
 

TCG 

EMBED Word.Picture.6

 

TCG 

TPM Main
Part 3 Commands
Specification Version 1.2
Level 2 Revision 116
1 March 2011
TCG Published

Contact: admin@trustedcomputinggroup.com

TCG Published
Copyright © 2003-2011 Trusted Computing Group, Incorporated

1
2

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

3
4

mailto:admin@trustedcomputinggroup.com


Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Copyright © 2003-2009 Trusted Computing Group, Incorporated.

Disclaimers, Notices, and License Terms
THIS  SPECIFICATION  IS  PROVIDED  "AS  IS"  WITH  NO  WARRANTIES  WHATSOEVER, 
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR 
ANY PARTICULAR PURPOSE,  OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY 
PROPOSAL, SPECIFICATION OR SAMPLE. 

Without limitation,  TCG disclaims all  liability,  including liability for  infringement of any 
proprietary  rights,  relating  to  use  of  information  in  this  specification  and  to  the 
implementation of this specification, and TCG disclaims all liability for cost of procurement 
of  substitute goods or services,  lost  profits,  loss of  use, loss of  data or any incidental, 
consequential, direct, indirect, or special damages, whether under contract, tort, warranty 
or  otherwise,  arising  in  any  way out  of  use  or  reliance  upon this  specification or  any 
information herein.

This  document  is  copyrighted  by Trusted Computing Group (TCG),  and  no  license,  express or  implied,  is  
granted herein other than as follows:  You may not copy or reproduce the document or distribute it to others 
without written permission from TCG, except that you may freely do so for the purposes of (a) examining or 
implementing TCG specifications or (b) developing, testing, or promoting information technology standards and 
best practices, so long as you distribute the document with these disclaimers, notices, and license terms.  

Contact  the  Trusted  Computing  Group  at 
http://www.trustedcomputinggroup.org/">www.trustedcomputinggroup.org for information 
on specification licensing through membership agreements. 

Any marks and brands contained herein are the property of their respective owners.

ii Level 2 Revision 116 28 February 2011
TCG Published

5
6
7

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

53
54
55
56
57

8
9

file:///C:%5CDocuments%20and%20Settings%5CAdministrator%5CLocal%20Settings%5CTemp%5Cnotes32C5CD%5Cwww.trustedcomputinggroup.org
file:///C:%5CDocuments%20and%20Settings%5CAdministrator%5CLocal%20Settings%5CTemp%5Cnotes32C5CD%5C%3Ca%20href=


TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Change History
Version Date Description

Rev 50 Jul 2003 Started 01 Jul 2003 by David Grawrock
Breakup into parts and the merge of 1.1 commands

Rev 63 Oct 2003 Change history tied to part 1 and kept in part 1 (DP)

Rev 71 Mar 2004 Change in terms from authorization data to AuthData.

Rev 91 Sept 2005 The following modifications were made by Tasneem Brutch:
 Update to section 6.2 informative, for TPM_OwnerClear. 
 Addtion of action item 15, to section 6.2, for TPM_OwnerClear.
 Addition of “MAY” to section 20.1, TPM_NV_DefineSpace, Action 1(a).
 Addition of a new Action (4) to Section 20.2, TPM_NV_WriteValue
 Addtion of a new Action (3) to Section 20.4, TPM_NV_ReadValue.
 Typo corrected in Section 21.1
 Moved TPM_GetCapabilityOwner from Section the Deleted Commands (section 28.1) to section 7.3.  Added 

information on operands, command description and actions from Rev. 67.

Rev 92
Sept 2005

Section 7.3 TPM_GetCapabilityOwner
Ordinal was added to the outgoing params, which is not returned but is typically included  in outParamDigest.

Rev 92 Sept 2005 Corrected a copy and paste error:
Part 3 20.2 TPM_NV_WriteValue
Removed the Action
"3. If D1 -> TPM_NV_PER_AUTHREAD is TRUE return TPM_AUTH_CONFLICT"

Rev 93 Sept. 2005 Moved TPM_CertifySelfTest command to the deleted section.

Rev 100 May 2006 Added deferredPhysicalPresence and its use in TPM_FieldUpgrade, clarified CTR mode, added TPM_NV_INDEX_TRIAL and 
use in TPM_NV_DefineSpace

Rev 101 Aug 2006 Changed “set to NULL” to “set to all zeros” in many places.  TPM_OwnerClear must affect disableFullDALogicInfo.  Clarified 
that _INFO keys may be used where _SHA1 keys are used.  Clarified that a global secret can be used for field upgrade 
confidentiality.  Added TPM_CMK_CreateBlob actions for the migrationType parameter.   Added TPM_CertifyKey action to 
check payload.   Clarified that TPM_Delegate_LoadOwnerDelegation returns an error if there is no owner and owner 
authorization is present.  Clarified that TPM_NV_DefineSpace cannot define the DIR index.  Clarified that the TPM does not 
have to clean up the effects of a wrapped command upon failure of a transport response.  Clarified that TPM_ReleaseCounter 
does not ignore the continueAuthSession parameter.

Rev 102 Sept 2006 Reworked TPM_GetPubkey to always check authorization data if present and allow no-authorization for 
TPM_AUTH_PRIV_USE_ONLY or TPM_AUTH_NEVER.  Fixed TPM_LoadContext typo, Action 6.e. returns error if the 
HMAC does NOT match.

Rev 103 Oct 2006 Added warning notes where excluding key handle from HMAC can allow an attack.  Added warning that delegating 
TPM_ChangeAuth allows elevation of privilege.

Rev 104 Nov 2006 Owner clear sets allowMaintenance and readSRKPub to default state.  TPM_Unseal can use DSAP. 
TPM_CreateEndorsementKeyPair uses TPM_ES_RSAESOAEP_SHA1_MGF1.  

Rev 105 Feb 2007 TPM_Seal, TPM_CreateWrapKey informative that they lack an identifier.  TPM_NV_DefineSpace should check inputs before 
changing state.  TPM_NV_DefineSpace, TPM_NV_WriteValue, TPM_NV_ReadValue ignore disabled and deactivated when 
nvLocked is FALSE, MAY always check HMAC.  TPM_NV_WriteValue must not return error for DIR data size of 0. 
TPM_NV_ReadValue partial DIR reads are allowed.  Informative that audit occurs twice for transport wrapped command. 
TPM_Reset must invalidate OSAP and DSAP sessions, must not invalidate sessions saved by TPM_SaveContext.

Rev 106 April 2007 Removed tpmProof check for non-migratable parent keys.

Rev 107 July 2007 Removed unused maxNVBufSize.  Increment the auditMonotonicCounter before audit response if digest is zero.  State should 
not change on field upgrade authorization failure.  PCR values for a key are validated at use, not at load.  TPM_StirRandom is 
not required to check for data < 256 bytes.  TPM_ChangeAuth must validate usageAuth.  Entity PCRs must be validated each 
time an OIAP session is used.  TPM_ExecuteTransport MUST log public key logs.

Rev 108 Sept 2007 TPM_ForceClear succeeds even with no owner (informative).  Audit only occurs when the commands executes successfully. 
Field upgrade should not change shielded locations.  Reordered TPM_NV_DefineSpace, TPM_NV_WriteValue so the NV 
write cound is not incremented if there is an authorization error.

Rev 109 Oct 2007 Added PCR index check to TPM_SHA1CompleteExtend, TPM_Extend, TPM_PCRRead.

Rev 110 May 2008 Minor typo corrections.

Level 2 Revision 116 28 February 2011 TCG Published  iii
TCG Published

10
11

58

12
13



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Rev 111 July 2008 TPM_SaveState gives priority to keys where parentPCRStatus is TRUE.  Informative security warning when field upgrade 
adds new features.  TPM_MakeIdentity normative that the signing key digestAtRelease is not validated.

Rev 112 Jan 2009 Create and load storage and migrate key, ownership commands check for default exponent, TPM_CMK_CreateBlob MAY 
check unused restrictTicket and sigTicket, TPM_NV_WriteValue does auth checks before changing bGlobalLock

Rev 113 Jan 2009 Identity key checks for default exponent.  TPM_SHA1Update actions added.  TPM_NV_WriteValue, TPM_NV_ReadValue 
added checks for disabled, deactivated.

Rev 114 Jan 2009 No changes

Rev 116 Aug 2009 No Changes

iv Level 2 Revision 116 28 February 2011
TCG Published

14
15
16

17
18



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Level 2 Revision 116 28 February 2011 TCG Published  v
TCG Published

19
20

59

21
22



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

vi Level 2 Revision 116 28 February 2011
TCG Published

23
24
25

60

26
27



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Table of Contents
1. Scope and Audience                                                                                                                                              ..........................................................................................................................................  1  

1.1 Key words                                                                                                                                                         .....................................................................................................................................................  2  

1.2 Action Order                                                                                                                                                     .................................................................................................................................................  3  

1.3 Statement Type                                                                                                                                                ............................................................................................................................................  4  

2. Description and TODO                                                                                                                                           .......................................................................................................................................  5  

3. Admin Startup and State                                                                                                                                        ....................................................................................................................................  6  

3.1 TPM_Init                                                                                                                                                           .......................................................................................................................................................  6  

3.2 TPM_Startup                                                                                                                                                    ................................................................................................................................................  7  

3.3 TPM_SaveState                                                                                                                                             .........................................................................................................................................  10  

4. Admin Testing                                                                                                                                                      ..................................................................................................................................................  12  

4.1 TPM_SelfTestFull                                                                                                                                           .......................................................................................................................................  12  

4.2 TPM_ContinueSelfTest                                                                                                                                   ...............................................................................................................................  13  

4.3 TPM_GetTestResult                                                                                                                                       ...................................................................................................................................  15  

5. Admin Opt-in                                                                                                                                                        ....................................................................................................................................................  16  

5.1 TPM_SetOwnerInstall                                                                                                                                     .................................................................................................................................  16  

5.2 TPM_OwnerSetDisable                                                                                                                                  ..............................................................................................................................  17  

5.3 TPM_PhysicalEnable                                                                                                                                      ..................................................................................................................................  18  

5.4 TPM_PhysicalDisable                                                                                                                                     .................................................................................................................................  19  

5.5 TPM_PhysicalSetDeactivated                                                                                                                        ....................................................................................................................  20  

5.6 TPM_SetTempDeactivated                                                                                                                             .........................................................................................................................  21  

5.7 TPM_SetOperatorAuth                                                                                                                                   ...............................................................................................................................  23  

6. Admin Ownership                                                                                                                                                 .............................................................................................................................................  24  

6.1 TPM_TakeOwnership                                                                                                                                     .................................................................................................................................  24  

6.2 TPM_OwnerClear                                                                                                                                           .......................................................................................................................................  27  

6.3 TPM_ForceClear                                                                                                                                            ........................................................................................................................................  30  

6.4 TPM_DisableOwnerClear                                                                                                                               ...........................................................................................................................  31  

6.5 TPM_DisableForceClear                                                                                                                                ............................................................................................................................  33  

6.6 TSC_PhysicalPresence                                                                                                                                  ..............................................................................................................................  34  

6.7 TSC_ResetEstablishmentBit                                                                                                                          ......................................................................................................................  37  

7. The Capability Commands                                                                                                                                   ...............................................................................................................................  38  

7.1 TPM_GetCapability                                                                                                                                        ....................................................................................................................................  39  

7.2 TPM_SetCapability                                                                                                                                         .....................................................................................................................................  41  

7.3 TPM_GetCapabilityOwner                                                                                                                              ..........................................................................................................................  43  

8. Auditing                                                                                                                                                                ............................................................................................................................................................  45  

8.1  Audit Generation                                                                                                                                            .......................................................................................................................................  45  

Level 2 Revision 116 28 February 2011 TCG Published  vii
TCG Published

28
29

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

30
31



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

8.2 Effect of audit failing                                                                                                                                       ...................................................................................................................................  47  

8.3 TPM_GetAuditDigest                                                                                                                                      ..................................................................................................................................  48  

8.4 TPM_GetAuditDigestSigned                                                                                                                           .......................................................................................................................  50  

8.5 TPM_SetOrdinalAuditStatus                                                                                                                           .......................................................................................................................  53  

9. Administrative Functions - Management                                                                                                              ..........................................................................................................  54  

9.1 TPM_FieldUpgrade                                                                                                                                        ....................................................................................................................................  54  

9.2 TPM_SetRedirection                                                                                                                                       ...................................................................................................................................  57  

9.3 TPM_ResetLockValue                                                                                                                                    ................................................................................................................................  59  

10. Storage functions                                                                                                                                               ...........................................................................................................................................  61  

10.1 TPM_Seal                                                                                                                                                     .................................................................................................................................................  61  

10.2 TPM_Unseal                                                                                                                                                 .............................................................................................................................................  65  

10.3 TPM_UnBind                                                                                                                                                ............................................................................................................................................  69  

10.4 TPM_CreateWrapKey                                                                                                                                   ...............................................................................................................................  72  

10.5 TPM_LoadKey2                                                                                                                                            ........................................................................................................................................  76  

10.6 TPM_GetPubKey                                                                                                                                          ......................................................................................................................................  80  

10.7 TPM_Sealx                                                                                                                                                   ...............................................................................................................................................  82  

11. Migration                                                                                                                                                            ........................................................................................................................................................  85  

11.1 TPM_CreateMigrationBlob                                                                                                                           .......................................................................................................................  85  

11.2 TPM_ConvertMigrationBlob                                                                                                                          ......................................................................................................................  89  

11.3 TPM_AuthorizeMigrationKey                                                                                                                        ....................................................................................................................  91  

11.4 TPM_MigrateKey                                                                                                                                          ......................................................................................................................................  93  

11.5 TPM_CMK_SetRestrictions                                                                                                                          ......................................................................................................................  95  

11.6 TPM_CMK_ApproveMA                                                                                                                               ...........................................................................................................................  97  

11.7 TPM_CMK_CreateKey                                                                                                                                 .............................................................................................................................  99  

11.8 TPM_CMK_CreateTicket                                                                                                                            ........................................................................................................................  102  

11.9 TPM_CMK_CreateBlob                                                                                                                              ..........................................................................................................................  104  

11.10 TPM_CMK_ConvertMigration                                                                                                                   ...............................................................................................................  109  

12. Maintenance Functions (optional)                                                                                                                    ................................................................................................................  112  

12.1 TPM_CreateMaintenanceArchive                                                                                                               ...........................................................................................................  114  

12.2 TPM_LoadMaintenanceArchive                                                                                                                  ..............................................................................................................  116  

12.3 TPM_KillMaintenanceFeature                                                                                                                    ................................................................................................................  119  

12.4 TPM_LoadManuMaintPub                                                                                                                          ......................................................................................................................  120  

12.5 TPM_ReadManuMaintPub                                                                                                                         .....................................................................................................................  122  

13. Cryptographic Functions                                                                                                                                  ..............................................................................................................................  123  

13.1 TPM_SHA1Start                                                                                                                                         .....................................................................................................................................  123  

13.2 TPM_SHA1Update                                                                                                                                     .................................................................................................................................  125  

13.3 TPM_SHA1Complete                                                                                                                                 .............................................................................................................................  126  

viii Level 2 Revision 116 28 February 2011
TCG Published

32
33
34
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

35
36



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.4 TPM_SHA1CompleteExtend                                                                                                                      ..................................................................................................................  127  

13.5 TPM_Sign                                                                                                                                                   ...............................................................................................................................................  129  

13.6 TPM_GetRandom                                                                                                                                       ...................................................................................................................................  131  

