.

2. Access to the PRIVEK and PUBEK MUST only be via TPM protected capabilities

a. The protected capabilities MUST require TPM Owner authentication or operator
physical presence

3. The generation of the EK may use a process external to the TPM and
TPM_CreateEndorsementKeyPair

a. The external generation MUST result in an EK that has the same properties as an
internally generated EK

b. The external generation process MUST protect the EK from exposure during the
generation and insertion of the EK

c. After insertion of the EK the TPM state MUST be the same as the result of the
TPM_CreateEndorsementKeyPair execution

d. The process MUST guarantee correct generation, cryptographic strength,
uniqueness, privacy, and installation into a genuine TPM, of the EK

e. The entity that signs the EK credential MUST be satisfied that the generation process
properly generated the EK and inserted it into the TPM

f. The process MUST be defined in the target of evaluation (TOE) of the security target
in use to evaluate the TPM

Revision 116 1 Marchy 2011 TCG Published 31
TCG Published

189
190

191

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

192
193

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

5.1 Controlling Access to PRIVEK
Start of informative comment
Exposure of the PRIVEK is a security concern.

The TPM must ensure that the PRIVEK is not exposed outside of the TPM

End of informative comment
1. The PRIVEK MUST never be out of the control of a TPM shielded location

5.2 Controlling Access to PUBEK
Start of informative comment
There are no security concerns with exposure or use of the PUBEK.

Privacy guidelines suggest that PUBEK could be considered personally identifiable
information (PII) if it were associated in some way with personal information (PI) or
associated with other PII, but PUBEK alone cannot be considered PII. Arbitrary random
numbers do not represent a threat to privacy unless further associated with PI or PII. The
PUBEK is an arbitrary random number that may be associated with aggregate platform
information, but not personally identifiable information.

An EK may become associated with personally identifiable information when an alias
platform identifier (AIK) is also associated with PI. The attestation service could include
personal information in the AIK credential, thereby making the AIK-PUBEK association PII –
but not before.

The association of PUBEK with AIK therefore is important to protect via privacy guidelines.
The owner/user of the TPM should be able to control whether PUBEK is disclosed along
with AIK. The owner/user should be notified of personal information that might be added to
an AIK credential, which could result in AIK being considered PII. The owner/user should
be able to evaluate the mechanisms used by an attestation entity to protect PUBEK-AIK
associations before disclosure occurs. No other entity should be privy to owner/user
authorized disclosure besides the intended attestation entity.

Several commands may be used to negotiate the conditions of PUBEK-AIK disclosure.
TPM_MakeIdentity discloses PUBEK-AIK in the context of requesting an AIK credential.
TPM_ActivateIdentity ensures the owner/user has not been spoofed by an interloper. These
interfaces allow the owner/user to choose whether disclosure is acceptable and control the
circumstances under which disclosure takes place. They do not allow the owner/user the
ability to retain control of PUBEK-AIK subsequent to disclosure except by traditional means
of trusting the attestation entity to abide by an acceptable privacy policy. The owner/user is
able to associate the accepted privacy policy with the disclosure operation (e.g.
TPM_MakeIdentity).

A persistent flag called readPubek can be set to TRUE to permit reading of PUBEK via
TPM_ReadPubek. Reporting the PUBEK value is not considered privacy sensitive because it
cannot be associated with any of the AIK keys managed by the TPM without using TPM
protected-capabilities. Keys are encrypted with a nonce when flushed from TPM shielded-
locations, Cryptanalysis of flushed keys will not reveal an association of EK to any AIK.

The command that manipulates the readPubek flag is TPM_DisablePubekRead.

End of informative comment

32 TCG Published Revision 116 1 Marchy 2011
TCG Published

194
195

1291
1292
1293
1294
1295
1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

196
197

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

6. Attestation Identity Keys
Start of informative comment
See 11.4 Attestation Identity Keys.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 33
TCG Published

198
199

200

1333
1334
1335
1336

201
202

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

7. TPM Ownership
Start of informative comment
Taking ownership of a TPM is the process of inserting a shared secret into a TPM shielded-
location. Any entity that knows the shared secret is a TPM Owner. Proof of ownership
occurs when an entity, in response to a challenge, proves knowledge of the shared secret.
Certain operations in the TPM require authentication from a TPM Owner.

Certain operations also allow the human, with physical possession of the platform, to assert
TPM Ownership rights. When asserting TPM Ownership, using physical presence, the
operations must not expose any secrets protected by the TPM.

The platform owner controls insertion of the shared secret into the TPM. The platform
owner sets the NV persistent flag ownershipEnabled that allows the execution of the
TPM_TakeOwnership command. The TPM_SetOwnerInstall, the command that controls the
value ownershipEnabled, requires the assertion of physical presence.

Attempting to execute TPM_TakeOwnership fails when a TPM already has an owner. To
remove an owner when the current TPM Owner is unable to remove themselves, the human
that is in possession of the platform asserts physical presence and executes
TPM_ForceClear which removes the shared secret.

The insertion protocol that supplies the shared secret has the following requirements:
confidentiality, integrity, remoteness and verifiability.

To provide confidentiality the proposed TPM Owner encrypts the shared secret using the
PUBEK. This requires the PRIVEK to decrypt the value. As the PRIVEK is only available in
the TPM the encrypted shared secret is only available to the intended TPM.

The integrity of the process occurs by the TPM providing proof of the value of the shared
secret inserted into the TPM.

By using the confidentiality and integrity, the protocol is useable by TPM Owners that are
remote to the platform.

The new TPM Owner validates the insertion of the shared secret by using integrity response.

End of informative comment
The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control
protocol (OIAP or OSAP)

7.1 Platform Ownership and Root of Trust for Storage
Start of informative comment
The semantics of platform ownership are tied to the Root-of-trust-for-storage (RTS). The
TPM_TakeOwnership command creates a new Storage Root Key (SRK) and new tpmProof
value whenever a new owner is established. It follows that objects owned by a previous
owner will not be inherited by the new owner. Objects that should be inherited must be
transferred by deliberate data migration actions.

End of informative comment

34 TCG Published Revision 116 1 Marchy 2011
TCG Published

203
204

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

1367
1368
1369
1370
1371
1372
1373
1374

205
206

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

8. Authentication and Authorization Data
Start of informative comment
Using security vernacular the terms below apply to the TPM for this discussion:

Authentication: The process of providing proof of claimed ownership of an object or a
subject's claimed identity.

Authorization: Granting a subject appropriate access to an object.

Each TPM object that does not allow "public" access contains a 160-bit shared secret. This
shared secret is enveloped within the object itself. The TPM grants use of TPM objects based
on the presentation of the matching 160-bits using protocols designed to provide protection
of the shared secret. This shared secret is called the AuthData.

Neither the TPM, nor its objects (such as keys), contain access controls for its objects (the
exception to this is what is provided by the delegation mechanism). If an subject presents
the AuthData, that subject is granted full use of the object based on the object's
capabilities, not a set of rights or permissions of the subject. This apparent overloading of
the concepts of authentication and authorization has caused some confusion. This is
caused by having two similarly rooted but distinct perspectives.

From the perspective of the TPM looking out, this AuthData is its sole mechanism for
authenticating the owner of its objects, thus from its perspective it is authentication data.
However, from the application's perspective this data is typically the result of other
functions that might perform authentications or authorizations of subjects using higher
level mechanisms such as OS login, file system access, etc. Here, AuthData is a result of
these functions so in this usage, it authorizes access to the TPM's objects. From this
perspective, i.e., the application looking in on the TPM and its objects, the AuthData is
authorization data. For this reason, and thanks to a common root within the English
language, the term for this data is chosen to be AuthData and is to be interpreted or
expanded as either authentication data or authorization data depending on context and
perspective.

The term AuthData refers to the 160-bit value used to either prove ownership of, or
authorization to use, an object. This is also called the object's shared secret. The term
authorization will be used when referring the combined action of verifying the AuthData and
allowing access to the object or function. The term authorization session applies to a state
where the AuthData has been authentication and a session handle established that is
associated with that authentication.

A wide-range of objects use AuthData. It is used to establish platform ownership, key use
restrictions, object migration and to apply access control to opaque objects protected by the
TPM.

AuthData is a 160-bit shared-secret plus high-entropy random number. The assumption is
the shared-secret and random number are mixed using SHA-1 digesting, but no specific
function for generating AuthData is specified by TCG.

TCG command processing sessions (e.g. OSAP, ADIP) may use AuthData as an initialization
vector when creating a one-time pad. Session encryption is used to encrypt portions of
command messages exchanged between TPM and a caller.

Revision 116 1 Marchy 2011 TCG Published 35
TCG Published

207
208

209

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

210
211

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The TPM stores AuthData with TPM controlled-objects and in shielded-locations. AuthData
is never in the clear, when managed by the TPM except in shielded-locations. Only TPM
protected-capabilities may access AuthData (contained in the TPM). AuthData objects may
not be used for any other purpose besides authentication and authorization of TPM
operations on controlled-objects.

Outside the TPM, a reference monitor of some kind is responsible for protecting AuthData.
AuthData should be regarded as a controlled data item (CDI) in the context of the security
model governing the reference monitor. TCG expects this entity to preserve the interests of
the platform Owner.

There is no requirement that instances of AuthData be unique.

End of informative comment
The TPM MUST reserve 160 bits for the AuthData. The TPM treats the AuthData as a blob.
The TPM MUST keep AuthData in a shielded-location.

The TPM MUST enforce that the only usage in the TPM of the AuthData is to perform
authorizations.

8.1 Dictionary Attack Considerations
Start of informative comment
The decision to provide protections against dictionary attacks is due to the inability of the
TPM to guarantee that an authorization value has high entropy. While the creation and
authorization protocols could change to support the assurance of high entropy values, the
changes would be drastic and would totally invalidate any 1.x TPM version.

Version 1.1 explicitly avoided any requirements for dictionary attack mitigation.

Version 1.2 adds the requirement that the TPM vendor provide some assistance against
dictionary attacks. The internal mechanism is vendor specific. The TPM designer should
review the requirements for dictionary attack mitigation in the Common Criteria.

The 1.2 specification does not provide any functions to turn on the dictionary attack
prevention. The specification does provide a way to reset from the TPM response to an
attack.

By way of example, the following is a way to implement the dictionary attack mitigation.

The TPM keeps a count of failed authorization attempts. The vendor allows the TPM Owner
to set a threshold of failed authorizations. When the count exceeds the threshold, the TPM
locks up and does not respond to any requests for a time out period. The time out period
doubles each time the count exceeds the threshold. If the TPM resets during a time out
period, the time out period starts over after TPM_Init, or TPM_Startup. To reset the count
and the time out period the TPM Owner executes TPM_ResetLockValue. If the authorization
for TPM_ResetLockValue fails, the TPM must lock up for the entire time out period and no
additional attempts at unlocking will be successful. Executing TPM_ResetLockValue when
outside of a time out period still results in the resetting of the count and time out period.

End of informative comment
The TPM SHALL incorporate mechanism(s) that will provide some protection against
exhaustive or dictionary attacks on the authorization values stored within the TPM.

36 TCG Published Revision 116 1 Marchy 2011
TCG Published

212
213

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

214
215

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

This version of the TPM specification does NOT specify the particular strategy to be used.
Some examples might include locking out the TPM after a certain number of failures,
forcing a reboot under some combination of failures, or requiring specific actions on the
part of some actors after an attack has been detected. The mechanisms to manage these
strategies are vendor specific at this time.

If the TPM in response to the attacks locks up for some time period or requires a special
operation to restart, the TPM MUST prevent any authorized TPM command and MAY
prevent any TPM command from executing until the mitigation mechanism completes. The
TPM Owner can reset the mechanism using the TPM_ResetLockValue command.
TPM_ResetLockValue MUST be allowed to run exactly once while the TPM is locked up.

Revision 116 1 Marchy 2011 TCG Published 37
TCG Published

216
217

218
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

219
220

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

9. TPM Operation
Start of informative comment
Through the course of TPM operation, it may enter several operational modes that include
power-up, self-test, administrative modes and full operation. This section describes TPM
operational states and state transition criteria. Where applicable, the TPM commands used
to facilitate state transition or function are included in diagrams and descriptions.

The TPM keeps the information relative to the TPM operational state in a combination of
persistent and volatile flags. For ease of reading the persistent flags are prefixed by pFlags
and the volatile flags prefixed by vFlags.

The following state diagram describes TPM operational states at a high level. Subsequent
state diagrams drill-down to finer detail that describes fundamental operations, protections
on operations and the transitions between them.

The state diagrams use the following notation:

CompositeState

 - Signifies a state.

 - Transitions between states are represented as a single headed arrows.

 - Circular transitions indicate operations that don’t result in a transition to another
state.

 - Decision boxes split state flow based on a logical test. Decision conditions are called
Guards and are identified by bracketed text.

< [text] > Bracketed text indicates transitions that are gated. Text within the brackets
describes the pre-condition that must be met before state transition may occur.

< /name > Transitions may list the events that trigger state transition. The forward slash
demarcates event names.

 - The starting point for reading state diagrams.

 - The ending point for state diagrams. Perpetual state systems may not have an ending
indicator.

 - The collection bar consolidates multiple identical transition events into a single
transition arrow.

 - The distribution bar splits transitions to flow into multiple states.

38 TCG Published Revision 116 1 Marchy 2011
TCG Published

221
222

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

1481

1482

1483
1484

1485
1486
1487
1488
1489
1490

1491

1492
1493

1494
1495

1496

223
224

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

H - The history indicator means state values are remembered across context switches or
power-cycles.

End of informative comment

9.1 TPM Initialization & Operation State Flow
Start of informative comment

Figure 9:b - TPM Operational States
End of informative comment

9.1.1 Initialization
Start of informative comment
TPM_Init transitions the TPM from a power-off state to one where the TPM begins an
initialization process. TPM_Init could be the result of power being applied to the platform or
a hard reset.

TPM_Init sets an internal flag to indicate that the TPM is undergoing initialization. The TPM
must complete initialization before it is operational. The completion of initialization requires
the receipt of the TPM_Startup command.

The TPM is not fully operational until all of the self-tests are complete. Successful
completion of the self-tests allows the TPM to enter fully operational mode.

Revision 116 1 Marchy 2011 TCG Published 39
TCG Published

225
226

227

1497
1498
1499

1500
1501

1502
1503
1504

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514

228
229

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Fully operational does not imply that all functions of the TPM are available. The TPM needs
to have a TPM Owner and be enabled for all functions to be available.

The TPM transitions out of the operational mode by having power removed from the system.
Prior to the exiting operational mode, the TPM prepares for the transition by executing the
TPM_SaveState command. There is no requirement that TPM_SaveState execute before the
transition to power-off mode occurs.

End of informative comment
1. After TPM_Init and until receipt of TPM_Startup the TPM MUST return

TPM_INVALID_POSTINIT for all commands. Prior to receipt of TPM_Startup the TPM
MAY enter shutdown or failure mode.

40 TCG Published Revision 116 1 Marchy 2011
TCG Published

230
231

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

232
233

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

9.2 Self-Test Modes
Start of informative comment

Revision 116 1 Marchy 2011 TCG Published 41
TCG Published

234
235

236

1525
1526

237
238

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Figure 9:c - Self-Test States

42 TCG Published Revision 116 1 Marchy 2011
TCG Published

239
240

1527
1528

241
242

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

After initialization the TPM performs a limited self-test. This test provides the assurance
that a selected subset of TPM commands will perform properly. The limited nature of the
self-test allows the TPM to be functional in as short of time as possible. The commands
enabled by this self-test are:

TPM_SHA1xxx – Enabling the SHA-1 commands allows the TPM to assist the platform
startup code. The startup code may execute in an extremely constrained memory
environment and having the TPM resources available to perform hash functions can allow
the measurement of code at an early time. While the hash is available, there are no speed
requirements on the I/O bus to the TPM or on the TPM itself so use of this functionality
may not meet platform startup requirements.

TPM_Extend – Enabling the extend, and by reference the PCR, allows the startup code to
perform measurements. Extending could use the SHA-1 TPM commands or perform the
hash using the main processor.

TPM_Startup – This command must be available as it is the transition command from the
initial environment to the limited operational state.

TPM_ContinueSelfTest – This command causes the TPM to complete the self-tests on all
other TPM functions. If TPM receives a command, and the self-test for that command has
not been completed, the TPM may implicitly perform the actions of the
TPM_ContinueSelfTest command.

TPM_SelfTestFull – A TPM MAY allow this command after initialization, but typically
TPM_ContinueSelfTest would be used to avoid repeating the limited self tests.

TPM_GetCapability – A subset of capabilities can be read in the limited operation state.

TSC_PhysicalPresence and TSC_ResetEstablishmentBit.

The complete self-test ensures that all TPM functionality is available and functioning
properly.

End of informative comment
1. At startup, a TPM MUST self-test all internal functions that are necessary to do

TPM_SHA1Start, TPM_SHA1Update, TPM_SHA1Complete, TPM_SHA1CompleteExtend,
TPM_Extend, TPM_Startup, TPM_ContinueSelfTest, a subset of TPM_GetCapability,
TPM_GetTestResult, TSC_PhysicalPresence and TSC_ResetEstablishmentBit.

2. The TPM MAY allow TPM_SelfTestFull to be used before completion of the actions of
TPM_ContinueSelfTest.

3. The TPM MAY implicitly run the actions of TPM_ContinueSelfTest upon receipt of a
command that requires untested resources.

4. The platform specific specification MUST define the maximum startup self-test time.

9.2.1 Operational Self-Test
Start of informative comment
The completion of self-test is initiated by TPM_ContinueSelfTest. The TPM MAY allow
TPM_SelfTestFull to be issued instead of TPM_ContinueSelfTest.

TPM_ContinueSelfTest is the command issued during platform initialization after the
platform has made use of the early commands (perhaps for an early measurement), the

Revision 116 1 Marchy 2011 TCG Published 43
TCG Published

243
244

245
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563

1564
1565
1566
1567
1568
1569

246
247

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

platform is now performing other initializations, and the TPM can be left alone to complete
the self-tests. Before any command other than the limited subset is executed, all self-tests
must be complete.

TPM_SelfTestFull is a request to have the TPM perform another complete self-test. This test
will take some time but provides an accurate assessment of the TPM’s ability to perform all
operations.

The original design of TPM_ContinueSelfTest was for the TPM to test those functions that
the original startup did not test. The FIPS-140 evaluation of the specification requested a
change such that TPM_ContinueSelfTest would perform a complete self-test. The rationale
is that the original tests are only part of the initialization of the TPM; if they fail, the TPM
does not complete initialization. Performing a complete test after initialization meets the
FIPS-140 requirements. The TPM may work differently in FIPS mode or the TPM may simply
write the TPM_ContinueSelfTest command such that it always performs the complete check.

TPM_ContinueSelfTest causes a test of the TPM internal functions. When
TPM_ContinueSelfTest is asynchronous, the TPM immediately returns a successful result
code before starting the tests. When testing is complete, the TPM does not return any
result. When TPM_ContinueSelfTest is synchronous, the TPM completes the self-tests and
then returns a success or failure result code.

The TPM may reject any command other than the limited subset if self test has not been
completed. Alternatively, the actions of TPM_ContinueSelfTest may start automatically if the
TPM receives a command and there has been no testing of the underlying functionality. If
the TPM implements this implicit self-test, it may immediately return a result code
indicating that it is doing self-test. Alternatively, it may do the self-test, then do the
command, and return only the result code of the command.

Programmers of TPM drivers should take into account the time estimates for self-test and
minimize the polling for self-test completion. While self-test is executing, the TPM may
return an out-of-band “busy” signal to prevent command from being issued. Alternatively,
the TPM may accept the command but delay execution until after the self-test completes.
Either of those alternatives may appear as if the TPM is blocking to upper software layers.
Alternatively, the TPM may return an indication that is doing a self-test.

Upon the completion of the self-tests, the result of the self-tests are held in the TPM such
that a subsequent call to TPM_GetTestResult returns the self-test result.

In version 1.1, there was a separate command to create a signed self-test,
TPM_CertifySelfTest. Version 1.2 deprecates the command. The new use model is to perform
TPM_GetTestResult inside of a transport session and then use
TPM_ReleaseTransportSigned to obtain the signature.

If self-tests fail, the TPM goes into failure state and does not allow most other operations to
continue. The TPM_GetTestResult will operate in failure mode so an outside observer can
obtain information as to the reason for the self-test failure.

A TPM may take three courses of action when presented with a command that requires an
untested resource.

1. The TPM may return TPM_NEEDS_SELFTEST, indicating that the execution of the
command requires TPM_ContinueSelfTest.

44 TCG Published Revision 116 1 Marchy 2011
TCG Published

248
249

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

250
251

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

2. The TPM may implicitly execute the self-test and return a TPM_DOING_SELFTEST
return code, causing the external software to retry the command.

3. The TPM may implicitly execute the self-test, execute the ordinal, and return the results
of the ordinal.

The following example shows how software can detect either mechanism with a single piece
of code

1. SW sends TPM_xxx command

2. SW checks return code from TPM

3. If return code is TPM_DOING_SELFTEST, SW attempts to resend

 a. If the TIS times out waiting for TPM ready, pause for self-test time then resend

 b. if TIS timeout, then error

4. else if return code is TPM_NEEDS_SELFTEST

a. Send TPM_ContinueSelfTest

5. else

a. Process the ordinal return code

End of informative comment
1. The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow

the self-tests to be run on demand. The response from the self-tests is pass or fail.

2. The TPM MUST complete the startup self-tests in a manner and timeliness that allows
the TPM to be of use to the BIOS during the collection of integrity metrics.

3. The TPM MUST complete the required checks before a given feature is in use. If a
function self-test is not complete the TPM MUST return TPM_NEEDS_SELFTEST or
TPM_DOING_SELFTEST, or do the self-test before using the feature.

4. There are two sections of startup self-tests: required and recommended. The
recommended tests are not a requirement due to time constraints. The TPM
manufacturer should perform as many tests as possible within the time constraints.

5. The TPM MUST report the result of the tests that it performs.

6. The TPM MUST provide a mechanism to allow self-test to execute on request by any
challenger.

7. The TPM MUST provide for testing of some operations during each execution of the
operation.

8. The TPM MUST check the following:

a. RNG functionality

b. Reading and extending the integrity registers. The self-test for the integrity registers
will leave the integrity registers in a known state.

c. Testing the EK integrity, if it exists

Revision 116 1 Marchy 2011 TCG Published 45
TCG Published

252
253

254
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

255
256

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

i. This requirement specifies that the TPM will verify that the endorsement key pair
can encrypt and decrypt a known value. This tests the RSA engine. If the EK has
not yet been generated the TPM action is manufacturer specific.

d. The integrity of the protected capabilities of the TPM

i. This means that the TPM must ensure that its “microcode” has not changed, and
not that a test must be run on each function.

e. Any tamper-resistance markers

i. The tests on the tamper-resistance or tamper-evident markers are under
programmable control. There is no requirement to check tamper-evident tape or
the status of epoxy surrounding the case.

9. The TPM MUST check the following:

a. The hash functionality

i. This check MAY hash a known value and compare it to an expected result.

b. Any symmetric algorithms

i. This check MAY use known data with a random key to encrypt and decrypt the
data

c. Any asymmetric algorithms

i. This check MAY use known data to encrypt and decrypt.

d. Any hardware crypto accelerators

10.Self-Test Failure

a. When the TPM detects a failure during any self-test, the TPM MUST enter shutdown
mode. This shutdown mode will allow only the following operations to occur:

i. Update. The update function MAY replace invalid microcode, providing that the
parts of the TPM that provide update functionality have passed self-test.

ii. TPM_GetTestResult. This command can assist the TPM manufacturer in
determining the cause of the self-test failure.

iii. TPM_GetCapability may return limited information as specified in the ordinal.

iv. All other operations will return the error code TPM_FAILEDSELFTEST.

b. The TPM MUST leave failure mode only after receipt of TPM_Init.

c. When the TPM detects a failure during any self-test, it SHOULD delete values
preserved by TPM_SaveState.

11.Prior to the completion of the actions of TPM_ContinueSelfTest the TPM MAY respond in
two ways

a. The TPM MAY automatically invoke the actions of TPM_ContinueSelfTest.

i. The TPM MAY return TPM_DOING_SELFTEST.

ii. The TPM may complete the self-test, execute the command, and return the
command result.

b. The TPM MAY return the error code TPM_NEEDS_SELFTEST

46 TCG Published Revision 116 1 Marchy 2011
TCG Published

257
258

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

259
260

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

9.3 Startup
Start of informative comment
Startup transitions the TPM from the initialization state to an operational state. The
transition includes information from the platform to inform the TPM of the platform
operating state. TPM_Startup has three options: Clear, State and Deactivated.

The Clear option informs the TPM that the platform is starting in a “cleared” state or most
likely a complete reboot. The TPM is to set itself to the default values and operational state
specified by the TPM Owner.

The State option informs the TPM that the platform is requesting the TPM to recover a saved
state and continue operation from the saved state. The platform previously made the
TPM_SaveState request to the TPM such that the TPM prepares values to be recovered later.
If the TPM enters failure mode after TPM_SaveState, the saved state should be deleted. It is
then possible that the State option will fail.

The Deactivated state informs the TPM that it should not allow further operations and
should fail all subsequent command requests. The Deactivated state can only be reset by
performing another TPM_Init.

End of informative comment

9.4 Operational Mode
Start of informative comment
After the TPM completes both TPM_Startup and self-tests, the TPM is ready for operation.

There are three discrete states, enabled or disabled, active or inactive and owned or
unowned. These three states when combined form eight operational modes.

Figure 9:d - Eight Modes of Operation

S1 is the fully operational state where all TPM functions are available. S8 represents a mode
where all TPM features (except those to change the state) are off.

Revision 116 1 Marchy 2011 TCG Published 47
TCG Published

261
262

263
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

1704
1705
1706
1707
1708

1709
1710
1711
1712

264
265

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Given the eight modes of operation, the TPM can be flexible in accommodating a wide range
of usage scenarios. The default delivery state for a TPM should be S8 (disabled, inactive and
unowned). In S8, the only mechanism available to move the TPM to S1 is having physical
access to the platform.

Two examples illustrate the possibilities of shipping combinations.

Example 1

The customer does not want the TPM to attest to any information relative to the platform.
The customer does not want any remote entity to attempt to change the control options that
the platform owner is setting. For this customer the platform manufacturer sets the TPM in
S8 (disabled, deactivated and unowned).

To change the state of the platform the platform owner would assert physical presence and
enable, activate and insert the TPM Owner shared secret. The details of how to change the
various modes is in subsequent sections.

This particular sequence gives maximum control to the customer.

Example 2

A corporate customer wishes to have platforms shipped to their employees and the IT
department wishes to take control of the TPM remotely. To satisfy these needs the TPM
should be in S5 (enabled, active and unowned). When the platform connects to the
corporate LAN the IT department would execute the TPM_TakeOwnership command
remotely.

This sequence allows the IT department to accept platforms into their network without
having to have physical access to each new machine.

End of informative comment
The TPM MUST have commands to perform the following:

1. Enable and disable the TPM. These commands MUST work as TPM Owner authorized or
with the assertion of physical presence

2. Activate and deactivate the TPM. These commands MUST work as TPM Owner
authorized or with the assertion of physical presence

3. Activate and deactivate the ability to take ownership of the TPM

4. Assert ownership of the TPM.

9.4.1 Enabling a TPM
Informative comment
A disabled TPM is not able to execute commands that use the resources of a TPM. While
some commands are available (SHA-1 for example) the TPM is not able to load keys and
perform TPM_Seal and other such operations. These restrictions are the same as for an
inactive TPM. The difference between inactive and disabled is that a disabled TPM is unable
to execute the TPM_TakeOwnership command. A disabled TPM that has a TPM Owner is not
able to execute normal TPM commands.

48 TCG Published Revision 116 1 Marchy 2011
TCG Published

266
267

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

1743
1744
1745
1746
1747
1748
1749
1750

268
269

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

pFlags.tpmDisabled contains the current enablement status. When set to TRUE the TPM is
disabled, when FALSE the TPM is enabled.

Changing the setting pFlags.tpmDisabled has no effect on any secrets or other values held
by the TPM. No keys, monotonic counters or other resources are invalidated by changing
TPM enablement. There is no guarantee that session resources (like transport sessions)
survive the change in enablement, but there is no loss of secrets.

The TPM_OwnerSetDisable command can be used to transition in either Enabled or
Disabled states. The desired state is a parameter to TPM_OwnerSetDisable. This command
requires TPM Owner authentication to operate. It is suitable for post-boot and remote
invocation.

An unowned TPM requires the execution of TPM_PhysicalEnable to enable the TPM and
TPM_PhysicalDisable to disable the TPM. Operators of an owned TPM can also execute
these two commands. The use of the physical commands allows a platform operator to
disable the TPM without TPM Owner authorization.

TPM_PhysicalEnable transitions the TPM from Disabled to Enabled state. This command is
guarded by a requirement of operator physical presence. Additionally, this command can be
invoked by a physical event at the platform, whether or not the TPM has an Owner or there
is a human physically present. This command is suitable for pre-boot invocation.

TPM_PhysicalDisable transitions the TPM from Enabled to Disabled state. It has the same
guard and invocation properties as TPM_PhysicalEnable.

The subset of commands the TPM is able to execute is defined in the structures document
in the persistent flag section.

Misuse of the disabled state can result in denial-of-service. Proper management of Owner
AuthData and physical access to the platform is a critical element in ensuring availability of
the system.

End of informative comment
1. The TPM MUST provide an enable and disable command that is executed with TPM

Owner authorization.

Revision 116 1 Marchy 2011 TCG Published 49
TCG Published

270
271

272

1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

273
274

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

2. The TPM MUST provide an enable and disable command this is executed locally using
physical presence.

9.4.2 Activating a TPM
Informative comment
A deactivated TPM is not able to execute commands that use TPM resources. A major
difference between deactivated and disabled is that a deactivated TPM CAN execute the
TPM_TakeOwnership command.

Deactivated may be used to prevent the (obscure) attack where a TPM is readied for
TPM_TakeOwnership but a remote rogue manages to take ownership of a platform just
before the genuine owner, and immediately has use of the TPM’s facilities. To defeat this
attack, a genuine owner should set disable==FALSE, ownership==TRUE, deactivate==TRUE,
execute TPM_takeOwnership, and then set deactivate==FALSE after verifying that the
genuine owner is the actual TPM owner.

Activation control is with both persistent and volatile flags. The persistent flag is never
directly checked by the TPM, rather it is the source of the original setting for the volatile
flag. During TPM initialization the value of pFlags.tpmDeactivated is copied to
vFlags.tpmDeactivated. When the TPM execution engine checks for TPM activation, it only
references vFlags.tpmDeactivated.

Toggling the state of pFlags.tpmDeactivated uses TPM_PhysicalSetDeactivated. This
command requires physical presence. There is no associated TPM Owner authenticated
command as the TPM Owner can always execute TPM_OwnerSetDisabled which results in
the same TPM operations. The toggling of this flag does not affect the current operation of
the TPM but requires a reboot of the platform such that the persistent flag is again copied
to the volatile flag.

The volatile flag, vFlags.tpmDeactivated, is set during initialization by the value of
pFlags.tpmDeactivated. If vFlags.tpmDeactivated is TRUE the only way to reactivate the
TPM is to reboot the platform and have pFlags reset the vFlags value.

If vFlags.tpmDeactivated is FALSE, running TPM_SetTempDeactivated will set
vFlags.tpmDeactivated to TRUE and then require a reboot of the platform to reactivate the
platform.

50 TCG Published Revision 116 1 Marchy 2011
TCG Published

275
276

1780
1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

277
278

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Figure 9:e - Activated and Deactivated States

TPM activation is for Operator convenience. It allows the operator to deactivate the platform
(temporarily, using TPM_SetTempDeactivated) during a user session when the operator does
not want to disclose platform or attestation identity. This provides operator privacy, since
PCRs could provide cryptographic proof of an operation. PCRs are inaccessible when a TPM
is deactivated. They cannot be used for authorization, nor can they be read. The reboot
required to activate a TPM also resets the PCRs.

The subset of commands that are available when the TPM is deactivated is contained in the
structures document. The TPM_TakeOwnership command is available when deactivated.
The TPM_Extend command is available when deactivated so that software (e.g. a BIOS) can
run the command without the need to handle an error. The PCR extend operation is
irrelevant, since the resulting PCR value cannot be used.

End of informative comment
1. The TPM MUST maintain a non-volatile flag that indicates the activation state

2. The TPM MUST provide for the setting of the non-volatile flag using a command that
requires physical presence

3. The TPM MUST sets a volatile flag using the current setting of the non-volatile flag.

4. The TPM MUST provide for a command that deactivates the TPM immediately

5. The only mechanism to reactivate a TPM once deactivated is to power-cycle the system.

9.4.3 Taking TPM Ownership
Start of informative comment
The owner of the TPM has ultimate control of the TPM. The owner of the TPM can enable or
disable the TPM, create AIK and set policies for the TPM. The process of taking ownership
must be a tightly controlled process with numerous checks and balances.

The protections around the taking of ownership include the enablement status, specific
persistent flags and the assertion of physical presence.

Revision 116 1 Marchy 2011 TCG Published 51
TCG Published

279
280

281

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

1830
1831
1832
1833
1834
1835
1836

282
283

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Control of the TPM revolves around knowledge of the TPM Owner authentication value.
Proving knowledge of authentication value proves the calling entity is the TPM Owner. It is
possible for more than one entity to know the TPM Owner authentication value.

The TPM provides no mechanisms to recover a lost TPM Owner authentication value.

Recovery from a lost or forgotten TPM Owner authentication value involves removing the old
value and installing a new one. The removal of the old value invalidates all information
associated with the previous value. Insertion of a new value can occur after the removal of
the old value.

A disabled and inactive TPM that has no TPM Owner cannot install an owner.

To invalidate the TPM Owner authentication value use either TPM_OwnerClear or
TPM_ForceClear.

End of informative comment
1. The TPM Owner authentication value MUST be a 160-bits

2. The TPM Owner authentication value MUST be held in persistent storage

3. The TPM MUST have no mechanisms to recover a lost TPM Owner authentication value

9.4.3.1 Enabling Ownership
Informative comment
For the TPM_TakeOwnership command to succeed, pFlags.disable must be FALSE and
pFlags.ownership must be TRUE.

The following diagram shows the states and the operational checks the TPM makes before
allowing the insertion of the TPM Ownership value.

52 TCG Published Revision 116 1 Marchy 2011
TCG Published

284
285

1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851

1852
1853
1854
1855
1856
1857
1858

286
287

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

DP P006 Rev 01

Operational

H

[Disabled]

Take Ownership

[Enabled]

[Owned] [Unowned]

[Ownership Allowed]

[Ownership Not Allowed]

The TPM checks pFlags.disable. If the TPM is enabled, the TPM checks for the existence of
a TPM Owner. If an Owner is not present, the TPM checks pFlags.ownership. If TRUE, the
TPM_TakeOwnership command will execute.

While the TPM has no Owner but is enabled and active, a limited subset of commands will
successfully execute.

The TPM_SetOwnerInstall command toggles the state of the pFlags.ownership flag.
TPM_SetOwnerInstall requires the assertion of physical presence to execute.

End of informative comment

9.4.4 Transitioning Between Operational States
Start of informative comment
The following table is a recap of the commands necessary to transition a TPM from one state
to another.

State TPM Owner Auth Physical Presence Persistence

Disabled to Enabled TPM_OwnerSetDisable TPM_PhysicalEnable permanent

Enabled to Disabled TPM_OwnerSetDisable TPM_PhysicalDisable permanent

Inactive to Active TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_SetTempDeactivated boot cycle

Revision 116 1 Marchy 2011 TCG Published 53
TCG Published

288
289

290

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

1870
1871
1872
1873

1874

291
292

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

9.5 Clearing the TPM
Start of informative comment
Clearing the TPM is the process of returning the TPM to factory defaults. It is possible the
platform owner will change when in this state.

The commands to clear a TPM require either TPM Owner authentication or the assertion of
physical presence.

The clear process performs the following tasks:

Invalidate the SRK. Once invalidated all information stored using the SRK is now
unavailable. The invalidation does not change the blobs using the SRK rather there is no
way to decrypt the blobs after invalidation of the SRK.

Invalidate tpmProof. tpmProof is a value that provides the uniqueness to values stored off of
the TPM. By invalidating tpmProof all off TPM blobs will no longer load on the TPM.

Invalidate the TPM Owner authentication value. With the authentication value invalidated
there are no TPM Owner authenticated commands that will execute.

Reset volatile and non-volatile data to manufacturer defaults.

The clear must not affect the EK.

Once cleared the TPM will return TPM_NOSRK to commands that require authentication.

The PCR values are undefined after a clear operation. The TPM must go through TPM_Init to
properly set the PCR values.

Clear authentication comes from either the TPM owner or the assertion of physical
presence. As the clear commands present a real opportunity for a denial of service attack
there are mechanisms in place disabling the clear commands.

Disabling TPM_OwnerClear uses the TPM_DisableOwnerClear command. The state of ability
to execute TPM_OwnerClear is then held as one of the non-volatile flags.

Enablement of TPM_ForceClear is held in the volatile disableForceClear flag.
disableForceClear is set to FALSE during TPM_Init. To disable the command software
should issue the TPM_DisableForceClear command.

During the TPM startup processing anyone with physical access to the machine can issue
the TPM_ForceClear command. This command performs the clear operations if it has not
been disabled by vFlags.DisabledForceClear being TRUE.

The TPM can be configured to block all forms of clear operations. It is advisable to block
clear operations to prevent an otherwise trivial denial-of-service attack. The assumption is
the system startup code will issue the TPM_DisableForceClear on each power-cycle after it
is determined the TPM_ForceClear command will not be necessary. The purpose of the
TPM_ForceClear command is to recover from the state where the Owner has lost or
forgotten the TPM Owner-authentication-data.

The TPM_ForceClear must only be possible when the issuer has physical access to the
platform. The manufacturer of a platform determines the exact definition of physical access.

54 TCG Published Revision 116 1 Marchy 2011
TCG Published

293
294

1875

1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

295
296

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The commands to clear a TPM require either TPM Owner authentication, TPM_OwnerClear,
or the assertion of physical presence, TPM_ForceClear.

End of informative comment
1. The TPM MUST support the clear operations.

a. Clear operations MUST be authenticated by either the TPM Owner or physical
presence

b. The TPM MUST support mechanisms to disable the clear operations

2. The clear operation MUST perform at least the following actions

a. SRK invalidation

b. tpmProof invalidation

c. TPM Owner authentication value invalidation

d. Resetting non-volatile values to defaults

e. Invalidation of volatile values

f. Invalidation of internal resources

3. The clear operation must not affect the EK.

Revision 116 1 Marchy 2011 TCG Published 55
TCG Published

297
298

299
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

300
301

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

10. Physical Presence
Start of informative comment
This specification describes commands that require physical presence at the platform before
the command will operate. Physical presence implies direct interaction by a person – i.e.
Operator with the platform / TPM.

The type of controls that imply special privilege include:

• Clearing an existing Owner from the TPM,

• Temporarily deactivating a TPM,

• Temporarily disabling a TPM.

Physical presence implies a level of control and authorization to perform basic
administrative tasks and to bootstrap management and access control mechanisms.

Protection of low-level administrative interfaces can be provided by physical and electrical
methods; or by software; or a combination of both. The guiding principle for designers is the
protection mechanism should be difficult or impossible to spoof by rogue software.
Designers should take advantage of restricted states inherent in platform operation. For
example, in a PC, software executed during the power-on self-test (POST) cannot be
disturbed without physical access to the platform. Alternatively, a hardware switch
indicating physical presence is very difficult to circumvent by rogue software or remote
attackers.

TPM and platform manufacturers will determine the actual implementation approach. The
strength of the protection mechanisms is determined by an evaluation of the platform.

Physical presence indication is implemented as a flag in volatile memory known as the
physicalPresenceV flag. When physical presence is established (TRUE) several TPM
commands are able to function. They include:

TPM_PhysicalEnable,

TPM_PhysicalDisable,

TPM_PhysicalSetDeactivated,

TPM_ForceClear,

TPM_SetOwnerInstall,

In order to execute these commands, the TPM must obtain unambiguous assurance that
the operation is authorized by physical-presence at the platform. The command processor
in the I/O component checks the physicalPresenceV flag before continuing processing of
TPM command blocks. The volatile physicalPresenceV flag is set only while the Operator is
indeed physically present.

TPM designers should take precautions to ensure testing of the physicalPresenceV flag
value is not mask-able. For example, a special bus cycle could be used or a dedicated line
implemented.

There is an exception to physical presence semantics that allows a remote entity the ability
to assert physical presence when that entity is not physically present. The
TSC_PhysicalPresence command is used to change polarity of the physicalPresenceV flag.

56 TCG Published Revision 116 1 Marchy 2011
TCG Published

302
303

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

304
305

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Its use is heavily guarded. See sections describing the TPM Opt-In component; and Volatile
and Non-volatile memory components.

The following diagram illustrates the flow of logic controlling updates to the
physicalPresenceV flag:

AND

HW pin

physicalPresenceCMDEnable

physicalPresenceCMDEnableV
OR

physicalPresenceHWEnable

AND

TSC_PhysicalPresence()

PhysicalPresenceV
NOT

Rev 0.3

Figure 10:f - Physical Presence Control Logic

This diagram shows that the physicalPresenceV flag may be updated either by a HW pin or
through the TSC_PhysicalPresence command, but gated by persistent control flags and a
temporal lock. Observe, the reverse logic surrounding the use of TSC_PhysicalPresence
command. When the physicalPresenceCMDEnable flag is set and the physicalPresenceLock
flag is not set, the TSC_PhysicalPresence command may set physicalPresenceV.

The physicalPresenceV flag may be overridden by unambiguous physical presence.
Conceptually, the use of dedicated electrical hardware providing a trusted path to the
Operator has higher precedence than the physicalPresenceV flag value. Implementers
should consider this when implementing physical presence indicators.

End of informative comment
1. The requirement for physical presence MUST be met by the platform manufacturer

using some physical mechanism.

2. It SHALL be impossible to intercept or subvert indication of physical presence to the
TPM by the execution of software on the platform.

Revision 116 1 Marchy 2011 TCG Published 57
TCG Published

306
307

308
1969
1970
1971
1972

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

309
310

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

11. Root of Trust for Reporting (RTR)
Start of informative comment
The RTR is responsible for establishing platform identities, reporting platform
configurations, protecting reported values, and providing a function for attesting to reported
values. The RTR shares responsibility of protecting measurement digests with the RTS.

The interaction between the RTR and RTS is a critical component. The design and
implementation of the interaction between the RTR and RTS should mitigate observation
and tampering with the messages. It is strongly encouraged that the RTR and RTS
implementation occur in the same package such there are no external observation points.
For a silicon based TPM this would imply that the RTR and RTS are in the same silicon
package with no external busses.

End of informative comment
1. An instantiation of the RTS and RTR SHALL do the following:

a. Be resistant to all forms of software attack and to the forms of physical attack
implied by the platform’s Protection Profile

b. Supply an accurate digest of all sequences of presented integrity metrics

11.1 Platform Identity
Start of informative comment
The RTR is a cryptographic identity used to distinguish and authenticate an individual
TPM. The TPM uses the RTR to answer an integrity challenge.

In the TPM, the Endorsement Key (EK) is the RTR. The EK is cryptographically unique and
bound to the TPM.

Prior to any use of the TPM, the RTR must be instantiated. Instantiation may occur during
TPM manufacturing or platform manufacturing. The business issues and manufacturing
flow determines how a specific TPM and platform is initialized with the EK.

As the RTR is cryptographically unique, the use of the RTR must only occur in controlled
circumstances due to privacy concerns. The EK is only available for two operations:
establishing the TPM Owner and establishing Attestation Identity Key (AIK) values and
credentials. There is a prohibition on the use of the EK for any other operation.

End of informative comment
1. The RTR MUST have a cryptographic identity.

a. The cryptographic identity of the RTR is the Endorsement Key (EK).

2. The EK MUST be

a. Statistically unique

i. When the TPM is in FIPS mode, the EK MUST be generated using a random
number generator that meets FIPS requirements.

ii. Difficult to forge or counterfeit

b. Verifiable during the AIK creation process

58 TCG Published Revision 116 1 Marchy 2011
TCG Published

311
312

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

313
314

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. The EK SHALL only participate in

a. TPM Ownership insertion

b. AIK creation and verification

11.2 RTR to Platform Binding
Start of informative comment
When performing validation of the EK and the platform the challenger wishes to have
knowledge of the binding of RTR to platform. The RTR is bound to a TPM hence if the
platform can show the binding of TPM to platform the challenger can reasonably believe the
RTR and platform binding.

The TPM cannot provide all of the information necessary for the challenger to trust in the
binding. That information comes from the manufacturing process and occurs outside the
control of the TPM.

End of informative comment
1. The EK is transitively bound to the Platform via the TPM as follows:

a. An EK is bound to one and only one TPM (i.e., there is a one to one correspondence
between an Endorsement Key and a TPM.)

b. A TPM is bound to one and only one Platform. (i.e., there is a one to one
correspondence between a TPM and a Platform.)

c. Therefore, an EK is bound to a Platform. (i.e., there is a one to one correspondence
between an Endorsement Key and a Platform.)

11.3 Platform Identity and Privacy Considerations
Start of informative comment
The uniqueness property of cryptographic identities raises concerns that use of that identity
could result in aggregation of activity logs. Analysis of the aggregated activity could reveal
personal information that a user of a platform would not otherwise approve for distribution
to the aggregators. Both EK and AIK identities have this property.

To counter undesired aggregation, TCG encourages the use of domain specific AIK keys and
restricts the use of the EK key. The platform owner controls generation and distribution of
AIK public keys.

If a digital signature was performed by the EK, then any entity could track the use of the
EK. So use of the EK as a signature is cryptographically sound, but this does not ensure
privacy. Therefore, a mechanism to allow verifiers (human or machine) to determine that
the TPM really signed the message without using the EK is required.

End of informative comment

11.4 Attestation Identity Keys
Start of informative comment
An Attestation Identity Key (AIK) is an alias for the Endorsement Key (EK). The EK cannot
perform signatures for security reasons and due to privacy concerns.

Revision 116 1 Marchy 2011 TCG Published 59
TCG Published

315
316

317
2027
2028
2029

2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

2061
2062
2063
2064

318
319

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Generation of an AIK can occur anytime after establishment of the TPM Owner. The TPM
can create a virtually unlimited number of AIK.

The TPM Owner controls all aspects of the generation and activation of an AIK. The TPM
Owner controls any data associated with the AIK. The AIK credential may contain
application specific information. The AIK must contain identification such that the TPM can
properly enforce the restrictions placed on an AIK.

The AIK is an asymmetric key pair. For interoperability, the AIK is an RSA 2048-bit key. The
TPM must protect the private portion of the asymmetric key and ensure that the value is
never exposed. The user of an AIK must prove knowledge of the 160-bit AIK authorization
value to use the AIK.

An AIK is a signature key, and is never used for encryption. It only signs information
generated internally by the TPM. The data could include PCR, other keys and TPM status
information. The AIK must never sign arbitrary external data, since it would be possible for
an attacker to create a block of data that appears to be a PCR value.

AIK creation involves two TPM commands.

The TPM_MakeIdentity command causes the TPM to generate the AIK key pair. The
command also discloses the EK-AIK binding to the service that will issue the AIK credential.

The TPM_ActivateIdentity command unwraps a session key that allows for the decryption of
the AIK credential. The session key was encrypted using the PUBEK and requires the
PRIVEK to perform the decryption.

Use of the AIK credential is outside of the control of the TPM.

End of informative comment
1. The TPM MUST permanently mark an AIK such that, for all subsequent uses of the AIK,

the AIK restrictions are enforced.

2. An AIK MUST be:

a. Statistically unique

b. Difficult to forge or counterfeit

c. Verifiable to challengers

3. For interoperability the AIK MUST be

a. An RSA 2048-bit key

4. The AIK MUST only sign data generated by the TPM

11.4.1 AIK Creation
Start of informative comment
As the AIK is an alias for the EK. The AIK creation process requires TPM Owner
authorization. The process actually requires two TPM Owner authorizations; creation and
credential activation.

The AIK credential creation process is outside the control of the TPM. However, the
certification authority (CA) will attest (with the AIK credential) that the AIK is tied to valid
Endorsement, Platform and Conformance credentials.

60 TCG Published Revision 116 1 Marchy 2011
TCG Published

320
321

2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

2096
2097
2098
2099
2100
2101
2102
2103

322
323

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Without these credentials, the AIK cannot prove that PCR values belong to a TPM. An owner
may decide to trust any key generated by TPM_MakeIdentity without activating the identity
(e.g., because he is an administrator in a controlled company environment). In this case,
the owner needs no credential. Another challenger can only trust that the AIK belongs to a
TPM by seeing the credential of a trustworthy CA.

End of informative comment
1. The TPM Owner MUST authorize the AIK creation process.

2. The TPM MUST use a protected function to perform the AIK creation.

3. The TPM Owner MUST indicate the entity that will provide the AIK credential as part of
the AIK creation process.

4. The TPM Owner MAY indicate that NO credential will ever be created. If the TPM Owner
does indicate that no credential will be provided the TPM MUST ensure that no
credential can be created.

5. The TTP MAY apply policies to determine if the presented AIK should be granted a
credential.

6. The credential request package MUST be useable by only the Privacy CA selected by the
TPM Owner.

7. The AIK credential MUST be only obtainable by the TPM that created the AIK credential
request.

11.4.2 AIK Storage
Start of informative comment
The AIK may be stored on some general-purpose storage device.

When held outside of the TPM the AIK sensitive data must be encrypted and integrity
protected.

End of informative comment
1. When held outside of the TPM AIK encryption and integrity protection MUST protect the

AIK sensitive information

2. The migration of AIK from one TPM to another MUST be prohibited

Revision 116 1 Marchy 2011 TCG Published 61
TCG Published

324
325

326
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122

2123
2124
2125
2126
2127
2128
2129
2130
2131

327
328

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

12. Root of Trust for Storage (RTS)
Start of informative comment
The RTS provides protection on data in use by the TPM but held in external storage devices.
The RTS provides confidentiality and integrity for the external blobs.

The RTS also provides the mechanism to ensure that the release of information only occurs
in a named environment. The naming of an environment uses the PCR selection to
enumerate the values.

Data protected by the RTS can migrate to other TPM.

End of informative comment
1. The number and size of values held by the RTS SHOULD be limited only by the volume

of storage available on the platform

2. The TPM MUST ensure that TPM_PERMANENT_DATA -> tpmProof is only inserted into
TPM internally generated and non-migratable information.

12.1 Loading and Unloading Blobs
Start of informative comment
The TPM provides several commands to store and load RTS controlled data.

Class Command Analog Comment

1 Data / Internal / TPM TPM_MakeIdentity TPM_ActivateIdentity Special purpose data

2 Data / External / TPM TSS_Bind TPM_Unbind

3 Data / Internal / PCR TPM_Seal TPM_Unseal

4 Data / External / PCR

5 Key / Internal / TPM TPM_CreateWrapKey TPM_LoadKey

6 Key / External / TPM TSS_WrapKey TPM_LoadKey

7 Key / Internal / PCR

8 Key / External / PCR TSS_WrapKeyToPcr TPM_LoadKey

62 TCG Published Revision 116 1 Marchy 2011
TCG Published

329
330

2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

2145
2146
2147

331
332

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

13. Transport Sessions and Authorization Protocols
Start of informative comment
The purpose of the authorization protocols and mechanisms is to prove to the TPM that the
requestor has permission to perform a function and use some object. The proof comes from
the knowledge of a shared secret.

AuthData is available for the TPM Owner and each entity (keys, for example) that the TPM
controls. The AuthData for the TPM Owner and the SRK are held within the TPM itself and
the AuthData for other entities are held with the entity.

The TPM Owner AuthData allows the Owner to prove ownership of the TPM. Proving
ownership of the TPM does not immediately allow all operations – the TPM Owner is not a
“super user” and additional AuthData must be provided for each entity or operation that
has protection.

The TPM treats knowledge of the AuthData as complete proof of ownership of the entity. No
other checks are necessary. The requestor (any entity that wishes to execute a command on
the TPM or use a specific entity) may have additional protections and requirements where
he or she (or it) saves the AuthData; however, the TPM places no additional requirements.

There are three protocols to securely pass a proof of knowledge of AuthData from requestor
to TPM; the “Object-Independent Authorization Protocol” (OIAP), the “Object-Specific
Authorization Protocol” (OSAP) and the “Delegate-Specific Authorization Protocol” (DSAP).
The OIAP supports multiple authorization sessions for arbitrary entities. The OSAP
supports an authentication session for a single entity and enables the confidential
transmission of new authorization information. The DSAP supports the delegation of owner
or entity authorization.

New authorization information is inserted by the “AuthData Insertion Protocol” (ADIP)
during the creation of an entity. The “AuthData Change Protocol” (ADCP) and the
“Asymmetric Authorization Change Protocol” (AACP) allow the changing of the AuthData for
an entity. The protocol definitions allow expansion of protocol types to additional TCG
required protocols and vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in
use only for a message and its reply. For instance, the TPM would create a nonce and send
that on a reply. The requestor would receive that nonce and then include it in the next
request. The TPM would validate that the correct nonce was in the request and then create
a new nonce for the reply. This mechanism is in place to prevent replay attacks and man-
in-the-middle attacks.

The basic protocols do not provide long-term protection of AuthData that is the hash of a
password or other low-entropy entities. The TPM designer and application writer must
supply additional protocols if protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and
parameter authentication and prevent replay and man-in-the-middle attacks.

The passing of the AuthData, nonces and other parameters must follow specific guidelines
so that commands coming from different computer architectures will interoperate properly.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 63
TCG Published

333
334

335

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

336
337

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

1. AuthData MUST use one of the following protocols

a. OIAP

b. OSAP

c. DSAP

2. Entity creation MUST use one of the following protocols

a. ADIP

3. Changing AuthData MUST use one of the following protocols

a. ADCP

b. AACP

4. The TPM MAY support additional protocols to authenticate, insert and change
AuthData.

5. When a command has more than one AuthData value

a. Each AuthData MUST use the same SHA-1 of the parameters

6. Keys MAY specify authDataUsage -> TPM_AUTH_NEVER

a. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to
TPM_TAG_RQU_XXX the TPM SHALL ignore the AuthData values

b. If the caller leaves the tag as TPM_TAG_RQU_AUTH1

i. The TPM will compute the AuthData based on the value store in the AuthData
location within the key, IGNORING the state of the AuthDataUsage flag.

c. Users may choose to use a well-known value for the AuthData when setting
AuthDataUsage to TPM_AUTH_NEVER.

d. If a key has AuthDataUsage set to TPM_AUTH_ALWAYS but is received in a
command with the tag TPM_TAG_RQU_COMMAND, the command MUST return an
error code.

7. For commands that normally have 2 authorization sessions, if the tag specifies only one
in the parameter array, then the first session listed is ignored (authDataUsage must be
TPM_AUTH_NEVER for this key) and the incoming session data is used for the second
auth session in the list.

8. Keys MAY specify AuthDataUsage -> TPM_NO_READ_PUBKEY_AUTH

a. If the key used in a command to read the public portion of the key (e.g.
TPM_CertifyKey, TPM_GetPubKey)

i. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to
TPM_TAG_RQU_XXX, the TPM SHALL ignore the AuthData values

ii. If the caller leaves the tag as TPM_TAG_RQU_AUTH1, the TPM will compute the
AuthData based on the value store in the AuthData location within the key,
IGNORING the state of the AuthDataUsage flag

b. else if the key used in command to read/access the private portion of the key(e.g.
TPM_Sign)

64 TCG Published Revision 116 1 Marchy 2011
TCG Published

338
339

2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227

340
341

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

i. If the tag is TPM_TAG_RQU_COMMAND, the command MUST return an error
code.

Revision 116 1 Marchy 2011 TCG Published 65
TCG Published

342
343

344
2228
2229

345
346

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.1 Authorization Session Setup
Start of informative comment
The TPM provides two protocols for authorizing the use of entities without revealing the
AuthData on the network or the connection to the TPM. In both cases, the protocol
exchanges nonce-data so that both sides of the transaction can compute a hash using
shared secrets and nonce-data. Each side generates the hash value and can compare to the
value transmitted. Network listeners cannot directly infer the AuthData from the hashed
objects sent over the network.

The first protocol is the Object-Independent Authorization Protocol (OIAP), which allows the
exchange of nonces with a specific TPM. Once an OIAP session is established, its nonces
can be used to authorize the use of any entity managed by the TPM. The session can live
indefinitely until either party requests the session termination. The TPM_OIAP function
starts the OIAP session.

The second protocol is the Object Specific Authorization Protocol (OSAP). The OSAP allows
establishment of an authentication session for a single entity. The session creates nonces
that can authorize multiple commands without additional session-establishment overhead,
but is bound to a specific entity. The TPM_OSAP command starts the OSAP session. The
TPM_OSAP specifies the entity to which the authorization is bound.

Most commands allow either form of authorization protocol. In general, however, the OIAP
is preferred – it is more generally useful because it allows usage of the same session to
provide authorization for different entities. The OSAP is, however, necessary for operations
that set or reset AuthData.

OIAP sessions were designed for reasons of efficiency; only one setup process is required for
potentially many authorizations.

An OSAP session is doubly efficient because only one setup process is required for
potentially many authorization calculations and the entity AuthData secret is required only
once. This minimizes exposure of the AuthData secret and can minimize human interaction
in the case where a person supplies the AuthData information. The disadvantage of the
OSAP is that a distinct session needs to be setup for each entity that requires authorization.
The OSAP creates an ephemeral secret that is used throughout the session instead of the
entity AuthData secret. The ephemeral secret can be used to provide confidentiality for the
introduction of new AuthData during the creation of new entities. Termination of the OSAP
occurs in two ways. Either side can request session termination (as usual) but the TPM
forces the termination of an OSAP session after use of the ephemeral secret for the
introduction of new AuthData.

For both the OSAP and the OIAP, session setup is independent of the commands that are
authorized. In the case of OIAP, the requestor sends the TPM_OIAP command, and with the
response generated by the TPM, can immediately begin authorizing object actions. The
OSAP is very similar, and starts with the requestor sending a TPM_OSAP operation, naming
the entity to which the authorization session should be bound.

The DSAP session is to provide delegated authorization information.

All session types use a “rolling nonce” paradigm. This means that the TPM creates a new
nonce value each time the TPM receives a command using the session.

66 TCG Published Revision 116 1 Marchy 2011
TCG Published

347
348

2230

2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273

349
350

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Example OIAP and OSAP sessions are used to illustrate session setup and use. The
fictitious command named TPM_Example occupies the place where an ordinary TPM
command might be used, but does not have command specific parameters. The session
connects to a key object within the TPM. The key contains AuthData that will be used to
secure the session.

There could be as many as 2 authorization sessions applied to the execution of a single TPM
command or as few as 0. The number of sessions used is determined by TCG 1.2 Command
Specification and is indicated by the command ordinal parameter.

It is also possible to secure authorization sessions using ephemeral shared-secrets. Rather
than using AuthData contained in the stored object (e.g. key), the AuthData is supplied as a
parameter to OSAP session creation. In the examples below the key.usageAuth parameter is
replaced by the ephemeral secret.

End of informative comment

13.2 Parameter Declarations for OIAP and OSAP Examples
Start of informative comment
To follow OIAP and OSAP protocol examples (Table 13:d and), the reader should become
familiar with the parameters declared in Table 13:b and Table 13:c.

Several conventions are used in the parameter tables that may facilitate readability.

The Param column (Table 13:b) identifies the sequence in which parameters are packaged
into a command or response message as well as the size in bytes of the parameter value. If
this entry in the row is blank, that parameter is not included in the message. <> in the size
column means that the size of the element is variable. It is defined either explicitly by the
preceding parameter, or implicitly by the parameter type.

The HMAC column similarly identifies the parameters that are included in HMAC
calculations. This column also indicates the default parameters that are included in the
audit log. Exceptions are noted under the specific ordinal, e.g. TPM_ExecuteTransport.