13.7 TPM_StirRandom                                                                                                                                       ...................................................................................................................................  132  

13.8 TPM_CertifyKey                                                                                                                                         .....................................................................................................................................  133  

13.9 TPM_CertifyKey2                                                                                                                                       ...................................................................................................................................  138  

14. Endorsement Key Handling                                                                                                                              ..........................................................................................................................  143  

14.1 TPM_CreateEndorsementKeyPair                                                                                                             .........................................................................................................  144  

14.2 TPM_CreateRevocableEK                                                                                                                          ......................................................................................................................  146  

14.3 TPM_RevokeTrust                                                                                                                                      ..................................................................................................................................  148  

14.4 TPM_ReadPubek                                                                                                                                       ...................................................................................................................................  149  

14.5 TPM_OwnerReadInternalPub                                                                                                                     .................................................................................................................  150  

15. Identity Creation and Activation                                                                                                                        ....................................................................................................................  152  

15.1 TPM_MakeIdentity                                                                                                                                      ..................................................................................................................................  152  

15.2 TPM_ActivateIdentity                                                                                                                                  ..............................................................................................................................  156  

16. Integrity Collection and Reporting                                                                                                                    ................................................................................................................  159  

16.1 TPM_Extend                                                                                                                                               ...........................................................................................................................................  160  

16.2 TPM_PCRRead                                                                                                                                          ......................................................................................................................................  162  

16.3 TPM_Quote                                                                                                                                                ............................................................................................................................................  163  

16.4 TPM_PCR_Reset                                                                                                                                       ...................................................................................................................................  165  

16.5 TPM_Quote2                                                                                                                                              ..........................................................................................................................................  167  

17. Changing AuthData                                                                                                                                          ......................................................................................................................................  170  

17.1 TPM_ChangeAuth                                                                                                                                      ..................................................................................................................................  170  

17.2 TPM_ChangeAuthOwner                                                                                                                            ........................................................................................................................  174  

18. Authorization Sessions                                                                                                                                     .................................................................................................................................  176  

18.1 TPM_OIAP                                                                                                                                                 .............................................................................................................................................  176  

18.1.1 Actions to validate an OIAP session                                                                                                    ................................................................................................  177  

18.2 TPM_OSAP                                                                                                                                                ............................................................................................................................................  179  

18.2.1 Actions to validate an OSAP session                                                                                                   ...............................................................................................  182  

18.3 TPM_DSAP                                                                                                                                                ............................................................................................................................................  184  

18.4 TPM_SetOwnerPointer                                                                                                                               ...........................................................................................................................  188  

19. Delegation Commands                                                                                                                                     .................................................................................................................................  190  

19.1 TPM_Delegate_Manage                                                                                                                             .........................................................................................................................  190  

19.2 TPM_Delegate_CreateKeyDelegation                                                                                                        ....................................................................................................  194  

19.3 TPM_Delegate_CreateOwnerDelegation                                                                                                   ...............................................................................................  197  

19.4 TPM_Delegate_LoadOwnerDelegation                                                                                                      ..................................................................................................  200  

19.5 TPM_Delegate_ReadTable                                                                                                                        ....................................................................................................................  204  

Level 2 Revision 116 28 February 2011 TCG Published  ix
TCG Published

37
38

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

39
40



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19.6 TPM_Delegate_UpdateVerification                                                                                                            ........................................................................................................  206  

19.7 TPM_Delegate_VerifyDelegation                                                                                                               ...........................................................................................................  209  

20. Non-volatile Storage                                                                                                                                         .....................................................................................................................................  211  

20.1 TPM_NV_DefineSpace                                                                                                                               ...........................................................................................................................  212  

20.2 TPM_NV_WriteValue                                                                                                                                  ..............................................................................................................................  216  

20.3 TPM_NV_WriteValueAuth                                                                                                                          ......................................................................................................................  220  

20.4 TPM_NV_ReadValue                                                                                                                                 .............................................................................................................................  222  

20.5 TPM_NV_ReadValueAuth                                                                                                                          ......................................................................................................................  225  

21. Session Management                                                                                                                                      ..................................................................................................................................  227  

21.1 TPM_KeyControlOwner                                                                                                                              ..........................................................................................................................  227  

21.2 TPM_SaveContext                                                                                                                                     .................................................................................................................................  230  

21.3 TPM_LoadContext                                                                                                                                      ..................................................................................................................................  233  

22. Eviction                                                                                                                                                             .........................................................................................................................................................  235  

22.1 TPM_FlushSpecific                                                                                                                                     .................................................................................................................................  236  

23. Timing Ticks                                                                                                                                                     .................................................................................................................................................  238  

23.1 TPM_GetTicks                                                                                                                                            ........................................................................................................................................  238  

23.2 TPM_TickStampBlob                                                                                                                                  ..............................................................................................................................  239  

24. Transport Sessions                                                                                                                                          ......................................................................................................................................  242  

24.1 TPM_EstablishTransport                                                                                                                            ........................................................................................................................  242  

24.2 TPM_ExecuteTransport                                                                                                                              ..........................................................................................................................  246  

24.3 TPM_ReleaseTransportSigned                                                                                                                  ..............................................................................................................  253  

25. Monotonic Counter                                                                                                                                           .......................................................................................................................................  256  

25.1 TPM_CreateCounter                                                                                                                                   ...............................................................................................................................  256  

25.2 TPM_IncrementCounter                                                                                                                             .........................................................................................................................  258  

25.3 TPM_ReadCounter                                                                                                                                     .................................................................................................................................  260  

25.4 TPM_ReleaseCounter                                                                                                                                ............................................................................................................................  261  

25.5 TPM_ReleaseCounterOwner                                                                                                                      ..................................................................................................................  263  

26. DAA commands                                                                                                                                               ...........................................................................................................................................  265  

26.1 TPM_DAA_Join                                                                                                                                          ......................................................................................................................................  265  

26.2 TPM_DAA_Sign                                                                                                                                         .....................................................................................................................................  283  

27. Deprecated commands                                                                                                                                    ................................................................................................................................  294  

27.1 Key commands                                                                                                                                           .......................................................................................................................................  295  

27.1.1 TPM_EvictKey                                                                                                                                      ..................................................................................................................................  295  

27.1.2 TPM_Terminate_Handle                                                                                                                      ..................................................................................................................  296  

27.2 Context management                                                                                                                                 .............................................................................................................................  298  

27.2.1 TPM_SaveKeyContext                                                                                                                         .....................................................................................................................  298  

27.2.2 TPM_LoadKeyContext                                                                                                                         .....................................................................................................................  300  

x Level 2 Revision 116 28 February 2011
TCG Published

41
42
43

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

44
45



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.2.3 TPM_SaveAuthContext                                                                                                                        ....................................................................................................................  301  

27.2.4 TPM_LoadAuthContext                                                                                                                        ....................................................................................................................  302  

27.3 DIR commands                                                                                                                                           .......................................................................................................................................  304  

27.3.1 TPM_DirWriteAuth                                                                                                                               ...........................................................................................................................  305  

27.3.2 TPM_DirRead                                                                                                                                      ..................................................................................................................................  307  

27.4 Change Auth                                                                                                                                               ...........................................................................................................................................  308  

27.4.1 TPM_ChangeAuthAsymStart                                                                                                               ...........................................................................................................  309  

27.4.2 TPM_ChangeAuthAsymFinish                                                                                                             .........................................................................................................  312  

27.5 TPM_Reset                                                                                                                                                 .............................................................................................................................................  315  

27.6 TPM_OwnerReadPubek                                                                                                                             .........................................................................................................................  316  

27.7 TPM_DisablePubekRead                                                                                                                           .......................................................................................................................  317  

27.8 TPM_LoadKey                                                                                                                                            ........................................................................................................................................  318  

28. Deleted Commands                                                                                                                                         .....................................................................................................................................  322  

28.1 TPM_GetCapabilitySigned                                                                                                                         .....................................................................................................................  323  

28.2 TPM_GetOrdinalAuditStatus                                                                                                                      ..................................................................................................................  324  

28.3 TPM_CertifySelfTest                                                                                                                                   ...............................................................................................................................  325  

28.4 TPM_GetAuditEvent                                                                                                                                   ...............................................................................................................................  327  

28.5 TPM_GetAuditEventSigned                                                                                                                        ....................................................................................................................  328  

End of Introduction do not delete

Level 2 Revision 116 28 February 2011 TCG Published  xi
TCG Published

46
47

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

48
49



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

1. Scope and Audience
The TPM main specification is an industry specification that enables trust in computing 
platforms in general. The main specification is broken into parts to make the role of each 
document clear. A version of the specification (like 1.2) requires all parts to be a complete 
specification.

This is Part 3, the commands that the TPM will use.

This document is an industry specification that enables trust in computing platforms in 
general. 

Level 2 Revision 116 28 February 2011 1
TCG Published

50
51

228
229
230
231
232
233
234
235

52
53



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

1.1 Key words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 
“SHOULD  NOT,”  “RECOMMENDED,”  “MAY,”  and  “OPTIONAL”  in  the  chapters  2-10 
normative statements are to be interpreted as described in [RFC-2119].

2 Level 2 Revision 116 28 February 2011
TCG Published

54
55
56

236
237
238
239

57
58



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

1.2 Action Order
1. The order of ordinal actions is advisory.  

In particular, the order in which errors are checked is vendor specific.  The TPM SHOULD 
check for error conditions as much as possible before executing actions that alter  the 
TPM state.

See also Part 2 “Return Codes” for a discussion of error code requirements.

2. After  input  parameter  parsing  errors,  the  state  of  the  TPM may  or  may  not  be 
changed.   The  TSS  can  use  TPM_GetCapability  to  determine  what  state  has  been 
affected.

For example, authorized commands terminate authorization sessions on error, since the 
response cannot roll the nonce.  However, if the incoming session handle parameter cannot 
be parsed, the session cannot be terminated.

Level 2 Revision 116 28 February 2011 3
TCG Published

59
60

240
241
242
243
244
245
246
247
248
249
250
251
252
253

61
62



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

1.3 Statement Type
Please note a very important distinction between different sections of text throughout this 
document.  You  will  encounter  two  distinctive  kinds  of  text:  informative  comment  and 
normative statements. Because most of the text in this specification will  be of the kind 
normative statements, the authors have informally defined it as the default and, as such, 
have specifically called out text of the kind informative comment. They have done this by 
flagging the beginning and end of each informative comment and highlighting its text in 
gray.  This  means  that  unless  text  is  specifically  marked  as  of  the  kind  informative 
comment, you can consider it of the kind normative statements. 

For example:

Start of informative comment:
This is the first paragraph of several paragraphs containing text of the kind informative 
comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TPM specification the user must read the specification.  (This use of 
MUST does not require any action).

End of informative comment.
This is the first paragraph of one or more paragraphs (and/or sections) containing the text 
of the kind normative statements ... 

To understand the TPM specification the user MUST read the specification. (This use of 
MUST indicates a keyword usage and requires an action). 

4 Level 2 Revision 116 28 February 2011
TCG Published

63
64
65

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

66
67



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

2. Description and TODO
This document is  to  show the changes necessary to  create the 1.2 version of  the TCG 
specification. Some of the sections are brand new text; some are rewritten sections of the 
1.1 version. Upon approval of the 1.2 changes, there will be a merging of the 1.1 and 1.2 
versions to create a single 1.2 document.

Level 2 Revision 116 28 February 2011 5
TCG Published

68
69

276
277
278
279
280

70
71



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

3. Admin Startup and State
Start of informative comment:
This section is the commands that start a TPM.

End of informative comment.

3.1 TPM_Init
Start of informative comment:
TPM_Init is a physical method of initializing a TPM. There is no TPM_Init ordinal as this is a 
platform message sent on the platform internals to the TPM. On a PC this command arrives 
at the TPM via the LPC bus and informs the TPM that the platform is performing a boot 
process. 

TPM_Init puts the TPM into a state where it waits for the command TPM_Startup (which 
specifies the type of initialization that is required. 

End of informative comment.

Definition
TPM_Init();

Operation of the TPM. This is not a command that any software can execute. It is inherent 
in the design of the TPM and the platform that the TPM resides on.

Parameters
None

Description
1. The TPM_Init signal indicates to the TPM that platform initialization is taking place. The 

TPM SHALL set the TPM into a state such that the only legal command to receive after 
the TPM_Init is the TPM_Startup command. The TPM_Startup will further indicate to the 
TPM how to handle and initialize the TPM resources.

2. The  platform design MUST be  that  the  TPM is  not  the  only  component undergoing 
initialization. If the TPM_Init signal forces the TPM to perform initialization then the 
platform MUST ensure that  ALL components of the platform receive an initialization 
signal. This is to prevent an attacker from causing the TPM to initialize to a state where 
various masquerades are allowable. For instance, on a PC causing the TPM to initialize 
and expect measurements in PCR0 but the remainder of the platform does not initialize.

3. The design of the TPM MUST be such that the ONLY mechanism that signals TPM_Init 
also signals initialization to the other platform components.

Actions
1. The TPM sets TPM_STANY_FLAGS -> postInitialise to TRUE. 

6 Level 2 Revision 116 28 February 2011
TCG Published

72
73
74

281
282
283
284

285
286
287
288
289
290
291
292
293

294
295
296
297
298

299
300

301
302
303
304
305
306
307
308
309
310
311
312
313

314
315

75
76



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3.2 TPM_Startup
Start of informative comment:
TPM_Startup is always preceded by TPM_Init, which is the physical indication (a system-
wide reset) that TPM initialization is necessary.

There are many events on a platform that can cause a reset and the response to these 
events can require different operations to occur on the TPM. The mere reset indication does 
not contain sufficient information to inform the TPM as to what type of reset is occurring. 
Additional information known by the platform initialization code needs transmitting to the 
TPM. The TPM_Startup command provides the mechanism to transmit the information.

The TPM can startup in three different modes:

A “clear” start where all variables go back to their default or non-volatile set state

A “save” start where the TPM recovers appropriate information and restores various values 
based on a prior TPM_SaveState. This recovery requires an invocation of TPM_Init to be 
successful.

A failing "save" start must shut down the TPM. The CRTM cannot leave the TPM in a state 
where an untrusted upper software layer could issue a "clear" and then extend PCR's and 
thus mimic the CRTM.

A “deactivated” start where the TPM turns itself off and requires another TPM_Init before 
the TPM will execute in a fully operational state.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_Startup

4 2 2S 2 TPM_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Startup

Description
TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

1. If the TPM is in failure mode

Level 2 Revision 116 28 February 2011 7
TCG Published

77
78

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

336

337

338
339
340

79
80



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. TPM_STANY_FLAGS -> postInitialize is still set to FALSE

b. The TPM returns TPM_FAILEDSELFTEST

Actions
1. If TPM_STANY_FLAGS -> postInitialise is FALSE, 

a. Then the TPM MUST return TPM_INVALID_POSTINIT, and exit this capability

2. If stType = TPM_ST_CLEAR

a. Ensure that sessions associated with resources TPM_RT_CONTEXT, TPM_RT_AUTH, 
TPM_RT_DAA_TPM, and TPM_RT_TRANS are invalidated

b. Reset TPM_STCLEAR_DATA -> PCR[] values to each correct default value

i. pcrReset is FALSE, set to 0x00..00

ii. pcrReset is TRUE, set to 0xFF..FF

c. Set the following TPM_STCLEAR_FLAGS to their default state

i. PhysicalPresence

ii. PhysicalPresenceLock

iii. disableForceClear

d. The TPM MAY initialize auditDigest to all zeros

i. If not initialized to all zeros, the TPM SHALL ensure that auditDigest contains 
a valid value.

ii. If initialization fails, the TPM SHALL set auditDigest to all zeros and SHALL set 
the internal TPM state so that  the TPM returns TPM_FAILEDSELFTEST to all 
subsequent commands.

e. The  TPM  SHALL  set  TPM_STCLEAR_FLAGS  ->  deactivated  to  the  same  state  as 
TPM_PERMANENT_FLAGS -> deactivated

f. The TPM MUST set the TPM_STANY_DATA fields to:

i. TPM_STANY_DATA->contextNonceSession is set to all zeros

ii. TPM_STANY_DATA->contextCount is set to 0

iii. TPM_STANY_DATA->contextList is set to 0

g. The TPM MUST set TPM_STCLEAR_DATA fields to:

i. Invalidate contextNonceKey

ii. countID to zero

iii. ownerReference to TPM_KH_OWNER

h. The TPM MUST set the following TPM_STCLEAR_FLAGS to

i. bGlobalLock to FALSE

i. Determine which keys should remain in the TPM 

i. For each key that has a valid preserved value in the TPM 

8 Level 2 Revision 116 28 February 2011
TCG Published

81
82
83

341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

84
85



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

(1) if parentPCRStatus is TRUE then call TPM_FlushSpecific(keyHandle)

(2) if isVolatile is TRUE then call TPM_FlushSpecific(keyHandle)

ii. Keys under control of the OwnerEvict flag MUST stay resident in the TPM

3. If stType = TPM_ST_STATE

a. If the TPM has no state to restore, the TPM MUST set the internal state such that it 
returns TPM_FAILEDSELFTEST to all subsequent commands.

b. The TPM MAY determine for each session type (authorization, transport, DAA, …) to 
release or maintain the session information. The TPM reports how it manages sessions 
in the TPM_GetCapability command.

c. The TPM SHALL take all necessary actions to ensure that all  PCRs contain valid 
preserved values. If the TPM is unable to successfully complete these actions, it SHALL 
enter the TPM failure mode.

i. For resettable PCR the TPM MUST set the value of TPM_STCLEAR_DATA -> 
PCR[]to the resettable PCR default value. The TPM MUST NOT restore a resettable 
PCR to a preserved value

d. The TPM MAY initialize auditDigest to all zeros.

i. Otherwise,  the  TPM  SHALL  take  all  actions  necessary  to  ensure  that 
auditDigest contains a valid value. If the TPM is unable to successfully complete 
these actions, the TPM SHALL initialize auditDigest to all zeros and SHALL set the 
internal  state  such  that  the  TPM  returns  TPM_FAILEDSELFTEST  to  all 
subsequent commands.

e. The TPM MUST restore the following flags to their preserved states:

i. All values in TPM_STCLEAR_FLAGS

ii. All values in TPM_STCLEAR_DATA 

f. The TPM MUST restore all keys that have a valid preserved value.

g. The  TPM  resumes  normal  operation.  If  the  TPM  is  unable  to  resume  normal 
operation, it SHALL enter the TPM failure mode.

4. If stType = TPM_ST_DEACTIVATED

a. Invalidate sessions

i. Ensure  that  all  resources  associated  with  saved  and  active  sessions  are 
invalidated

b. Set the TPM_STCLEAR_FLAGS to their default state.

c. Set TPM_STCLEAR_FLAGS -> deactivated to TRUE

5. The TPM MUST ensure that state associated with TPM_SaveState is invalidated

6. The TPM MUST set TPM_STANY_FLAGS -> postInitialise to FALSE

Level 2 Revision 116 28 February 2011 9
TCG Published

86
87

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

88
89



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

3.3 TPM_SaveState
Start of informative comment:
This warns a TPM to save some state information.

If the relevant shielded storage is non-volatile, this command need have no effect.

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of 
external  power in time to  move data  to  non-volatile  memory,  this  command should be 
presented before the TPM enters a low or no power state.

Resettable PCRs are tied to platform state that does not survive a sleep state.  If the PCRs 
did not reset, they would falsely indicate that the platform state was already present when it 
came out of sleep.  Since some setup is required first, there would be a gap where PCRs 
indicated the wrong state.  Therefore, the PCRs must be recreated.

Any loaded keys may be preserved.  Keys with parentPCRStatus TRUE are not given priority 
because of security concerns.  Rather, since the key might be part of a storage tree that 
requires  PCR  value  transitions,  it  might  not  be  directly  loadable  after 
TPM_Startup(ST_STATE).  For a TPM implementation that does not save all loaded keys, the 
platform should issue a TPM_SaveContext / TPM_LoadContext sequence for those loaded 
keys.  contextNonceKey will be restored, guaranteeing that the saved key context can be 
restored.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Description
1. Preserved values MUST be non-volatile.

2. If data is never stored in a volatile medium, that data MAY be used as preserved data. In 
such cases, no explicit action may be required to preserve that data.

10 Level 2 Revision 116 28 February 2011
TCG Published

90
91
92

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430

431

432
433
434
435

93
94



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3. If an explicit action is required to preserve data, it MUST be possible for the TPM to 
determine whether preserved data is valid.

4. If a parameter mirrored by any preserved value is altered, all preserved values MUST be 
declared invalid.

5. The TPM MAY declare all preserved values invalid in response to any command other 
than TPM_Init.

Actions
1. Store TPM_STCLEAR_DATA -> PCR contents except for

a. If the PCR attribute pcrReset is TRUE

b. Any platform identified debug PCR

2. The auditDigest MUST be handled according to the audit requirements as reported by 
TPM_GetCapability.

a. If the ordinalAuditStatus is TRUE for the TPM_SaveState ordinal and the auditDigest 
is  being  stored  in  the  saved  state,  the  saved  auditDigest  MUST  include  the 
TPM_SaveState input parameters and MUST NOT include the output parameters.

3. All values in TPM_STCLEAR_DATA MUST be preserved.

4. All values in TPM_STCLEAR_FLAGS MUST be preserved.

5. The contents of  any key that  is  currently loaded SHOULD be preserved if  the key's 
parentPCRStatus indicator is TRUE. 

6. The contents of  any key that  has TPM_KEY_CONTROL_OWNER_EVICT set MUST be 
preserved

7. The contents of any key that is currently loaded MAY be preserved.

8. The  contents  of  sessions  (authorization,  transport,  DAA,  etc.)  MAY be  preserved  as 
reported by TPM_GetCapability.

Level 2 Revision 116 28 February 2011 11
TCG Published

95
96

436
437
438
439
440
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

97
98



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

4. Admin Testing

4.1 TPM_SelfTestFull
Start of informative comment:
TPM_SelfTestFull tests all of the TPM capabilities. 

Unlike TPM_ContinueSelfTest, which may optionally return immediately and then perform 
the tests, TPM_SelfTestFull always performs the tests and then returns success or failure.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Actions
1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function.

a. If the self-test succeeds, return TPM_SUCCESS.

b. If the self-test fails, return TPM_FAILEDSELFTEST.

2. Failure of any test results in overall failure, and the TPM goes into failure mode.

3. If the TPM has not executed the action of TPM_ContinueSelfTest, the TPM

a. MAY perform the full self-test.

b. MAY return TPM_NEEDS_SELFTEST.

12 Level 2 Revision 116 28 February 2011
TCG Published

99
100
101

460

461
462
463
464
465
466

467

468

469
470
471
472
473
474
475
476

102
103



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

4.2 TPM_ContinueSelfTest
Start of informative comment:
TPM_ContinueSelfTest informs the TPM that  it  should complete the self-test of  all  TPM 
functions.

The TPM may return success immediately and then perform the self-test, or it may perform 
the self-test and then return success or failure.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Description
1. Prior to executing the actions of TPM_ContinueSelfTest, if the TPM receives a command 

C1 that uses an untested TPM function, the TPM MUST take one of these actions:

a. The TPM MAY return TPM_NEEDS_SELFTEST

i. This indicates that the TPM has not tested the internal resources required to 
execute C1.

ii. The TPM does not execute C1.

iii. The caller MUST issue TPM_ContinueSelfTest before re-issuing the command 
C1.

(1) If  the  TPM  permits  TPM_SelfTestFull  prior  to  completing  the  actions  of 
TPM_ContinueSelfTest,  the  caller  MAY  issue  TPM_SelfTestFull  rather  than 
TPM_ContinueSelfTest.

b. The TPM MAY return TPM_DOING_SELFTEST

i. This  indicates  that  the  TPM is  doing  the  actions  of  TPM_ContinueSelfTest 
implicitly, as if the TPM_ContinueSelfTest command had been issued.

ii. The TPM does not execute C1.

Level 2 Revision 116 28 February 2011 13
TCG Published

104
105

477
478
479
480
481
482
483

484

485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

106
107



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

iii. The caller  MUST wait  for  the actions of  TPM_ContinueSelfTest  to  complete 
before reissuing the command C1.

c. The TPM MAY return TPM_SUCCESS or an error code associated with C1.

i. This  indicates  that  the  TPM  has  completed  the  actions  of 
TPM_ContinueSelfTest and has completed the command C1.

ii. The error code MAY be TPM_FAILEDSELFTEST.

Actions
1. If TPM_PERMANENT_FLAGS -> FIPS is TRUE or TPM_PERMANENT_FLAGS -> TPMpost 

is TRUE

a. The TPM MUST run all self-tests

2. Else 

a. The TPM MUST complete all self-tests that are outstanding

i. Instead of completing all outstanding self-tests the TPM MAY run all self-tests

3. The TPM either

a. MAY immediately return TPM_SUCCESS

i. When TPM_ContinueSelfTest finishes execution, it MUST NOT respond to the 
caller with a return code.

b. MAY  complete  the  self-test  and  then  return  TPM_SUCCESS  or 
TPM_FAILEDSELFTEST.

14 Level 2 Revision 116 28 February 2011
TCG Published

108
109
110

502
503
504
505
506
507

508
509
510
511
512
513
514
515
516
517
518
519
520

111
112



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

4.3 TPM_GetTestResult
Start of informative comment:
TPM_GetTestResult provides manufacturer specific information regarding the results of the 
self-test. This command will work when the TPM is in self-test failure mode. The reason for 
allowing this command to operate in the failure mode is to allow TPM manufacturers to 
obtain diagnostic information.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

4 4 3S 4 UINT32 outDataSize The size of the outData area

5 <> 4S <> BYTE[] outData The outData this is manufacturer specific

Description
This command will  work when the TPM is in self test failure mode or limited operation 
mode.

Actions
1. The  TPM  SHALL  respond  to  this  command  with  a  manufacturer  specific  block  of 

information that describes the result of the latest self-test

2. The information MUST NOT contain any data that uniquely identifies an individual TPM.

Level 2 Revision 116 28 February 2011 15
TCG Published

113
114

521
522
523
524
525
526
527

528

529

530
531
532

533
534
535
536

115
116



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

5. Admin Opt-in

5.1 TPM_SetOwnerInstall
Start of informative comment:
When enabled but without an owner this command sets the PERMANENT flag that allows or 
disallows the ability to insert an owner.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

4 1 2S 1 BOOL state State to which ownership flag is to be set.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

Action
1. If  the  TPM  has  a  current  owner,  this  command  immediately  returns  with 

TPM_SUCCESS.

2. The TPM validates the assertion of physical presence. The TPM then sets the value of 
TPM_PERMANENT_FLAGS -> ownership to the value in state.

16 Level 2 Revision 116 28 February 2011
TCG Published

117
118
119

537

538
539
540
541
542

543

544

545
546
547
548
549

120
121



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5.2 TPM_OwnerSetDisable
Start of informative comment:
The TPM owner sets the PERMANENT disable flag to TRUE or FALSE.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 1 2S 1 BOOL disableState Value for disable state 

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Action
1. The  TPM  SHALL  authenticate  the  command  as  coming  from  the  TPM  Owner.  If 

unsuccessful, the TPM SHALL return TPM_AUTHFAIL.

2. The TPM SHALL set the TPM_PERMANENT_FLAGS -> disable flag to the value in the 
disableState parameter.

Level 2 Revision 116 28 February 2011 17
TCG Published

122
123

550
551
552
553

554

555

556
557
558
559
560

124
125



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

5.3 TPM_PhysicalEnable
Start of informative comment:
Sets the PERMANENT disable flag to FALSE using physical presence as authorization.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to FALSE.

18 Level 2 Revision 116 28 February 2011
TCG Published

126
127
128

561
562
563
564

565

566

567
568
569

129
130



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5.4 TPM_PhysicalDisable
Start of informative comment:
Sets the PERMANENT disable flag to TRUE using physical presence as authorization

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to TRUE.

Level 2 Revision 116 28 February 2011 19
TCG Published

131
132

570
571
572
573

574

575

576
577
578

133
134



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

5.5 TPM_PhysicalSetDeactivated
Start of informative comment:
Changes the TPM persistant deactivated flag using physical presence as authorization.

This command is not available when the TPM is disabled.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

4 1 2S 1 BOOL state State to which deactivated flag is to be set.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.deactivated flag to the value in the 
state parameter.

20 Level 2 Revision 116 28 February 2011
TCG Published

135
136
137

579
580
581
582
583

584

585

586
587
588
589

138
139



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5.6 TPM_SetTempDeactivated
Start of informative comment:
This command allows the operator of the platform to deactivate the TPM until the next boot 
of the platform. 

This  command  requires  operator  authentication.  The  operator  can  provide  the 
authentication  by  either  the  assertion  of  physical  presence  or  presenting  the  operator 
AuthData value.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 4 4 TPM_AUTHHANDLE authHandle Auth handle for operation validation. Session type MUST be OIAP

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA operatorAuth HMAC key: operatorAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
operatorAuth.

Action
1. If tag = TPM_TAG_RQU_AUTH1_COMMAND

a. If TPM_PERMANENT_FLAGS -> operator is FALSE return TPM_NOOPERATOR

b. Validate  command  and  parameters  using  operatorAuth,  on  error  return 
TPM_AUTHFAIL

Level 2 Revision 116 28 February 2011 21
TCG Published

140
141

590
591
592
593
594
595
596
597

598

599

600
601
602
603
604

142
143



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

2. Else

a. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE

3. The TPM SHALL set the TPM_STCLEAR_FLAGS.deactivated flag to the value TRUE.

22 Level 2 Revision 116 28 February 2011
TCG Published

144
145
146

605
606
607

147
148



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5.7 TPM_SetOperatorAuth
Start of informative comment:
This command allows the setting of the operator AuthData value.

There is no confidentiality applied to the operator authentication as the value is sent under 
the assumption of  being local to  the platform. If  there is  a concern regarding the path 
between the TPM and the keyboard then unless the keyboard is using encryption and a 
secure channel an attacker can read the values.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

4 20 2S 20 TPM_SECRET operatorAuth The operator AuthData

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

Action
1. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_DATA -> operatorAuth

3. The TPM SHALL set TPM_PERMANENT_FLAGS -> operator to TRUE

Level 2 Revision 116 28 February 2011 23
TCG Published

149
150

608
609
610
611
612
613
614
615

616

617

618
619
620
621

151
152



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6. Admin Ownership

6.1 TPM_TakeOwnership
Start of informative comment:
This command inserts the TPM Ownership value into the TPM.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2S 2 TPM_PROTOCOL_ID protocolID The ownership protocol in use.