The HMAC # column details the parameters used in the HMAC calculation. Parameters 1S,
2S, etc. are concatenated and hashed to inParamDigest or outParamDigest, implicitly called
1H1 and possibly 1H2 if there are two authorization sessions. For the first session, 1H1,
2H1, 3H1, and 4H1 are concatenated and HMAC’ed. For the second session, 1H2, 2H2,
3H2, and 4H2 are concatenated and HMAC’ed.

In general, key handles are not included in HMAC calculations. This allows a lower
software layer to map the physical handle value generated by the TPM to a logical value
used by an upper software layer. The upper layer generally holds the HMAC key and
generates the HMAC. Excluding the key handle allows the mapping to occur without
breaking the HMAC. It is important to use a different authorization secret for each key to
prevent a man-in-the-middle from altering the key handle.

The Type column identifies the TCG data type corresponding to the passed value. An
encapsulation of the parameter type is not part of the command message.

The Name column is a fictitious variable name that aids in following the examples and
descriptions.

Revision 116 1 Marchy 2011 TCG Published 67
TCG Published

351
352

353
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286

2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314

354
355

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The double-lined row separator distinguishes authorization session parameters from
command parameters. In Table 13:b the TPM_Example command has three parameters;
keyHandle, inArgOne and inArgTwo. The tag, paramSize and ordinal parameters are
message header values describing contents of a command message. The parameters below
the double-lined row are OIAP / OSAP /DSAP or transport authorization session related. If
a second authorization session were used, the table would show a second authorization
section delineated by a second double-lined row. The authorization session parameters
identify shared-secret values, session nonces, session digest and flags.

In this example, a single authorization session is used signaled by the
TPM_TAG_RQU_AUTH1_COMMAND tag.

For an OIAP or transport session, the TPM_AUTHDATA description column specifies the
HMAC key.

For an OSAP or DSAP session, the HMAC key is the shared secret that was calculated
during the session setup, not the key specified in the description. The key specified in the
description was previously used in the shared secret calculation.

68 TCG Published Revision 116 1 Marchy 2011
TCG Published

356
357

2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329

358
359

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Param HMAC
Type Name Description

Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key.

5 1 2S 1 BOOL inArgOne The first input argument

6 20 3S 20 UNIT32 inArgTwo The second input argument.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

1
0 20 TPM_AUTHDATA inAuth The AuthData digest for inputs and keyHandle. HMAC key:

key.usageAuth.

Table 13:b - Authorization Protocol Input Parameters

Table 13:c - Authorization Protocol Output Parameters
End of informative comment

Revision 116 1 Marchy 2011 TCG Published 69
TCG Published

Param HMAC
Type Name Description

Sz # Sz

1 2 TPM_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 3S 4 UINT32 outArgOne Output argument

5 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The AuthData digest for the returned parameters. HMAC key:
key.usageAuth.

360
361

362
2330

2331
2332

2333
2334

363
364

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.2.1 Object-Independent Authorization Protocol (OIAP)
Start of informative comment
The purpose of this section is to describe the authorization-related actions of a TPM when it
receives a command that has been authorized with the OIAP protocol. OIAP uses the
TPM_OIAP command to create the authorization session.

Many commands use OIAP authorization. The following description is therefore necessarily
abstract. A fictitious TPM command, TPM_Example is used to represent ordinary TPM
commands.

Assume that a TPM user wishes to send command TPM_Example. This is an authorized
command that uses the key denoted by keyHandle. The user must know the AuthData for
keyHandle (key.usageAuth) as this is the entity that requires authorization and this secret
is used in the authorization calculation. Let us assume for this example that the caller of
TPM_Example does not need to authorize the use of keyHandle for more than one
command. This use model points to the selection of the OIAP as the authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to
execute the command. The following table shows the commands executed, the parameters
created and the wire formats of all of the information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne,
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode,
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order:
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession

There are two even nonces used to execute TPM_Example, the one generated as part of the
TPM_OAIP command (labeled authLastNonceEven below) and the one generated with the
output arguments of TPM_Example (labeled as nonceEven below).

70 TCG Published Revision 116 1 Marchy 2011
TCG Published

365
366

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359

367
368

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Caller On the wire Dir TPM

Send TPM_OIAP TPM_OIAP  Create session
Create authHandle
Associate session and authHandle
Generate authLastNonceEven
Save authLastNonceEven with authHandle

Save authHandle, authLastNonceEven authHandle,
authLastNonceEven

 Returns

Generate nonceOdd
Compute inAuth = HMAC
(key.usageAuth, inParamDigest,
inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal
keyHandle
inArgOne
inArgTwo
authHandle
nonceOdd
continueAuthSession
inAuth

 TPM retrieves key.usageAuth (key must have been previously loaded)
Verify authHandle points to a valid session, mismatch returns
TPM_E_INVALIDAUTH
Retrieve authLastNonceEven from internal session storage
HM = HMAC (key.usageAuth, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(key.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(key.usageAuth,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

Suppose now that the TPM user wishes to send another command using the same session.
For the purposes of this example, we will assume that the same example command is used
(ordinal = TPM_Example). However, a different key (newKey) with its own secret
(newKey.usageAuth) is to be operated on. To re-use the previous session, the
continueAuthSession output boolean must be TRUE.

The previous example shows the command execution reusing an existing authorization
session. The parameters created and the wire formats of all of the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the
output parameters from the first protocol example.

Revision 116 1 Marchy 2011 TCG Published 71
TCG Published

369
370

371
2360

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

372
373

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Caller On the wire Dir TPM

Generate nonceOdd
Compute inAuth = HMAC
(newKey.usageAuth, inParamDigest,
inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal
keyHandle
inArgOne
inArgTwo
nonceOdd
continueAuthSession
inAuth

 TPM retrieves newKey.usageAuth (newKey must have been
previously loaded)
Retrieve authLastNonceEven from internal session storage
HM = HMAC (newKey.usageAuth, inParamDigest,
inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(newKey.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(newKey.usageAuth,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

The TPM user could then use the session for further authorization sessions. Suppose,
however, that the TPM user no longer requires the authorization session. There are three
possibilities in this case:

The user issues a TPM_Terminate_Handle command to the TPM (section 5.3).

The input argument continueAuthSession can be set to FALSE for the last command. In
this case, the output continueAuthSession value will be FALSE.

In some cases, the TPM automatically terminates the authorization session regardless of the
input value of continueAuthSession. In this case as well, the output continueAuthSession
value will be FALSE.

When an authorization session is terminated for any reason, the TPM invalidates the
session’s handle and terminates the session’s thread (releases all resources allocated to the
session).

End of informative comment

OIAP Actions
1. The TPM MUST verify that the authorization handle (H, say) referenced in the command

points to a valid session. If it does not, the TPM returns the error code
TPM_INVALID_AUTHHANDLE

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and
continueAuthSession flag from the input parameter list, and store it in internal TPM
memory with the authSession ‘H’.

72 TCG Published Revision 116 1 Marchy 2011
TCG Published

374
375

2371

2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

2386
2387
2388
2389
2390
2391
2392

376
377

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the
authorization session H (authLastNonceEven) computed during the previously executed
command.

4. The TPM MUST retrieve the secret AuthData (SecretE, say) of the target entity. The entity
and its secret must have been previously loaded into the TPM.

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input
command parameters and authorization parameters according to previously specified
normative regarding HMAC calculation.

6. The TPM SHALL compare HM to the AuthData value received in the input parameters. If
they are different, the TPM returns the error code TPM_AUTHFAIL if the authorization
session is the first session of a command, or TPM_AUTH2FAIL if the authorization
session is the second session of a command. Otherwise, the TPM executes the command
which (for this example) produces an output that requires authentication.

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and
authorization parameters to the same entity secret according to previously specified
normative regarding HMAC calculation.

9. The TPM returns the return code, output parameters, authorization parameters and
AuthData digest.

10.If the output continueUse flag is FALSE, then the TPM SHALL terminate the session.
Future references to H will return an error.

Revision 116 1 Marchy 2011 TCG Published 73
TCG Published

378
379

380
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413

381
382

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.2.2 Object-Specific Authorization Protocol (OSAP)
Start of informative comment
This section describes the actions of a TPM when it receives a TPM command via OSAP
session. Many TPM commands may be sent to the TPM via an OSAP session. Therefore, the
following description is necessarily abstract.

The OSAP session is initialized through the creation of an ephemeral secret which is used to
protect session traffic. Sessions are created using the TPM_OSAP command. This section
illustrates OSAP using a fictitious command called TPM_Example.

Assume that a TPM user wishes to send the TPM_Example command to the TPM. The
keyHandle signifies that an OSAP session is being used and has the value “Auth1”. The
user must know the AuthData for keyHandle (key.usageAuth) as this is the entity that
requires authorization and this secret is used in the authorization calculation.

Let us assume that the sender needs to use this key multiple times but does not wish to
obtain the key secret more than once. This might be the case if the usage AuthData were
derived from a typed password. This use model points to the selection of the OSAP as the
authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to
execute the command. The following table shows the commands executed, the parameters
created and the wire formats of all of the information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne,
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode,
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order:
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession

In addition to the two even nonces generated by the TPM (authLastNonceEven and
nonceEven) that are used for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is
used to generate the shared secret. For every even nonce, there is also an odd nonce
generated by the system.

74 TCG Published Revision 116 1 Marchy 2011
TCG Published

383
384

2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441

385
386

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP
keyHandle
nonceOddOSAP

 Create session & authHandle
Generate authLastNonceEven
Save authLastNonceEven with authHandle
Save the ADIP encryption scheme with authHandle
Generate nonceEvenOSAP
Generate sharedSecret = HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)
Save keyHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven
Generate sharedSecret =
HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)
Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal
keyHandle
inArgOne
inArgTwo
authHandle
nonceOdd
continueAuthSession
inAuth

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL
Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example and create returnCode. If TPM_Example
requires ADIP encryption, use the algorithm indicated when the
OSAP session was set up.
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

Table 13:d - Example OSAP Session

Suppose now that the TPM user wishes to send another command using the same session
to operate on the same key. For the purposes of this example, we will assume that the same
ordinal is to be used (TPM_Example). To re-use the previous session, the
continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire
formats of all of the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the
output parameters from the first execution of TPM_Example.

Revision 116 1 Marchy 2011 TCG Published 75
TCG Published

387
388

389
2442

2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453

390
391

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Caller On the wire Dir TPM

Generate nonceOdd
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal
keyHandle
inArgOne
inArgTwo
nonceOdd
continueAuthSession
inAuth

 Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

Table 13:e - Example Re-used OSAP Session

The TPM user could then use the session for further authorization sessions or terminate it
in the ways that have been described above in TPM_OIAP. Note that termination of the
OSAP session causes the TPM to destroy the shared secret.

End of informative comment

OSAP Actions
1. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target

entity when the authorization session was established with TPM_OSAP. The entity and
its secret must have been previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command
points to a valid session. If it does not, the TPM returns the error code
TPM_INVALID_AUTHHANDLE.

3. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according
to previously specified normative regarding HMAC calculation.

4. The TPM SHALL compare HM1 to the AuthData value received in the command. If they
are different, the TPM returns the error code TPM_AUTHFAIL if the authorization session
is the first session of a command, or TPM_AUTH2FAIL if the authorization session is the
second session of a command., the TPM executes command C1 which produces an
output (O, say) that requires authentication and uses a particular return code (RC, say).

5. The TPM SHALL generate the latest version of the even nonce (nonceEven).

6. The TPM MUST calculate the HMAC (HM2) of the return parameters according to
previously specified normative regarding HMAC calculation.

76 TCG Published Revision 116 1 Marchy 2011
TCG Published

392
393

2454
2455
2456
2457
2458
2459

2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476

394
395

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

7. The TPM returns HM2 in the parameter list.

8. The TPM SHALL retrieve the continue flag from the received command. If the flag is
FALSE, the TPM SHALL terminate the session and destroy the thread associated with
handle H.

9. If the shared secret was used to provide confidentiality for data in the received
command, the TPM SHALL terminate the session and destroy the thread associated with
handle H.

10.Each time that access to an entity (key) is authorized using OSAP, the TPM MUST
ensure that the OSAP shared secret is that derived from the entity using TPM_OSAP.

Revision 116 1 Marchy 2011 TCG Published 77
TCG Published

396
397

398
2477
2478
2479
2480
2481
2482
2483
2484
2485

399
400

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.3 Authorization Session Handles
Start of informative comment
The TPM generates authorization handles to allow for the tracking of information regarding
a specific authorization invocation.

The TPM saves information specific to the authorization, such as the nonce values,
ephemeral secrets and type of authentication in use.

The TPM may create any internal representation of the handle that is appropriate for the
TPM’s design. The requestor always uses the handle in the authorization structure to
indicate authorization structure in use.

The TPM must support a minimum of two concurrent authorization handles. The use of
these handles is to allow the Owner to have an authorization active in addition to an active
authorization for an entity.

To ensure garbage collection and the proper removal of security information, the requestor
should terminate all handles. Termination of the handle uses the continue-use flag to
indicate to the TPM that the handle should be terminated.

Termination of a handle instructs the TPM to perform garbage collection on all AuthData.
Garbage collection includes the deletion of the ephemeral secret.

End of informative comment
1. The TPM MUST support authorization handles. See Section 23 Session pool.

2. The TPM MUST support authorization handle termination. The termination includes
secure deletion of all authorization session information.

78 TCG Published Revision 116 1 Marchy 2011
TCG Published

401
402

2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506

403
404

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

13.4 Authorization-Data Insertion Protocol (ADIP)
Start of informative comment
The ADIP allows for the creation of new entities and the secure insertion of the new entity
AuthData. The transmission of the new AuthData uses encryption with the key based on
the shared secret of an OSAP session.

The creation of AuthData is the responsibility of the entity owner. He or she may use
whatever process he or she wishes. The transmission of the AuthData from the entity owner
to the TPM requires confidentiality and integrity. Since these requirements are not always
met (e.g., because the insertion of the AuthData occurs over a network) additional measures
have to be taken. The ADIP protocol ensures confidentiality of the AuthData, while the
OSAP session HMAC provides integrity.

When ADIP uses the parent key shared secret, care must be taken when that secret is a
well known value. In that case, it may be appropriate to wrap the ADIP command in a
transport session.

When the requestor is sending the AuthData to the TPM, the command requires the
authorization of the entity parent. For example, to create a new TPM identity key and set its
AuthData requires the AuthData of the TPM Owner. To create a new wrapped key requires
the AuthData of the parent key.

The creation of a new entity requires the authorization of the entity owner. When the
requestor starts the creation process, the creator must establish an OSAP session using the
parent of the new entity.

For the mandatory XOR encryption algorithm, the creator builds an encryption key using a
SHA-1 hash of the OSAP shared secret and a session nonce. The creator XOR encrypts the
new AuthData using the encryption key as a one-time pad and sends this encrypted data
along with the creation request to the TPM. The TPM decrypts the AuthData using the
same OSAP shared secret and session nonce.

The XOR encryption algorithm is sufficient for almost all use models. There may be
additional use models where a different encryption algorithm would be beneficial. The TPM
may support AES as an additional encryption algorithm. The key and IV or counter use the
OSAP shared secret and session nonces.

The creator believes that the OSAP creates a shared secret known only to the creator and
the TPM. The TPM believes that the creator is the entity owner by their knowledge of the
parent entity AuthData. The creator believes that the process completed correctly and that
the AuthData is correct because the HMAC will only verify with the OSAP shared secret.

In the following example, we want to send the previously described command
TPM_EXAMPLE to create a new entity. In the example, we assume there is a third input
parameter encAuth, and that one of the input parameters is named parentHandle to
reference the parent for the new entity (e.g., the SRK and its children).

Revision 116 1 Marchy 2011 TCG Published 79
TCG Published

405
406

407

2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

408
409

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP
parentHandle
nonceOddOSAP

 Create session & authHandle
Generate authLastNonceEven
Save authLastNonceEven with authHandle
Save the ADIP encryption scheme with authHandle
Generate nonceEvenOSAP
Generate sharedSecret = HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)
Save parentHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven
Generate sharedSecret =
HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)
Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.
Compute input parameter newAuth =
XOR(entityAuthData, SHA1(sharedSecret,
authLastNonceEven))
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal
parentHandle
inArgOne
inArgTwo
encAuth
authHandle
nonceOdd
continueAuthSession
inAuth

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL
Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example: decrypt encAuth to entityAuth, create entity
and build returnCode. Use the ADIP encryption scheme indicated
when the OSAP session was set up.
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
Terminate the authorization session associated with authHandle

Table 13:f - Example ADIP Session

End of informative comment

80 TCG Published Revision 116 1 Marchy 2011
TCG Published

410
411

2545

2546
2547
2548

412
413

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

1. The TPM MUST enable ADIP by using the OSAP or DSAP

a. When an ordinal Action indicates that OSAP is required for the ADIP protocol (e.g.,
TPM_CreateWrapKey), DSAP shall satisfy that requirement.

b. The upper byte of the entity type indicates the encryption scheme.

c. The TPM internally stores the encryption scheme as part of the session and enforces
the encryption choice on the subsequent use of the session.

d. When TPM_ENTITY_TYPE is used for ordinals other than TPM_OSAP or TPM_DSAP
(i.e., for cases where there is no ADIP encryption action), the TPM_ENTITY_TYPE
upper byte MUST be 0x00.

2. The TPM MUST destroy the session whenever a new entity AuthData is created.

3. The TPM MUST encrypt the AuthData for the new entity.

a. The TPM MUST support the XOR encryption scheme.

b. The TPM MAY support AES symmetric key encryption schemes.

i. If TPM_PERMANENT_FLAGS -> FIPS is TRUE

(1) All encrypted authorizations MUST use a symmetric key encryption scheme.

a. Encrypted AuthData values occur in the following commands

i. TPM_CreateWrapKey

ii. TPM_ChangeAuth

iii. TPM_ChangeAuthOwner

iv. TPM_Seal

v. TPM_Sealx

vi. TPM_MakeIdentity

vii. TPM_CreateCounter

viii. TPM_CMK_CreateKey

ix. TPM_NV_DefineSpace

(1) This ordinal contains a special case where no encryption is used.

x. TPM_Delegate_CreateKeyDelegation

xi. TPM_Delegate_CreateOwnerDelegation

4. If the entity type indicates XOR encryption for the AuthData secret

a. Create X1 the SHA-1 of the concatenation of (authHandle -> sharedSecret ||
authLastNonceEven).

b. Create the decrypted AuthData the XOR of X1 and the encrypted AuthData.

c. If the command ordinal contains a second AuthData2 secret (e.g.
TPM_CreateWrapKey)

i. Create X2 the SHA-1 of the concatenation of (authHandle -> sharedSecret ||
nonceOdd).

ii. Create the decrypted AuthData2 the XOR of X2 and the encrypted AuthData2.

Revision 116 1 Marchy 2011 TCG Published 81
TCG Published

414
415

416
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585

417
418

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

5. If the entity type indicates symmetric key encryption

a. The key for the encryption algorithm is the first bytes of the OSAP shared secret.

i. E.g., For AES128, the key is the first 16 bytes of the OSAP shared secret.

ii. There is no support for AES keys greater than 128 bits.

b. If the entity type indicates CTR mode

i. The initial counter value for AuthData is the first bytes of authLastNonceEven.

(1) E.g., For AES128, the initial counter value is the first 16 bytes of
authLastNonceEven.

ii. If the command ordinal contains a second AuthData2 secret (e.g.
TPM_CreateWrapKey)

(1) The initial counter value for AuthData2 is the first bytes of nonceOdd.

iii. Additional counter values as required are generated by incrementing the counter
value as described in 31.1.3 TPM_ES_SYM_CTR.

Start of informative comment
The method of incrementing the counter value is different from that used by some standard
crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter value. TPM
users should be aware of this to avoid errors when the counter wraps.

End of informative comment

82 TCG Published Revision 116 1 Marchy 2011
TCG Published

419
420

2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605

421
422

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

13.5 AuthData Change Protocol (ADCP)
Start of informative comment
All entities from the Owner to the SRK to individual keys and data blobs have AuthData.
This data may need to change at some point in time after the entity creation. The ADCP
allows the entity owner to change the AuthData. The entity owner of a wrapped key is the
owner of the parent key.

A requirement is that the owner must remember the old AuthData. The only mechanism to
change the AuthData when the entity owner forgets the current value is to delete the entity
and then recreate it.

To protect the data from exposure to eavesdroppers or other attackers, the AuthData uses
the same encryption mechanism in use during the ADIP.

Changing AuthData requires opening two authentication handles. The first handle
authenticates the entity owner (or parent) and the right to load the entity. This first handle
is an OSAP and supplies the data to encrypt the new AuthData according to the ADIP
protocol. The second handle can be either an OIAP or an OSAP, it authorizes access to the
entity for which the AuthData is to be changed.

The AuthData in use to generate the OSAP shared secret must be the AuthData of the
parent of the entity to which the change will be made.

When changing the AuthData for the SRK, the first handle OSAP must be setup using the
TPM Owner AuthData. This is because the SRK does not have a parent, per se.

If the SRKAuth data is known to userA and userB, userA can snoop on userB while userB
is changing the AuthData for a child of the SRK, and deduce the child's newAuth.
Therefore, if SRKAuth is a well known value, TPM_ChangeAuthAsymStart and
TPM_ChangeAuthAsymFinish are preferred over TPM_ChangeAuth when changing
AuthData for children of the SRK.

This applies to all children of the SRK, including TPM identities.

End of informative comment
1. Changing AuthData for the TPM SHALL require authorization of the current TPM Owner.

2. Changing AuthData for the SRK SHALL require authorization of the TPM Owner.

3. If SRKAuth is a well known value, TPM_ChangeAuth SHOULD NOT be used to change
the AuthData value of a child of the SRK, including the TPM identities.

4. All other entities SHALL require authorization of the parent entity.

Revision 116 1 Marchy 2011 TCG Published 83
TCG Published

423
424

425

2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637

426
427

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

13.6 Asymmetric Authorization Change Protocol (AACP)
Start of informative comment
This is now deprecated. Use the normal change session inside of a transport session with
confidentiality.

This asymmetric change protocol allows the entity owner to change entity authorization,
under the parent’s execution authorization, to a value of which the parent has no
knowledge.

In contrast, the TPM_ChangeAuth command uses the parent entity AuthData to create the
shared secret that encrypts the new AuthData for an entity. This creates a situation where
the parent entity ALWAYS knows the AuthData for entities in the tree below the parent.
There may be instances where this knowledge is not a good policy.

This asymmetric change process requires two commands and the use of an authorization
session.

End of informative comment
1. Changing AuthData for the SRK SHALL involve authorization by the TPM Owner.

2. If SRKAuth is a well known value,

a. TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish SHOULD be used to
change the AuthData value of a child of the SRK, including the TPM identities.

3. All other entities SHALL involve authorization of the parent entity.

84 TCG Published Revision 116 1 Marchy 2011
TCG Published

428
429

2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656

430
431

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

14. FIPS 140 Physical Protection
Start of informative comment
The FIPS 140-2 program provides assurance that a cryptographic device performs properly.
It is appropriate for TPM vendors to attempt to obtain FIPS 140-2 certification.

The TPM design should be such that the TPM vendor has the opportunity of obtaining FIPS
140-2 certification.

End of informative comment

14.1 TPM Profile for FIPS Certification
Start of informative comment
The FIPS mode of the TPM does require some changes over the normal TPM. These changes
are listed here such that there is a central point of determining the necessary FIPS changes.

Key creation and use
TPM_LoadKey, TPM_CMK_CreateKey and TPM_CreateWrapKey changed to disallow the
creation or loading of TPM_AUTH_NEVER, legacy and keys less than 1024 bits.
TPM_MakeIdentity changed to disallow TPM_AUTH_NEVER.

End of informative comment
1. Each TPM Protected Capability MUST be designed such that some profile of the

Capability is capable of obtaining FIPS 140-2 certification

Revision 116 1 Marchy 2011 TCG Published 85
TCG Published

432
433

434

2657
2658
2659
2660
2661
2662
2663

2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674

435
436

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

15. Maintenance
Start of informative comment
The maintenance feature is a vendor-specific feature, and its implementation is vendor-
specific. The implementation must, however, meet the minimum security requirements so
that implementations of the maintenance feature do not result in security weaknesses.

There is no requirement that the maintenance feature is available, but if it is implemented,
then the requirements must be met.

The maintenance feature described in the specification is an example only, and not the only
mechanism that a manufacturer could implement that meets these requirements.

Maintenance is different from backup/migration, because maintenance provides for the
migration of both migratory and non-migratory data. Maintenance is an optional TPM
function, but if a TPM enables maintenance, the maintenance capabilities in this
specification are mandatory – no other migration capabilities shall be used. Maintenance
necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its
representative needs to replace a Subsystem containing a TPM. Some manufacturers
consider it a requirement that there be a means of doing this replacement without the loss
of the non-migrational keys held by the original TPM.

The owner and users of TCG platforms need assurance that the data within protected
storage is adequately protected against interception by third parties or the manufacturer.

This process MUST only be performed between two platforms of the same manufacturer and
model. If the maintenance feature is supported, this section defines the required functions
defined at a high level. The final function definitions and entire maintenance process is left
to the manufacturer to define within the constraints of these high level functions.

Any maintenance process must have certain properties. Specifically, any migration to a
replacement Subsystem must require collaboration between the Owner of the existing
Subsystem and the manufacturer of the existing Subsystem. Further, the procedure must
have adequate safeguards to prevent a non-migrational key being transferred to multiple
Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and
TPM_LoadMaintenanceArchive enable the transfer of all Protected Storage data from a
Subsystem containing a first TPM (TPM1) to a Subsystem containing a second TPM (TPM2):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture
time.

The Owner of TPM1 uses TPM_CreateMaintenanceArchive to create a maintenance archive
that enables the migration of all data held in Protected Storage by TPM1. The Owner of TPM1

must provide his or her authorization to the Subsystem. The TPM then creates the
TPM_MIGRATE_ASYMKEY structure and follows the process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM1 data.

The additional random data provides a means to assure that a maintenance process cannot
subvert archive data and hide such subversion.

86 TCG Published Revision 116 1 Marchy 2011
TCG Published

437
438

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715

439
440

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on
the TPM Owners AuthData.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies
itself that the data bundle represents data from that Subsystem manufactured by that
manufacturer. Then the manufacturer checks the endorsement certificate of TPM2 and
verifies that it represents a platform to which data from TPM1 may be moved.

The manufacturer dispatches two messages.

The first message is made available to CAs, and is a revocation of the TPM 1 endorsement
certificate.

The second message is sent to the Owner of TPM2, which will communicate the SRK,
tpmProof and the manufacturer’s permission to install the maintenance blob only on TPM2

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM2, and
overwrite the existing TPM2-SRK and TPM2-tpmProof in TPM2. TPM2 overwrites TPM2-SRK
with TPM1-SRK, and overwrites TPM2-tpmProof with TPM1-tpmProof.

Note that the command TPM_KillMaintenanceFeature prevents the operation of
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner
to block maintenance (and hence the migration of non-migratory data) either to or from a
TPM.

It is required that a manufacturer takes steps that prevent further access of migrated data
by TPM1. This may be achieved by deleting the existing Owner from TPM1, for example.

For the manufacturer to validate that the maintenance blob is coming from a valid TPM, the
manufacturer can require that a TPM identity sign the maintenance blob. The identity
would be from a CA under the control of the manufacturer and hence the manufacturer
would be satisfied that the blob is from a valid TPM.

End of informative comment
1. The maintenance feature MUST ensure that the information can be on only one TPM at

a time. Maintenance MUST ensure that at no time the process will expose a shielded
location. Maintenance MUST require the active participation of the Owner.

2. Any migration of non-migratory data protected by a Subsystem SHALL require the
cooperation of both the Owner of that non-migratory data and the manufacturer of that
Subsystem. That manufacturer SHALL NOT cooperate in a maintenance process unless
the manufacturer is satisfied that non-migratory data will exist in exactly one
Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCG specification.

3. The maintenance feature MUST move the following

4. TPM_KEY for SRK. The maintenance process will reset the SRK AuthData to match the
TPM Owners AuthData

5. TPM_PERMANENT_DATA -> tpmProof

6. TPM Owner’s authorization

15.1 Field Upgrade
Start of informative comment

Revision 116 1 Marchy 2011 TCG Published 87
TCG Published

441
442

443
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754

2755
2756

444
445

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

A TPM, once in the field, may need to update the protected capabilities. This command,
which is optional, provides the mechanism to perform the update.

The goal is that field upgrade should only affect protected capabilities and not shielded
location, so that a patch can be applied without loss of user data. It is understood that this
goal may not be achievable in all cases.

End of informative comment
The TPM SHOULD have provisions for upgrading the subsystem after shipment from the
manufacturer. If provided the mechanism MUST implement the following guidelines:

1. The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret.
The definition of global secret is a secret value shared by more than one TPM.

2. The TPM is not allowed to pre-store or use unique identifiers in the TPM for the purpose
of field upgrade. The TPM MUST NOT use the endorsement key for identification or
encryption in the upgrade process. The upgrade process MAY use a TPM Identity (AIK) to
deliver upgrade information to specific TPM devices.

3. The upgrade process SHOULD only change protected capabilities. The upgrade process
SHOULD NOT change shielded locations.

4. The upgrade process SHOULD only access data in shielded locations where this data is
necessary to validate the TPM Owner, validate the TPME and manipulate the blob

5. The TPM MUST conform to the TCG specification, protection profiles and security targets
after the upgrade. The upgrade MAY NOT decrease the security values from the original
security target.

6. The security target used to evaluate this TPM MUST include this command in the TOE.

88 TCG Published Revision 116 1 Marchy 2011
TCG Published

446
447

2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778

448
449

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

16. Proof of Locality
Start of informative comment
When a platform is designed with a trusted process, the trusted process may wish to
communicate with the TPM and indicate that the command is coming from the trusted
process. The definition of a trusted process is a platform specific issue.

The commands that the trusted process sends to the TPM are the normal TPM commands
with a modifier that indicates that the trusted process initiated the command. The TPM
accepts the command as coming from the trusted process merely because the modifier is
set. The TPM itself is not responsible for how the signal is asserted; only that it honors the
assertions. The TPM cannot verify the validity of the modifier.

The definition of the modifier is a platform specific issue. Depending on the platform, the
modifier could be a special bus cycle or additional input pins on the TPM. The assumption
is that spoofing the modifier to the TPM requires more than just a simple hardware attack,
but would require expertise and possibly special hardware. One example would be special
cycles on the LPC bus that inform the TPM it is under the control of a process on the PC
platform.

To allow for multiple mechanisms and for finer grained reporting, the TPM will include 4
locality modifiers. These four modifiers allow the platform specific specification to properly
indicate exactly what is occurring and for TPM’s to properly respond to locality.

End of informative comment
1. The TPM modifies the receipt of a command and indicates that the trusted process sent

the command when the TPM determines that the modifier is on. The modifier MUST only
affect the individual command just received and MUST NOT affect any other commands.
However, TPM_ExecuteTransport MUST propagate the modifier to the wrapped
command.

2. A TPM platform specific specification MAY indicate the presence of a maximum of 4 local
modifiers. The modifier indication uses the TPM_MODIFIER_INDICATOR data type.

3. The received modifier MUST indicate a single level.

4. The definition of the trusted source is in the platform specific specification.

5. For ease in reading this specification the indication that the TPM has received any
modifier will be LOCAL_MOD = TRUE.

Revision 116 1 Marchy 2011 TCG Published 89
TCG Published

450
451

452

2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809

453
454

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

17. Monotonic Counter
Start of informative comment
The monotonic counter provides an ever-increasing incremental value. The TPM must
support at least 4 concurrent counters. Implementations inside the TPM may create 4
unique counters or there may be one counter with pointers to keep track of the pointers
current value. A naming convention to allow for unambiguous reference to the various
components the following terms are in use:

Internal Base – This is the main counter. It is in use internally by the TPM and is not
directly accessible by any outside process.

External Counter – A counter in use by external processes. This could be related to the
main counter via pointers and difference values or it could be a totally unique value. The
value of an external counter is not affected by any use, increment or deletion of any other
external counter.

Max Value – The max count value of all counters (internal and external). So if there were 3
external counters having values of 10, 15 and 201 and the internal base having a value of
201 then Max Value is 201. In the same example if the internal base was 502 then Max
Value would be 502.

The external counter must allow for 7 years of increments every 5 seconds without causing
a hardware failure. The TPM may create a throttling mechanism that limits the ability to
increment an external counter within a certain time range. The output of the counter is a
32-bit value.

To create an external counter requires TPM Owner authorization. To increment an external
counter the command must pass authorization to use the counter.

External counters can be tagged with a short text string to facilitate counter administration.

Manufacturers are free to implement the monotonic counter using any mechanism.

To illustrate the counters and base the following example is in use. This mechanism uses
two saving values (diff and start), however this is only an example and not meant to indicate
any specific implementation.

90 TCG Published Revision 116 1 Marchy 2011
TCG Published

455
456

2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837

2838

457
458

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The internal base (IB) always moves forward and can never be reset. IB drives all external
counters on the machine.

The purpose of the following example is to show the two external counters always moving
forward independent of the other and how the IB moves forward also.

Starting condition is that IB is at 22 and no other external counters are active.

Start external counter A

Increment IB (set new Max Value) IB = 23

Assign start value of A to 23 (or Max Value)

Assign difference of A to 23 (we always start at current value of IB)

Assign a handle for A

Increment A 5 times

IB is now 28

Request current A value

Return 28 = 28 (IB) + 23 (difference) – 23 (start value)

Counter A has gone from the start of 23 to 28 incremented 5 times.

TPM_Startup(ST_CLEAR)

Start Counter B

Save A difference 28 = 23 (old difference) + 28 (IB) – 23 (start value)

Increment IB (set new Max Value) IB = 29

Set start value of B to 29 (or Max Value)

Assign difference of B to 29

Assign handle for B

Increment B 8 times

IB is now 37

Request B value

Return 37 = 37 (IB) + 29 (difference) – 29 (start value)

TPM_Startup(ST_CLEAR)

Increment A

Store B difference (37)

Load A start value of 37

Increment IB to 38

Return A value

Return 29 = 38 (IB) + 28 (difference) – 37 (start value)

Revision 116 1 Marchy 2011 TCG Published 91
TCG Published

459
460

461
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872

462
463

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Notice that A has gone from 28 to 29 which is correct, while B is at 37. Depending on the
order of increments A may pass B or it may always be less than B.

End of informative comment
1. The counter MUST be designed to not wear out in the first 7 years of operation. The

counter MUST be able to increment at least once every 5 seconds. The TPM, in response
to operations that would violate these counter requirements, MAY throttle the counter
usage (cause a delay in the use of the counter) or return an error.

2. The TPM MUST support at least 4 concurrent counters.

3. The establishment of a new counter MUST prevent the reuse of any previous counter
value. I.E. if the TPM has 3 counters and the max value of a current counter is at 36
then the establishment of a new counter would start at 37.

4. After a successful TPM_Startup(ST_CLEAR) the first successful TPM_IncrementCounter
sets the counter handle. Any attempt to issue TPM_IncrementCounter with a different
handle MUST fail.

5. TPM_CreateCounter does NOT set the counter handle.

92 TCG Published Revision 116 1 Marchy 2011
TCG Published

464
465

2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887

466
467

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

18. Transport Protection
Start of informative comment
The creation of sessions allows for the grouping of a set of commands into a session. The
session provides a log of all commands and can provide confidentiality of the commands
using the session.

Session establishment creates a shared secret and then uses the shared secret to authorize
and protect commands sent to the TPM using the session. The shared secret is passed to
the TPM using an asymmetric encryption key. For best security, the caller should certify
that the key is never available outside the TPM.

After establishing the session, the caller uses the session to wrap a command to execute.
The user of the transport session can wrap any command except for commands that would
create nested transport sessions.

The log of executed commands uses a structure that includes the parameters and current
tick count. The session log provides a record of each command using the session.

The transport session uses the same rolling nonce protocol that authorization sessions use.
This protocol defines two nonces for each command sent to the TPM; nonceOdd provided by
the caller and nonceEven generated by the TPM.

For confidentiality, the caller can use the MGF1 function to create an XOR string the same
size as the command to execute. The inputs to the MGF1 function are the shared secret,
nonceOdd and nonceEven. A symmetric key encryption algorithm can also be specified.

There is no explicit close session as the caller can use the continueSession flag set to false
to end a session. The caller can also call the sign session log, which also ends the session. If
the caller losses track of which sessions are active the caller should use the flush
commands to regain control of the TPM resources.

For an attacker to successfully break the encryption the attacker must be able to determine
from a few bits what an entire SHA-1 output was. This is equivalent to breaking SHA-1. The
reason that the attacker will know some bits is that the commands are in a known format.
This then allows the attacker to determine what the XOR bits were. Knowledge of 159 bits of
the XOR stream does not provide any greater that 50% probability of knowing the 160th bit.

Revision 116 1 Marchy 2011 TCG Published 93
TCG Published

468
469

470

2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916

471
472

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

This picture shows the protection of a TPM_Quote command. Previously executed was
session establishment. The nonces in use for the TPM_Quote have no relationship with the
nonces that are in use for the TPM_ExecuteTransport command.

End of informative comment
1. The TPM MUST support a minimum of one transport session.

2. The TPM MUST NOT support the nesting of transport sessions. The definition of nesting
is attempting to execute a wrapped command that is a transport session command. So
for example when executing TPM_ExecuteTransport the wrapped command MUST not be
TPM_ExecuteTransport.

3. The TPM MUST ensure that if transport logging is active that the inclusion of the tick
count in the session log does not provide information that would make a timing attack
on the operations using the session more successful.

4. The transport session MAY be exclusive. Any command executed outside of the exclusive
transport session MUST cause the invalidation of the exclusive transport session.

a. The TPM_ExecuteTransport command specifying the exclusive transport session is
the only command that does not terminate the exclusive session.

5. It MAY be ineffective to wrap TPM_SaveState in a transport session. Since the TPM MAY
include transport sessions in the saved state, the saved state MAY be invalidated by the
wrapping TPM_ExecuteTransport.

94 TCG Published Revision 116 1 Marchy 2011
TCG Published

473
474

2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936

475
476

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

18.1 Transport encryption and authorization
Start of informative comment
The confidentially of the transport protection is provided by a encrypting the wrapped
command. Encryption of various items in the wrapped command makes resource
management of a TPM impossible. For this reason, encryption of the entire command is not
possible. In addition to the encryption issue, there are difficulties with creating the HMAC
for the TPM_ExecuteTransport authorization.

The solution to these problems is to provide limited encryption and HMAC information.

The HMAC will only include two areas from the wrapped command, the command header
information up to the handles, and the data after the handles. The format of all TPM
commands is such that all handles are in the data stream prior to the payload or data. After
the data comes the authorization information. To enable resource management, the HMAC
for TPM_ExecuteTransport only includes the ordinal, header information and the data. The
HMAC does not include handles and the authorization handles and nonces.

The exception is TPM_OwnerReadInternalPub, which uses fixed value key handles that are
included in the encryption and HMAC calculation.

A more exact representation of the execute transport command would be the following

Revision 116 1 Marchy 2011 TCG Published 95
TCG Published

477
478

479
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953

2954
2955

480
481

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

**
* TAGet | LENet | ORDet | wrappedCmdSize | wrappedCmd | AUTHet *
**

wrappedCmd looks like
**
* TAGw | LENw | ORDw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o) *
**

A more exact representation of the execute transport response would be the following

* TAGet | LENet | RCet | … | wrappedRspSize | wrappedRsp | AUTHet *

wrappedRsp looks like

* TAGw | LENw | RCw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o) *

The calculation for AUTHet takes as the data component of the HMAC calculation the
concatenation of ORDw and DATAw. A normal HMAC calculation would have taken the
entire wrappedCmd value but for the executeTransport calculation only the above two
values are active. This does require the executeTransport command to parse the
wrappedCmd to find the appropriate values.

The data for the command HMAC calculation is the following:

H1 = SHA-1 (ORDw || DATAw)

inParamDigest = SHA-1 (ORDet || wrappedCmdSize || H1)

AUTHet = HMAC (inParamDigest || lastNonceEven(et) || nonceOdd(et) || continue(et))

The data for the response HMAC calculation is the following:

H2 = SHA-1 (RCw || ORDw || DATAw)

outParamDigest = SHA-1 (RCet || ORDet || currentTicks || locality || wrappedRspSize ||
H1)

AUTHet = HMAC (outParamDigest || nonceEven(et) || nonceOdd(et) || continue(et))

DATAw is the unencrypted data. wrappedCmdSize and wrappedRspSize ares the actual size
of the DATAw area and not the size of H1 or H2.

End of informative comment
The TPM MUST release a transport session and all information related to the session when:

1. TPM_ReleaseTransportSigned is executed

2. TPM_ExecuteTransport is executed with continueTransSession set to FALSE

3. Any failure of the integrity check during execution of TPM_ExecuteTransport

4. If the session has TPM_TRANSPORT_LOG set and the TPM tick session is interrupted for
any reason. This is due to the return of tick values without the nonces associated with
the session.

96 TCG Published Revision 116 1 Marchy 2011
TCG Published

482
483

2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997

484
485

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

5. The TPM executes some command that deactivates the TPM or removes the TPM Owner
or EK.

18.1.1 MGF1 parameters
Start of informative comment
MGF1 provides the confidentiality for the transport session. MGF1 is a function from PKCS
1 version 2.0. This function provides a mechanism to distribute entropy over a large
sequence. The sequence provides a value to XOR over the message. This in effect creates a
stream cipher but not one that is available for bulk encryption.

Transport confidentiality uses MGF1 as a stream cipher and obtains the entropy for each
message from the following three parameters; nonceOdd, nonceEven and session authData.

It is imperative that the stream cipher not use the same XOR sequence at any time. The
following illustrates how the sequence changes for each message (both input and output).

M1Input – N2, N1, sessionSecret)

M1Output – N4, N1, sessionSecret)

M2Input – N4, N3, sessionSecret)

M2Output – N6, N3, sessionSecret)

There is an issue with this sequence. If the caller does not change N1 to N3 between
M1Output and M2Input then the same sequence will be generated. The TPM does not
enforce the requirement to change this value so it is possible to leak information.

The fix for this is to add one more parameter, the direction. So the sequence is now this:

M1Input – N2, N1, “in”, sessionSecret)

M1Output – N4, N1, “out”, sessionSecret)

M2Input – N4, N3, “in”, sessionSecret)

M2Output – N6, N3, “out”, sessionSecret)

Where “in” indicates the in direction and “out” indicates the out direction.

Notice the calculation for M1Output uses “out” and M2Input uses “in”, so if the caller
makes a mistake and does not change nonceOdd, the sequence will still be different.

nonceEven is under control of the TPM and is always changing, so there is no need to worry
about nonceEven not changing.

End of informative comment

18.1.2 HMAC calculation
Start of informative comment
The HMAC calculation for transports presents some issues with what should and should
not be in the calculation. The idea is to create a calculation for the wrapped command and
add that to the wrapper.

So the data area for a wrapped command is not entirely HMAC’d like a normal command
would be.

Revision 116 1 Marchy 2011 TCG Published 97
TCG Published

486
487

488
2998
2999

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027

3028
3029
3030
3031
3032
3033
3034

489
490

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The process is to calculate the inParamDigest of the unencrypted wrapped command
according to the normal rules of command HMAC calculations. Then use that value as the
3S parameter in the calculation. 2S is the actual wrapped command size, and not the size
of inParamDigest.

Example using a wrapped TPM_LoadKey command

Calculate the SHA-1 value for the TPM_LoadKey command (ordinal and data) as per the
normal HMAC rules. Take the digest and use that value as 3S for the
TPM_ExecuteTransport HMAC calculation.

End of informative comment

18.1.3 Transport log creation
Start of informative comment
The log of information that a transport session creates needs a mechanism to tie any keys
in use during the session to the session. As the HMAC and encryption for the command
specifically exclude handles, there is no direct way to create the binding.

When creating the transport input log, if the handle(s) points to a key or keys, the public
keys are digested into the log. The session owner knows the value of any keys in use and
hence can still create a log that shows the values used by the log and can validate the
session.

End of informative comment

18.1.4 Additional Encryption Mechanisms
Start of informative comment
The TPM can optionally implement alternate algorithms for the encryption of commands
sent to the TPM_ExecuteTransport command. The designation of the algorithm uses the
TPM_ALGORITHM_ID and TPM_ENC_SCHEME elements of the TPM_TRANSPORT_PUBLIC
parameter of the TPM_EstablishTransport command.

The anticipation is that AES will be supported by various TPM’s. Symmetric algorithms
have options available to them like key size, block size and operating mode. When using an
algorithm other than MGF1 the algorithm and scheme must specify these options.

End of informative comment
1. The TPM MAY support other symmetric algorithms for the confidentiality requirement in

TPM_EstablishTransport

18.2 Transport Error Handling
Start of informative comment
With the transport hiding the actual execution of commands and the transport capable of
generating errors, rules must be established to allow for the errors and the results of
commands to be properly passed to TPM callers.

End of informative comment
1. There are 3 error cases:

98 TCG Published Revision 116 1 Marchy 2011
TCG Published

491
492

3035
3036
3037
3038
3039
3040
3041
3042
3043

3044
3045
3046
3047
3048
3049
3050
3051
3052
3053

3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065

3066
3067
3068
3069
3070
3071
3072

493
494

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

2. C1 is the case where an error occurs during the processing of the transport package at
the TPM. In this case, the wrapped command has not been sent to the command
decoder. Errors occurring during C1 are sent back to the caller as a response to the
TPM_ExecuteTransport command. The error response does not have confidentiality.

3. C2 is the case where an error occurs during the processing of the wrapped command.
This results in an error response from the command. The session returns the error
response according to the attributes of the session.

4. C3 is the case where an error occurs after the wrapped command has completed
processing and the TPM is preparing the response to the TPM_ExecuteTransport
command. In this case, where the TPM does have an internal error, the TPM has no
choice but to return the error as in C1. This however hides the results of the wrapped
command. If the wrapped command completed successfully then there are session
nonces that are being returned to the caller that are lost. The loss of these nonces
causes the caller to be unsure of the state of the TPM and requires the reestablishment
of sessions and keys.

18.3 Exclusive Transport Sessions
Start of informative comment
The caller may establish an exclusive session with the TPM. When an exclusive session is
running, execution of any command other then TPM_ExecuteTransport or
TPM_ReleaseTransportSigned targeting the exclusive session causes the abnormal
invalidation of the exclusive transport session. Invalidation means that the handle is no
longer valid and all subsequent attempts to use the handle return an error.

The design for the exclusive session provides an assurance that no other command
executed on the TPM. It is not a lock to prevent other operations from occurring. Therefore,
the caller is responsible for ensuring no interruption of the sequence of commands using
the TPM.

One exclusive session
The TPM only supports one exclusive session at a time. There is no nesting or other
commands possible. The TPM maintains an internal flag that indicates the existence of an
exclusive session.

TSS responsibilities
It is the responsibility of the TSS (or other controlling software) to ensure that only
commands using the session reach the TPM. As the purpose of the session is to show that
nothing else occurred on the TPM during the session, the TSS should control access to the
TPM and prevent any other uses of the TPM. The TSS design must take into account the
possibility of exclusive session handle invalidation.

Sleep states
Exclusive sessions as defined here do not work across TPM_SaveState and
TPM_Startup(ST_STATE) invocations. To have this sequence work properly there would
need to be exceptions to allowing only TPM_ExecuteTranport and
TPM_ReleaseTransportSigned in an exclusive session. The requirement for these exceptions
would come from the attempt of the TSS to understand the current state of the TPM.
Commands like TPM_GetCapability and others would have to execute to inform the TSS as

Revision 116 1 Marchy 2011 TCG Published 99
TCG Published

495
496

497
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115

498
499

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

to the internal state of the TPM. For this reason, there are no exceptions to the rule and the
exclusive session does not remain active across a TPM_SaveState command.

End of informative comment
1. The TPM MUST support only one exclusive transport session

2. The TPM MUST invalidate the exclusive transport session upon the receipt of any
command other than TPM_ExecuteTransport or TPM_ReleaseTransportSigned targeting
the exclusive session.

a. Invalidation includes the release of any resources assigned to the session

18.4 Transport Audit Handling
Start of informative comment
Auditing of TPM_ExecuteTransport occurs as any other command that may require
auditing. There are two entries in the log, one for input one for output. The execution of the
wrapped command can create an anomaly in the log.

Assume that both TPM_ExecuteTransport and the wrapped commands require auditing, the
audit flow would look like the following:

TPM_ExecuteTransport input parameters

wrapped command input parameters

wrapped command output parameters

TPM_ExecuteTransport output parameters

End of informative comment
1. Audit failures are reported using the AUTHFAIL error commands and reflect the success

or failure of the wrapped command.

18.4.1 Auditing of wrapped commands
Start of informative comment
Auditing provides information to allow an auditor to recreate the operations performed.
Confidentiality on the transport channel is to hide what operations occur. These two
features are in conflict. According to the TPM design philosophy, the TPM Owner takes
precedence.

For a command sent on a transport session, with the session using confidentiality and the
command requiring auditing, the TPM will execute the command however the input and
output parameters for the command are ignored.

End of informative comment
1. When the wrapped command requires auditing and the transport session specifies

encryption, the TPM MUST perform the audit. However, when computing the audit
digest:

a. For input, only the ordinal is audited.

b. For output, only the ordinal and return code are audited.

100 TCG Published Revision 116 1 Marchy 2011
TCG Published

500
501

3116
3117
3118
3119
3120
3121
3122
3123

3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152

502
503

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

19. Audit Commands
Start of informative comment
To allow the TPM Owner the ability to determine that certain operations on the TPM have
been executed, auditing of commands is possible. The audit value is a digest held internally
to the TPM and externally as a log of all audited commands. With the log held externally to
the TPM, the internal digest must allow the log auditor to determine the presence of attacks
against the log. The evidence of tampering may not provide evidence of the type of attack
mounted against the log.

The TPM cannot enforce any protections on the external log. It is the responsibility of the
external log owner to properly maintain and protect the log.

The TPM provides mechanisms for the external log maintainer to resynchronize the internal
digest and external logs.

The Owner has the ability to set which functions generate an audit event and to change
which functions generate the event at any time.

The status of the audit generation is not sensitive information and so the command to
determine the status of the audit generation is not an owner authorized command.

It is important to note the difference between auditing and the logging of transport sessions.
The audit log provides information on the execution of specific commands. There will be a
very limited number of audited commands, most likely those commands that provide
identities and control of the TPM. Commands such as TPM_Unseal would not be audited.
They would use the logging functions of a transport session.

The auditing of an ordinal happens in a two-step process. The first step involves auditing
the receipt of the command and the input parameters; the second step involves auditing the
response to the command and the output parameters.

There is a requirement to enable verification of the external audit log both during a power
session and across power sessions and to enable detection of partial or inconsistent audit
logs throughout the lifetime of a TPM.

A TPM will hold an internal record consisting of a non-volatile counter (that increments
once per session, when the first audit event of that session occurs) and a digest (that holds
the digest of the current session). Most probably, the audit digest will be volatile. Note,
however, that nothing in this specification prevents the use of a non-volatile audit digest.
This arrangement of counter and digest is advantageous because it is easier to build a high
endurance non-volatile counter than a high endurance non-volatile digest. This
arrangement is insufficient, however, because the truncation of an audit log of any session
is possible without trace. It is therefore necessary to perform an explicit close on the audit
session. If there is no record of a close-audit event in an audit session, anything could have
happened after the last audit event in the audit log. The essence of a typical TPM audit
recording mechanism is therefore:

The TPM contains a volatile digest used like a PCR, where the “integrity metrics” are digests
of command parameters in the current audit session.

An audit session opens when the volatile “PCR” digest is “extended” from its NULL state.
This occurs whenever an audited command is executed AND no audit session currently

Revision 116 1 Marchy 2011 TCG Published 101
TCG Published

504
505

506

3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194

507
508

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

exists, and in no other circumstances. When an audit session opens, a non-volatile counter
is automatically incremented.

An audit session closes when a TPM receives TPM_GetAuditDigestSigned with a closeAudit
parameter asserted. An audit session must be considered closed if the value in the volatile
digest is invalid (for whatever reason).

TPM_GetCapability should report the effect of TPM_Startup on the volatile digest. (TPMs
may initialize the volatile digest on the first audit command after TPM_Startup(ST_CLEAR),
or on the first audit command after any version of TPM_Startup, or may be independent of
TPM_Startup.)

When the TPM signs its audit digest, it signs the concatenation of the non-volatile counter
and the volatile digest, and exports the value of the non-volatile counter, plus the value of
the volatile digest, plus the value of the signature.

If the audit digest is initialized by TPM_Startup(ST_STATE), then it may be useless to audit
the TPM_SaveState ordinal. Any command after TPM_SaveState MAY invalidate the saved
state. If authorization sessions are part of the saved state, TPM_GetAuditDigestSigned will
most likely invalidate the state as it changes the preserved authorization session nonce. It
may therefore be impossible to get the audit results.

The system designer needs to ensure that the selected TPM can handle the specific
environment and avoid burnout of the audit monotonic counter.

End of informative comment
1. Audit functionality is optional

a. If the platform specific specification requires auditing, the specification SHALL
indicate how the TPM implements audit

2. The TPM MUST maintain an audit monotonic count that is only available for audit
purposes.

a. The increment of this audit counter is under the sole control of the TPM and is not
usable for other count purposes.

b. This monotonic count MUST BE incremented by one whenever the audit digest is
“extended” from a NULL state.

3. The TPM MUST maintain an audit digest.

a. This digest MUST be set to all zeros upon the execution of
TPM_GetAuditDigestSigned with a TRUE value of closeAudit provided that the
signing key is an identity key.

b. This digest MAY be set to all zeros on TPM_Startup[ST_CLEAR] or
TPM_Startup[ST_STATE].

c. When an audited command is executed, this register MUST be extended with the
digest of that command.

4. Each command ordinal has an indicator in non-volatile TPM memory that indicates if
execution of the command will generate an audit event. The setting of the ordinal
indicator MUST be under control of the TPM Owner.

102 TCG Published Revision 116 1 Marchy 2011
TCG Published

509
510

3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

511
512

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

19.1 Audit Monotonic Counter
Start of informative comment
The audit monotonic counter (AMC) performs the task of sequencing audit logs across audit
sessions. The AMC must have no other uses other than the audit log.

The TPM and platform should be matched such that the expected AMC endurance matches
the expected platform audit sessions and sleep cycles.

Given the size of the AMC it is not anticipated that the AMC would roll over. If the AMC
were to roll over, and the storage of the AMC still allowed updates, the AMC could cycle and
start at 0 again.

End of informative comment
1. The AMC is a TPM_COUNTER_VALUE.

2. The AMC MUST last for 7 years or at least 1,000,000 audit sessions, whichever occurs
first. After this amount of usage, there is no guarantee that the TPM will continue to
properly increment the monotonic counter.

Revision 116 1 Marchy 2011 TCG Published 103
TCG Published

513
514

515
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248

516
517

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

20. Design Section on Time Stamping
Start of informative comment
The TPM provides a service to apply a time stamp to various blobs. The time stamp provided
by the TPM is not an actual universal time clock (UTC) value but is the number of timer
ticks the TPM has counted. It is the responsibility of the caller to associate the ticks to an
actual UTC time.

The TPM counts ticks from the start of a timing session. Timing sessions are platform
dependent events that may or may not coincide with TPM_Init and TPM_Startup sessions.
The reason for this difference is the availability of power to the TPM. In a PC desktop, for
instance power could be continually available to the TPM by using power from the wall
socket. For a PC mobile platform, power may not be available when only using the internal
battery. It is a platform designer’s decision as to when and how they supply power to the
TPM to maintain the timing ticks.

The TPM can provide a time stamping service. The TPM does not maintain an internal
secure source of time rather the TPM maintains a count of the number of ticks that have
occurred since the start of a timing session.

On a PC, the TPM may use the timing source of the LPC bus or it may have a separate clock
circuit. The anticipation is that availability of the TPM timing ticks and the tick resolution is
an area of differentiation available to TPM manufactures and platform providers.

End of informative comment
1. This specification makes no requirement on the mechanism required to implement the

tick counter in the TPM.

2. This specification makes no requirement on the ability for the TPM to maintain the
ability to increment the tick counter across power cycles or in different power modes on
a platform.

20.1 Tick Components
Start of informative comment
The TPM maintains for each tick session the following values:

Tick Count Value (TCV) – The count of ticks for the session.

Tick Increment Rate (TIR) – The rate at which the TCV is incremented. There is a set
relationship between TIR and seconds, the relationship is set during manufacturing of the
TPM and platform. This is the TPM_CURRENT_TICKS -> tickRate parameter.

Tick Session Nonce (TSN) – The session nonce is set at the start of each tick session.

End of informative comment
1. The TCV MUST be set to 0 at the start of each tick session. The TPM MUST start a new

tick session if the TPM loses the ability to increment the TCV according to the TIR.

2. The TSN MUST be set to the next value from the TPM RNG at the start of each new tick
session. When the TPM loses the ability to increment the TCV according to the TIR the
TSN MUST be set to all zeros.

104 TCG Published Revision 116 1 Marchy 2011
TCG Published

518
519

3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273

3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287

520
521

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. If the TPM discovers tampering with the tick count (through timing changes etc) the TPM
MUST treat this as an attack and shut down further TPM processing as if a self-test had
failed.

20.2 Basic Tick Stamp
Start of informative comment
The TPM does not provide a secure time source, nor does it provide a signature over some
time value. The TPM does provide a signature over some current tick counter. The signature
covers a hash of the blob to stamp, the current counter value, the tick session nonce and
some fixed text.

The Tick Stamp Result (TSR) is the result of the tick stamp operation that associates the
TCV, TSN and the blob. There is no association with the TCV or TSR with any UTC value at
this point.

End of informative comment

20.3 Associating a TCV with UTC
Start of informative comment
An outside observer would like to associate a TCV with a relevant time value. The following
shows how to accomplish this task. This protocol is not required but shows how to
accomplish the job.

EntityA wants to have BlobA time stamped. EntityA performs TPM_TickStamp on BlobA.
This creates TSRB (TickStampResult for Blob). TSRB records TSRBTCV, the current value of
the TCV, and associates TSRBTCV with the TSN.

Now EntityA needs to associate a TCV with a real time value. EntityA creates blob TS which
contains some known text like “Tick Stamp”. EntityA performs TPM_TickStamp on blob TS
creating TSR1. This records TSR1TCV, the current value of the TCV, and associates
TSR1TCV with the TSN.

EntityA sends TSR1 to a Time Authority (TA). TA creates TA1 which associates TSR1 with
UTC1.

EntityA now performs TPM_TickStamp on TA1. This creates TSR2. TSR2 records TSR2TCV,
the current values of the TCV, and associates TSR2TCV with the TSN.

Analyzing the associations
EntityA has three TSR’s; TSRB the TSR of the blob that we wanted to time stamp, TSR1 the
TSR associated with the TS blob and TSR2 the TSR associated with the information from
the TA. EntityA wants to show an association between the various TSR such that there is a
connection between the UTC and BlobA.

From TSR1 EntityA knows that TSR1TCV is less than the UTC. This is true since the TA is
signing TSR1 and the creation of TSR1 has to occur before the signature of TSR1. Stated
mathematically:

TSR1TCV < UTC1

From TSR2 EntityA knows that TSR2TCV is greater than the UTC. This is true since the
TPM is signing TA1 which must be created before it was signed. Stated mathematically:

Revision 116 1 Marchy 2011 TCG Published 105
TCG Published

522
523

524
3288
3289
3290

3291
3292
3293
3294
3295
3296
3297
3298
3299
3300

3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327

525
526

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

TSR2TCV > UTC1

EntityA now knows TSR1TCV and TSR2TCV bound UTC1. Stated mathematically:

TSR1TCV < UTC1 < TSR2TCV

This association holds true if the TSN for TSR1 matches the TSN for TSR2. If some event
occurs that causes the TPM to create a new TSN and restart the TCV then EntityA must
start the process all over again.