5 4 3S 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4S <> BYTE[ ] encOwnerAuth The owner AuthData encrypted with PUBEK

7 4 5S 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 <> 6S <> BYTE[ ] encSrkAuth The SRK AuthData encrypted with PUBEK

9 <> 7S <> TPM_KEY srkParams Structure containing all parameters of new SRK. pubKey.keyLength & 
encSize are both 0. This structure MAY be TPM_KEY12.

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for this command

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA ownerAuth Authorization session digest for input params. HMAC key: the new 
ownerAuth value. See actions for validation operations

24 Level 2 Revision 116 28 February 2011
TCG Published

153
154
155

622

623
624
625
626

627

628

156
157



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 <> 3S <> TPM_KEY srkPub Structure containing all parameters of new SRK. srkPub.encData is set to 
0. This structure MAY be TPM_KEY12.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
the new ownerAuth value

Description
The type of the output srkPub MUST be the same as the type of the input srkParams, either 
both TPM_KEY or both TPM_KEY12.

Actions
1. If TPM_PERMANENT_DATA -> ownerAuth is valid return TPM_OWNER_SET

2. If TPM_PERMANENT_FLAGS -> ownership is FALSE return TPM_INSTALL_DISABLED

3. If  TPM_PERMANENT_DATA  ->  endorsementKey  is  invalid  return 
TPM_NO_ENDORSEMENT

4. Verify that authHandle is of type OIAP on error return TPM_AUTHFAIL

5. If protocolID is not TPM_PID_OWNER, the TPM MAY return TPM_BAD_PARAMETER

6. Create A1 a TPM_SECRET by decrypting encOwnerAuth using PRIVEK as the key

a. This requires that A1 was encrypted using the PUBEK

b. Validate that A1 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

7. Validate  the  command  and  parameters  using  A1  and  ownerAuth,  on  error  return 
TPM_AUTHFAIL

8. Validate srkParams

a. If  srkParams  ->  keyUsage  is  not  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

b. If srkParams -> migratable is TRUE return TPM_INVALID_KEYUSAGE

c. If  srkParams  ->  algorithmParms  ->  algorithmID  is  NOT  TPM_ALG_RSA  return 
TPM_BAD_KEY_PROPERTY

d. If  srkParams  ->  algorithmParms  ->  encScheme  is  NOT 
TPM_ES_RSAESOAEP_SHA1_MGF1 return TPM_BAD_KEY_PROPERTY

Level 2 Revision 116 28 February 2011 25
TCG Published

158
159

629

630
631
632

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

160
161



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

e. If  srkParams  ->  algorithmParms  ->  sigScheme  is  NOT  TPM_SS_NONE  return 
TPM_BAD_KEY_PROPERTY

f. srkParams -> algorithmParms -> parms -> keyLength MUST be greater than or equal 
to 2048, on error return TPM_BAD_KEY_PROPERTY

g. If  srkParams  ->  algorithmParms  ->  parms  ->  exponentSize  is  not  0,  return 
TPM_BAD_KEY_PROPERTY

h. If TPM_PERMANENT_FLAGS -> FIPS is TRUE 

i. If  srkParams  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS 

9. Generate K1 according to the srkParams, on error return TPM_BAD_KEY_PROPERTY

a. This includes copying PCRInfo from srkParams to K1

10.Create A2 a TPM_SECRET by decrypting encSrkAuth using the PRIVEK

a. This requires A2 to be encrypted using the PUBEK

b. Validate that A2 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

c. Store A2 in K1 -> usageAuth

11.Store K1 in TPM_PERMANENT_DATA -> srk

12.Store A1 in TPM_PERMANENT_DATA -> ownerAuth

13.Create TPM_PERMANENT_DATA -> contextKey according to the rules for the algorithm 
in use by the TPM to save context blobs

14.Create TPM_PERMANENT_DATA -> delegateKey according to the rules for the algorithm 
in use by the TPM to save delegate blobs

15.Create TPM_PERMANENT_DATA -> tpmProof by using the TPM RNG

16.Export TPM_PERMANENT_DATA -> srk as srkPub

17.Set TPM_PERMANENT_FLAGS -> readPubek to FALSE

18.Calculate resAuth using the newly established TPM_PERMANENT_DATA -> ownerAuth

26 Level 2 Revision 116 28 February 2011
TCG Published

162
163
164

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

165
166



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

6.2 TPM_OwnerClear
Start of informative comment:
The TPM_OwnerClear command performs the clear operation under Owner authentication. 
This command is available until the Owner executes the TPM_DisableOwnerClear, at which 
time any further invocation of this command returns TPM_CLEAR_DISABLED.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Ignored

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Fixed value FALSE

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
old ownerAuth.

Actions
1. Verify that the TPM Owner authorizes the command and all of the input, on error return 

TPM_AUTHFAIL.

2. If  TPM_PERMANENT_FLAGS  ->  disableOwnerClear  is  TRUE  then  return 
TPM_CLEAR_DISABLED.

3. Unload all loaded keys.

a. This includes owner evict keys

Level 2 Revision 116 28 February 2011 27
TCG Published

167
168

678
679
680
681
682
683

684

685

686
687
688
689
690
691
692

169
170



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. If  TPM_PERMANENT_FLAGS  ->  FIPS  is  TRUE,  the  memory  locations  containing 
secret or private keys MUST be set to all zeros.

4. The TPM MUST NOT modify the following TPM_PERMANENT_DATA items

a. endorsementKey

b. revMajor

c. revMinor

d. manuMaintPub

e. auditMonotonicCounter

f. monotonicCounter

g. pcrAttrib

h. rngState

i. EKReset

j. lastFamilyID

k. tpmDAASeed

l. authDIR[0]

m. daaProof

n. daaBlobKey

5. The TPM MUST invalidate the following TPM_PERMANENT_DATA items and any internal 
resources associated with these items

a. ownerAuth

b. srk

c. delegateKey

d. delegateTable

e. contextKey

f. tpmProof

g. operatorAuth

6. The TPM MUST reset to manufacturing defaults the following TPM_PERMANENT_DATA 
items

a. noOwnerNVWrite MUST be set to 0

b. ordinalAuditStatus

c. restrictDelegate

7. The TPM MUST invalidate or reset all fields of TPM_STANY_DATA

a. Nonces SHALL be reset

b. Lists (e.g. contextList) SHALL be invalidated

8. The TPM MUST invalidate or reset all fields of TPM_STCLEAR_DATA except the PCR’s

28 Level 2 Revision 116 28 February 2011
TCG Published

171
172
173

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

174
175



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. Nonces SHALL be reset

b. Lists (e.g. contextList) SHALL be invalidated

c. deferredPhysicalPresence MUST be set to 0

9. The TPM MUST set the following TPM_PERMANENT_FLAGS to their default values

a. disable

b. deactivated

c. readPubek

d. disableOwnerClear

e. disableFullDALogicInfo

f. allowMaintenance

g. readSRKPub

10.The TPM MUST set the following TPM_PERMANENT_FLAGS

a. ownership to TRUE

b. operator to FALSE

c. maintenanceDone to FALSE

11.The TPM releases all TPM_PERMANENT_DATA -> monotonicCounter settings

a. This  includes  invalidating  all  currently  allocated  counters.  The  result  will  be  no 
currently  allocated counters  and the  new owner will  need to  allocate  counters.  The 
actual count value will continue to increase.

12.The TPM MUST deallocate all defined NV storage areas where

a.  TPM_NV_PER_OWNERWRITE is TRUE if nvIndex does not have the “D” bit set

b.  TPM_NV_PER_OWNERREAD is TRUE if nvIndex does not have the “D” bit set

c. The TPM MUST NOT deallocate any other currently defined NV storage areas.

13.The TPM MUST invalidate all familyTable entries

14.The TPM MUST terminate all sessions, active or saved.

Level 2 Revision 116 28 February 2011 29
TCG Published

176
177

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

178
179



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6.3 TPM_ForceClear
Start of informative comment:
The TPM_ForceClear command performs the Clear operation under physical access. This 
command is available until the execution of the TPM_DisableForceClear, at which time any 
further invocation of this command returns TPM_CLEAR_DISABLED.

TPM_ForceClear can succeed even if no owner is installed.  In that case, it does whatever 
TPM_OwnerClear actions that it can.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Actions
1. The TPM SHALL check for  the assertion of  physical  presence,  if  not  present return 

TPM_BAD_PRESENCE

2. If TPM_STCLEAR_FLAGS -> disableForceClear is TRUE return TPM_CLEAR_DISABLED

3. The TPM SHALL execute the actions of TPM_OwnerClear (except for the TPM Owner 
authentication check)

30 Level 2 Revision 116 28 February 2011
TCG Published

180
181
182

753
754
755
756
757
758
759
760

761

762

763
764
765
766
767
768

183
184



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

6.4 TPM_DisableOwnerClear
Start of informative comment:
The TPM_DisableOwnerClear command disables the ability to execute the TPM_OwnerClear 
command permanently. Once invoked the only method of  clearing the TPM will  require 
physical access to the TPM.

After the execution of  TPM_ForceClear, ownerClear is  re-enabled and must be explicitly 
disabled again by the new TPM Owner.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. The TPM verifies that the authHandle properly authorizes the owner.

2. The TPM sets the TPM_PERMANENT_FLAGS -> disableOwnerClear flag to TRUE.

Level 2 Revision 116 28 February 2011 31
TCG Published

185
186

769
770
771
772
773
774
775
776

777

778

779
780
781

187
188



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

3. When  this  flag  is  TRUE  the  only  mechanism  that  can  clear  the  TPM  is  the 
TPM_ForceClear command. The TPM_ForceClear command requires physical access to 
the TPM to execute.

32 Level 2 Revision 116 28 February 2011
TCG Published

189
190
191

782
783
784

192
193



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

6.5 TPM_DisableForceClear
Start of informative comment:
The  TPM_DisableForceClear  command  disables  the  execution  of  the  TPM_ForceClear 
command until the next startup cycle. Once this command is executed, the TPM_ForceClear 
is disabled until another startup cycle is run.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Actions
1. The TPM sets the TPM_STCLEAR_FLAGS.disableForceClear flag in the TPM that disables 

the execution of the TPM_ForceClear command.

Level 2 Revision 116 28 February 2011 33
TCG Published

194
195

785
786
787
788
789
790

791

792

793
794
795

196
197



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6.6 TSC_PhysicalPresence
Start of informative comment:
Some TPM operations require the indication of a human’s physical presence at the platform. 
The presence of the human either provides another indication of platform ownership or a 
mechanism to ensure that the execution of the command is not the result  of  a remote 
software process.

This  command  allows  a  process  on  the  platform to  indicate  the  assertion  of  physical 
presence. As this command is executable by software there must be protections against the 
improper invocation of this command.

The physicalPresenceHWEnable  and physicalPresenceCMDEnable  indicate  the ability  for 
either  SW  or  HW  to  indicate  physical  presence.  These  flags  can  be  reset  until  the 
physicalPresenceLifetimeLock is set. The platform manufacturer should set these flags to 
indicate the capabilities of the platform the TPM is bound to.

The command provides two sets of functionality. The first is to enable, permanently, either 
the HW or the SW ability to assert physical presence. The second is to allow SW, if enabled,  
to assert physical presence.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

4 2 2S 2 TPM_PHYSICAL_PRESENCE physicalPresence The state to set the TPM’s Physical Presence flags.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

Actions
1. For  documentation ease,  the bits  break into  two categories.  The first  is  the lifetime 

settings and the second is the assertion settings.

a. Define A1 to be the lifetime settings: TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK, 
TPM_PHYSICAL_PRESENCE_HW_ENABLE, TPM_PHYSICAL_PRESENCE_CMD_ENABLE, 
TPM_PHYSICAL_PRESENCE_HW_DISABLE,  and 
TPM_PHYSICAL_PRESENCE_CMD_DISABLE

34 Level 2 Revision 116 28 February 2011
TCG Published

198
199
200

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

813

814

815
816
817
818
819
820
821

201
202



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. Define  A2  to  be  the  assertion  settings:  TPM_PHYSICAL_PRESENCE_LOCK, 
TPM_PHYSICAL_PRESENCE_PRESENT, and TPM_PHYSICAL_PRESENCE_NOTPRESENT

Lifetime lock settings
2. If any A1 setting is present

a. If  TPM_PERMANENT_FLAGS  ->  physicalPresenceLifetimeLock  is  TRUE,  return 
TPM_BAD_PARAMETER

b. If any A2 setting is present return TPM_BAD_PARAMETER

c. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_ENABLE  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_DISABLE  are  TRUE,  return 
TPM_BAD_PARAMETER. 

d. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_ENABLE  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_DISABLE  are  TRUE,  return 
TPM_BAD_PARAMETER. 

e. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_ENABLE  is  TRUE  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to TRUE

f. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_DISABLE  is  TRUE  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to FALSE

g. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_ENABLE  is  TRUE,  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to TRUE.

h. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_DISABLE  is  TRUE,  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to FALSE.

i. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK is TRUE

i. Set TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock to TRUE

j. Return TPM_SUCCESS

SW physical presence assertion
3. If any A2 setting is present

a. If any A1 setting is present return TPM_BAD_PARAMETER

i. This  check here  just  for  consistency,  the prior  checks would have already 
ensured that this was ok

b. If  TPM_PERMANENT_FLAGS  ->  physicalPresenceCMDEnable  is  FALSE,  return 
TPM_BAD_PARAMETER

c. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK and physicalPresence 
-> TPM_PHYSICAL_PRESENCE_PRESENT are TRUE, return TPM_BAD_PARAMETER

d. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_PRESENT  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_NOTPRESENT  are  TRUE,  return 
TPM_BAD_PARAMETER

e. If  TPM_STCLEAR_FLAGS  ->  physicalPresenceLock  is  TRUE,  return 
TPM_BAD_PARAMETER

Level 2 Revision 116 28 February 2011 35
TCG Published

203
204

822
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859

205
206



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

f. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE

ii. Set TPM_STCLEAR_FLAGS -> physicalPresenceLock to TRUE

iii. Return TPM_SUCCESS

g. If physicalPresence -> TPM_PHYSICAL_PRESENCE_PRESENT is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to TRUE

h. If physicalPresence -> TPM_PHYSICAL_PRESENCE_NOTPRESENT is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE

i. Return TPM_SUCCESS

4. Else // There were no A1 or A2 parameters set

a. Return TPM_BAD_PARAMETER

36 Level 2 Revision 116 28 February 2011
TCG Published

207
208
209

860
861
862
863
864
865
866
867
868
869
870

210
211



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

6.7 TSC_ResetEstablishmentBit
Start of informative comment:
The PC TPM Interface Specification (TIS) specifies setting tpmEstablished to TRUE upon 
execution  of  the  HASH_START sequence.  The  setting  implies  the  creation  of  a  Trusted 
Operating  System on  the  platform.  Platforms  will  use  the  value  of  tpmEstablished  to 
determine if operations necessary to maintain the security perimeter are necessary. 

The tpmEstablished bit provides a non-volatile, secure reporting that a HASH_START was 
previously run on the platform. When a platform makes use of the tpmEstablished bit, the 
platform can reset tpmEstablished as the operation is no longer necessary.

For example, a platform could use tpmEstablished to ensure that, if HASH_START had ever 
been, executed the platform could use the value to invoke special  processing. Once the 
processing is complete the platform will wish to reset tpmEstablished to avoid invoking the 
special process again. 