EntityA does not know when UTC1 occurred in the interval between TSR1TCV and
TSR2TCV. In fact, the value TSR2TCV minus TSR1TCV (TSRDELTA) is the amount of
uncertainty to which a TCV value should be associated with UTC1. Stated mathematically:

TSRDELTA = TSR2TCV – TSR1TCV iff TSR1TSN = TSR2TSN

EntityA can obtains k1 the relationship between ticks and seconds using the
TPM_GetCapability command. EntityA also obtains k2 the possible errors per tick. EntityA
now calculate DeltaTime which is the conversion of ticks to seconds and the TSRDELTA.
State mathematically:

DeltaTime = (k1 * TSRDELTA) + (k2 * TSRDELTA)

To make the association between DeltaTime, UTC and TSRB note the following:

DeltaTime = (k1*TSRDelta) + Drift = TimeChange + Drift

Where ABSOLUTEVALUE(Drift)<k2*TSRDelta

(1) TSR1TCV < UTC1 < TSR2TCV

True since you cannot sign something before it exists

(2) TSR1TCV < UTC1 < TSR1TCV + TSR2TCV-TSR1TCV <= TSR1TCV + DeltaTime (=
TSR1TCV +TimeChange +Drift)

 True because TSR1 and TSR2 are in the same tick session proved by the same TSN. (Note
TimeChange is positive!)

(3) 0 < UTC1-TSR1TCV < DeltaTime

 (Subtract TSR1TCV from all sides)

(4) 0 > TSR1TCV - UTC1 > -DeltaTime = -TimeChange - Drift

 (Multiply through by -1)

(5) TimeChange/2 > [TSR1TCV - (UTC1-TimeChange/2)] > -TimeChange/2 - Drift

 (add TimeChange/2 to all sides)

(6) TimeChange/2 + ABSOLUTEVALUE(Drift) > [TSR1TCV - (UTC1-TimeChange/2)]

> -TimeChange/2 - ABSOLUTEVALUE(Drift)

 Making the large side of an equality bigger, and potentially making the small side smaller.

(7) ABSOLUTEVALUE[TSR1TCV - (UTC1-TimeChange/2)] < TimeChange/2 +

ABSOLUTEVALUE(Drift)

 (Definition of Absolute Value, and TimeChange is positive)

106 TCG Published Revision 116 1 Marchy 2011
TCG Published

527
528

3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364

529
530

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

From which we see that TSR1TCV is approximately UTC1-TimeChange/2 with a symmetric
possible error of TimeChange/2 + AbsoluteValue(Drift)

We can calculate this error as being less than k1*TSRDelta/2 + k2*TSRDelta.

EntityA now has the ability to associate UTC1 with TSBTSV and by allow others to know
that BlobA was signed at a certain time. First TSBTSN must equal TSR1TSN. This
relationship allows EntityA to assert that TSRB occurs during the same session as TSR1
and TSR2.

EntityA calculates HashTimeDelta which is the difference between TSR1TCV and TSRBTCV
and the conversion of ticks to seconds. HashTimeDelta includes the same k1 and k2 as
calculated above. Stated mathematically:

E = k2(TSR1TCV – TSRBTCV)

HashTimeDelta = k1(TSR1TCV – TSRBTCV) + E

Now the following relationships hold:

(1) UTC1 – DeltaTime < TSRBTCV – (TSRBTCV – TSR1TCV) < UTC1

(2) UTC1 – DeltaTime < TSRBTCV + HashTimeDelta + E < UTC1

(3) UTC1 – HashTimeDelta – DeltaTime – E < TSRBTCV < UTC1 – HashTimeDelta + E

(4) TSRBTCV = (UTC1 – HashTimeDelta – DeltaTime/2) + (E + DeltaTime/2)

This has the correct properties

As DeltaTime grows so does the error bar (or the uncertainty of the time association)

As the difference between the time of the measurement and the time of the time stamp
grows, so does the E as a function of E is HashTimeDelta

End of informative comment

20.4 Additional Comments and Questions
Start of informative comment
Time Difference
If two things are time stamped, say at TCVs and TCVe (for TCV at start, TCV at end) then
any entity can calculate the time difference between the two events and will get:

TimeDiff = k1*|TCVe – TCVs| + k2*|TCVe – TCVs|

This TimeDiff does not indicate what time the two events occurred at it merely gives the
time between the events. This time difference doesn’t require a Time Authority.

Why is TSN (tick session nonce) required?
Without it, there is no way to associate a Time Authority stamp with any TSV, as the TSV
resets at the start of every tick session. The TSN proves that the concatenation of TSV and
TSN is unique.

How does the protocol prevent replay attacks?

Revision 116 1 Marchy 2011 TCG Published 107
TCG Published

531
532

533
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388

3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

534
535

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The TPM signs the TSR sent to the TA. This TSR contains the unique combination of TSV
and TSN. Since the TSN is unique to a tick session and the TSV continues to increment any
attempt to recreate the same TSR will fail. If the TPM is reset such that the TSV is at the
same value, the TSN will be a new value. If the TPM is not reset then the TSV continues to
increment and will not repeat.

How does EntityA know that the TSR1 that the TA signs is recent?
It doesn't. EntityA checks however to ensure that the TSN is the same in all TSR. This
ensures that the values are all related. If TSR1 is an old value then the HashTimeDelta will
be a large value and the uncertainty of the relation of the signing to the UTC will be large.

Why does associating a UTC time with a TSV take two steps?
This is because it takes some time between when a request goes to a time authority and
when the response comes. The protocol measures this time and uses it to create the time
deltas. The relationship of TSV to UTC is somewhere between the request and response.

Affect of power on the tick counter
As the TPM is not required to maintain an internal clock and battery, how the platform
provides power to the TPM affects the ability to maintain the tick counter. The original
mechanism had the TPM maintaining an indication of how the platform provided the power.
Previous performance does not predict what might occur in the future, as the platform may
be unable to continue to provide the power (dead battery, pulled plug from wall etc). With
the knowledge that the TPM cannot accurately report the future, the specification deleted
tick type from the TPM.

The information relative to what the platform is doing to provide power to the TPM is now a
responsibility of the TSS. The TSS should first determine how the platform was built, using
the platform credential. The TSS should also attempt to determine the actual performance
of the TPM in regards to maintaining the tick count. The TSS can help in this determination
by keeping track of the tick nonce. The tick nonce changes each time the tick count is lost.
By comparing the tick nonce across system events the TSS can obtain a heuristic that
represents how the platform provides power to the TPM.

The TSS must define a standard set of values as to when the tick nonce continues to
increment across system events.

The following are some PC implementations that give the flavor of what is possible regarding
the clock on a specific platform.

TICK_INC - No TPM power battery. Clock comes from PCI clock, may stop from time to time
due to clock stopping protocols such as CLKRUN.

TICK_POWER - No TPM power battery. Clock source comes from PCI clock, always runs
except in S3+.

TICK_STSTATE - External power (might be battery) consumed by TPM during S3 only. Clock
source comes either from a system clock that runs during S3 or from crystal/internal TPM
source.

TICK_STCLEAR - Standby power used to drive counter. In desktop, may be related to when
system is plugged into wall. Clock source comes either from a system clock that runs when
standby power is available or from crystal/internal TPM source.

108 TCG Published Revision 116 1 Marchy 2011
TCG Published

536
537

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443

538
539

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

TICK_ALWAYS - TPM power battery. Clock source comes either from a battery powered
system clock that crystal/internal TPM source.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 109
TCG Published

540
541

542
3444
3445
3446

543
544

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

21. Context Management
Start of informative comment
The TPM is a device that contains limited resources. Caching of the resources may occur
without knowledge or assistance from the application that loaded the resource. In version
1.1 there were two types of resources that had need of this support keys and authorization
sessions. Each type had a separate load and restore operation. In version 1.2 there is the
addition of transport sessions. To handle these situations generically 1.2 is defining a single
context manager that all types of resources may use.

The concept is simple, a resource manager requests that wrapping of a resource in a
manner that securely protects the resource and only allows the restoring of the resource on
the same TPM and during the same operational cycle.

Consider a key successfully loaded on the TPM. The parent keys that loaded the key may
have required a different set of PCR registers than are currently set on the TPM. For
example, the end result is to have key5 loaded. Key3 is protected by key2, which is
protected by key1, which is protected by the SRK. Key1 requires PCR1 to be in a certain
state, key2 requires PCR2 to load and key3 requires PCR3. Now at some point in time after
key1 loaded key2, PCR1 was extended with additional information. If key3 is evicted then
there is no way to reload key3 until the platform is rebooted. To avoid this type of problem
the TPM can execute context management routines. The context management routines save
key3 in its current state and allow the TPM to restore the state without having to use the
parent keys (key1 and key2).

There are numerous issues with performing context management on sessions. These issues
revolve around the use of the nonces in the session. If an attacker can successfully store,
attack, fail and then reload the session the attacker can repeat the attack many times.

The key that the TPM uses to encrypt blobs may be a volatile or non-volatile key. One
mechanism would be for the TPM to generate a new key on each TPM_Startup command.
Another would be for the TPM to generate the key and store it persistently in the
TPM_PERMANENT_DATA area.

The symmetric key should be relatively the same strength as a 2048-bit RSA key. 128-bit
AES would be appropriate.

End of informative comment
1. Context management is a required function.

2. Execution of the context commands MUST NOT cause the exposure of any TPM shielded
location.

3. The TPM MUST NOT allow the context saving of the EK or the SRK.

4. The TPM MAY use either symmetric or asymmetric encryption. For asymmetric
encryption the TPM MUST use a 2048 RSA key.

5. A wrapped session blob MUST only be loadable once. A wrapped key blob MAY be
reloadable.

6. The TPM MUST support a minimum of 16 concurrent saved contexts other than keys.
There is no minimum or maximum number of concurrent saved key contexts.

110 TCG Published Revision 116 1 Marchy 2011
TCG Published

545
546

3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487

547
548

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

7. All external session blobs (of type TPM_RT_TRANS or TPM_RT_AUTH) can be invalidated
upon specific request (via TPM_FlushXXX using TPM_RT_CONTEXT as resource type).
This does not include saved context blobs of type TPM_RT_KEY.

8. External session blobs are invalidated on TPM_Startup(ST_CLEAR) or on
TPM_Startup(any) based on the startup effects settings

a. Saved context blobs of type TPM_RT_KEY with the attributes of parentPCRStatus =
FALSE and isVolatile = FALSE SHOULD not invalidated on TPM_Startup(any)

9. All external session invalidate automatically upon installation of a new owner due to the
setting of a new tpmProof.

10.If the TPM enters failure mode ALL session blobs (including keys) MUST be invalidated

a. Invalidation includes ensuring that contextNonceKey and contextNonceSession will
change when the TPM recovers from the failure.

11.Attempts to restore a wrapped blob after the successful completion of
TPM_Startup(ST_CLEAR) MUST fail. The exception is a wrapped key blob which may be
long-term and which MAY restore after a TPM_Startup(ST_CLEAR).

12.The save and load context commands are the generic equivalent to the context
commands in 1.1. Version 1.2 deprecates the following commands:

a. TPM_AuthSaveContext

b. TPM_AuthLoadContext

c. TPM_KeySaveContext

d. TPM_KeyLoadContext

Revision 116 1 Marchy 2011 TCG Published 111
TCG Published

549
550

551
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508

552
553

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

22. Eviction
Start of informative comment
The TPM has numerous resources held inside of the TPM that may need eviction. The need
for eviction occurs when the number or resources in use by the TPM exceed the available
space. For resources that are hard to reload (i.e. keys tied to PCR values) the outside entity
should first perform a context save before evicting items.

In version 1.1 there were separate commands to evict separate resource types. This new
command set uses the resource types defined for context saving and creates a generic
command that will evict all resource types.

End of informative comment
1. The TPM MUST NOT flush the EK or SRK using this command.

2. Version 1.2 deprecates the following commands:

a. TPM_Terminate_Handle

b. TPM_EvictKey

c. TPM_Reset

112 TCG Published Revision 116 1 Marchy 2011
TCG Published

554
555

3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523

556
557

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

23. Session pool
Start of informative comment
The TPM supports two types of sessions that use the rolling nonce protocol, authorization
and transport. These sessions require much of the same handling and internal storage by
the TPM. To allow more flexibility the internal storage for these sessions will be defined as
coming from the same pool (or area).

The pool requires that three (3) sessions be available. The entities using the TPM can
determine the usage models of what sessions are active. This allows a TPM to have 3
authorization sessions or 3 transport sessions at one time.

Using all available pool resources for transport sessions is not a very usable model. If all
resources are in use by transport, there are no resources available for authorization
sessions and hence no ability to execute any commands requiring authorization. A more
realistic model would be to have two transport sessions and one authorization session.
While this is an unrealistic model for actual execution there will be no requirement that the
TPM prevent this from happening. A model of how it could occur would be when there are
two applications running, both using 2 transport sessions and one authorization session.
When switching between the applications, if the requirement was that only 2 transport
sessions could be active the TSS that would provide the context switch would have to
ensure that the transport sessions were context saved first.

Sessions can be virtualized, so while the TPM may only have 3 loaded sessions, there may
be an unlimited number of context saved sessions stored outside the TPM.

End of informative comment
1. The TPM MUST support a minimum of three (3) concurrent sessions. The sessions MAY

be any mix of authentication and transport sessions.

Revision 116 1 Marchy 2011 TCG Published 113
TCG Published

558
559

560

3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547

561
562

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

24. Initialization Operations
Start of informative comment
Initialization is the process where the TPM establishes an operating environment from a no
power state. Initialization occurs in many different flavors with PCR, keys, handles, sessions
and context blobs all initialized, reloaded or unloaded according to the rules and platform
environment.

Initialization does not affect the operational characteristics of the TPM (like TPM
Ownership).

Clear is the process of returning the TPM to factory defaults. The clear commands need
protection from unauthorized use and must allow for the possibility of changing Owners.
The clear process requires authorization to execute and locks to prevent unauthorized
operation.

The clear functionality performs the following tasks:

Invalidate SRK. Invalidating the SRK invalidates all protected storage areas below the SRK
in the hierarchy. The areas below are not destroyed they just have no mechanism to be
loaded anymore.

All TPM volatile and non-volatile data is set to default value except the endorsement key
pair. The clear includes the Owner-AuthData, so after performing the clear, the TPM has no
Owner. The PCR values are undefined after a clear operation.

The TPM shall return TPM_NOSRK until an Owner is set. After the execution of the clear
command, the TPM must go through a power cycle to properly set the PCR values.

The Owner has ultimate control of when a clear occurs.

The Owner can perform the TPM_OwnerClear command using the TPM Owner
authorization. If the Owner wishes to disable this clear command and require physical
access to perform the clear, the Owner can issue the TPM_DisableOwnerClear command.

During the TPM startup processing anyone with physical access to the machine can issue
the TPM_ForceClear command. This command performs the clear. The
TPM_DisableForceClear disables the TPM_ForceClear command for the duration of the
power cycle. TSS startup code that does not issue the TPM_DisableForceClear leaves the
TPM vulnerable to a denial of service attack. The assumption is that the TSS startup code
will issue the TPM_DisableForceClear on each power cycle after the TSS determines that it
will not be necessary to issue the TPM_ForceClear command. The purpose of the
TPM_ForceClear command is to recover from the state where the Owner has lost or
forgotten the TPM Ownership token.

The TPM_ForceClear must only be possible when the issuer has physical access to the
platform. The manufacturer of a platform determines the exact definition of physical access.

End of informative comment
1. The TPM MUST support proper initialization. Initialization MUST properly configure the

TPM to execute in the platform environment.

2. Initialization MUST ensure that handles, keys, sessions, context blobs and PCR are
properly initialized, reloaded or invalidated according to the platform environment.

114 TCG Published Revision 116 1 Marchy 2011
TCG Published

563
564

3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588

565
566

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. The description of the platform environment arrives at the TPM in a combination of
TPM_Init and TPM_Startup.

Revision 116 1 Marchy 2011 TCG Published 115
TCG Published

567
568

569
3589
3590

570
571

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

25. HMAC digest rules
Start of informative comment
The order of calculation of the HMAC is critical to being able to validate the authorization
and parameters of a command. All commands use the same order and format for the
calculation.

A more exact representation of a command would be the following

* TAG | LEN | ORD | HANDLES | DATA | AUTH1 (o) | AUTH2 (o) *

The text area for the HMAC calculation would be the concatenation of the following:

ORD || DATA

End of informative comment
The HMAC digest of parameters uses the following order

1. Skip tag and length

2. Include ordinal. This is the 1S parameter in the HMAC column for each command

3. Skip handle(s). This includes key and other session handles

4. Include data and other parameters for the command. This starts with the 2S parameter
in the HMAC column for each command.

5. Skip all AuthData values.

116 TCG Published Revision 116 1 Marchy 2011
TCG Published

572
573

3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609

574
575

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

26. Generic authorization session termination rules
Start of informative comment
These rules are the generic rules that govern all authorization sessions, a specific session
type may have additional rules or modifications of the generic rules

End of informative comment
1. A TPM SHALL unilaterally perform the actions of TPM_FlushSpecific for a session upon

any of the following events

a. “continueUse” flag in the authorization session is FALSE

b. Shared secret of the session in use to create the exclusive-or for confidentiality of
data. Example is TPM_ChangeAuth terminates the authorization session.
TPM_ExecuteTransport does not terminate the session due to protections inherent in
transport sessions.

c. When the associated entity is invalidated

d. When the command returns a fatal error. This is due to error returns not setting a
nonceEven. Without a new nonceEven the rolling nonces sequence is broken hence
the TPM MUST terminate the session.

e. Failure of an authorization check at the start of the command

f. Execution of TPM_Startup(ST_CLEAR)

2. The TPM MAY perform the actions of TPM_FlushSpecific for a session upon the following
events

a. Execution of TPM_Startup(ST_STATE)

Revision 116 1 Marchy 2011 TCG Published 117
TCG Published

576
577

578

3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630

579
580

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

27. PCR Grand Unification Theory
Start of informative comment
This section discusses the unification of PCR definition and use with locality.

The PCR allow the definition of a platform configuration. With the addition of locality, the
meaning of a configuration is somewhat larger. This section defines how the two combine to
provide the TPM user information relative to the platform configuration.

These are the issues regarding PCR and locality at this time

Definition of configuration
A configuration is the combination of PCR, PCR attributes and the locality.

Passing the creators configuration to the user of data
For many reasons, from the creator’s viewpoint and the user’s viewpoint, the configuration
in use by the creator is important information. This information needs transmitting to the
user with the data and with integrity.

The configuration must include the locality and may not be the same configuration that will
use the data. This allows one configuration to seal a value for future use and the end user
to know the genealogy of where the data comes from.

Definition of “Use”
See the definition of TPM_PCR_ATTRIBUTES for the attributes and the normative
statements regarding the use of the attributes. The use of a configuration is when the TPM
needs to ensure that the proper platform configuration is present. The first example is for
Unseal, the TPM must only release the information sealed if the platform configuration
matches the configuration specified by the seal creator. Here the use of locality is implicit in
the PCR attributes, if PCR8 requires locality 2 to be present then the seal creator ensures
that locality 2 is asserted by defining a configuration that uses PCR8.

The creation of a blob that specifies a configuration for use is not a “use” itself. So the SEAL
command does is not a use for specifying the use of a PCR configuration.

118 TCG Published Revision 116 1 Marchy 2011
TCG Published

581
582

3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657

583
584

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

By using the “new style” or TPM_PCR_INFO_LONG structure the user can determine that
Blob2 is different that Blob3.

Revision 116 1 Marchy 2011 TCG Published 119
TCG Published

585
586

587

3658
3659
3660

588
589

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Case B is the only failure and this shows the use of the locality modifier and PCR locality
attribute.

Additional attempts are obvious failures, config3 and config4 are unable to unseal any of
the 4 blobs.

One example is illustrative of the problems of just specifying locality without an
accompanying PCR. Assume Blob5 which specifies a dar of config1 and a locality 4 modifier.
Now either config2 or config4 can unseal Blob5. In fact there is no way to restrict ANY
process that gains access to locality 4 from performing the unseal. As many platforms will
have no restrictions as to which process can load in locality 4 there is no additional benefit
of specifying a locality modifier. If the sealer wants protections, they need to specify a PCR
that requires a locality modifier.

Defining locality modifiers dynamically
This feature would enable the platform to specify how and when a locality modifier applies
to a PCR. The current definition of PCR attributes has the values set in TPM manufacturing
and static for all TPM in a specific platform type (like a PC).

Defining dynamic attributes would make the use of a PCR very difficult. The sealer would
have to have some way of ensuring that their wishes were enforced and challengers would
have to pay close attention to the current PCR attributes. For these reasons the setting of
the PCR attributes is defined as a static operation made during the platform specific
specification.

120 TCG Published Revision 116 1 Marchy 2011
TCG Published

590
591

3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681

592
593

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

End of informative comment

27.1 Validate Key for use
Start of informative comment
The following shows the order and checks done before the use of a key that has PCR or
locality restrictions.

Note that there is no check for the PCR registers on the DSAP session. This is due to the
fact that DSAP checks for the continued validity of the PCR that are attached to the DSAP
and any change causes the invalidation of the DSAP session.

The checks must validate the locality of the DSAP session as the PCR registers in use could
have locality restrictions.

End of informative comment
1. If the authorization session is DSAP

a. If the DSAP -> localityAtRelease is not 0x1F (or in other words some localities are not
allowed)

i. Validate that TPM_STANY_FLAGS -> localityModifier is matched by DSAP ->
pcrInfo -> localityAtRelease, on mismatch return TPM_BAD_LOCALITY

b. If DSAP -> digestAtRelease is not 0

i. Calculate the current digest and compare to digestAtRelease, return
TPM_BAD_PCR on mismatch

c. If the DSAP points to an ordinal delegation

i. Check that the DSAP authorizes the use of the intended ordinal

d. If the DSAP points to a key delegation

i. Check that the DSAP authorizes the use of the key

e. If the key delegated is a CMK key

i. The TPM MUST check the CMK_DELEGATE restrictions

2. Set LK to the loaded key that is being used

3. If LK -> pcrInfoSize is not 0

a. If LK -> pcrInfo -> releasePCRSelection identifies the use of one or more PCR

i. Calculate H1 a TPM_COMPOSITE_HASH of the PCR selected by LK -> pcrInfo ->
releasePCRSelection

ii. Compare H1 to LK -> pcrInfo -> digestAtRelease on mismatch return
TPM_WRONGPCRVAL

b. If localityAtRelease is NOT 0x1F

i. Validate that TPM_STANY_FLAGS -> localityModifier is matched by LK -> pcrInfo
-> localityAtRelease on mismatch return TPM_BAD_LOCALITY

4. Allow use of the key

Revision 116 1 Marchy 2011 TCG Published 121
TCG Published

594
595

596
3682

3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717

597
598

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

28. Non Volatile Storage
Start of informative comment
The TPM contains protected non-volatile storage. There are many uses of this type of area;
however, a TPM needs to have a defined set of operations that touch any protected area.
The idea behind these instructions is to provide an area that the manufacturers and owner
can use for storing information in the TPM.

The TCG will define a limited set of information that it sees a need of storing in the TPM.
The TPM and platform manufacturer may add additional areas.

The NV storage area has a limited use before it will no longer operate Hence the NV
commands are under TPM Owner control.

Controls exist to allow a manufacturer to define and write NV indexes during
manufacturing before an owner exists. This is strictly a manufacturing mode, as it allows a
manufacturer to bypass security.

To locate if an index is available, use TPM_GetCapability to return the index and the size of
the area in use by the index.

The area may not be larger than the TPM input buffer. The TPM will report the maximum
size available to allocate.

The storage area is an opaque area to the TPM. The TPM, other than providing the storage,
does not review the internals of the area.

To SEAL a blob, the creator of the area specifies the use of PCR registers to read the value.
This is the exact property of SEAL.

To obtain a signed indication of what is in a NV store area the caller would setup a
transport session with logging on and then get the signed log. The log shows the parameters
so the caller can validate that the TPM holds the value.

There is an attribute, for each index, that defines the expected write scheme for the index.
The TPM may handle data storage differently based on the write scheme attribute that
defines the expected for the index. Whenever possible the NV memory should be allocated
with the write scheme attribute set to update as one block and not as individual bytes.

The non-volatile storage described here is defined by TPM_NV_DefineSpace. Other
structures that a manufacturer might decide to store in non-volatile memory (e.g., PCRs,
keys, the audit digest) are logically separate and do not affect the space available for the NV
indexed storage described here. An exception is a key that is moved from volatile to NV
memory when set as “owner evict”. This NV memory may come from a pool shared with NV
define space.

End of informative comment
1. The TPM MUST support the NV commands. The TPM MUST support the NV area as

defined by the TPM_NV_INDEX values.

2. The TPM MAY manage the storage area using any allocation and garbage collection
scheme.

122 TCG Published Revision 116 1 Marchy 2011
TCG Published

599
600

3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756

601
602

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

3. To remove an area from the NV store the TPM owner would use the
TPM_NV_DefineSpace command with a size of 0. Any authorized user can change the
value written in the NV store.

4. The TPM MUST treat the NV area as a shielded location.

a. The TPM does not provide any additional protections (like additional encryption) to
the NV area.

5. If a write operation is interrupted, then the TPM makes no guarantees about the data
stored at the specified index. It MAY be the previous value, MAY be the new value or
MAY be undefined or unpredictable. After the interruption the TPM MAY indicate that
the index contains unpredictable information.

a. The TPM MUST ensure that in case of interruption of a write to an index that all
other indexes are not affected

6. Minimum size of NV area is platform specific. The maximum area is TPM vendor specific.

7. A TPM MUST NOT use the NV area to store any data dependent on data structures
defined in Part II of the TPM specifications, except for the NV Storage structures implied
by required index values or reserved index values.

28.1 NV storage design principles
Start of informative comment
This section lists the design principles that motivate the NV area in the TPM. There was the
realization that the current design made use of NV storage but not necessarily efficiently.
The DIR, BIT and other commands placed demands on the TPM designer and required
areas that while allowing for flexible use reserved space most likely never used (like DIR for
locality 1).

The following are the design principles that drive the function definitions.

1. Provide efficient use of NV area on the TPM. NV storage is a very limited resource and
data stored in the NV area should be as small as possible.

2. The TPM does not control, edit, validate or manipulate in any manner the information in
the NV store. The TPM is merely a storage device. The TPM does enforce the access rules as
set by the TPM Owner.

3. Allocation of the NV area for a specific use must be under control of the TPM Owner.

4. The TPM Owner, when defining the area to use, will set the access and use policy for the
area. The TPM Owner can set AuthData values, delegations, PCR values and other controls
on the access allowed to the area.

5. There must be a capability to allow TPM and platform manufacturers to use this area
without a TPM Owner being present. This allows the manufacturer to place information into
the TPM without an onerous manufacturing flow. Information in this category would
include EK credential and platform credential.

6. The management and use of the NV area should not require a large number of ordinals.

7. The management and use of the NV area should not introduce new operating strategies
into the TPM and should be easy to implement.

Revision 116 1 Marchy 2011 TCG Published 123
TCG Published

603
604

605
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772

3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796

606
607

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

28.1.1 NV Storage use models
Start of informative comment
This informative section describes some of the anticipated use models and the attributes a
user of the storage area would need to set.

Owner authorized for all access
TPM_NV_DefineSpace: attributes = PER_OWERREAD || PER_OWNERWRITE

WriteValue(TPM Owner Auth, data)

ReadValue(TPM Owner Auth, data)

Set AuthData value
TPM_NV_DefineSpace: attributes = PER_AUTHREAD || PER_AUTHWRITE, auth =
authValue

WriteValue(authValue, data)

ReadValue(authValue, data)

Write once, only way to change is to delete and redefine
TPM_NV_DefineSpace: attributes = PER_WRITEDEFINE

WriteValue(size = x, data) // successful

WriteValue(size = 0) // locks

WriteValue(size = x) // fails

…

TPM_Startup(ST_Clear) // Does not affect lock

WriteValue(size = x, data) // fails

Write until specific index is locked, lock reset on Startup(ST_Clear)
TPM_NV_DefineSpace: index = 3, attributes = PER_WRITE_STCLEAR

TPM_NV_DefineSpace: index = 5, attributes = PER_WRITE_STCLEAR

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

WriteValue(index = 3, size = 0) // locks

WriteValue(index = 3, size = x, data) // fails

WriteValue(index = 5, size = x, data) // successful

124 TCG Published Revision 116 1 Marchy 2011
TCG Published

608
609

3797

3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830

610
611

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

…

TPM_Startup(ST_Clear) // clears lock

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

Write until index 0 is locked, lock reset by Startup(ST_Clear)
TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 5

TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 3

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

WriteValue(index = 0) // sets SV -> bGlobalLock to TRUE

WriteValue(index = 3, size = x, data) // fails

WriteValue(index = 5, size = x, data) // fails

…

TPM_Startup(ST_Clear) // clears lock

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

End of informative comment

28.2 Use of NV storage during manufacturing
Start of informative comment
The TPM needs the ability to write values to the NV store during manufacturing. It is
possible that the values written at this time would require authorization during normal TPM
use. The actual enforcement of these authorizations during manufacturing would cause
numerous problems for the manufacturer.

The TPM will not enforce the NV authorization restrictions until the execution of a
TPM_NV_DefineSpace with the handle of TPM_NV_INDEX_LOCK.

The 'D' bit indicates an NV index defined (typically) during manufacturing and then locked.
While nvLocked is FALSE, indices with the 'D' set can be defined, deleted, or redefined as
desired. Once nvLocked is set TRUE, the 'D' bit indices are locked. They cannot be defined,
deleted or redefined.

nvLocked has the lifetime of the endorsement key.

End of informative comment
1. The TPM MUST NOT enforce the NV authorizations (auth values, PCR etc.) prior to the

execution of TPM_NV_DefineSpace with an index of TPM_NV_INDEX_LOCK

Revision 116 1 Marchy 2011 TCG Published 125
TCG Published

612
613

614
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849

3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865

615
616

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

a. While the TPM is not enforcing NV authorizations, the TPM SHALL allow the use of
TPM_NV_DefineSpace in any operational state (disabled, deactivated)

126 TCG Published Revision 116 1 Marchy 2011
TCG Published

617
618

3866
3867

619
620

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

29. Delegation Model
Start of informative comment
The TPM Owner is an entity with a single “super user” privilege to control TPM operation.
Thus if any aspect of a TPM requires management, the TPM Owner must perform that task
himself or reveal his privilege information to another entity. This other entity thereby
obtains the privilege to operate all TPM controls, not just those intended by the Owner.
Therefore the Owner often must have greater trust in the other entity than is strictly
necessary to perform an arbitrary task.