The TPM_PERMANENT_FLAGS -> tpmEstablished bit described in the TPM specifications 
uses positive logic. The TPM_ACCESS register uses negative logic, so that TRUE is reflected 
as a 0.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Actions
1. Validate the assertion of locality 3 or locality 4

2. Set TPM_PERMANENT_FLAGS -> tpmEstablished to FALSE

3. Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 37
TCG Published

212
213

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

888

889

890
891
892
893

214
215



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

7. The Capability Commands
Start of informative comment:
The TPM has numerous capabilities that a remote entity may wish to know about. These 
items include support of algorithms, key sizes, protocols and vendor-specific additions. The 
TPM_GetCapability command allows the TPM to report back to the requestor what type of 
TPM it is dealing with.

The request for information requires the requestor to specify which piece of information that 
is required. The request does not allow the “merging” of multiple requests and returns only 
a single piece of information.

In  failure  mode,  the  TPM  returns  a  limited  set  of  information  that  includes  the  TPM 
manufacturer and version.

In version 1.2 with the deletion of TPM_GetCapabilitySigned the way to obtain a signed 
listing  of  the  capabilities  is  to  create  a  transport  session,  perform  TPM_GetCapability 
commands  to  list  the  information  and  then  close  the  transport  session  using 
TPM_ReleaseTransportSigned.

End of informative comment.
1. The standard information provided in TPM_GetCapability MUST NOT provide  unique 

information

a. The TPM has no control of information placed into areas on the TPM like the NV store 
that is reported by the TPM. Configuration information for these areas could conceivably 
be unique

38 Level 2 Revision 116 28 February 2011
TCG Published

216
217
218

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

219
220



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7.1 TPM_GetCapability
Start of informative comment:
This command returns current information regarding the TPM.

The  limitation  on  what  can  be  returned  in  failure  mode  restricts  the  information  a 
manufacturer may return when capArea indicates TPM_CAP_MFR.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 3S 4 UINT32 respSize The length of the returned capability response

5 <> 4S <> BYTE[ ] resp The capability response

Level 2 Revision 116 28 February 2011 39
TCG Published

221
222

915
916
917
918
919
920

921

922

923

223
224



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Actions
1. The TPM validates the capArea and subCap indicators. If the information is available, 

the TPM creates the response field and fills in the actual information.

2. The structure document contains the list of caparea and subCap values

3. If the TPM is in failure mode or limited operation mode, the TPM MUST return 

a. TPM_CAP_VERSION

b. TPM_CAP_VERSION_VAL

c. TPM_CAP_MFR

d. TPM_CAP_PROPERTY -> TPM_CAP_PROP_MANUFACTURER

e. TPM_CAP_PROPERTY -> TPM_CAP_PROP_DURATION

f. TPM_CAP_PROPERTY -> TPM_CAP_PROP_TIS_TIMEOUT

g. The TPM MAY return any other capability.

40 Level 2 Revision 116 28 February 2011
TCG Published

225
226
227

924
925
926
927
928
929
930
931
932
933
934
935

228
229



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7.2 TPM_SetCapability
Start of informative comment:
This command sets values in the TPM.

A  setValue  that  is  inconsistent  with  the  capArea  and  subCap  is  considered  a  bad 
parameter.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be set

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

7 4 5S 4 UINT32 setValueSize The size of the value to set

8 <> 6S <> BYTE[] setValue The value to set

9 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA ownerAuth Authorization. HMAC key: owner.usageAuth.

Level 2 Revision 116 28 February 2011 41
TCG Published

230
231

936
937
938
939
940
941

942

232
233



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key:owner.usageAuth.

Actions
1. If  tag  =  TPM_TAG_RQU_AUTH1_COMMAND,  validate  the  command  and  parameters 

using ownerAuth, return TPM_AUTHFAIL on error

2. The TPM validates the capArea and subCap indicators, including the ability to set value 
based on any set restrictions

3. If the capArea and subCap indicators conform with one of the entries in the structure 
TPM_CAPABILITY_AREA (Values for TPM_SetCapability)

a. The TPM sets the relevant flag/data to the value of setValue parameter. 

4. Else

a. Return the error code TPM_BAD_PARAMETER.

42 Level 2 Revision 116 28 February 2011
TCG Published

234
235
236

943

944
945
946
947
948
949
950
951
952
953

237
238



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7.3 TPM_GetCapabilityOwner
Start of informative comment:
TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and 
the volatile flags in a single operation.

The flags summarize many operational aspects of the TPM. The information represented by 
some flags is private to the TPM Owner. So, for simplicity, proof of ownership of the TPM 
must be presented to retrieve the set of flags. When necessary, the flags that are not private 
to the Owner can be deduced by Users via other (more specific) means.

The normal TPM authentication mechanisms are  sufficient to  prove the integrity  of  the 
response. No additional integrity check is required. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal:  TPM_ORD_GetCapbilityOwner

4 4  TPM_AUTHHANDLE authHandle The authorization handle used for Owner authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key: 
OwnerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetCapabilityOwner

4 4 3S 4 TPM_VERSION version A properly filled out version structure.

5 4 4S 4 UINT32 non_volatile_flags The current state of the non-volatile flags.

6 4 5S 4 UINT32 volatile_flags The current state of the volatile flags.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: OwnerAuth.

Level 2 Revision 116 28 February 2011 43
TCG Published

239
240

954
955
956
957
958
959
960
961
962
963
964

965

966

967

241
242



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Description
For 31>=N>=0

1. Bit-N of the TPM_PERMANENT_FLAGS structure is the Nth bit after the opening bracket 
in  the  definition  of  TPM_PERMANENT_FLAGS  in  the  version  of  the  specification 
indicated by the parameter “version”. The bit immediately after the opening bracket is 
the 0th bit.

2. Bit-N of the TPM_STCLEAR_FLAGS structure is the Nth bit after the opening bracket in 
the definition of TPM_STCLEAR_FLAGS in the version of the specification indicated by 
the parameter “version”. The bit immediately after the opening bracket is the 0th bit.

3. Bit-N of non_volatile_flags corresponds to the Nth bit in TPM_PERMANENT_FLAGS, and 
the lsb of non_volatile_flags corresponds to bit0 of TPM_PERMANENT_FLAGS

4. Bit-N of volatile_flags corresponds to the Nth bit in TPM_STCLEAR_FLAGS, and the lsb 
of volatile_flags corresponds to bit0 of TPM_STCLEAR_FLAGS

Actions
1. The TPM validates that the TPM Owner authorizes the command.

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state 
as  the  corresponding  bit  in  TPM_PERMANENT_FLAGS.  Bits  in  non_volatile_flags  for 
which there is no corresponding bit in TPM_PERMANENT_FLAGS are set to zero.

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the 
corresponding bit in TPM_STCLEAR_FLAGS. Bits in volatile_flags for which there is no 
corresponding bit in TPM_STCLEAR_FLAGS are set to zero.

4. The TPM generates the parameter “version”.

5. The TPM returns non_volatile_flags, volatile_flags and version to the caller.

44 Level 2 Revision 116 28 February 2011
TCG Published

243
244
245

968

969
970
971
972
973
974
975
976
977
978
979
980
981

982
983
984
985
986
987
988
989
990
991

246
247



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

8. Auditing

8.1  Audit Generation 
Start of informative comment:
The  TPM  generates  an  audit  event  in  response  to  the  TPM  successfully  executing  a 
command that has the audit flag set to TRUE for that command ordinal.

The TPM maintains an extended value for all audited operations. 

End of informative comment.

Description
1. The TPM extends the audit  digest  whenever the ordinalAuditStatus is  TRUE for the 

ordinal about to be executed.

2. The TPM extends the audit digest only when a command is successfully executed.

a. If the ordinal is unknown, unimplemented, or cannot be determined, no auditing is 
performed.

3. Corner cases

a. TPM_SaveState: Only the input parameters are audited, and the audit occurs before 
the state is saved.  If an error occurs while or after the state is saved, the audit still  
occurs.

b. TPM_SetOrdinalAuditStatus:  In  the  case  where  the  ordinalToAudit  is 
TPM_ORD_SetOrdinalAuditStatus, audit is based on the initial state, not the final 
state.

Actions
The TPM will execute the ordinal and perform auditing in the following manner:

1. Execute command

a. Execution implies the performance of the listed actions for the ordinal.

2. If the command will return TPM_SUCCESS

a. If TPM_STANY_DATA -> auditDigest is all zeros

i. Increment TPM_PERMANENT_DATA -> auditMonotonicCounter by 1

b. Create A1 a TPM_AUDIT_EVENT_IN structure

i. Set  A1  ->  inputParms  to  the  digest  of  the  input  parameters  from the 
command

1. Digest value according to the HMAC digest rules of the "above the 
line" parameters (i.e. the first HMAC digest calculation).

ii. Set  A1  ->  auditCount  to  TPM_PERMANENT_DATA  -> 
auditMonotonicCounter

Level 2 Revision 116 28 February 2011 45
TCG Published

248
249

992

993
994
995
996
997
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

250
251



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

c. Set  TPM_STANY_DATA  ->  auditDigest  to  SHA-1  (TPM_STANY_DATA  -> 
auditDigest || A1)

d. Create A2 a TPM_AUDIT_EVENT_OUT structure

i. Set A2 -> outputParms to the digest of the output parameters from the 
command

1. Digest value according to the HMAC digest rules of the "above the 
line" parameters (i.e. the first HMAC digest calculation).

ii. Set  A2  ->  auditCount  to  TPM_PERMANENT_DATA  -> 
auditMonotonicCounter

e. Set  TPM_STANY_DATA  ->  auditDigest  to  SHA-1  (TPM_STANY_DATA  -> 
auditDigest || A2)

46 Level 2 Revision 116 28 February 2011
TCG Published

252
253
254

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

255
256



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

8.2 Effect of audit failing
Start of informative comment:
The TPM audit process could have an internal error when attempting to audit a command. 
To indicate the audit failure, the TPM will return TPM_AUDITFAIL_SUCCESSFUL.  This new 
functionality changes the 1.1 TPM functionality when this condition occurs.

Since no audit occurs if the command fails, The TPM_AUDITFAIL_UNSUCCESSFUL return 
code is no longer used.

End of informative comment.
1. When, in performing the audit process, the TPM has an internal failure (unable to write, 

SHA-1 failure etc.) the TPM MUST set the internal TPM state such that the TPM returns 
the TPM_FAILEDSELFTEST error on subsequent attempts to execute a command.

2. The return code for the command uses the following rules

a. Command result success, audit success -> return TPM_SUCCESS

b. Command result failure, no audit -> return command result failure

c. Command result success, audit failure -> return TPM_AUDITFAIL_SUCCESSFUL

3. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST 
always  return  TPM_FAILEDSELFTEST  for  every  command  other  than 
TPM_GetTestResult.  This state must persist regardless of power cycling, the execution 
of TPM_Init or any other actions.

Level 2 Revision 116 28 February 2011 47
TCG Published

257
258

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

259
260



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

8.3 TPM_GetAuditDigest
Start of informative comment:
This returns the current audit digest. The external audit log has the responsibility to track 
the parameters that constitute the audit digest.

This value may be unique to an individual TPM. The value however will be changing at a 
rate set by the TPM Owner. Those attempting to use this value may find it changing without 
their knowledge. This value represents a very poor source of tracking uniqueness.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigest

4 4 UINT32 startOrdinal The starting ordinal for the list of audited ordinals

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. 

5 10 TPM_COUNTER_VALUE counterValue The current value of the audit monotonic counter

4 20 TPM_DIGEST auditDigest Log of all audited events

5 1 BOOL more TRUE if the output does not contain a full list of audited ordinals

5 4 UINT32 ordSize Size of the ordinal list in bytes

6 <> UINT32[] ordList List of ordinals that are audited.

Description
1. This command is never audited.

Actions
1. The TPM sets auditDigest to TPM_STANY_DATA -> auditDigest

2. The TPM sets counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

3. The TPM creates an ordered list of audited ordinals. The list starts at startOrdinal listing 
each ordinal that is audited.

a. If startOrdinal is 0 then the first ordinal that could be audited would be TPM_OIAP 
(ordinal 0x0000000A)

48 Level 2 Revision 116 28 February 2011
TCG Published

261
262
263

1057
1058
1059
1060
1061
1062
1063
1064

1065

1066

1067
1068

1069
1070
1071
1072
1073
1074
1075

264
265



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. The next ordinal would be TPM_OSAP (ordinal 0x0000000B)

4. If the ordered list does not fit in the output buffer the TPM sets more to TRUE

5. Return TPM_STANY_DATA -> auditDigest as auditDigest

Level 2 Revision 116 28 February 2011 49
TCG Published

266
267

1076
1077
1078

268
269



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

8.4 TPM_GetAuditDigestSigned
Start of informative comment:
The signing of the audit log returns the entire digest value and the list of currently audited 
commands.

The inclusion of the list of audited commands as an atomic operation is to tie the current 
digest value with the list of commands that are being audited. 

Note to future architects
When auditing functionality is active in a TPM, it may seem logical to remove this ordinal 
from the  active  set  of  ordinals  as  the  signing  functionality  of  this  command could  be 
handled in a signed transport session. While true, this command has a secondary affect 
also, resetting the audit log digest. As the reset requires TPM Owner authentication, there 
must be some way in this command to reflect the TPM Owner wishes. By requiring that a 
TPM Identity key be the only key that can sign and reset, the TPM Owner’s authentication is 
implicit in the execution of the command (TPM Identity Keys are created and controlled by 
the TPM Owner only). Hence, while one might want to remove an ordinal this is not one that 
can be removed if auditing is functional.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 1 2S 1 BOOL closeAudit Indication if audit session should be closed

6 20 3S 20 TPM_NONCE antiReplay A nonce to prevent replay attacks

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for key authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: key.usageAuth.

50 Level 2 Revision 116 28 February 2011
TCG Published

270
271
272

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

1096

273
274



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 10 3S 10 TPM_COUNTER_VALUE counterValue The value of the audit monotonic counter

5 20 4S 20 TPM_DIGEST auditDigest Log of all audited events

6 20 5S 20 TPM_DIGEST ordinalDigest Digest of all audited ordinals

 7 4 6S 4 UINT32 sigSize The size of the sig parameter

8 <> 7S <> BYTE[] sig The signature of the area

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth Authorization HMAC key: key.usageAuth.

Actions
1. Validate the AuthData and parameters using keyAuth, return TPM_AUTHFAIL on error

2. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

3. The TPM validates that the key pointed to by keyHandle has a signature scheme of 
TPM_SS_RSASSAPKCS1v15_SHA1  or  TPM_SS_RSASSAPKCS1v15_INFO,  return 
TPM_INVALID_KEYUSAGE on error

4. Create D1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set D1 -> fixed to “ADIG”

b. Set D1 -> replay to antiReplay

c. Create  D3  a  list  of  all  audited  ordinals  as  defined  in  the  TPM_GetAuditDigest 
UINT32[] ordList outgoing parameter

d. Create D4 the SHA-1 of D3

e. Set auditDigest to TPM_STANY_DATA -> auditDigest

f. Set counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

g. Create D2 the concatenation of auditDigest || counterValue || D4

h. Set D1 -> data to D2

i. Create a digital  signature of the SHA-1 of D1 by using the signature scheme for 
keyHandle

j. Set ordinalDigest to D4

5. If closeAudit == TRUE 

Level 2 Revision 116 28 February 2011 51
TCG Published

275
276

1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

277
278



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. If keyHandle->keyUsage is TPM_KEY_IDENTITY

i. TPM_STANY_DATA -> auditDigest MUST be set to all zeros.

b. Else

i. Return TPM_INVALID_KEYUSAGE

52 Level 2 Revision 116 28 February 2011
TCG Published

279
280
281

1119
1120
1121
1122

282
283



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

8.5 TPM_SetOrdinalAuditStatus
Start of informative comment:
Set the audit flag for a given ordinal. Requires the authentication of the TPM Owner.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TPM_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set 

5 1 3S 1 BOOL auditState Value for audit flag

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Validate the AuthData to execute the command and the parameters

2. Validate that the ordinal points to a valid TPM ordinal, return TPM_BADINDEX on error

a. Valid TPM ordinal means an ordinal that the TPM implementation supports

3. Set the non-volatile flag associated with ordinalToAudit to the value in auditState

Level 2 Revision 116 28 February 2011 53
TCG Published

284
285

1123
1124
1125
1126

1127

1128

1129
1130
1131
1132
1133

286
287



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

9. Administrative Functions - Management

9.1 TPM_FieldUpgrade
Start of informative comment: 
The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is 
in  the  field.  Given  the  varied  nature  of  TPM implementations  there  will  be  numerous 
methods  of  performing  an  upgrade  of  the  protected  capabilities.  This  command,  when 
implemented, provides a manufacturer specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this 
command.  The  command  may  be  more  than  one  command  and  actually  a  series  of 
commands.