This delegation model addresses this issue by allowing delegation of individual TPM Owner
privileges (the right to use individual Owner authorized TPM commands) to individual
entities, which may be trusted processes.

Basic requirements:

Consumer user does not need to enter or remember a TPM Owner password. This is an
ease of use and security issue. Not remembering the password may lead to bad security
practices, increased tech support calls and lost data.

Role based administration and separation of duty. It should be possible to delegate just
enough Owner privileges to perform some administration task or carry out some duty,
without delegating all Owner privileges.

TPM should support multiple trusted processes. When a platform has the ability to load
and execute multiple trusted processes then the TPM should be able to participate in the
protection of secrets and proper management of the processes and their secrets. In fact, the
TPM most likely is the root of storage for these values. The TPM should enable the proper
management, protection and distribution of values held for the various trusted processes
that reside on the same platform.

Trusted processes may require restrictions. A fundamental security tenet is the principle
of least privilege, that is, to limit process functionality to only the functions necessary to
accomplish the task. This delegation model provides a building block that allows a system
designer to create single purpose processes and then ensure that the process only has
access to the functions that it requires to complete the task.

Maintain the current authorization structure and protocols. There is no desire to
remove the current TPM Owner and the protocols that authorize and manage the TPM
Owner. The capabilities are a delegation of TPM Owner responsibilities. The delegation
allows the TPM Owner to delegate some or all of the actions that a TPM Owner can perform.
The TPM Owner has complete control as to when and if the capability delegation is in use.

End of informative comment

29.1 Table Requirements
Start of informative comment
No ocean front property in table – We want the table to be virtually unlimited in size.
While we need some storage, we do not want to pick just one number and have that be the
min and max. This drives the need for the ability to save, off the TPM, delegation elements.

Revision 116 1 Marchy 2011 TCG Published 127
TCG Published

621
622

623

3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902

3903
3904
3905
3906
3907

624
625

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Revoking a delegation, does not affect other delegations – The TPM Owner may, at any
time, determine that a delegation is no longer appropriate. The TPM Owner needs to be able
to ensure the revocation of all delegations in the same family. The TPM Owner also wants to
ensure that revocation done in one family does not affect any other family of delegations.

Table seeded by OEM – The OEM should do the seeding of the table during manufacturing.
This allows the OEM to ship the platform and make it easy for the platform owner to
startup the first time. The definition of manufacturing in this context includes any time
prior to or including the time the user first turns on the platform.

Table not tied to a TPM owner – The table is not tied to the existence of a TPM owner. This
facilitates the seeding of the table by the OEM.

External delegations need authorization and assurance of revocation – When a
delegation is held external to the TPM, the TPM must ensure authorization of the delegation
when loading the delegation. Upon revocation of a family or other family changes the TPM
must ensure that prior valid delegations are not successfully loaded.

90% case, no need for external store – The normal case should be that the platform does
not need to worry about having external delegations. This drives the need for some NV
storage to hold a minimum number of table rows.

End of informative comment

29.2 How this works
Start of informative comment
The existing TPM owner authorization model is that certain TPM commands require the
authorization of the TPM Owner to operate. The authorization value is the TPM Owners
token. Using the token to authorize the command is proof of TPM Ownership. There is only
one token and knowledge of this token allows all operations that require proof of TPM
Ownership.

This extension allows the TPM Owner to create a new AuthData value and to delegate some
of the TPM Ownership rights to the new AuthData value.

The use model of the delegation is to create an authorization session (DSAP) using the
delegated AuthData value instead of the TPM Owner token. This allows delegation to work
without change to any current command.

The intent is to permit delegation of selected Owner privileges to selected entities, be they
local or remote, separate from the current software environment or integrated into the
current software environment. Thus Owner privileges may be delegated to entities on other
platforms, to entities (trusted processes) that are part of the normal software environment
on the Owner’s platform, or to a minimalist software environment on the Owner’s platform
(created by booting from a CDROM, or special disk partition), for example.

Privileges may be delegated to a particular entity via definition of a particular process on the
Owner’s platform (by dictating PCR values), and/or by stipulating a particular AuthData
value. The resultant TPM_DELEGATE_OWNER_BLOB and any AuthData value must be
passed by the Owner to the chosen entity.

Delegation to an external entity (not on the Owner’s platform) probably requires an
AuthData value and a NULL PCR selection. (But the AuthData value might be sealed to a
desired set of PCRs in that remote platform.)

128 TCG Published Revision 116 1 Marchy 2011
TCG Published

626
627

3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925

3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950

628
629

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Delegation to a trusted process provided by the local OS requires a PCR that indicates the
trusted process. The authorization token should be a fixed value (any well known value),
since the OS has no means to safely store the authorization token without sealing that
token to the PCR that indicates the trusted process. It is suggested that the value 0x111…
111 be used.

Delegation to a specially booted entity requires either a PCR or an authorization token, and
preferably both, to recognize both the process and the fact that the Owner wishes that
process to execute.

The central delegation data structure is a set of tables. These tables indicate the command
ordinals delegated by the TPM Owner to a particular defined environment. The tables allow
the distinction of delegations belonging to different environments.

The TPM is capable of storing internally a few table elements to enable the passing of the
delegation information from an entity that has no access to memory or storage of the
defined environment.

The number of delegations that the tables can hold is a dynamic number with the
possibility of adding or deleting entries at any time. As the total number is dynamic, and
possibly large, the TPM provides a mechanism to cache the delegations. The cache of a
delegation must include integrity and confidentiality. The term for the encrypted cached
entity is blob. The blob contains a counter (verificationCount) validated when the TPM loads
the blob.

An Owner uses the counter mechanism to prevent the use of undesirable blobs; they
increment verificationCount inside the TPM and insert the current value of
verificationCount into selected table elements, including temporarily loaded blobs. (This is
the reason why a TPM must still load a blob that has an incorrect verificationCount.) An
Owner can verify the delegation state of his platform (immediately after updating
verificationCount) by keeping copies of the elements that have just been given the current
value of verificationCount, signing those copies, and sending them to a third party.

Verification probably requires interaction with a third party because acceptable table
profiles will change with time and the most important reason for verification is suspicion of
the state of a TOS in a platform. Such suspicion implies that the verification check must be
done by a trusted security monitor (perhaps separate trusted software on another platform
or separate trusted software on CDROM, for example). The signature sent to the third party
must include a freshness value, to prevent replay attacks, and the security monitor must
verify that a response from the third party includes that freshness value. In situations
where the highest confidence is required, the third party could provide the response by an
out-of-band mechanism, such as an automated telephone service with spoken confirmation
of acceptability of platform state and freshness value.

A challenger can verify an entire family using a single transport session with logging, that
increments the verification count, updates the verification count in selected blobs, reads the
tables and obtains a single transport session signature over all of the blobs in a family.

If no Owner is installed, the delegation mechanisms are inoperative and third party
verification of the tables is impossible, but tables can still be administered and corrected.
(See later for more details.)

To perform an operation using the delegation the entity establishes an authorization session
and uses the delegated AuthData value for all HMAC calculations. The TPM validates the

Revision 116 1 Marchy 2011 TCG Published 129
TCG Published

630
631

632
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

633
634

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

AuthData value, and in the case of defined environments checks the PCR values. If the
validation is successful, the TPM then validates that the delegation allows the intended
operation.

There can be at least two delegation rows stored in non-volatile storage inside a TPM, and
these may be changed using Owner privilege or delegated Owner privilege. Each delegation
table row is a member of a family, and there can be at least eight family rows stored in non-
volatile storage inside a TPM. An entity belonging to one family can be delegated the
privilege to create a new family and edit the rows in its own family, but no other family.

In addition to tying together delegations, the family concept and the family table also
provides the mechanism for validation and revocation of exported delegate table rows, as
well as the mechanism for the platform user to perform validation of all delegations in a
family.

End of informative comment

29.3 Family Table
Start of informative comment
The family table has three main purposes.

1 - To provide for the grouping of rows in the TPM_DELEGATE_TABLE; entities identified in
delegate table rows as belonging to the same family can edit information in the other
delegate table rows with the same family ID. This allows a family to manage itself and
provides an easier mechanism during upgrades.

2 - To provide the validation and revocation mechanism for exported
TPM_DELEGATE_ROWS and those stored on the TPM in the delegation table

3 - To provide the ability to perform validation of all delegations in a family

The family table must have eight rows, and may have more. The maximum number of rows
is TPM vendor-defined and is available using the TPM_GetCapability command.

As the family table has a limited number of rows, there is the possibility that this number
could be insufficient. However, the ability to create a virtual amount of rows, like done for
the TPM_DELEGATE_TABLE would create the need to have all of the validation and
revocation mechanisms that the family table provides for the delegate table. This could
become a recursive process, so for this version of the specification, the recursion stops at
the family table.

The family table contains four pieces of information: the family ID, the family label, the
family verification count, and the family flags.

The family ID is a 32-bit value that provides a sequence number of the families in use.

The family label is a one-byte field that family table manager software would use to help
identify the information associated with the family. Software must be able to map the
numeric value associated with each family to the ASCII-string family name displayable in
the user interface.

The family verification count is a 32-bit sequence number that identifies the last outside
verification and attestation of the family information.

130 TCG Published Revision 116 1 Marchy 2011
TCG Published

635
636

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008

4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035

637
638

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Initialization of the family table occurs by using the TPM_Delegate_Manage command with
the TPM_FAMILY_CREATE option.

The verificationCount parameter enables a TPM to check that all rows of a family in the
delegate table are approved (by an external verification process), even if rows have been
stored off-TPM.

The family flags allow the use and administration of the family table row, and its associated
delegate table rows.

Row contents
Family ID – 32-bits

Row label – One byte

Family verification count – 32-bits

Family enable/disable use/admin flags – 32-bits

End of informative comment

29.4 Delegate Table
Start of informative comment
The delegate table has three main purposes, from the point of view of the TPM. This table
holds:

The list of ordinals allowable for use by the delegate

The identity of a process that can use the ordinal list

The AuthData value to use the ordinal list

The delegate table has a minimum of two (2) rows; the maximum number of rows is TPM
vendor-defined and is available using the TPM_GetCapability command. Each row
represents a delegation and, optionally, an assignment of that delegation to an identified
trusted process.

The non-volatile delegate rows permit an entity to pass delegation rows to a software
environment without regard to shared memory between the entity and the software
environment. The size of the delegate table does not restrict the number of delegations
because TPM_Delegate_CreateOwnerDelegation can create blobs for use in a DSAP session,
bypassing the delegate table.

The TPM Owner controls the tables that control the delegations, but (recursively) the TPM
Owner can delegate the management of the tables to delegated entities. Entities belonging
to a particular group (family) of delegation processes may edit delegate table entries that
belong to that family.

After creation of a delegation entry there is no restriction on the use of the delegation in a
properly authorized session. The TPM Owner has properly authorized the creation of the
delegation so the use of the delegation occurs whenever the delegate wishes to use it.

The rows of the delegate table held in non-volatile storage are only changeable under TPM
Owner authorization.

The delegate table contains six pieces of information: PCR information, the AuthData value
for the delegated capabilities, the delegation label, the family ID, the verification count, and

Revision 116 1 Marchy 2011 TCG Published 131
TCG Published

639
640

641
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048

4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075

642
643

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

a profile of the capabilities that are delegated to the trusted process identified by the PCR
information.

Row Elements
ASCII label – Label that provides information regarding the row. This is not a sensitive item.

Family ID – The family that the delegation belongs to; this is not a sensitive item.

Verification count – Specifies the version, or generation, of this row; version validity
information is in the family table. This is not a sensitive value.

Delegated capabilities – The capabilities granted, by the TPM Owner, to the identified
process. This is not a sensitive item.

Authorization and Identity
The creator of the delegation sets the AuthData value and the PCR selection. The creator is
responsible for the protection and dissemination of the AuthData value. This is a sensitive
value.

End of informative comment
1. The TPM_DELEGATE_TABLE MUST have at least two (2) rows; the maximum number of

table rows is TPM-vendor defined and MUST be reported in response to a
TPM_GetCapability command

2. The AuthData value and the PCR selection must be set by the creator of the delegation

29.5 Delegation Administration Control
Start of informative comment
The delegate tables (both family and delegation) present some control problems. The tables
must be initialized by the platform OEM, administered and controlled by the TPM Owner,
and reset on changes of TPM Ownership. To provide this level of control there are three
phases of administration with different functions available in the phases.

The three phases of table administration are; manufacturing (P1), no-owner (P2) and owner
present (P3). These three phases allow different types of administration of the delegation
tables.

Manufacturing (P1)
A more accurate definition of this phase is open, un-initialized and un-owned. It occurs
after TPM manufacturing and as a result of TPM_OwnerClear or TPM_ForceClear.

In P1 TPM_Delegate_Manage can initialize and manage non-volatile family rows in the TPM.
TPM_Delegate_LoadOwnerDelegation can load non-volatile delegation rows in the TPM.

Attacks that attempt to burnout the TPM’s NV storage are frustrated by the NV store’s own
limits on the number of writes when no Owner is installed.

No-Owner (P2)
This phase occurs after the platform has been properly setup. The setup can occur in the
platform manufacturing flow, during the first boot of the platform or at any time when the
platform owner wants to lock the table settings down. There is no TPM Owner at this time.

132 TCG Published Revision 116 1 Marchy 2011
TCG Published

644
645

4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093

4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113

646
647

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

TPM_Delegate_Manage locks both the family and delegation rows. This lock can be opened
only by the Owner (after the Owner has been installed, obviously) or by the act of removing
the Owner (even if no Owner is installed). Thus locked tables can be unlocked by asserting
Physical Presence and executing TPM_ForceClear, without having to install an Owner.

In P2, the relevant TPM_Delegate_xxx commands all return the error
TPM_DELEGATE_LOCKED. This is not an issue as there is no TPM Owner to delegate
commands, so the inability to change the tables or create delegations does not affect the
use of the TPM.

Owned (P3)
In this phase, the TPM has a TPM Owner and the TPM Owner manages the table as the
Owner sees fit. This phase continues until the removal of the TPM Owner.

Moving from P2 to P3 is automatic upon establishment of a TPM Owner. Removal of the
TPM Owner automatically moves back to P1.

The TPM Owner always has the ability to administer any table. The TPM Owner may
delegate the ability to manipulate a single family or all families. Such delegations are
operative only if delegations are enabled.

End of informative comment
1. When DelegateAdminLock is TRUE the TPM MUST disallow any changes to the delegate

tables

2. With a TPM Owner installed, the TPM Owner MUST authorize all delegate table changes

29.5.1 Control in Phase 1
Start of informative comment
The TPM starts life in P1. The TPM has no owner and the tables are empty. It is desirable
for the OEM to initialize the tables to allow delegation to start immediately after the Owner
decides to enable delegation. As the setup may require changes and validation, a simple
mechanism of writing to the area once is not a valid option.

TPM_Delegate_Manage and TPM_Delegate_LoadOwnerDelegation allow the OEM to fill the
table, read the public parts of the table, perform reboots, reset the table and when finally
satisfied as to the state of the platform, lock the table.

Alternatively, the OEM can leave the tables NULL and turn off table administration leaving
the TPM in an unloaded state waiting for the eventual TPM Owner to fill the tables, as they
need.

Flow to load tables

Default values of DelegateAdminLock are set either during manufacturing or are the result
of TPM_OwnerClear or TPM_ForceClear.

TPM_Delegate_Manage verifies that DelegateAdminLock is FALSE and that there is no TPM
Owner. The command will therefore load or manipulate the family tables as specified in the
command.

TPM_Delegate_LoadOwnerDelegation verifies that DelegateAdminLock is FALSE and no TPM
owner is present. The command loads the delegate information specified in the command.

Revision 116 1 Marchy 2011 TCG Published 133
TCG Published

648
649

650
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133

4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153

651
652

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

End of informative comment

29.5.2 Control in Phase 2
Start of informative comment
In phase 2, no changes are possible to the delegate tables. The platform owner must install
a TPM Owner and then manage the tables, or use TPM_ForceClear to revert to phase 1.

End of informative comment

29.5.3 Control in Phase 3
Start of informative comment

The TPM_DELEGATE_TABLE requires commands that manage the table. These commands
include filling the table, turning use of the table on or off, turning administration of the
table on or off, and using the table.

The commands are:

TPM_Delegate_Manage – Manages the family table on a row-by-row basis: creates a new
family, enables/disables use of a family table row and delegate table rows that share the
same family ID, enables/disables administration of a family’s rows in both the family table
and the delegate table, and invalidates an existing family.

TPM_Delegate_CreateOwnerDelegation increments the family verification count (if
desired) and delegates the Owner’s privilege to use a set of command ordinals, by creating a
blob. Such blobs can be used as input data for TPM_DSAP or
TPM_Delegate_LoadOwnerDelegation. Incrementing the verification count and creating a
delegation must be an atomic operation. Otherwise no delegations are operative after
incrementing the verification count.

TPM_Delegate_LoadOwnerDelegation loads a delegate blob into a non-volatile delegate
table row, inside the TPM.

TPM_Delegate_ReadTable is used to read from the TPM the public contents of the family
and delegate tables that are stored on the TPM.

TPM_Delegate_UpdateVerification sets the verificationCount in an entity (a blob or a
delegation row) to the current family value, in order that the delegations represented by that
entity will continue to be accepted by the TPM.

TPM_Delegate_VerifyDelegation loads a delegate blob into the TPM, and returns success
or failure, depending on whether the blob is currently valid.

TPM_DSAP – opens a deferred authorization session, using either an input blob (created by
TPM_Delegate_CreateOwnerDelegation) or a cached blob (loaded by
TPM_Delegate_LoadOwnerDelegation into one of the TPM’s non-volatile delegation rows).

End of informative comment

29.6 Family Verification
Start of informative comment
The platform user may wish to have confirmation that the delegations in use provide a
coherent set of delegations. This process would require some evaluation of the processes

134 TCG Published Revision 116 1 Marchy 2011
TCG Published

653
654

4154

4155
4156
4157
4158
4159

4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188

4189
4190
4191
4192

655
656

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

granted delegations. To assist in this confirmation the TPM provides a mechanism to group
all delegations of a family into a signed blob. The signed blob allows the verification agent to
look at the delegations, the processes involved and make an assessment as the validity of
the delegations. The third party then sends back to the platform owner the results of the
assessment.

To perform the creation of the signed blob the platform owner needs the ability to group all
of the delegations of a single family into a transport session. The platform owner also wants
an assurance that no management of the table is possible during the verification.

This verification does not prove to a third party that the platform owner is not cheating.
There is nothing to prevent the platform owner from performing the validation and then
adding an additional delegation to the family.

Here is one example protocol that retrieves the information necessary to validate the rows
belonging to a particular family. Note that the local method of executing the protocol must
prevent a man-in-the-middle attack using the nonce supplied by the user.

The TPM Owner can increment the family verification count or use the current family
verification count. Using the current family verification count carries the risk that
unexamined delegation blobs permit undesirable delegations. Using an incremented
verification count eliminates that risk. The entity gathering the verification data requires
Owner authorization or access to a delegation that grants access to transport session
commands, plus other commands depending on whether verificationCount is to be
incremented. This delegation could be a trusted process that can use the delegations
because of its PCR measurements, a remote entity that can use the delegations because the
Owner has sent it a TPM_DELEGATE_OWNER_BLOB and AuthData value, or the host
platform booted from a CDROM that can use the delegations because of its PCR
measurements, and TPM_DELEGATE_OWNER_BLOB and AuthData value submitted by the
Owner, for example.

Verification using the current verificationCount

The gathering entity requires access to a delegation that grants access to at least the
ordinals to perform a transport session, plus TPM_Delegate_ReadTable and
TPM_Delegate_VerifyDelegation.

The TPM Owner creates a transport session with the “no other activity” attribute set. This
ensures notification if other operations occur on the TPM during the validation process. (If
other operations do occur, the validation processes may have been subverted.) All
subsequent commands listed are performed using the transport session.

TPM_Delegate_ReadTable displays all public values (including the permissions and PCR
values) in the TPM.

TPM_Delegate_VerifyDelegation loads each cached blob, with all public values (including the
permissions and PCR values) in plain text.

After verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions.

The gathering entity sends the log of the transport session plus any supporting information
to the validation entity, which evaluates the signed transport session log and informs the
platform owner of the result of the evaluation. This could be an out-of-band process.

Verification using an incremented verificationCount

Revision 116 1 Marchy 2011 TCG Published 135
TCG Published

657
658

659
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235

660
661

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

The gathering entity requires Owner authorization or access to a delegation that grants
access to at least the ordinals to perform a transport session, plus
TPM_Delegate_CreateOwnerDelegation, TPM_Delegate_ReadTable, and
TPM_Delegate_UpdateVerification.

The TPM Owner creates a transport session with the “no other activity” attribute set.

To increment the count the TPM Owner (or a delegate) must use
TPM_Delegate_CreateOwnerDelegation with increment == TRUE. That blob permits creation
of new delegations or approval of existing tables and blobs. That delegation must set the
PCRs of the desired (local) process and the desired AuthData value of the process. As noted
previously, AuthData values should be a fixed value if the gathering entity is a trusted
process that is part of the normal software environment.

If new delegations are to be created, TPM_Delegate_CreateOwnerDelegation must be used
with increment == FALSE.

If existing blobs and delegation rows are to be reapproved,
TPM_Delegate_UpdateVerification must be used to install the new value of verificationCount
into those existing blobs and non-volatile rows. This exposes the blobs’ public information
(including the permissions and PCR values) in plain text to the transport session.

TPM_Delegate_ReadTable then exposes all public values (including the permissions and
PCR values) of tables to the transport session.

Again, after verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions.

 End of informative comment

29.7 Use of commands for different states of TPM
Start of informative comment
Use the ordinal table to determine when the various commands are available for use

End of informative comment

29.8 Delegation Authorization Values
Start of informative comment
This section describes why, when a PCR selection is set, the AuthData value may be a fixed
value, and, when the PCR selection is null, the delegation creator must select an AuthData
value.

A PCR value is an indication of a particular (software) environment in the local platform.
Either that PCR value indicates a trusted process or not. If the trusted process is to execute
automatically, there is no point in allocating a meaningful AuthData value. (The only way
the trusted process could store the AuthData value is to seal it to the process’s PCR values,
but the delegation mechanism is already checking the process’s PCR values.) If execution of
the trusted process is dependent upon the wishes of another entity (such as the Owner), the
AuthData value should be a meaningful (private) value known only to the TPM, the Owner,
and that other entity. Otherwise the AuthData value should be a fixed, well known, value.

If the delegation is to be controlled from a remote platform, these simple delegation
mechanisms provide no means for the platform to verify the PCRs of that remote platform,

136 TCG Published Revision 116 1 Marchy 2011
TCG Published

662
663

4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256

4257
4258
4259
4260

4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275

664
665

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

and hence access to the delegation must be based solely upon knowledge of the AuthData
value.

End of informative comment

29.8.1 Using the authorization value
Start of informative comment
To use a delegation the TPM will enforce any PCR selection on use. The use definition is any
command that uses the delegation authorization value to take the place of the TPM Owner
authorization.

PCR Selection defined
In this case, the delegation has a PCR selection structure defined. Each time the TPM uses
the delegation authorization value instead of the TPM Owner value the TPM would validate
that the current PCR settings match the settings held in the delegation structure. The PCR
selection includes the definition of localities and checks of locality occur with the checking
of the PCR values. The TPM enforces use of the correct authorization value, which may or
may not be a meaningful (private) value.

PCR selection NULL
In this case, the delegation has no PCR selection structure defined. The TPM does not
enforce any particular environment before using the authorization value. Mere knowledge of
the value is sufficient.

End of informative comment

29.9 DSAP description
Start of informative comment
The DSAP opens a deferred auth session, using either a TPM_DELEGATE_BLOB as input
parameter or a reference to the TPM_DELEGATE_TABLE_ROW, stored inside the TPM. The
DSAP command creates an ephemeral secret to authenticate a session. The purpose of this
section is to illustrate the delegation of user keys or TPM Owner authorization by creating
and using a DSAP session without regard to a specific command.

A key defined for a certain usage (e.g. TPM_KEY_IDENTITY) can be applied to different
functions within the use model (e.g. TPM_Quote or TPM_CertifiyKey). If an entity knows the
AuthData for the key (key.usageAuth) it can perform all the functions, allowed for that use
model of that particular key. This entity is also defined as delegation creation entity, since it
can initiate the delegation process. Assume that a restricted usage entity should only be
allowed to execute a subset or a single functions denoted as TPM_Example, within the
specific use model of a key. (e.g. Allow the usage of a TPM_IDENTITY_KEY only for
Certifying Keys, but no other function). This use model points to the selection of the DSAP
as the authorization protocol to execute the TPM_Example command.

To perform this scenario the delegation creation entity must know the AuthData for the key
(key.usageAuth). It then has to initiate the delegation by creating a
TPM_DELEGATE_KEY_BLOB via the TPM_Delegate_CreateKeyDelegation command. As a
next step the delegation creation entity has to pass the TPM_DELEGATE_KEY_BLOB and
the delegation AuthData (TPM_DELEGATE_SENSITIVE.authValue) to the restricted usage

Revision 116 1 Marchy 2011 TCG Published 137
TCG Published

666
667

668
4276
4277
4278

4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295

4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316

669
670

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

entity. The specification offers the TPM_DelTable_ReadAuth mechanism to perform this
function. Other mechanisms may be used.

The restricted usage entity can now start an TPM_DSAP session by using the
TPM_DELEGATE_KEY_BLOB as input.

For the TPM_Example command, the inAuth parameter provides the authorization to
execute the command. The following table shows the commands executed, the parameters
created and the wire formats of all of the information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne,
inArgTwo). <outParamDigest> is the result of the following calculation: SHA1(returnCode,
ordinal, outArgOne). inAuthSetupParams refers to the following parameters, in this order:
authLastNonceEven, nonceOdd, continueAuthSession. OutAuthSetupParams refers to the
following parameters, in this order: nonceEven, nonceOdd, continueAuthSession

In addition to the two even nonces generated by the TPM (authLastNonceEven and
nonceEven) that are used for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is
used to generate the shared secret. For every even nonce, there is also an odd nonce
generated by the system.

138 TCG Published Revision 116 1 Marchy 2011
TCG Published

671
672

4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332

673
674

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Caller On the wire Dir TPM

Send TPM_DSAP TPM_DSAP
keyHandle
nonceOddOSAP
entityType
entityValue

 Decrypt sensitiveArea of entityValue
If entityValue==TPM_ET_DEL_BLOB verify the integrity of the blob,
and if a TPM_DELEGATE_KEY_BLOB is input verify that KeyHandle
and entityValue match
Create session & authHandle
Generate authLastNonceEven
Save authLastNonceEven with authHandle
Generate nonceEvenOSAP
Generate sharedSecret = HMAC(sensitiveArea.authValue.,
nonceEvenOSAP, nonceOddOSAP)
Save keyHandle, sharedSecret with authHandle and permissions

Save authHandle, authLastNonceEven
Generate sharedSecret =
HMAC(sensitiveArea.authValue,
nonceEvenOSAP, nonceOddOSAP)
Save sharedSecret

authHandle,
authLastNonceEven
nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
authHandle
nonceOdd
continueAuthSession
inAuth

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL
Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Check if command ordinal of TPM_Example is allowed in
permissions. If not return TPM_DISABLED_CMD
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

Revision 116 1 Marchy 2011 TCG Published 139
TCG Published

675
676

677
4333

4334

678
679

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Suppose now that the TPM user wishes to send another command using the same session
to operate on the same key. For the purposes of this example, we will assume that the same
ordinal is to be used (TPM_Example). To re-use the previous session, the
continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire
formats of all of the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the
output parameters from the first execution of TPM_Example.

Caller On the wire Dir TPM

Generate nonceOdd
Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)
Save nonceOdd with authHandle

Send TPM_Example tag
paramSize
ordinal
inArgOne
inArgTwo
nonceOdd
continueAuthSession
inAuth

 Retrieve authLastNonceEven from internal session storage
HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)
Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL
Execute TPM_Example and create returnCode
Generate nonceEven to replace authLastNonceEven in session
Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven
HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)
Compare HM to resAuth. This verifies
returnCode and output parameters.

tag
paramSize
returnCode
outArgOne
nonceEven
continueAuthSession
resAuth

 Return output parameters
If continueAuthSession is FALSE then destroy session

The TPM user could then use the session for further authorization sessions or terminate it
in the ways that have been described above in TPM_OIAP. Note that termination of the
DSAP session causes the TPM to destroy the shared secret.

End of informative comment
1. The DSAP session MUST enforce any PCR selection on use. The use definition is any

command that uses the delegation authorization value to take the place of the TPM
Owner authorization.

140 TCG Published Revision 116 1 Marchy 2011
TCG Published

680
681

4335
4336
4337
4338
4339
4340
4341
4342
4343

4344
4345
4346
4347
4348
4349
4350
4351

682
683

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

30. Physical Presence
Start of informative comment
Physical presence is a signal from the platform to the TPM that indicates the operator
manipulated the hardware of the platform. Manipulation would include depressing a
switch, setting a jumper, depressing a key on the keyboard or some other such action.

TCG does not specify an implementation technique. The guideline is the physical presence
technique should make it difficult or impossible for rogue software to assert the physical
presence signal.

A PC-specific physical presence mechanism might be an electrical connection from a switch,
or a program that loads during power on self-test.

End of informative comment
The TPM MUST support a signal from the platform for the assertion of physical presence. A
TCG platform specific specification MAY specify what mechanisms assert the physical
presence signal.

The platform manufacturer MUST provide for the physical presence assertion by some
physical mechanism.

30.1 Use of Physical Presence
Start of informative comment
For control purposes there are numerous commands on the TPM that require TPM Owner
authorization. Included in this group of commands are those that turn the TPM on or off
and those that define the operating modes of the TPM. The TPM Owner always has complete
control of the TPM. What happens in two conditions: there is no TPM Owner or the TPM
Owner forgets the TPM Owner AuthData value. Physical presence allows for an
authorization to change the state in these two conditions.

No TPM Owner
This state occurs when the TPM ships from manufacturing (it can occur at other times
also). There is no TPM Owner. It is imperative to protect the TPM from remote software
processes that would attempt to gain control of the TPM. To indicate to the TPM that the
TPM operating state can change (allow for the creation of the TPM Owner) the human
asserts physical presence. The physical presence assertion than indicates to the TPM that
changing the operating state of the TPM is authorized.

Lost TPM Owner authorization
In the case of lost, or forgotten, authorization there is a TPM Owner but no way to manage
the TPM. If the TPM will only operate with the TPM Owner authorization then the TPM is no
longer controllable. Here the operator of the machine asserts physical presence and
removes the current TPM Owner. The assumption is that the operator will then immediately
take ownership of the TPM and insert a new TPM Owner AuthData value.

Operator disabling

Revision 116 1 Marchy 2011 TCG Published 141
TCG Published

684
685

686

4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367

4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389

687
688

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

Another use of physical presence is to indicate that the operator wants to disable the use of
the TPM. This allows the operator to temporarily turn off the TPM but not change the
permanent operating mode of the TPM as set by the TPM Owner.

End of informative comment

142 TCG Published Revision 116 1 Marchy 2011
TCG Published

689
690

4390
4391
4392
4393

691
692

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

31. TPM Internal Asymmetric Encryption
Start of Informative comment
For asymmetric encryption schemes, the TPM is not required to perform the blocking of
information where that information cannot be encrypted in a single cryptographic
operation. The schemes TPM_ES_RSAESOAEP_SHA1_MGF1 and TPM_ES_RSAESPKCSV15
allow only single block encryption. When using these schemes, the caller to the TPM must
perform any blocking and unblocking outside the TPM. It is the responsibility of the caller
to ensure that multiple blocks are properly protected using a chaining mechanism.

Note that there are inherent dangers associated with splitting information so that it can be
encrypted in multiple blocks with an asymmetric key, and then chaining together these
blocks together. For example, if an integrity check mechanism is not used, an attacker can
encrypt his own data using the public key, and substitute this rogue block for one of the
original blocks in the message, thus forcing the TPM to replace part of the message upon
decryption.

There is also a more subtle attack to discover the data encrypted in low-entropy blocks. The
attacker makes a guess at the plaintext data, encrypts it, and substitutes the encrypted
guess for the original block. When the TPM decrypts the complete message, a successful
decryption will indicate that his guess was correct.

There are a number of solutions which could be considered for this problem – One such
solution for TPMs supporting symmetric encryption is specified in PKCS#7, section 10, and
involves using the public key to encrypt a symmetric key, then using that symmetric key to
encrypt the long message.

For TPMs without symmetric encryption capabilities, an alternative solution may be to add
random padding to each message block, thus increasing the block’s entropy.

This normative was deleted, since it contradicted Part 3: “For a TPM_UNBIND command
where the parent key has pubKey.algorithmId equal to TPM_ALG_RSA and
pubKey.encScheme set to TPM_ES_RSAESPKCSv15 the TPM SHALL NOT expect a
PAYLOAD_TYPE structure to prepend the decrypted data.” The contradiction was the case
of a TPM_ES_RSAESPKCSv15 binding key, which does have a payload.

End of informative comment
1. The TPM MUST perform the encryption or decryption in accordance with the

specification of the encryption scheme, as described below.

2. When a null terminated string is included in a calculation, the terminating null SHALL
NOT be included in the calculation.

31.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1
1. The encryption and decryption MUST be performed using the scheme RSA_ES_OAEP

defined in [PKCS #1v2.0: 7.1] using SHA1 as the hash algorithm for the encoding
operation.

2. Encryption

a. The OAEP encoding P parameter MUST be the 4 character string “TCPA”.

Revision 116 1 Marchy 2011 TCG Published 143
TCG Published

693
694

695

4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

4428
4429
4430
4431
4432
4433

696
697

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

b. While the TCG now controls this specification the string value will NOT change to
allow for interoperability and backward compatibility with TCPA 1.1 TPM’s

c. If there is an error with the encryption, the TPM must return the error
TPM_ENCRYPT_ERROR.

3. Decryption

a. The OAEP decoding P parameter MUST be the 4 character string “TCPA”.

b. While the TCG now controls this specification the string value will NOT change to
allow for interoperability and backward compatibility with TCPA 1.1 TPM’s

c. If there is an error with the decryption, the TPM must return the error
TPM_DECRYPT_ERROR.

31.1.2 TPM_ES_RSAESPKCSV15
1. The encryption MUST be performed using the scheme RSA_ES_PKCSV15 defined in

[PKCS #1v2.0: 7.2].

2. Encryption

a. If there is an error with the encryption, return the error TPM_ENCRYPT_ERROR.

3. Decryption

a. If there is an error with the decryption, return the error TPM_DECRYPT_ERROR.

31.1.3 TPM_ES_SYM_CTR
Start of informative comment
This defines an encryption mode in use with symmetric algorithms. The actual definition is
at

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

The underlying symmetric algorithm may be AES128, AES192, or AES256. The definition
for these algorithms is in the NIST document Appendix E.

The method of incrementing the counter value is different from that used by some standard
crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter value. TPM
users should be aware of this to avoid errors when the counter wraps.

End of informative comment
1. Given a current counter value, the next counter value is obtained by treating the lower

32 bits of the current counter value as an unsigned 32-bit integer x, then replacing the
lower 32 bits of the current counter value with the bits of the incremented integer (x + 1)
mod 2^32. This method is described in Appendix B.1 of the NIST document (m=32).

31.1.4 TPM_ES_SYM_OFB
Start of informative comment
This defines an encryption mode in use with symmetric algorithms. The actual definition is
at

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

144 TCG Published Revision 116 1 Marchy 2011
TCG Published

698
699

4434
4435
4436
4437
4438
4439
4440
4441
4442
4443

4444
4445
4446
4447
4448
4449
4450

4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465

4466
4467
4468
4469
4470

700
701

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The underlying symmetric algorithm may be AES128, AES192, or AES256. The definition
for these algorithms is in the NIST document Appendix E.

End of informative comment

31.2 TPM Internal Digital Signatures
Start of informative comment
These values indicate the approved schemes in use by the TPM to generate digital
signatures.

TPM 1.1 included only _SHA1 keys. These allowed the TPM_Sign command to sign a hash
with no structure. This signature scheme is retained for backward compatibility.

TPM 1.2 added _INFO keys to ensure that a structure, rather than a plain hash, is always
signed. For TPM_Sign, this signature scheme signs a new TPM_SIGN_INFO structure.
Other ordinals, such as (e.g., TPM_GetAuditDigestSigned, TPM_CertifyKey, TPM_Quote, etc.)
inherently sign a structure, so the _SHA1 and _INFO signature schemes produce an
identical result.

End of informative comment
The TPM MUST perform the signature or verification in accordance with the specification of
the signature scheme, as described below.

31.2.1 TPM_SS_RSASSAPKCS1v15_SHA1
Start of informative comment
This signature scheme prepends an OID to a SHA-1 digest. The OID, as specified in the
normative, is as follows:

PKCS#1 v2.0: 8.1 says to encode the message per PKCS#1 v2.0: 9.2.1.

PKCS#1 v2.0: 9.2.1 says to apply the digest and then add the algorithm ID per Section 11.

PKCS#1 v2.0: Section 11.2.3 for SHA-1 says

{iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2) 26 }

and also

For each OID, the parameters field associated with this OID in an AlgorithmIdentifier
shall have type NULL.

The DER/BER Guide says that the first sub-identifiers are coded as 40 * value1 + value2.

Thus, the OID becomes (with comments):

0x30 SEQUENCE
0x21 33 bytes
 0x30 SEQUENCE
 0x09 9 bytes
 0x06 OID
 0x05 5 bytes
 0x2b 43 = 40 * 1 (iso) + 3 (identified-organization)
 0x0e 14 from 11.2.3
 0x03 3 from 11.2.3

Revision 116 1 Marchy 2011 TCG Published 145
TCG Published

702
703

704
4471
4472
4473

4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487

4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509

705
706

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

 0x02 2 from 11.2.3
 0x1a 26 from 11.2.3
 0x05 NULL (parameters)
 0x00 0 bytes
 0x04 OCTET
 0x14 20 bytes (the SHA-1 digest to follow)

End of informative comment
1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in

[PKCS #1v2.0: 8.1] using SHA1 as the hash algorithm for the encoding operation.

31.2.2 TPM_SS_RSASSAPKCS1v15_DER
Start of informative comment
This signature scheme is designed to permit inclusion of DER coded information before
signing, which is inappropriate for most TPM capabilities

End of informative comment
1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in

[PKCS #1v2.0: 8.1]. The caller must properly format the area to sign using the DER
rules. The provided area maximum size is k-11 octets.

2. TPM_Sign SHALL be the only TPM capability that is permitted to use this signature
scheme. If a capability other than TPM_Sign is requested to use this signature scheme,
it SHALL fail with the error code TPM_INAPPROPRIATE_SIG

31.2.3 TPM_SS_RSASSAPKCS1v15_INFO
Start of informative comment
This signature scheme is designed to permit signatures on arbitrary information but also
protect the signature mechanism from being misused.

End of informative comment
1. The scheme MUST work just as TPM_SS_RSASSAPKCS1v15_SHA1 except in the

TPM_Sign command

a. In the TPM_Sign command the scheme MUST use a properly constructed
TPM_SIGN_INFO structure, and hash it before signing

31.2.4 Use of Signature Schemes
Start of informative comment
The TPM_SS_RSASSAPKCS1v15_INFO scheme is a new addition for 1.2. It causes a new
functioning for 1.1 and 1.2 keys. The following details the use of the new scheme and how
the TPM handles signatures and hashing

End of informative comment
1. For commands that sign a TPM_SIGN_INFO structure (e.g.,

(TPM_GetAuditDigestSigned, TPM_TickStampBlob, TPM_ReleaseTransportSigned)

146 TCG Published Revision 116 1 Marchy 2011
TCG Published

707
708

4510
4511
4512
4513
4514
4515
4516
4517
4518

4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529

4530
4531
4532
4533
4534
4535
4536
4537
4538

4539
4540
4541
4542
4543
4544
4545
4546

709
710

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

a. The TPM MUST create a TPM_SIGN_INFO and sign using the
TPM_SS_RSASSAPKCS1v15_SHA1 scheme for either _SHA1 or _INFO keys.

2. For commands that sign a structure defined by the command (e.g.,
(TPM_CMK_CreateTicket, TPM_CertifyKey, TPM_CertifyKey2, TPM_MakeIdentity,
TPM_Quote, TPM_Quote2, TPM_CertifySelfTest, TPM_GetCapabilitySigned)

a. Create the structure as defined by the command and sign using the
TPM_SS_RSASSAPKCS1v15_SHA1 scheme for either _SHA1 or _INFO keys.

3. For TPM_Sign:

a. Create the structure as defined by the command and key scheme

b. If key->sigScheme is TPM_SS_RSASSAPKCS1v15_SHA1, sign the 20 byte parameter

c. If key->sigScheme is TPM_SS_RSASSAPKCS1v15_DER, sign the DER value.

d. If key->sigScheme is TPM_SS_RSASSAPKCS1v15_INFO, sign any value using the
TPM_SIGN_INFO structure.

4. When data is signed and the data comes from INSIDE the TPM, the TPM MUST do the
hash, and prepend the DER encoding correctly before performing the padding and
private key operation.

5. When data is signed and the data comes from OUTSIDE the TPM, the software, not the
TPM, MUST do the hash.

6. When the TPM knows, or is told by implication, that the hash used is SHA-1, the TPM
MUST prepend the DER encoding correctly before performing the padding and private
key operation

7. When the TPM does not know, or told by implication, that the hash used is SHA-1, the
software, not the TPM) MUST provide the DER encoding to be prepended.

8. The TPM MUST perform the padding and private key operation in any signing operations
it does.

Revision 116 1 Marchy 2011 TCG Published 147
TCG Published

711
712

713
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571

714
715

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

32. Key Usage Table
Start of informative comment
Asymmetric keys (e.g., RSA keys) can do two basic functions: sign/verify and
encrypt/decrypt.

TPM_KEY_SIGNING and TPM_KEY_IDENTITY do signature functions.

TPM_KEY_STORAGE, TPM_KEY_BIND, TPM_KEY_MIGRATE, and TPM_KEY_AUTHCHANGE
do encryption functions.

End of informative comment
This table summarizes the types of keys associated with a given TPM command.

It is the responsibility of each command to check the key usage prior to executing the
command

First Key Second Key

Na
m

e

Fi
rs

t K
ey

Se
co

nd
 K

ey

SI
G

NI
NG

ST
O

RA
G

E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
EG

AC
Y

SI
G

NI
NG

ST
O

RA
G

E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
G

AC
Y

TPM_ActivateIdentity idKey x

TPM_CertifyKey certKey inKey x x x x x x x x

TPM_CertifyKey2 (Note 3) inKey certKey x x x x x x x x

TPM_CertifySelfTest key x x x

TPM_ChangeAuth parent blob x 2 2 2 2 2 2

TPM_ChangeAuthAsymFinish parent ephemeral x x

TPM_ChangeAuthAsymStart idKey ephemeral x x

TPM_CMK_ConvertMigration parent x

TPM_CMK_CreateBlob parent x

TPM_CMK_CreateKey parent x

TPM_ConvertMigrationBlob parent x

TPM_CreateMigrationBlob parent blob x 2 2 2 2 2 2

TPM_CreateWrapKey parent x

TPM_Delegate_CreateKeyDelegation key x x x x x x

TPM_DSAP entity x x x x x x

TPM_EstablishTransport key x x

TPM_GetAuditDigestSigned certKey x x x

TPM_GetAuditEventSigned certKey x x

TPM_GetCapabilitySigned key x x x

148 TCG Published Revision 116 1 Marchy 2011
TCG Published

716
717

4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582

718
719

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

TPM_GetPubKey key x x x x x x

TPM_KeyControlOwner key x x x x x

TPM_LoadKey2 parent inKey x x x x x x

TPM_LoadKey parent inKey x x x x x x

TPM_MigrateKey maKey 1

TPM_OSAP entity x x x x x x

TPM_Quote key x x x

TPM_Quote2 key x x x

TPM_Seal key x

TPM_Sealx key x

TPM_Sign key x x

TPM_UnBind key x x

TPM_Unseal parent x

TPM_ReleaseTransportSigned key x

TPM_TickStampBlob key x x x

Notes
1 – Key is not a storage key but TPM_MIGRATE_KEY

2 – TPM unable to determine key type

3 – The order is correct; the reason is to support a single auth version.

Revision 116 1 Marchy 2011 TCG Published 149
TCG Published

720
721

722

4583
4584
4585
4586

723
724

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

33. Direct Anonymous Attestation
Start of informative comment
TPM_DAA_Join and TPM_DAA_Sign are highly resource intensive commands. They require
most of the internal TPM resources to accomplish the complete set of operations. A TPM
may specify that no other commands are possible during the join or sign operations. To
allow other operations to occur, the TPM does allow the TPM_SaveContext command to save
off the current join or sign operation.

Operations that occur during a join or sign result in the loss of the join or sign session in
favor of the interrupting command.

End of informative comment
1. The TPM MUST support one concurrent TPM_DAA_Join or TPM_DAA_Sign session. The

TPM MAY support additional sessions

2. The TPM MAY invalidate a join or sign session upon the receipt of any additional
command other than the join/sign or TPM_SaveContext

33.1 TPM_DAA_JOIN
Start of informative comment
TPM_DAA_Join creates new JOIN data. If a TPM supports only one JOIN/SIGN operation,
TPM_DAA_Join invalidates any previous DAA attestation information inside a TPM. The
JOIN phase of a DAA context requires a TPM to communicate with an issuer.
TPM_DAA_Join outputs data to be sent to an issuing authority and receives data from that
issuing authority. The operation potentially requires several seconds to complete, but is
done in a series of atomic stages and TPM_SaveContext/TPM_LoadContext can be used to
cache data off-TPM in between atomic stages.

The JOIN process is designed so a TPM will normally receive exactly the same DAA
credentials from a given issuer, no matter how many times the JOIN process is executed
and no matter whether the issuer changes his keys. This property is necessary because an
issuer must give DAA credentials to a platform after verifying that the platform has the
architecture of a trusted platform. Unless the issuer repeats the verification process, there
is no justification for giving different DAA credentials to the same platform. Even after
repeating the verification process, the issuer should give replacement (different) DAA
credentials only when it is necessary to retire the old DAA credentials. Replacement DAA
credentials erase the previous DAA history of the platform, at least as far as the DAA
credentials from that issuer are concerned. Replacement might be desirable, as when a
platform changes hands, for example, in order to eliminate any association via DAA between
the seller and the buyer. On the other hand, replacement might be undesirable, since it
enables a rogue to rejoin a community from which he has been barred. Replacement is done
by submitting a different “count” value to the TPM during a JOIN process. A platform may
use any value of “count” at any time, in any order, but only “counts” accepted by the issuer
will elicit DAA credentials from that issuer.

The TPM is forced to verify an issuer’s public parameters before using an issuer’s public
parameters. This verification provides proof that the public parameters (which include a
public key) were approved by an entity that knows the private key corresponding to that
public key; in other words that the JOIN has previously been approved by the issuer. This

150 TCG Published Revision 116 1 Marchy 2011
TCG Published

725
726

4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600

4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629

727
728

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

verification is necessary to prevent an attack by a rogue using a genuine issuer’s public
parameters, which could reveal the secret created by the TPM using those public
parameters. Verification uses a signature (provided by the issuer) over the public
parameters.

The exponent of the issuer’s key is fixed at 2^16+1, because this is the only size of exponent
that a TPM is required to support. The modulus of the issuer’s public key is used to create
the pseudonym with which the TPM contacts the issuer. Hence, the TPM cannot produce
the same pseudonym for different issuers (who have different keys). The pseudonym is
always created using the issuer’s first key, even if the issuer changes keys, in order to
produce the property described earlier. The issuer proves to the TPM that he has the right
to use that first key to create a pseudonym by creating a chain of signatures from the first
key to the current key, and submitting those signatures to the TPM. The method has the
desirable property that only signatures and the most recent private key need be retained by
the issuer: once the latest link in the signature chain has been created, previous private
keys can be discarded.

The use of atomic operations minimizes the contiguous time that a TPM is busy with
TPM_DAA_Join and hence unavailable for other commands. JOIN can therefore be done as
a background activity without inconveniencing a user. The use of atomic operations also
minimizes the peak value of TPM resources consumed by the JOIN phase.

The use of atomic operations introduces a need for consistency checks, to ensure that the
same parameters are used in all atomic operations of the same JOIN process.
DAA_tpmSpecific therefore contains a digest of the associated DAA_issuerSettings
structure, and DAA_session contains a digest of associated DAA_tpmSpecific and
DAA_joinSession structures. Each atomic operation verifies digests to ensure use of
mutually consistent sets of DAA_issuerSettings, DAA_tpmSpecific, DAA_session, and
DAA_joinSession data.

JOIN operations and data structures are designed to minimize the amount of data that
must be stored on a TPM in between atomic operations, while ensuring use of mutually
consistent sets of data. Digests of public data are held in the TPM between atomic
operations, instead of the actual public data (if a digest is smaller than the actual data). In
each atomic operation, consistency checks verify that any public data loaded and used in
that operation matches the stored digest. Thus non-secret DAA_generic_X parameters
(loaded into the TPM only when required), are checked using digests DAA_digest_X
(preloaded into the TPM in the structure DAA_issuerSettings).

JOIN includes a challenge from the issuer, in order to defeat simple Denial of Service
attacks on the issuer’s server by rogues pretending to be arbitrary TPMs.

A first group of atomic operations generate all TPM-data that must be sent to the issuer.
The platform performs other operations (that do not need to be trusted) using the TPM-data,
and sends the resultant data to the issuer. The issuer sends values u2 and u3 back to the
TPM. A second group of atomic operations accepts this data from the issuer and completes
the protocol.

The TPM outputs encrypted forms of DAA_tpmSpecific, v0 and v1. These encrypted data are
later interpreted by the same TPM and not by any other entity, so any manufacturer-
specific wrapping can be used. It is suggested, however, that enc(DAA_tpmSpecific) or
enc(v0) or enc(v1) data should be created by adapting a TPM_CONTEXT_BLOB structure.

Revision 116 1 Marchy 2011 TCG Published 151
TCG Published

729
730

731
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674

732
733

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

After executing TPM_DAA_Join, it is prudent to perform TPM_DAA_Sign, to verify that the
JOIN process completed correctly. A host platform may choose to verify JOIN by performing
TPM_DAA_Sign as both the target and the verifier (or could, of course, use an external
verifier).

End of informative comment

33.2 TPM_DAA_Sign
Start of informative comment
TPM_DAA_Sign responds to a challenge and proves the attestation held by a TPM without
revealing the attestation held by that TPM. The operation is done in a series of atomic
stages to minimize the contiguous time that a TPM is busy and hence unavailable for other
commands. TPM_SaveContext can be used to save a DAA context in between atomic stages.
This enables the response to the challenge to be done as a background activity without
inconveniencing a user, and also minimizes the peak value of TPM resources consumed by
the process.

The use of atomic operations introduces a need for consistency checks, to ensure that the
same parameters are used in all atomic operations of the same SIGN process.
DAA_tpmSpecific therefore contains a digest of the associated DAA_issuerSettings
structure, and DAA_session contains a digest of associated DAA_tpmSpecific structure.
Each atomic operation verifies these digests and hence ensures use of mutually consistent
sets of DAA_issuerSettings, DAA_tpmSpecific, and DAA_session data.

SIGN operations and data structures are designed to minimise the amount of data that
must be stored on a TPM in between atomic operations, while ensuring use of mutually
consistent sets of data. Digests of public and private data are held in the TPM between
atomic operations, instead of the actual public or private data (if a digest is smaller than the
actual data). At each atomic operation, consistency checks verify that any data loaded and
used in that operation matches the stored digest. Thus parameters DAA_digest_X are
digests (preloaded into the TPM in the structure DAA_issuerSettings) of non-secret
DAA_generic_X parameters (loaded into the TPM only when required), for example.

The design enables the use of any number of issuer DAA-data, private DAA-data, and so on.
Strictly, the design is that the *TPM* puts no limit on the number of sets of issuer DAA-data
or sets of private DAA-data, or restricts what set is in the TPM at any time, but supports
only one DAA-context in the TPM at any instant. Any number of DAA-contexts can, of
course, be swapped in and out of the TPM using TPM_SaveContext/TPM_LoadContext, so
applications do not perceive a limit on the number of DAA contexts.

TPM_DAA_Sign accepts a freshness challenge from the verifier and generates all TPM-data
that must be sent to the verifier. The platform performs other operations (that do not need
to be trusted) using the TPM-data, and sends the resultant data to the verifier. At one stage,
the TPM incorporates a loaded public (non-migratable) key into the protocol. This is
intended to permit the setup of a session, for any specific purpose, including doing the
same job in TPM_ActivateIdentity as the EK.

End of informative comment

33.3 DAA Command summary
Start of informative comment

152 TCG Published Revision 116 1 Marchy 2011
TCG Published

734
735

4675
4676
4677
4678
4679

4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715

4716
4717

736
737

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

The following is a conceptual summary of the operations that are necessary to setup a TPM
for DAA, execute the JOIN process, and execute the SIGN process.

The summary is partitioned according to the “stages” of the actual TPM commands. Thus,
the operations listed in JOIN under stage-2 briefly describe the operation of TPM_DAA_Join
at stage-2, for example.

This summary is in place to help in the connection between the mathematical definition of
DAA and this implementation in a TPM.

End of informative comment

33.3.1 TPM setup
1. A TPM generates a TPM-specific secret S (160-bit) from the RNG and stores S in

nonvolatile store on the TPM. This value will never be disclosed and changed by the
TPM.

33.3.2 JOIN
Start of informative comment
This entire section is informative

1. When the following is performed, this process does not increment the stage counter.

a. TPM imports a non-secret values n0 (2048-bit).

b. TPM computes a non-secret value N0 (160-bit) = H(n0).

c. TPM computes a TPM-specific secret DAA_rekey (160-bit) = H(S, H(n0)).

d. TPM stores a self-consistent set of (N0, DAA_rekey)

2. The following is performed 0 or several times: (Note: If the stage mechanism is being
used, then this branch does not increment the stage counter.)

a. TPM imports

i. a self consistent set of (N0, DAA_rekey)

ii. a non-secret value DAA_SEED_KEY (2048-bit)

iii. a non-secret value DEPENDENT_SEED_KEY (2048-bit)

iv. a non-secret value SIG_DSK (2048-bit)

b. TPM computes DIGEST (160-bit) = H(DAA_SEED_KEY)

c. If DIGEST != N0, TPM refuses to continue

d. If DIGEST == N0, TPM verifies validity of signature SIG_DSK on
DEPENDENT_SEED_KEY with key (DAA_SEED_KEY, e0 (= 2^16 + 1)) by using
TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM refuses to continue.

e. TPM sets N0 = H(DEPENDENT_SEED_KEY)

f. TPM stores a self consistent set of (N0, DAA_JOIN)

3. Stage 2

a. TPM imports a set of values, including

Revision 116 1 Marchy 2011 TCG Published 153
TCG Published

738
739

740
4718
4719
4720
4721
4722
4723
4724
4725

4726
4727
4728
4729

4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753

741
742

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

i. a non-secret value n0 (2048-bit),

ii. a non-secret value R0 (2048-bit),

iii. a non-secret value R1 (2048-bit),

iv. a non-secret value S0 (2048-bit),

v. a non-secret value S1 (2048-bit),

vi. a non-secret value n (2048-bit),

vii. a non-secret value n1 (1024-bit),

viii. a non-secret value gamma (2048-bit),

ix. a non-secret value q (208-bit),

x. a non-secret value COUNT (8-bit),

xi. a self consistent set of (N0, DAA_rekey).

xii. TPM saves them as part of a new set A.

b. TPM computes DIGEST (160-bit) = H(n0)

c. If DIGEST != N0, TPM refuses to continue.

d. If DIGEST == N0, TPM computes DIGEST (160-bit) = H(R0, R1, S0, S1, n, n1, Γ, q)

e. TPM imports a non-secret value SIG_ISSUER_KEY (2048-bit).

f. TPM verifies validity of signature SIG_ISSUER_KEY (2048-bit) on DIGEST with key (n0,
e0) by using TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM refuses to
continue.

g. TPM computes a TPM-specific secret f (208-bit) = H(DAA_rekey, COUNT, 0)||
H(DAA_rekey, COUNT, 1) mod q.

h. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104.

i. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104.

j. TPM save f, f0 and f1 as part of set A.

4. Stage 3

a. TPM generates a TPM-specific secret u0 (1024-bit) from the RNG.

b. TPM generates a TPM-specific secret u'1 (1104-bit) from the RNG.

c. TPM computes u1 (1024-bit) = u'1 mod n1.

d. TPM stores u0 and u1 as part of set A.

5. Stage 4

a. TPM computes a non-secret value P1 (2048-bit) = (R0^f0) mod n and stores P1 as part of
set A.

6. Stage 5

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^f1) mod n, stores P2 as part of
set A and erases P1 from set A.

7. Stage 6

154 TCG Published Revision 116 1 Marchy 2011
TCG Published

743
744

4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789

745
746

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^u0) mod n, stores P3 as part of
set A and erases P2 from set A.

8. Stage 7

a. TPM computes a non-secret value U (2048-bit) = P3*(S1^u1) mod n.

b. TPM erases P3 from set A

c. TPM computes and saves U1 (160-bit) = H(U||COUNT||N0) as part of set A.

d. TPM exports U.

9. Stage 8

a. TPM imports ENC_NE (2048-bit).

b. TPM decrypts NE (160-bit) from ENC_NE (2048-bit) by using privEK: NE =
decrypt(privEK, ENC_NE).

c. TPM computes U2 (160-bit) = H(U1||NE).

d. TPM erases U1 from set A.

e. TPM exports U2.

10.Stage 9

a. TPM generates a TPM-specific secret r0 (344-bit) from the RNG.

b. TPM generates a TPM-specific secret r1 (344-bit) from the RNG.

c. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG.

d. TPM generates a TPM-specific secret r3 (1264-bit) from the RNG.

e. TPM stores r0, r1, r2, r3 as part of set A.

f. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of
set A.

11.Stage 10

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of
set A and erases P1 from set A.

12.Stage 11

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of
set A and erases P2 from set A.

13.Stage 12

a. TPM computes a non-secret value P4 (2048-bit) = P3*(S1^r3) mod n, stores P4 as part of
set A and erases P3 from set A.

b. TPM exports P4.

14.Stage 13

a. TPM imports w (2048-bit).

b. TPM computes w1 = w^q mod Γ.

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue.

Revision 116 1 Marchy 2011 TCG Published 155
TCG Published

747
748

749
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825

750
751

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

d. If it does hold, TPM saves w as part of set A.

15.Stage 14

a. TPM computes a non-secret value E (2048-bit) = w^f mod Γ.

b. TPM exports E.

16.Stage 15

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q.

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod Γ.

c. TPM exports E1 and erases w from set A.

17.Stage 16

a. TPM imports a non-secret value c1 (160-bit).

b. TPM generates a non-secret value NT (160-bit) from the RNG.

c. TPM computes a non-secret value c (160-bit) = H(c1||NT).

d. TPM save c as part of set A.

e. TPM exports NT

18.Stage 17

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers.

b. TPM exports s0.

19.Stage 18

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers.

b. TPM exports s1.

20.Stage 19

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*u0 mod 21024.

b. TPM exports s2.

21.Stage 20

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*u0) >> 1024 over the integers.

b. TPM saves s'2 as part of set A.

c. TPM exports c

22.Stage 21

a. TPM computes a non-secret value s3 (1272-bit) = r3 + cu1 + s'2 over the integers.

b. TPM exports s3 and erases s'2 from set A.

23.Stage 22

a. TPM imports a non-secret value u2 (1024-bit).

b. TPM computes a TPM-specific secret v0 (1024-bit) = u2 + u0 mod 21024.

c. TPM stores v0 as part of A.

156 TCG Published Revision 116 1 Marchy 2011
TCG Published

752
753

4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

754
755

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

d. TPM computes a TPM-specific secret v'0 (1024-bit) = (u2 + u0) >> 1024 over the integers.

e. TPM saves v'0 as part of set A.

24.Stage 23

a. TPM imports a non-secret value u3 (1512-bit).

b. TPM computes a TPM-specific secret v1 (1520-bit) = u3 + u1 + v'0 over the integers.

c. TPM stores v1 as part of A.

d. TPM erases v'0 from set A.