The  IDL  definition  is  to  create  an  ordinal  for  the  command.  However,  the  remaining 
parameters are manufacturer specific.

The policy to determine when it is necessary to perform the actions of TPM_RevokeTrust is 
outside the TPM spec and determined by other TCG workgroups.

TPM_FieldUpgrade is gated by either owner authorization or deferred assertion of Physical 
Presence  (via  the  TPM_STCLEAR_DATA  ->  deferredPhysicalPresence  -> 
unownedFieldUpgrade flag). This gating is acknowledgement that the entity that sets the 
security policy for a platform must approve field upgrade for that platform. This gating can 
block a global attack on TPMs when the TPME’s privilege information (private key) has been 
compromised. For blocking to be effective in an unowned TPM, the TPM’s ownership flag 
must  be  FALSE.  (This  prevents  software  from  taking  ownership  and  executing 
TPM_FieldUpgrade with owner authorization.) 

If an owner is present, field upgrade MUST be owner authorized, as the actions indicate. 
This prevents an attacker from using physical presence to upgrade a TPM without detection 
by the owner.

The advantages of deferred assertion of Physical Presence are that it:

• permits a TPM to be upgraded if taking ownership is undesirable or impractical.

• permits  a  TPM to  be  upgraded in  the  OS environment  (where  Physical  Presence 
typically cannot be asserted), when the TPM has no owner. 

If  it  is  acceptable  to  take  ownership  of  a  TPM  temporarily,  an  alternative  to  deferred 
assertion of Physical Presence is the process: (1)  take ownership;  (2)  perform an owner 
authorized field upgrade; (3) clear the owner from the TPM.

There  is  no  requirement for  patch confidentiality.   Confidentiality  may be  implemented 
using  a  manufacturer  specific  mechanism,  and  may  use  a  global  secret  such  as  a 
symmetric encryption key.

The TPM may set the volatile deactivated flag to TRUE if a reboot is required after the field  
upgrade.  There is no requirement to do so. 

The TPM must check owner authorization before changing the TPM state or beginning the 
upgrade.   This  prevents  a  non-owner  from  mounting  a  denial-of-service  attack.   It  is 
understood that a TPM may not be able to stage the entire upgrade patch inside the TPM 

54 Level 2 Revision 116 28 February 2011
TCG Published

288
289
290

1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

291
292



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

before checking owner authorization.  That TPM may be forced to move the patch outside 
the owner authorization HMAC.  

Ideally, if the upgrade fails (e.g., due to an authentication failure) the TPM firmware should 
remain unchanged.  It is understood that a TPM may not be able to stage the entire upgrade 
patch inside the TPM for authentication before beginning the upgrade.  On a failure, that 
TPM may be forced to roll the firmware back to a ROMed version.  It may go into an upgrade 
failure state, where it requires a successful field upgrade before continuing.

If a field upgrade adds or deletes features, the security implications must be analyzed.  The 
associated state must be set to prevent attacks.  See, for example, allowMaintenance in Part 
2.  In addition, if a field upgrade adds maintenance commands, it must atomically install 
the manufacturer’s maintenance public key.

End of informative comment.

IDL Definition
TPM_RESULT TPM_FieldUpgrade(

[in, out] TPM_AUTH* ownerAuth,
…);

Type
This is an optional command and a TPM is not required to implement this command in any 
form.

Parameters
Type Name Description

TPM_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Description
The patch integrity and authenticity verification mechanisms in the TPM MUST not require 
the TPM to hold a global secret. The definition of global secret is a secret value shared by 
more than one TPM.  

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of  
field upgrade. The TPM MUST NOT use the endorsement key for identification or encryption 
in the upgrade process. The upgrade process MAY use a TPM Identity to deliver upgrade 
information to specific TPM’s.

The upgrade process SHOULD only change protected capabilities.  The upgrade process 
SHOULD NOT change shielded locations.

The upgrade process MUST NOT change the disabled or deactivated state from TRUE to 
FALSE.

The upgrade process SHOULD only access data in shielded locations where this data is 
necessary to validate the TPM Owner, validate the TPME and manipulate the blob.

Level 2 Revision 116 28 February 2011 55
TCG Published

293
294

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

1186
1187
1188
1189

1190
1191
1192

1193

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

295
296



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

The execution of a TPM_FieldUpgrade command in a TPM MUST leave the TPM in a state 
that conforms to a version of TCG's TPM specification and conforms to any extant TCG-
defined credentials (certificates) that attest to that upgraded TPM.

The security target used to valuate this TPM MUST include this command in the TOE.

If the owner authorization fails, the state of the TPM (volatile, nonvolatile, and firmware) 
MUST remain unchanged.  The only exception shall  be the dictionary attack mitigation 
state, which should process the authentication failure.

Actions
The TPM SHALL perform the following when executing the command:

1. If TPM Owner is installed

a. Validate  the  command  and  parameters  using  TPM  owner  authentication,  return 
TPM_AUTHFAIL on error

2. Else

a. If  TPM_STCLEAR_DATA  ->  deferredPhysicalPresence  ->  unownedFieldUpgrade  is 
FALSE return TPM_BAD_PRESENCE. 

3. Validate that the upgrade information was sent by the TPME. The validation mechanism 
MUST use a strength of function that is at least the same strength of function as a 
digital signature performed using a 2048 bit RSA key.

4. Validate that the upgrade target is the appropriate TPM model and version.

5. Process the upgrade information and update the protected capabilities

6. Set the TPM_PERMANENT_DATA -> revMajor and TPM_PERMANENT_DATA -> revMinor 
to the values indicated in the upgrade. The selection of the value is a manufacturer 
option. 

a. The TPM MAY validate that the upgrade major and minor revision are monotonically 
increasing. 

b. The TPM MAY allow upgrade  with  a  major  and minor  revision that  is  less  than 
currently installed in the TPM.

7. The TPM MAY set the TPM_STCLEAR_FLAGS.deactivated to TRUE

56 Level 2 Revision 116 28 February 2011
TCG Published

297
298
299

1208
1209
1210
1211
1212
1213
1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

300
301



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

9.2 TPM_SetRedirection
Start of informative comment:
The redirection command attaches a key to a redirection receiver.

When making the connection to a GPIO channel the authorization restrictions are set at 
connection time and not for each invocation that uses the channel.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can implement redirection.

5 4 2S 4 TPM_REDIR_COMMAND redirCmd The command to execute

6 4 3S 4 UINT32 inputDataSize The size of the input data

7 <> 4S <> BYTE inputData Manufacturer parameter

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Action
1. If tag == TPM_TAG_RQU_AUTH1_COMMAND

Level 2 Revision 116 28 February 2011 57
TCG Published

302
303

1236
1237
1238
1239
1240
1241

1242

1243

1244

1245
1246

304
305



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. Validate the command and parameters using TPM Owner authentication, on error 
return TPM_AUTHFAIL

2. if redirCmd == TPM_REDIR_GPIO

a. Validate that keyHandle points to a loaded key, return TPM_INVALID_KEYHANDLE 
on error

b. Validate the key attributes specify redirection, return TPM_BAD_TYPE on error 

c. Validate that inputDataSize is 4, return TPM_BAD_PARAM_SIZE on error

d. Validate  that  inputData  points  to  a  valid  GPIO  channel,  return 
TPM_BAD_PARAMETER on error

e. Map C1 to the TPM_GPIO_CONFIG_CHANNEL structure indicated by inputData

f. If C1 -> attr specifies TPM_GPIO_ATTR_OWNER

i. If tag != TPM_TAG_RQU_AUTH1_COMMAND return TPM_AUTHFAIL

g. If C1 -> attr specifies TPM_GPIO_ATTR_PP

i. If  TPM_STCLEAR_FLAGS  ->  physicalPresence  ==  FALSE,  then  return 
TPM_BAD_PRESENCE

h. Return TPM_SUCCESS

3. The TPM MAY support other redirection types. These types may be specified by TCG or 
provided by the manufacturer.

58 Level 2 Revision 116 28 February 2011
TCG Published

306
307
308

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

309
310



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

9.3 TPM_ResetLockValue
Start of informative comment:
Command that resets the TPM dictionary attack mitigation values

This allows the TPM owner to cancel the effect of a number of successive authorization 
failures.  Dictionary  attack  mitigation  is  vendor  specific,  and  the  actions  here  are  one 
possible implementation. The TPM may treat an authorization failure outside the mitigation 
time as a normal failure and not disable the command.

If this command itself has an authorization failure, it is blocked for the remainder of the 
lock out period. This prevents a dictionary attack on the owner authorization using this 
command.

It is understood that this command allows the TPM owner to perform a dictionary attack on 
other authorization values by alternating a trial and this command.  Similarly, delegating 
this command allows the owner’s delegate to perform a dictionary attack.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key TPM Owner auth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: TPM Owner auth

Level 2 Revision 116 28 February 2011 59
TCG Published

311
312

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

1279

1280

313
314



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Action
1. If TPM_STCLEAR_DATA -> disableResetLock is TRUE return TPM_AUTHFAIL

a. The  internal  dictionary  attack  mechanism  will  set  TPM_STCLEAR_DATA  -> 
disableResetLock to FALSE when the timeout period expires

2. If the command and parameters validation using ownerAuth fails

a. Set TPM_STCLEAR_DATA -> disableResetLock to TRUE

b. Restart the TPM dictionary attack lock out period

c. Return TPM_AUTHFAIL

3. Reset the internal TPM dictionary attack mitigation mechanism

a. The mechanism is vendor specific  and can include time outs, reboots, and other 
mitigation strategies

60 Level 2 Revision 116 28 February 2011
TCG Published

315
316
317

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

318
319



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

10. Storage functions

10.1 TPM_Seal
Start of informative comment:
The SEAL operation allows software to explicitly state the future “trusted” configuration that 
the platform must be in for the secret to be revealed. The SEAL operation also implicitly 
includes the relevant platform configuration (PCR-values) when the SEAL operation was 
performed. The SEAL operation uses the tpmProof value to BIND the blob to an individual 
TPM.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect 
when the SEAL operation was performed is returned to the caller, as well as the secret data.  
This proof may, or may not, be of interest. If the SEALed secret is used to authenticate the 
platform to a third party, a caller is normally unconcerned about the state of the platform 
when the secret was SEALed, and the proof may be of no interest. On the other hand, if the  
SEALed secret is used to authenticate a third party to the platform, a caller is normally 
concerned about the state of the platform when the secret was SEALed. Then the proof is of 
interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to 
prove that the platform is a particular platform that is in a particular configuration), the 
only requirement is that that key can be used only when the platform is in that future 
configuration. Then there is no interest in the platform configuration when the secret key 
was  SEALed.  An  example  of  this  case  is  when  SEAL  is  used  to  store  a  network 
authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log 
on to the platform. The OS uses a SEALED blob to store the encryption key for the user-
database. However, the nature of SEAL is that any SW stack can SEAL a blob for any other 
software stack. Hence, the OS can be attacked by a second OS replacing both the SEALED-
blob encryption key, and the user database itself, allowing untrusted parties access to the 
services  of  the  OS.  To  thwart  such  attacks,  SEALED  blobs  include  the  past  SW 
configuration.  Hence,  if  the  OS is  concerned about  such  attacks,  it  may  check to  see 
whether the past configuration is one that is known to be trusted.

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity 
with other commands that require the encryption of more than one parameter, the string 
used for XOR encryption is generated by concatenating a nonce (created during the OSAP 
session) with the session shared secret and then hashing the result.

The sealed data blob does not have a protected identifier.  On a platform that does not 
prevent unauthorized access to data, a data blob can be exchanged by a lower layer without 
detection.  The upper layer software must take additional measures to protect the relation 
between its identifier of the data blob and the blob itself.

End of informative comment.

Level 2 Revision 116 28 February 2011 61
TCG Published

320
321

1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

322
323



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo The PCR selection information. The caller MAY use 
TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[ ] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization. 
Must be an OSAP session for this command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 <> 3S <> TPM_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result of the 
TPM_Seal operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Description
TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

Actions
1. Validate the authorization to use the key pointed to by keyHandle

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

62 Level 2 Revision 116 28 February 2011
TCG Published

324
325
326

1331

1332

1333
1334

1335
1336
1337

327
328



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3. If  the  keyUsage  field  of  the  key  indicated  by  keyHandle  does  not  have  the  value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE.

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 
TPM_INVALID_KEY_USAGE.

5. Determine the version of pcrInfo

a. If pcrInfoSize is 0 

i. set V1 to 1

b. Else 

i. Point X1 as TPM_PCR_INFO_LONG structure to pcrInfo

ii. If X1 -> tag is TPM_TAG_PCR_INFO_LONG 

(1) Set V1 to 2

iii. Else 

(1) Set V1 to 1

6. If V1 is 1 then

a. Create S1 a TPM_STORED_DATA structure

7. else

a. Create S1 a TPM_STORED_DATA12 structure

b. Set S1 -> et to 0

8. Set S1 -> encDataSize to 0

9. Set S1 -> encData to all zeros

10.Set S1 -> sealInfoSize to pcrInfoSize

11.If pcrInfoSize is not 0 then

a. if V1 is 1 then

i. Validate pcrInfo as a valid TPM_PCR_INFO structure, return TPM_BADINDEX 
on error

ii. Set S1 -> sealInfo -> pcrSelection to pcrInfo -> pcrSelection

iii. Create h1 the composite hash of the PCR selected by pcrInfo -> pcrSelection

iv. Set S1 -> sealInfo -> digestAtCreation to h1

v. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

b. else

i. Validate  pcrInfo  as  a  valid  TPM_PCR_INFO_LONG  structure,  return 
TPM_BADINDEX on error

ii. Set S1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection

iii. Set S1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection

iv. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

Level 2 Revision 116 28 February 2011 63
TCG Published

329
330

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

331
332



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

v. Set S1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease

vi. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 
pcrInfo -> creationPCRSelection

vii. Set S1 -> sealInfo -> digestAtCreation to h2

viii. Set  S1  ->  sealInfo  ->  localityAtCreation  to  TPM_STANY_FLAGS  -> 
localityModifier

12.Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

13.The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 
possible.