25.Stage 24

a. TPM makes self-consistent set of all the data (n0, COUNT, R0, R1, S0, S1, n, Γ, q, v0,
v1), where the values v0, v1 are secret – they need to be stored safely with the consistent
set, and the remaining is non-secret.

b. TPM erases set A.

End of informative comment

33.3.3 SIGN
Start of informative comment
This entire section is informative

1. Stage 0 & 1

a. TPM imports and verifies a self-consistent set of all the data including:

i. a non-secret value n0 (2048-bit),

ii. a non-secret value COUNT (8-bit),

iii. a non-secret value R0 (2048-bit),

iv. a non-secret value R1 (2048-bit),

v. a non-secret value S0 (2048-bit),

vi. a non-secret value S1 (2048-bit),

vii. a non-secret value n (2048-bit),

viii. a non-secret value gamma (2048-bit),

ix. a non-secret value q (208-bit),

x. v0 (1024-bit),

xi. v1 (1520-bit).

xii. If the verification does not succeed, TPM refuses to continue.

b. TPM stores the above values as part of a new set A.

c. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104.

d. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104.

e. TPM stores f0 and f1 as part of set A.

Revision 116 1 Marchy 2011 TCG Published 157
TCG Published

756
757

758
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872

4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893

759
760

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

f. TPM generates a TPM-specific secret r0 (344-bit) from the RNG.

g. TPM generates a TPM-specific secret r1 (344-bit) from the RNG.

h. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG.

i. TPM generates a TPM-specific secret r4 (1752-bit) from the RNG.

j. TPM stores r0, r1, r2, r4, as part of set A.

2. Stage 2

a. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of
set A.

3. Stage 3

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of
set A and erases P1 from set A.

4. Stage 4

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of
set A and erases P2 from set A.

5. Stage 5

a. TPM computes a non-secret value T (2048-bit) = P3*(S1^r4) mod n.

b. TPM erases P3 from set A.

c. TPM exports T.

6. Stage 6

a. TPM imports a non-secret value w (2048-bit).

b. TPM computes w1 = w^q mod Γ.

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue.

d. If it does hold, TPM saves w as part of set A.

7. Stage 7

a. TPM computes a non-secret value E (2048-bit) = w^f mod Γ.

b. TPM exports E and erases f from set A.

8. Stage 8

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q.

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod Γ.

c. TPM exports E1 and erases w and E1 from set A.

9. Stage 9

a. TPM imports a non-secret value c1 (160-bit).

b. TPM generates a non-secret value NT (160-bit) from the RNG.

c. TPM computes a non-secret value c2 (160-bit) = H(c1||NT) and erases c1 from set A.

d. TPM saves c2 as part of set A.

158 TCG Published Revision 116 1 Marchy 2011
TCG Published

761
762

4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928

763
764

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

e. TPM exports NT.

10.Stage 10

a. TPM imports a non-secret value b (1-bit).

b. If b = = 1, TPM imports a non-secret value m (160-bit).

c. TPM computes a non-secret value c (160-bit) = H(c2||b||m) and erases c2 from set A.

d. If b = = 0, TPM imports an RSA public key, eAIK (= 2^16 + 1) and nAIK (2048-bit).

e. TPM computes a non-secret value c (160-bit) = H(c2||b||nAIK) and erases c2 from set
A.

f. TPM exports c.

11.Stage 11

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers.

b. TPM exports s0.

12.Stage 12

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers.

b. TPM exports s1.

13.Stage 13

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*v0 mod 21024.

b. TPM exports s2.

14.Stage 14

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*v0) >> 1024 over the integers.

b. TPM saves s'2 as part of set A.

15.Stage 15

a. TPM computes a non-secret value s3 (1760-bit) = r4 + cv1 + s'2 over the integers.

b. TPM exports s3 and erases s'2 from set A.

c. TPM erases set A.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 159
TCG Published

765
766

767
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954

768
769

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

34. General Purpose IO
Start of informative comment
The GPIO capability allows an outside entity to output a signal on a GPIO pin, or read the
status of a GPIO pin. The solution is for a single pin, with no timing information. There is
no support for sending information on specific busses like SMBus or RS232. The design
does support the designation of more than one GPIO pin.

There is no requirement as to the layout of the GPIO pin, or the routing of the wire from the
GPIO pin on the platform. A platform specific specification can add those requirements.

To avoid the designation of additional command ordinals, the architecture uses the NV
Storage commands. A set of GPIO NV indexes map to individual GPIO pins.
TPM_NV_INDEX_GPIO_00 maps to the first GPIO pin. The platform specific specification
indicates the mapping of GPIO zero to a specific package pin.

The TPM does not reserve any NV storage for the indicated pin; rather the TPM uses the
authorization mechanisms for NV storage to allow a rich set of controls on the use of the
GPIO pin. The TPM owner can specify when and how the platform can use the GPIO pin.
While there is no NV storage for the pin value, TRUE or FALSE, there is NV storage for the
authorization requirements for the pin.

Using the NV attributes the GPIO pin may be either an input pin or an output pin.

End of informative comment
1. The TPM MAY support the use of a GPIO pin defined by the NV storage mechanisms.

2. The GPIO pin MAY be either an input or an output pin.

160 TCG Published Revision 116 1 Marchy 2011
TCG Published

770
771

4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975

772
773

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

35. Redirection
 Informative comment
Redirection allows the TPM to output the results of operations to hardware other than the
normal TPM communication bus. The redirection can occur to areas internal or external to
the TPM. Redirection is only available to key operations (such as TPM_UnBind,
TPM_Unseal, and TPM_GetPubKey). To use redirection the key must be created specifying
redirection as one of the keys attributes.

When redirecting the output the TPM will not interpret any of the data and will pass the
data on without any modifications.

The TPM_SetRedirection command connects a destination location or port to a loaded key.
This connection remains so long as the key is loaded, and is saved along with other key
information on a saveContext(key), loadContext(key). If the key is reloaded using
TPM_LoadKey, then TPM_SetRedirection must be run again.

Any use of TPM_SetRedirection with a key that does not have the redirect attribute must
return an error. Use of key that has the redirect attribute without TPM_SetRedirection being
set must return an error.

End of informative comments
1. The TPM MAY support redirection

2. If supported, the TPM MUST only use redirection on keys that have the redirect attribute
set

3. A key that is tagged as a “redirect” key MUST be a leaf key in the TPM Protected Storage
blob hierarchy. A key that is tagged as a “redirect” key CAN NEVER be a parent key.

4. Output data that is the result of a cryptographic operation using the private portion of a
“redirect” key:

a. MUST be passed to an alternate output channel

b. MUST NOT be passed to the normal output channel

c. MUST NOT be interpreted by the TPM

5. When command input or output is redirected the TPM MUST respond to the command
as soon as the ordinal finishes processing

a. The TPM MUST indicate to any subsequent commands that the TPM is busy and
unable to accept additional command until the redirection is complete

b. The TPM MUST allow for the resetting of the redirection channel

6. Redirection MUST be available for the following commands:

a. TPM_Unseal

b. TPM_UnBind

c. TPM_GetPubKey

d. TPM_Seal

e. TPM_Quote

Revision 116 1 Marchy 2011 TCG Published 161
TCG Published

774
775

776

4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013

777
778

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

36. Structure Versioning
Start of informative comment
In version 1.1 some structures also contained a version indicator. The TPM set the indicator
to indicate the version of the TPM that was creating the structure. This was incorrect
behavior. The functionality of determining the version of a structure is radically different in
1.2.

Most structures will contain a TPM_STRUCTURE_TAG. All future structures must contain
the tag, the only structures that do not contain the tag are 1.1 structures that are not
modified in 1.2. This restriction keeps backwards compatibility with 1.1.

Any 1.2 structure must not contain a 1.1 tagged structure. For instance the TPM_KEY
complex, if set at 1.2, must not contain a PCR_INFO structure. The TPM_KEY 1.2 structure
must contain a PCR_INFO_LONG structure. The converse is also true 1.1 structures must
not contain any 1.2 structures.

The TPM must not allow the creation of any mixed structures. This implies that a command
that deals with keys, for instance, must ensure that a complete 1.1 or 1.2 structure is
properly built and validated on the creation and use of the key.

The tag structure is set as a UINT16. This allows for a reasonable number of structures
without wasting space in the buffers.

To obtain the current TPM version the caller must use the TPM_GetCapability command.

The tag is not a complete validation of the validity of a structure. The tag provides a
reference for the structure and the TPM or caller is responsible for determining the validity
of any remaining fields. For instance, in the TPM_KEY structure, the tag would indicate
TPM_KEY but the TPM would still use tpmProof and the various digests to ensure the
structure integrity.

7. Compatibility and notification

In 1.1 TPM_CAP_VERSION (index 19) returned a version structure with 1.1.x.x. The x.x was
for manufacturer information and the x.x also was set version structures. In 1.2
TPM_CAP_VERSION will return 1.1.0.0. Any 1.2 structure that uses the version information
will set the x.x to 0.0 in the structure. TPM_CAP_MANUFACTURER_VER (index 21) will
return 1.2.x.x. The 1.2 structures do not contain the version structure. The rationale
behind this is that the structure tag will indicate the version of the structure. So changing a
correct structure will result in a new tag and there is no need for a separate version
structure.

For further compatibility, the quote function always returns 1.1.0.0 in the version
information regardless of the size of the incoming structure. All other functions may regard
a 2 byte sizeofselect structure as indicative of a 1.1 structure. The TPM handles all of the
structures according to the input, the only exception being TPM_CertifyKey where the TPM
does not need to keep the input version of the structure.

End of informative comment
1. The TPM MUST support 1.1 and 1.2 defined structures

2. The TPM MUST ensure that 1.1 and 1.2 structures are not mixed in the same overall
structure

162 TCG Published Revision 116 1 Marchy 2011
TCG Published

779
780

5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055

781
782

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

a. For instance in the TPM_KEY structure if the structure is 1.1 then PCR_INFO MUST
be set and if 1.2 the PCR_INFO_LONG structure must be set

3. On input the TPM MUST ignore the lower two bytes of the version structure

4. On output the TPM MUST set the lower two bytes to 0 of the version structure

Revision 116 1 Marchy 2011 TCG Published 163
TCG Published

783
784

785
5056
5057
5058
5059

786
787

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

37. Certified Migration Key Type
Start of informative comment
In version 1.1 there were two key types, non-migration and migration keys. The TPM would
only certify non-migrating keys. There is a need for a key that allows migration but allows
for certification. This proposal is to create a key that allows for migration but still has
properties that the TPM can certify.

These new keys are “certifiable migratable keys” or CMK. This designation is to separate the
keys from either the normal migration or non-migration types of keys. The TPM Owner is
not required to use these keys.

Two entities may participate in the CMK process. The first is the Migration-Selection
Authority and the second is the Migration Authority (MA).

Migration Selection Authority (MSA)
The MSA controls the migration of the key but does not handle the migrated itself.

Migration Authority (MA)
A Migration Authority actually handles the migrated key.

Use of MSA and MA
Migration of a CMK occurs using TPM_CMK_CreateBlob (TPM_CreateMigrationBlob cannot
be used). The TPM Owner authorizes the migration destination (as usual), and the key
owner authorizes the migration transformation (as usual). An MSA authorizes the migration
destination as well. If the MSA is the migration destination, no MSA authorization is
required.

End of informative comment

37.1 Certified Migration Requirements
Start of informative comment
The following list details the design requirements for the controlled migration keys

Key Protections
The key must be protected by hardware and an entity trusted by the key user.

Key Certification
The TPM must provide a mechanism to provide certification of the key protections (both
hardware and trusted entity)

Owner Control
The TPM Owner must control the selection of the trusted entity

Control Delegation
The TPM Owner may delegate the ability to create the keys but the decision must be explicit

Linkage
The architecture must not require linking the trusted entity and the key user

164 TCG Published Revision 116 1 Marchy 2011
TCG Published

788
789

5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081

5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095

790
791

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

Key Type
The key may be any type of migratable key (storage or signing)

Interaction
There must be no required interaction between the trusted entity and the TPM during the
key creation process

End of informative comment

37.2 Key Creation
Start of informative comment
The command TPM_CMK_CreateKey creates a CMK where control of the migration is by a
MSA or MA. The process uses the MSA public key (actually a digest of the MA public key) as
input to TPM_CMK_CreateKey. The key creation process establishes a migrationAuth that is
SHA-1(tpmProof || SHA-1(MA pubkey) || SHA-1(source pubkey)).

The use of tpmProof is essential to prove that CMK creation occurs on a TPM. The use of
“source pubkey” explicitly links a migration AuthData value to a particular public key, to
simplify verification that a specific key is being migrated.

End of informative comment

37.3 Migrate CMK to a MA
Start of informative comment
Migration of a CMK to a destination other than the MSA:

TPM_MIGRATIONKEYAUTH Creation
The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using
TPM_AuthorizeMigrationKey command. The structure contains the destination
migrationKey, the migrationScheme (which must be set to TPM_MS_RESTRICT_MIGRATE
or TPM_MS_RESTRICT_APPROVE) and a digest of tpmProof.

MA Approval
The MA signs a TPM_CMK_AUTH structure, which contains the digest of the MA public key,
the digest of the destination (or parent) public key and a digest of the public portion of the
key to be migrated

TPM Owner Authorization
The TPM Owner authorizes the MA approval using TPM_CMK_CreateTicket and produces a
signature ticket

Key Owner Authorization
The CMK owner passes the TPM Owner MA authorization, the MSA Approval and the
signature ticket to the TPM_CMK_CreateBlob using the key owners authorization.

Thus the TPM owner, the key’s owner, and the MSA, all cooperate to migrate a key
produced by TPM_CMK_CreateBlob.

End of informative comment

Revision 116 1 Marchy 2011 TCG Published 165
TCG Published

792
793

794
5096
5097
5098
5099
5100
5101

5102
5103
5104
5105
5106
5107
5108
5109
5110
5111

5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132

795
796

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

37.4 Migrate CMK to a MSA
Start of informative comment
Migrate CMK directly to a MSA

TPM_MIGRATIONKEYAUTH Creation
The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using
TPM_AuthorizeMigrationKey command. The structure contains the destination
migrationKey (which must be the MSA public key), the migrationScheme (which must be set
to TPM_MS_RESTRICT_MIGRATE) and a digest of tpmProof.

Key Owner Authorization
The CMK owner passes the TPM_MIGRATIONKEYAUTH to the TPM in a
TPM_CMK_CreateBlob using the CMK owner authorization.

Double Wrap
If specified, through the MS_MIGRATE scheme, the TPM double wraps the CMK information
such that the only way a recipient can unwrap the key is with the cooperation of the CMK
owner.

Proof of Control
To prove to the MA and to a third party that migration of a key is under MSA control, a
caller passes the MA’s public key (actually its digest) to TPM_CertifyKey, to create a
TPM_CERTIFY_INFO structure. This now contains a digest of the MA’s public key.

A CMK be produced without cooperation from the MA: the caller merely provides the MSA’s
public key. When the restricted key is to be migrated, the public key of the intended
destination, plus the CERTIFY_INFO structure are sent to the MSA. The MSA extracts the
migrationAuthority digest from the CERTIFY_INFO structure, verifies that
migrationAuthority corresponds to the MSA’s public key, creates and signs a
TPM_RESTRICTEDKEYAUTH structure, and sends that signature back to the caller. Thus
the MSA never needs to touch the actual migrated data.

End of informative comment

166 TCG Published Revision 116 1 Marchy 2011
TCG Published

797
798

5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159

799
800

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

38. Revoke Trust
Start of informative comment
There are circumstances where clearing all keys and values within the TPM is either
desirable or necessary. These circumstances may involve both security and privacy
concerns.

Platform trust is demonstrated using the EK Credential, Platform Credential and the
Conformance Credentials. There is a direct and cryptograph relationship between the EK
and the EK Credential and the Platform Credential. The EK and Platform credentials can
only demonstrate platform trust when they can be validated by the Endorsement Key.

This command is called revoke trust because, by deleting the EK, the EK Credential and the
Platform Credential are dissociated from the platform, therefore invalidating them and
resulting in the revocation of the trust in the platform. From a trust perspective, the
platform associated with these specific credentials no longer exists. However, any
transaction that occurred prior to invoking this command will remain valid and trusted to
the same extent they would be valid and trusted if the platform were physically destroyed.

This is a non-reversible function. Also, along with the EK, the Owner is also deleted,
removing all non-migratable keys and owner-specified state.

It is possible to establish new trust in the platform by creating a new EK using the
TPM_CreateRevocableEK command. Establishing trust in the platform, however, is more
than just creating the EK. The EK Credential and the Platform Credential must also be
created and associated with the new EK as described above. (The conformance credentials
may be obtained from the TPM and Platform manufacturer.) These credentials must be
created by an entity that is trusted by those entities interested in the trust of the platform.
This may not be a trivial task. For example, an entity willing to create these credentials my
want to examine the platform and require physical access during the new EK generation
process.

Besides calling one of the two EK creation functions to create the EK, the EK may be
"squirted" into the TPM by an external source. If this method is used, tight controls must be
placed on the process used to perform this function to prevent exposure or intentional
duplication of the EK. Since the revocation and re-creation of the EK are functions intended
to be performed after the TPM leaves the trusted manufacturing process, squirting of the EK
must be disallowed after the manufacturing process if the revoke trust command is
executed.

End of informative comment
1. If TPM_CreateRevokableEK and TPM_RevokeTrust are implemented, one can do an

unrestricted number of TPM_CreateRevokableEK / TPM_RevokeTrust pairs until
TPM_CreateEndorsementKeyPair is called. After TPM_CreateEndorsementKeyPair is
called, the EK becomes irrevocable.

2. After an EK is created the TPM MUST NOT allow a new EK to be "squirted" for the
lifetime of the TPM.

3. The EK Credential MUST provide an indication within the EK Credential as to how the
EK was created. The valid permutations are:

a. Squirted, non-revocable

Revision 116 1 Marchy 2011 TCG Published 167
TCG Published

801
802

803

5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202

804
805

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

b. Squirted, revocable

c. Internally generated, non-revocable

d. Internally generated, revocable

4. If the method for creating the EK during manufacturing is squirting, the EK may be
either non-revocable or revocable. If it is revocable, the method must provide the
insertion or extraction of the EKreset value.

168 TCG Published Revision 116 1 Marchy 2011
TCG Published

806
807

5203
5204
5205
5206
5207
5208

808
809

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

39. Mandatory and Optional Functional Blocks
Start of informative comment
This section lists the main functional blocks of a TPM (in arbitrary order), states whether
that block is mandatory or optional in the main TPM specification, and provides brief
justification for that choice.

Important notes:

1. The default classification of a TPM function block is “mandatory”, since reclassification
from mandatory to optional enables the removal of a function from existing
implementations, while reclassification from optional to mandatory may require the addition
of functionality to existing implementations.

2. Mandatory functions will be reclassified as optional functions if those functions are not
required in some particular type of TCG trusted platform.

3. If a functional block is mandatory in the main specification, the functionality must be
present in all TCG trusted platforms.

4. If a functional block is optional in the main specification, each individual platform-
specific specification must declare the status of that functionality as either (1) “mandatory-
specific” (the functionality must be present in all platforms of that type), or (2) “optional-
specific” (the functionality is optional in that type of platform), or (3) “excluded-specific” (the
functionality must not be present in that type of platform).

End of informative comment
Classification of TPM functional blocks

1. Legacy (v1.1b) features

a. Anything that was mandatory in v1.1b continues to be mandatory in v1.2. Anything
that was optional in v1.1b continues to be optional in v1.2.

b. V1.2 must be backwards compatible with v1.1b. All TPM features in v1.1b were
discussed in depth when v1.1b was written, and anything that wasn't thought
strictly necessary was tagged as "optional".

2. Number of PCRs

a. The platform specific specification controls the number of PCR on a platform. The
TPM MUST implement the mandatory number of PCR specified for a particular
platform

i. TPMs designed to work on multiple platforms MUST provide the appropriate
number of TPM for all intended platforms. I.e. if one platform requires 16 PCR
and the other platform 24 the TPM would have to supply 24 PCR.

b. For TPMs providing backwards compatibility with 1.1 TPM on the PC platform, there
MUST be 16 static PCR.

3. Sessions

a. The TPM MUST support a minimum of 3 active sessions

i. Active means currently loaded and addressable inside the TPM

Revision 116 1 Marchy 2011 TCG Published 169
TCG Published

810
811

812

5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247

813
814

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

ii. Without 3 active sessions many TPM commands cannot function

b. The TPM MUST support a minimum of 16 concurrent sessions

i. The contextList of currently available session has a minimum size of 16

ii. Providing for more concurrent sessions allows the resource manager additional
flexibility and speed

4. NVRAM

a. There are 20 bytes mandatory of NVRAM in v1.2 as specified by the main
specification. A platform specific specification can require a larger amount of NVRAM

b. Cost is important. The mandatory amount of NVRAM must be as small as possible,
because different platforms will require different amounts of NVRAM. 20 bytes are
required for (DIR) backwards compatibility with v1.1b.

5. Keys

a. The new signing keys are mandatory in v1.2 because they plug a security hole.

b. The TPM must support a minimum of 2 key slots.

6. Direct Anonymous Attestation

a. This is optional in v1.2

b. Cost is important. The DAA function consumes more TPM resources than any other
TPM function, but some platform specific specifications (some servers, for example)
may have no need for the anonymity and pseudonymity provided by DAA.

7. Transport sessions

a. These are mandatory in v1.2.

b. Transport sessions

i. Enable protection of data submitted to a TPM and produced by a TPM

ii. Enable proof of the TPM commands executed during an arbitrary session.

8. Resettable Endorsement Key

a. This is optional in v1.2

b. Cost is important. Resettable EKs are valuable in some markets segments, but cause
more complexity than non-resettable EKs, which are expected to be the dominant
type of EK

9. Monotonic Counter

a. This is mandatory in v1.2

b. A monotonic counter is essential to enable software to defeat certain types of attack,
by enabling it to determine the version (revision) of dynamic data.

10.Time Ticks

a. This is mandatory in v1.2

b. Time stamping is a function that is potentially beneficial to both a user and system
software.

170 TCG Published Revision 116 1 Marchy 2011
TCG Published

815
816

5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284

817
818

TPM Main Part 1 Design Principles TCG © Copyright
Specification Version 1.2

11.Delegation (includes DSAP)

a. This is mandatory in v1.2

b. Delegation enables the well-established principle of least privilege to be applied to
Owner authorized commands.

12.GPIO

a. This is optional in v1.2

b. Cost is important. Not all types of platform will require a secure intra-platform
method of key distribution

13.Locality

a. The use of locality is optional in v1.2

b. The structures that define locality are mandatory

c. Locality is an essential part of many (new) TPM commands, but the definition of
locality varies widely from platform to platform, and may not be required by some
types of platforms.

d. It is mandatory that a platform specific specification indicate the definitions of
locality on the platform. It is perfectly reasonable to only define one locality and
ignore all other uses of locality on a platform

14.TPM-audit

a. This is optional in v1.2

b. Proper TPM-audit requires support to reliably store logs and control access to the
TPM, and any mechanism (an OS, for example) that could provide such support is
potentially capable of providing an audit log without using TPM-audit. Nevertheless,
TPM-audit might be useful to verify operation of any and all software, including an
OS. TPM-audit is believed to be of no practical use in a client, but might be valuable
in a server, for example.

15.Certified Migration

a. This is optional in v1.2

b. Cost is important. Certified Migration enables a business model that may be
nonsense for some platforms.

Revision 116 1 Marchy 2011 TCG Published 171
TCG Published

819
820

821
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313

822
823

Copyright © TCG TPM Main Part 1 Design Principles
Specification Version 1.2

40. 1.1a and 1.2 Differences
Start of informative comment
All 1.2 TPM commands are completely compliant with 1.1b commands with the following
known exceptions.

1. TSC_PhysicalPresence does not support configuration and usage in a single step.

2. TPM_GetPubKey is unable to read the SRK unless TPM_PERMANENT_FLAGS ->
readSRKPub is TRUE

3. TPM_SetTempDeactivated now requires either physical presence or TPM Operator
authorization to execute

4. TPM_OwnerClear does not modify TPM_PERMANENT_DATA -> authDIR[0].

End of informative comment

172 TCG Published Revision 116 1 Marchy 2011
TCG Published

824
825

5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324

826
827

	1. Scope and Audience
	1.1 Key words
	1.2 Statement Type

	2. Description
	2.1 TODO (notes to keep the editor on track)
	2.2 Questions
	2.2.1 Delegation Questions
	2.2.2 NV Questions

	3. Protection
	3.1 Introduction
	3.2 Threat
	3.3 Protection of functions
	3.4 Protection of information
	3.5 Side effects
	3.6 Exceptions and clarifications

	4. TPM Architecture
	4.1 Interoperability
	4.2 Components
	4.2.1 Input and Output
	4.2.2 Cryptographic Co-Processor
	4.2.2.1 RSA Engine
	4.2.2.2 Signature Operations
	4.2.2.3 Symmetric Encryption Engine
	4.2.2.4 Using Keys

	4.2.3 Key Generation
	4.2.3.1 Asymmetric – RSA
	4.2.3.2 Nonce Creation

	4.2.4 HMAC Engine
	4.2.5 Random Number Generator
	4.2.5.1 Entropy Source and Collector
	4.2.5.2 State Register
	4.2.5.3 Mixing Function
	4.2.5.4 RNG Reset

	4.2.6 SHA-1 Engine
	4.2.7 Power Detection
	4.2.8 Opt-In
	4.2.9 Execution Engine
	4.2.10 Non-Volatile Memory

	4.3 Data Integrity Register (DIR)
	4.4 Platform Configuration Register (PCR)

	5. Endorsement Key Creation
	5.1 Controlling Access to PRIVEK
	5.2 Controlling Access to PUBEK

	6. Attestation Identity Keys
	7. TPM Ownership
	7.1 Platform Ownership and Root of Trust for Storage

	8. Authentication and Authorization Data
	8.1 Dictionary Attack Considerations

	9. TPM Operation
	9.1 TPM Initialization & Operation State Flow
	9.1.1 Initialization

	9.2 Self-Test Modes
	9.2.1 Operational Self-Test

	9.3 Startup
	9.4 Operational Mode
	9.4.1 Enabling a TPM
	9.4.2 Activating a TPM
	9.4.3 Taking TPM Ownership
	9.4.3.1 Enabling Ownership

	9.4.4 Transitioning Between Operational States

	9.5 Clearing the TPM

	10. Physical Presence
	11. Root of Trust for Reporting (RTR)
	11.1 Platform Identity
	11.2 RTR to Platform Binding
	11.3 Platform Identity and Privacy Considerations
	11.4 Attestation Identity Keys
	11.4.1 AIK Creation
	11.4.2 AIK Storage

	12. Root of Trust for Storage (RTS)
	12.1 Loading and Unloading Blobs

	13. Transport Sessions and Authorization Protocols
	13.1 Authorization Session Setup
	13.2 Parameter Declarations for OIAP and OSAP Examples
	13.2.1 Object-Independent Authorization Protocol (OIAP)
	13.2.2 Object-Specific Authorization Protocol (OSAP)

	13.3 Authorization Session Handles
	13.4 Authorization-Data Insertion Protocol (ADIP)
	13.5 AuthData Change Protocol (ADCP)
	13.6 Asymmetric Authorization Change Protocol (AACP)

	14. FIPS 140 Physical Protection
	14.1 TPM Profile for FIPS Certification

	15. Maintenance
	15.1 Field Upgrade

	16. Proof of Locality
	17. Monotonic Counter
	18. Transport Protection
	18.1 Transport encryption and authorization
	18.1.1 MGF1 parameters
	18.1.2 HMAC calculation
	18.1.3 Transport log creation
	18.1.4 Additional Encryption Mechanisms

	18.2 Transport Error Handling
	18.3 Exclusive Transport Sessions
	18.4 Transport Audit Handling
	18.4.1 Auditing of wrapped commands

	19. Audit Commands
	19.1 Audit Monotonic Counter

	20. Design Section on Time Stamping
	20.1 Tick Components
	20.2 Basic Tick Stamp
	20.3 Associating a TCV with UTC
	20.4 Additional Comments and Questions

	21. Context Management
	22. Eviction
	23. Session pool
	24. Initialization Operations
	25. HMAC digest rules
	26. Generic authorization session termination rules
	27. PCR Grand Unification Theory
	27.1 Validate Key for use

	28. Non Volatile Storage
	28.1 NV storage design principles
	28.1.1 NV Storage use models

	28.2 Use of NV storage during manufacturing

	29. Delegation Model
	29.1 Table Requirements
	29.2 How this works
	29.3 Family Table
	29.4 Delegate Table
	29.5 Delegation Administration Control
	29.5.1 Control in Phase 1
	29.5.2 Control in Phase 2
	29.5.3 Control in Phase 3

	29.6 Family Verification
	29.7 Use of commands for different states of TPM
	29.8 Delegation Authorization Values
	29.8.1 Using the authorization value

	29.9 DSAP description

	30. Physical Presence
	30.1 Use of Physical Presence

	31. TPM Internal Asymmetric Encryption
	31.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1
	31.1.2 TPM_ES_RSAESPKCSV15
	31.1.3 TPM_ES_SYM_CTR
	31.1.4 TPM_ES_SYM_OFB
	31.2 TPM Internal Digital Signatures
	31.2.1 TPM_SS_RSASSAPKCS1v15_SHA1
	31.2.2 TPM_SS_RSASSAPKCS1v15_DER
	31.2.3 TPM_SS_RSASSAPKCS1v15_INFO
	31.2.4 Use of Signature Schemes

	32. Key Usage Table
	33. Direct Anonymous Attestation
	33.1 TPM_DAA_JOIN
	33.2 TPM_DAA_Sign
	33.3 DAA Command summary
	33.3.1 TPM setup
	33.3.2 JOIN
	33.3.3 SIGN

	34. General Purpose IO
	35. Redirection
	36. Structure Versioning
	37. Certified Migration Key Type
	37.1 Certified Migration Requirements
	37.2 Key Creation
	37.3 Migrate CMK to a MA
	37.4 Migrate CMK to a MSA

	38. Revoke Trust
	39. Mandatory and Optional Functional Blocks
	40. 1.1a and 1.2 Differences