14.Create S2 a TPM_SEALED_DATA structure

a. Set S2 -> payload to TPM_PT_SEAL

b. Set S2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof

c. Create h3 the SHA-1 of S1

d. Set S2 -> storedDigest to h3

e. Set S2 -> authData to a1

f. Set S2 -> dataSize to inDataSize

g. Set S2 -> data to inData

15.Validate that the size of S2 can be encrypted by the key pointed to by keyHandle, return 
TPM_BAD_DATASIZE on error

16.Create s3 the encryption of S2 using the key pointed to by keyHandle

17.Set continueAuthSession to FALSE

18.Set S1 -> encDataSize to the size of s3

19.Set S1 -> encData to s3

20.Return S1 as sealedData

64 Level 2 Revision 116 28 February 2011
TCG Published

333
334
335

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

336
337



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

10.2 TPM_Unseal
Start of informative comment:
The TPM_Unseal operation will  reveal TPM_Seal’ed data only if it  was encrypted on this 
platform and the current configuration (as defined by the named PCR contents) is the one 
named as qualified to decrypt it. Internally, TPM_Unseal accepts a data blob generated by a 
TPM_Seal operation. TPM_Unseal decrypts the structure internally, checks the integrity of 
the resulting data, and checks that the PCR named has the value named during TPM_Seal. 
Additionally, the caller must supply appropriate AuthData for blob and for the key that was 
used to seal that data. 

If the integrity, platform configuration and authorization checks succeed, the sealed data is 
returned to the caller; otherwise, an error is generated. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 <> 2S <> TPM_STORED_DATA inData The encrypted data generated by TPM_Seal.

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC 
key: parentKey.usageAuth.

10 4 TPM_AUTHHANDLE dataAuthHandle The authorization session handle used to authorize inData. 

2H2 20 TPM_NONCE dataLastNonceEven Even nonce previously generated by TPM

11 20 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with entityAuthHandle

12 1 4H2 1 BOOL continueDataSession Continue usage flag for dataAuthHandle.

13 20 TPM_AUTHDATA dataAuth The authorization session digest for the encrypted entity. HMAC key: 
entity.usageAuth.

Level 2 Revision 116 28 February 2011 65
TCG Published

338
339

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1409

340
341



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 3S 4 UINT32 secretSize The used size of the output area for secret

5 <> 4S <> BYTE[ ] secret Decrypted data that had been sealed

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: parentKey.usageAuth.

9 20 2H2 20 TPM_NONCE dataNonceEven Even nonce newly generated by TPM.

3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with dataAuthHandle

10 1 4H2 1 BOOL continueDataSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA dataAuth The authorization session digest used for the dataAuth session. HMAC 
key: entity.usageAuth.

Actions
1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle, 

on error return TPM_AUTHFAIL

2. If  the keyUsage field of  the key indicated by parentHandle  does not  have the value 
TPM_KEY_STORAGE, the TPM MUST return the error code TPM_INVALID_KEYUSAGE. 

3. The TPM MUST check that the TPM_KEY_FLAGS -> Migratable flag has the value FALSE 
in  the  key indicated by  parentHandle.  If  not,  the TPM MUST return the error  code 
TPM_INVALID_KEYUSAGE

4. Determine the version of inData

a. If inData -> tag = TPM_TAG_STORED_DATA12

i. Set V1 to 2

ii. Map S2 a TPM_STORED_DATA12 structure to inData

b. Else If inData -> ver = 1.1

i. Set V1 to 1

ii. Map S2 a TPM_STORED_DATA structure to inData

c. Else

i. Return TPM_BAD_VERSION

5. Create d1 by decrypting S2 -> encData using the key pointed to by parentHandle

6. Validate d1

66 Level 2 Revision 116 28 February 2011
TCG Published

342
343
344

1410

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

345
346



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. d1 MUST be a TPM_SEALED_DATA structure

b. d1 -> tpmProof MUST match TPM_PERMANENT_DATA -> tpmProof

c. Set S2 -> encDataSize to 0

d. Set S2 -> encData to all zeros

e. Create h1 the SHA-1 of S2

f. d1 -> storedDigest MUST match h1

g. d1 -> payload MUST be TPM_PT_SEAL

h. Any failure MUST return TPM_NOTSEALED_BLOB

7. If S2 -> sealInfoSize is not 0 then

a. If V1 is 1 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO structure

ii. Create  h2  the  composite  hash  of  the  PCR  selected  by  S2  ->  pcrInfo  -> 
pcrSelection

b. If V1 is 2 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO_LONG structure

ii. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 
S2 -> pcrInfo -> releasePCRSelection

iii. Check  that  S2  ->  pcrInfo  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

(1) For example if TPM_STANY_DATA -> localityModifier was 2 then S2 -> 
pcrInfo -> localityAtRelease -> TPM_LOC_TWO would have to be TRUE

c. Compare  h2  with  S2  ->  pcrInfo  ->  digestAtRelease,  on  mismatch  return 
TPM_WRONGPCRVAL

8. The TPM MUST validate authorization to use d1 by checking that the HMAC calculation 
using  d1  ->  authData  as  the  shared  secret  matches  the  dataAuth.  Return 
TPM_AUTHFAIL on mismatch.

9. If V1 is 2 and S2 -> et specifies encryption (i.e. is not all zeros) then

a. If tag is not TPM_TAG_RQU_AUTH2_COMMAND, return TPM_AUTHFAIL

b. Verify that the authHandle session type is TPM_PID_OSAP or TPM_PID_DSAP, return 
TPM_BAD_MODE on error.

c. If the MSB of S2 -> et is TPM_ET_XOR

i. Use MGF1 to create string X1 of length sealedDataSize. The inputs to MGF1 
are; authLastnonceEven, nonceOdd, “XOR”, and authHandle -> sharedSecret. The 
four concatenated values form the Z value that is the seed for MFG1.

ii. Create o1 by XOR of d1 -> data and X1

d. Else

Level 2 Revision 116 28 February 2011 67
TCG Published

347
348

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

349
350



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

i. Create o1 by encrypting d1 -> data using the algorithm indicated by inData -> 
et

ii. Key is from authHandle -> sharedSecret

iii. IV is SHA-1 of (authLastNonceEven || nonceOdd)

e. Set continueAuthSession to FALSE

10.else

a. Set o1 to d1 -> data

11.Set the return secret as o1

12.Return TPM_SUCCESS

68 Level 2 Revision 116 28 February 2011
TCG Published

351
352
353

1466
1467
1468
1469
1470
1471
1472
1473
1474

354
355



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

10.3 TPM_UnBind
Start of informative comment:
TPM_UnBind takes the data blob that  is  the result  of  a  Tspi_Data_Bind command and 
decrypts it for export to the User. The caller must authorize the use of the key that will  
decrypt the incoming blob.

TPM_UnBind operates on a block-by-block basis, and has no notion of any relation between 
one block and another.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform UnBind 
operations.

5 4 2S 4 UINT32 inDataSize The size of the input blob

6 <> 3S <> BYTE[ ] inData Encrypted blob to be decrypted

7 4 TPM_AUTHHANDLE authHandle The handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the inputs and use of 
keyHandle. HMAC key: key.usageAuth.

Level 2 Revision 116 28 February 2011 69
TCG Published

356
357

1475
1476
1477
1478
1479
1480
1481
1482

1483

358
359



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind

4 4 3S 4 UINT32 outDataSize The length of the returned decrypted data

5 <> 4S <> BYTE[ ] outData The resulting decrypted data.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Description
TPM_UnBind SHALL operate on a single block only.

Actions
The TPM SHALL perform the following:

1. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

2. Validate the AuthData to use the key pointed to by keyHandle

3. If  the  keyUsage  field  of  the  key  referenced  by  keyHandle  does  not  have  the  value 
TPM_KEY_BIND  or  TPM_KEY_LEGACY,  the  TPM  must  return  the  error  code 
TPM_INVALID_KEYUSAGE

4. Decrypt the inData using the key pointed to by keyHandle

5. if  (keyHandle  ->  encScheme does not  equal  TPM_ES_RSAESOAEP_SHA1_MGF1)  and 
(keyHandle -> keyUsage equals TPM_KEY_LEGACY), 

a. The payload does not have TPM specific markers to validate, so no consistency check 
can be performed.

b. Set the output parameter outData to the value of the decrypted value of inData. 
(Padding associated with the encryption wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the 
decryption process.

6. else

a. Interpret the decrypted data under the assumption that it is a TPM_BOUND_DATA 
structure, and validate that the payload type is TPM_PT_BIND

b. Set  the  output  parameter  outData  to  the  value  of  TPM_BOUND_DATA  -> 
payloadData.  (Other  parameters  of  TPM_BOUND_DATA  SHALL  NOT  be  returned. 
Padding associated with the encryption wrapping of inData SHALL NOT be returned.)

70 Level 2 Revision 116 28 February 2011
TCG Published

360
361
362

1484

1485
1486

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

363
364



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

c. Set the output parameter outDataSize to the size of outData, as deduced from the 
decryption process and the interpretation of TPM_BOUND_DATA.

7. Return the output parameters.

Level 2 Revision 116 28 February 2011 71
TCG Published

365
366

1509
1510
1511

367
368



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

10.4 TPM_CreateWrapKey
Start of informative comment:
The TPM_CreateWrapKey command both generates and creates a secure storage bundle for 
asymmetric keys. 

The newly created key can be locked to a specific PCR value by specifying a set of PCR 
registers.

The key blob does not have a protected identifier.  On a platform that does not prevent 
unauthorized  access  to  data,  a  key  blob  can  be  exchanged  by  a  lower  layer  without 
detection.  The upper layer software must take additional measures to protect the relation 
between its identifier of the key blob and the blob itself.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the key.

6 20 3S 20 TPM_ENCAUTH dataMigrationAuth Encrypted migration AuthData for the key.

7 <> 4S <> TPM_KEY keyInfo Information about key to be created, pubkey.keyLength and 
keyInfo.encData elements are 0. MAY be TPM_KEY12

8 4 TPM_AUTHHANDLE authHandle parent key authorization. Must be an OSAP session.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth Authorization HMAC key: parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 <> 3S <> TPM_KEY wrappedKey The TPM_KEY structure which includes the public and encrypted private 
key. MAY be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

72 Level 2 Revision 116 28 February 2011
TCG Published

369
370
371

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

1523

1524

372
373



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: parentKey.usageAuth.

Level 2 Revision 116 28 February 2011 73
TCG Published

374
375

376
377



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

 Actions
The TPM SHALL do the following:

1. Validate  the  AuthData  to  use  the  key  pointed  to  by  parentHandle.  Return 
TPM_AUTHFAIL on any error.

2. Validate the session type for parentHandle is OSAP.

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 
error code TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. If parentHandle -> keyFlags -> migratable is TRUE and keyInfo -> keyFlags -> migratable 
is FALSE then return TPM_INVALID_KEYUSAGE

6. Validate key parameters

a. keyInfo  ->  keyUsage  MUST  NOT  be  TPM_KEY_IDENTITY  or 
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE

b. If  keyInfo  ->  keyFlags  ->  migrateAuthority  is  TRUE  then  return 
TPM_INVALID_KEYUSAGE

7. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

8. If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

iii. sigScheme MUST be TPM_SS_NONE

iv. key size MUST be 2048

v. exponentSize MUST be 0

9. Determine the version of key

a. If keyInfo -> ver is 1.1

i. Set V1 to 1

ii. Map wrappedKey to a TPM_KEY structure

iii. Validate all remaining TPM_KEY structures

b. Else if keyInfo -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Map wrappedKey to a TPM_KEY12 structure

iii. Validate all remaining TPM_KEY12 structures

74 Level 2 Revision 116 28 February 2011
TCG Published

378
379
380

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

381
382



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

10.Create  DU1  by  decrypting  dataUsageAuth  according  to  the  ADIP  indicated  by 
authHandle

11.Create  DM1  by  decrypting  dataMigrationAuth  according  to  the  ADIP  indicated  by 
authHandle

12.Set continueAuthSession to FALSE

13.Generate asymmetric key according to algorithm information in keyInfo

14.Fill in the wrappedKey structure with information from the newly generated key. 

a. Set wrappedKey -> encData -> usageAuth to DU1

b. If  the  KeyFlags  ->  migratable  bit  is  set  to  1,  the  wrappedKey  ->  encData  -> 
migrationAuth SHALL contain the decrypted value from dataMigrationAuth. 

c. If  the  KeyFlags  ->  migratable  bit  is  set  to  0,  the  wrappedKey  ->  encData  -> 
migrationAuth SHALL be set to the value tpmProof

15.If keyInfo->PCRInfoSize is non-zero 

a. If V1 is 1

i. Set  wrappedKey  ->  pcrInfo  to  a  TPM_PCR_INFO  structure  using  the 
pcrSelection to indicate the PCR’s in use

b. Else 

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure 

c. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo

d. Set  wrappedKey ->  digestAtCreation  to  the  TPM_COMPOSITE_HASH indicated by 
creationPCRSelection

e. If V1 is 2 set wrappedKey -> localityAtCreation to TPM_STANY_DATA -> locality

16.Encrypt the private portions of the wrappedKey structure using the key in parentHandle

17.Return the newly generated key in the wrappedKey parameter

Level 2 Revision 116 28 February 2011 75
TCG Published

383
384

1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

385
386



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

10.5 TPM_LoadKey2
Start of informative comment:
Before the TPM can use a key to either wrap, unwrap, unbind, seal, unseal, sign or perform 
any other action, it needs to be present in the TPM. The TPM_LoadKey2 function loads the 
key into the TPM for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 
The assumption is that the handle may change due to key management operations. It is the 
responsibility of upper level software to maintain the mapping between handle and any 
label used by external software.

To  permit  this  mapping  between handle  and  upper  software  labels  (called  key  handle 
virtualization),  the key handle returned by TPM_LoadKey2 must not be included in the 
response HMAC.  This may cause problems if several keys are authorized using the same 
authorization data.  Care should be taken to assign different authorization data to each key.

This  command has  the  responsibility  of  enforcing  restrictions  on  the  use  of  keys.  For 
example, when attempting to load a STORAGE key it will be checked for the restrictions on 
a storage key (2048 size etc.).

The  load  command  must  maintain  a  record  of  whether  any  previous  key  in  the  key 
hierarchy was bound to a PCR using parentPCRStatus.

The  flag  parentPCRStatus  enables  the  possibility  of  checking  that  a  platform  passed 
through some particular state or states before finishing in the current state. A grandparent 
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 
linked to state-3, for example. The use of the child key then indicates that the platform 
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 
has not  passed through the previous states.  Hence keys with  parentPCRStatus==TRUE 
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 
has passed AND the key is non-migratory, the key must have been created by the TPM. So 
there is every reason to believe that the key poses no security threat to the TPM. While there 
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 
migratory key is a real key,  arising from a general  sense of unease about execution of 
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 
cycle,  but  this  may  be  expensive.  For  RSA  keys,  it  is  therefore  suggested  that  the 
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 
and checking that there is no remainder.

End of informative comment.

76 Level 2 Revision 116 28 February 2011
TCG Published

387
388
389

1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

390
391



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey Incoming key structure, both encrypted private and clear public portions. 
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2

4 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate  the  command  and  the  parameters  using  parentAuth  and  parentHandle  -> 
usageAuth

2. If  parentHandle  ->  keyUsage  is  NOT  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 
error code TPM_BAD_KEY_PROPERTY

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 
in parentHandle

Level 2 Revision 116 28 February 2011 77
TCG Published

392
393

1619

1620

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

394
395



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY

a. Reproduce  inKey ->  TPM_STORE_ASYMKEY ->  pubDataDigest  using the  fields  of 
inKey, and check that the reproduced value is the same as pubDataDigest

7. Validate the consistency of the key and it’s key usage. 

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 
public  and private  components of  the  asymmetric  key  pair.  If  inKey ->  keyFlags  -> 
migratable  is  FALSE,  the  TPM  MAY  verify  consistency  of  the  public  and  private 
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 
there is no remainder.

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY 
-> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

ii. If  keyInfo  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. sigScheme MUST be TPM_SS_NONE

h. If inKey -> keyUsage is TPM_KEY_IDENTITY

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. encScheme MUST be TPM_ES_NONE

i. If the decrypted inKey -> pcrInfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using 
any PCR registers.

j. Else

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 
composite hash whenever the key will be in use

78 Level 2 Revision 116 28 February 2011
TCG Published

396
397
398

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

399
400



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

ii. The  TPM  MUST  handle  both  version  1.1  TPM_PCR_INFO  and  1.2 
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure

(1) The TPM MUST validate the TPM_PCR_INFO or TPM_PCR_INFO_LONG 
structures  for  legal  values.   However,  the  digestAtRelease  and 
localityAtRelease are not validated for authorization until use time.

8. Perform any processing  necessary  to  make  TPM_STORE_ASYMKEY key available  for 
operations

9. Load key and key information into internal memory of the TPM. If insufficient memory 
exists return error TPM_NOSPACE.

10.Assign inKeyHandle according to internal TPM rules.

11.Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

12.If  parentHandle  indicates  that  it  is  using  PCR  registers,  then  set  inKeyHandle  -> 
parentPCRStatus to TRUE. 

Level 2 Revision 116 28 February 2011 79
TCG Published

401
402

1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

403
404



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

10.6 TPM_GetPubKey
Start of informative comment:
The owner of  a  key may wish to  obtain  the public  key value  from a loaded key.  This 
information may have privacy concerns so the command must have authorization from the 
key owner. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 4 TPM_KEY_HANDLE keyHandle TPM handle of key.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA keyAuth Authorization HMAC key: key.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 <> 3S <> TPM_PUBKEY pubKey Public portion of key in keyHandle.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. Validate the command parameters using keyHandle -> usageAuth, on error return 
TPM_AUTHFAIL

2. Else 

80 Level 2 Revision 116 28 February 2011
TCG Published

405
406
407

1682
1683
1684
1685
1686
1687

1688

1689

1690
1691
1692
1693
1694
1695

408
409



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. Verify  that  keyHandle  ->  authDataUsage  is   TPM_NO_READ_PUBKEY_AUTH   or 
TPM_AUTH_NEVER, on error return TPM_AUTHFAIL

3. If keyHandle == TPM_KH_SRK then 

a. If  TPM_PERMANENT_FLAGS  ->  readSRKPub  is  FALSE  then  return 
TPM_INVALID_KEYHANDLE

4. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified PCR registers and compare 
to keyHandle -> digestAtRelease and if a mismatch return TPM_WRONGPCRVAL

ii. If specified validate any locality requests

5. Create a TPM_PUBKEY structure and return 

Level 2 Revision 116 28 February 2011 81
TCG Published

410
411

1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

412
413



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

10.7 TPM_Sealx
Start of informative comment:
The TPM_Sealx command works exactly like the TPM_Seal command with the additional 
requirement  of  encryption  for  the  inData  parameter.  This  command also  places  in  the 
sealed blob the information that the TPM_Unseal also requires encryption.

TPM_Sealx requires the use of 1.2 data structures. The actions are the same as TPM_Seal 
without the checks for 1.1 data structure usage.

The method of incrementing the symmetric key counter value is different from that used by 
some standard crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter 
value.  TPM users should be aware of this to avoid errors when the counter wraps.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo MUST use TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[ ] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization. 
Must be an OSAP session for this command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key.usageAuth.

82 Level 2 Revision 116 28 February 2011
TCG Published

414
415
416

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

1718

417
418



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 <> 3S 4 TPM_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result of the 
TPM_Sealx operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Actions
1. Validate the authorization to use the key pointed to by keyHandle

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

3. If  the  keyUsage  field  of  the  key  indicated  by  keyHandle  does  not  have  the  value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE.

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 
TPM_INVALID_KEY_USAGE.

5. Create S1 a TPM_STORED_DATA12 structure

6. Set S1 -> encDataSize to 0

7. Set S1 -> encData to all zeros

8. Set S1 -> sealInfoSize to pcrInfoSize

9. If pcrInfoSize is not 0 then

a. Validate pcrInfo as a valid TPM_PCR_INFO_LONG structure, return TPM_BADINDEX 
on error

b. Set S1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection

c. Set S1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection

d. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

e. Set S1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease

f. Create  h2  the  composite  hash  of  the  TPM_STCLEAR_DATA  ->  PCR  selected  by 
pcrInfo -> creationPCRSelection

g. Set S1 -> sealInfo -> digestAtCreation to h2

h. Set S1 -> sealInfo -> localityAtCreation to TPM_STANY_DATA -> localityModifier

10.Create S2 a TPM_SEALED_DATA structure

Level 2 Revision 116 28 February 2011 83
TCG Published

419
420

1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

421
422



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

11.Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

a. If authHandle indicates XOR encryption for the AuthData secrets

i. Set S1 -> et to TPM_ET_XOR || TPM_ET_KEY

(1) TPM_ET_KEY  is  added  because  TPM_Unseal  uses  zero  as  a  special  value 
indicating no encryption.

b. Else

i. Set S1 -> et to the algorithm indicated by authHandle

12.The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 
possible.

13.If authHandle indicates XOR encryption

a. Use  MGF1  to  create  string  X2  of  length  inDataSize.  The  inputs  to  MGF1  are; 
authLastNonceEven,  nonceOdd,  “XOR”,  and  authHandle  ->  sharedSecret.  The  four 
concatenated values form the Z value that is the seed for MFG1.

b. Create o1 by XOR of inData and X2

14.Else

a. Create o1 by decrypting inData using the algorithm indicated by authHandle

b. Key is from authHandle -> sharedSecret

c. CTR is SHA-1 of (authLastNonceEven || nonceOdd)

15.Create S2 a TPM_SEALED_DATA structure

a. Set S2 -> payload to TPM_PT_SEAL

b. Set S2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof

c. Create h3 the SHA-1 of S1

d. Set S2 -> storedDigest to h3

e. Set S2 -> authData to a1

f. Set S2 -> dataSize to inDataSize

g. Set S2 -> data to o1

16.Validate that the size of S2 can be encrypted by the key pointed to by keyHandle, return 
TPM_BAD_DATASIZE on error

17.Create s3 the encryption of S2 using the key pointed to by keyHandle

18.Set continueAuthSession to FALSE

19.Set S1 -> encDataSize to the size of s3

20.Set S1 -> encData to s3

21.Return S1 as sealedData

84 Level 2 Revision 116 28 February 2011
TCG Published

423
424
425

1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

426
427



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11. Migration
Start of informative comment:
The migration of a key from one TPM to another is a vital aspect to many use models of the 
TPM. The migration commands are the commands that allow this operation to occur. 

There are two types of migratable keys, the version 1.1 migratable keys and the version 1.2 
certifiable migratable keys. 

End of informative comment.

11.1 TPM_CreateMigrationBlob
Start of informative comment:
The TPM_CreateMigrationBlob command implements the first step in the process of moving 
a  migratable  key  to  a  new  parent  or  platform.  Execution  of  this  command  requires 
knowledge of the migrationAuth field of the key to be migrated.

Migrate  mode  is  generally  used to  migrate  keys  from one  TPM to  another  for  backup, 
upgrade or to clone a key on another platform. To do this, the TPM needs to create a data 
blob that another TPM can deal with. This is done by loading in a backup public key that 
will be used by the TPM to create a new data blob for a migratable key. 

The TPM Owner does the selection and authorization of migration public keys at any time 
prior  to  the  execution  of  TPM_CreateMigrationBlob  by  performing  the 
TPM_AuthorizeMigrationKey command.

IReWrap mode is used directly to move the key to a new parent (on either this platform or 
another). The TPM simply re-encrypts the key using a new parent, and outputs a normal 
encrypted element that can be subsequently used by a TPM_LoadKey command.

TPM_CreateMigrationBlob implicitly  cannot be used to  migrate  a non-migratory key.  No 
explicit check is required. Only the TPM knows tpmProof. Therefore, it is impossible for the 
caller to submit an AuthData value equal to tpmProof and migrate a non-migratory key.

End of informative comment.

Level 2 Revision 116 28 February 2011 85
TCG Published

428
429

1776
1777
1778
1779
1780
1781
1782

1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

430
431



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 4 4S 4 UINT32 encDataSize The size of the encData parameter

8 <> 5S <> BYTE[ ] encData The encrypted entity that is to be modified.

9 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

12 20 20 TPM_AUTHDATA parentAuth Authorization HMAC key: parentKey.usageAuth.

13 4 TPM_AUTHHANDLE entityAuthHandle The authorization session handle used for the encrypted entity. 

2H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

14 20 3H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

15 1 4H2 1 BOOL continueEntitySession Continue use flag for entity session

16 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

86 Level 2 Revision 116 28 February 2011
TCG Published

432
433
434

1802

1803

435
436



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[ ] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[ ] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: parentKey.usageAuth.

11 20 3H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

4H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

12 1 5 H2 1 BOOL continueEntitySession Continue use flag for entity session

13 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

Description
The TPM does not check the PCR values when migrating values locked to a PCR.

The second authorization session (using entityAuth) MUST be OIAP because OSAP does not 
have a suitable entityType

Actions
1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. Validate  that  parentHandle  ->  keyUsage  is  TPM_KEY_STORAGE,  if  not  return 
TPM_INVALID_KEYUSAGE

3. Create  d1  a  TPM_STORE_ASYMKEY structure  by  decrypting  encData  using  the  key 
pointed to by parentHandle.

a. Verify that d1 -> payload is TPM_PT_ASYM.

4. Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> 
migrationAuth as the secret.

5. Validate that migrationKeyAuth -> digest is the SHA-1 hash of (migrationKeyAuth -> 
migrationKey || migrationKeyAuth -> migrationScheme || TPM_PERMANENT_DATA -> 
tpmProof).

6. If migrationType == TPM_MS_MIGRATE the TPM SHALL perform the following actions:

a. Build two byte arrays, K1 and K2: 

Level 2 Revision 116 28 February 2011 87
TCG Published

437
438

1804

1805
1806
1807
1808

1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822

439
440



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

i. K1 = d1.privKey[0..19]  (d1.privKey.keyLength + 16 bytes of d1.privKey.key), 
sizeof(K1) = 20

ii. K2 = d1.privKey[20..131] (position 16-127 of d1 . privKey.key), sizeof(K2) = 112

b. Build M1 a TPM_MIGRATE_ASYMKEY structure

i. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_MIGRATE 

ii. TPM_MIGRATE_ASYMKEY.usageAuth = d1.usageAuth 

iii. TPM_MIGRATE_ASYMKEY.pubDataDigest = d1. pubDataDigest 

iv. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 

v. TPM_MIGRATE_ASYMKEY.partPrivKey = K2

c. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the 
OAEP encoding of m using OAEP parameters of 

i. m = M1 the TPM_MIGRATE_ASYMKEY structure

ii. pHash = d1->migrationAuth 

iii. seed = s1 = K1

d. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 
Return r1 in the Random parameter.

e. Create x1 by XOR of o1 with r1

f. Copy r1 into the output field “random”.

g. Encrypt x1 with the migration public key included in migrationKeyAuth.

7. If migrationType == TPM_MS_REWRAP the TPM SHALL perform the following actions:

a. Rewrap  the  key  using  the  public  key  in  migrationKeyAuth,  keeping  the  existing 
contents of that key.

b. Set randomSize to 0 in the output parameter array

8. Else

a. Return TPM_BAD_PARAMETER

88 Level 2 Revision 116 28 February 2011
TCG Published

441
442
443

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

444
445



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.2 TPM_ConvertMigrationBlob
Start of informative comment:
This command takes a migration blob and creates a normal wrapped blob. The migrated 
blob must be loaded into the TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public 
keys  is  not  specified by  TPM because  they are  not  security  sensitive.  Migration of  the 
associated public keys may be specified in a platform specific specification. A TPM_KEY 
structure must be recreated before the migrated key can be used by the target TPM in a 
TPM_LoadKey command.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 4 2S 4 UINT32 inDataSize Size of inData

6 <> 3S <> BYTE [ ] inData The XOR’d and encrypted key

7 4 4S 4 UINT32 randomSize Size of random

8 <> 5S <> BYTE [ ] random Random value used to hide key data.

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA parentAuth The authorization session digest that authorizes the inputs and the 
migration of the key in parentHandle. HMAC key: parentKey.usageAuth

Level 2 Revision 116 28 February 2011 89
TCG Published

446
447

1848
1849
1850
1851
1852
1853
1854
1855
1856
1857

1858

1859

448
449



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth

Action
The TPM SHALL perform the following:

1. Validate the AuthData to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE

3. Create d1 by decrypting the inData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1 a TPM_MIGRATE_ASYMKEY structure, seed and pHash by OAEP decoding o1

6. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field

7. Create d2 a TPM_STORE_ASYMKEY structure

a.  Verify that m1 -> payload == TPM_PT_MIGRATE

b. Set d2 -> payload = TPM_PT_ASYM

c. Set d2 -> usageAuth to m1 -> usageAuth

d. Set d2 -> migrationAuth to pHash

e. Set d2 -> pubDataDigest to m1 -> pubDataDigest

f. Set d2 -> privKey field to k1

8. Create outData using the key in parentHandle to perform the encryption

90 Level 2 Revision 116 28 February 2011
TCG Published

450
451
452

1860

1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877

453
454



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.3 TPM_AuthorizeMigrationKey
Start of informative comment:
This command creates an authorization blob,  to allow the TPM owner to  specify which 
migration  facility  they  will  use  and allow users  to  migrate  information  without  further 
involvement with the TPM owner.

It is the responsibility of the TPM Owner to determine whether migrationKey is appropriate 
for migration. The TPM checks just the cryptographic strength of migrationKey.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 2 2S 2 TPM_MIGRATE_SCHEME migrationScheme Type of migration operation that is to be permitted for this key.

4 <> 3S <> TPM_PUBKEY migrationKey The public key to be authorized.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authorization. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 <> 3S <> TPM_MIGRATIONKEYAUTH outData Returned public key and authorization session digest.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: ownerAuth.

Action
The TPM SHALL perform the following:

Level 2 Revision 116 28 February 2011 91
TCG Published

455
456

1878
1879
1880
1881
1882
1883
1884
1885

1886

1887

1888

1889
1890

457
458



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

1. Check that the cryptographic strength of migrationKey is at least that of a 2048 bit RSA 
key. If migrationKey is an RSA key, this means that migrationKey MUST be 2048 bits or 
greater and MUST use the default exponent.

2. Validate the AuthData to use the TPM by the TPM Owner

3. Create a f1 a TPM_MIGRATIONKEYAUTH structure

4. Verify  that  migrationKey->  algorithmParms  ->  encScheme  is 
TPM_ES_RSAESOAEP_SHA1_MGF1,  and  return  the  error  code 
TPM_INAPPROPRIATE_ENC if it is not

5. Set f1 -> migrationKey to the input migrationKey

6. Set f1 -> migrationScheme to the input migrationScheme

7. Create  v1  by  concatenating  (migrationKey  ||  migrationScheme  || 
TPM_PERMANENT_DATA -> tpmProof)

8. Create h1 by performing a SHA-1 hash of v1

9. Set f1 -> digest to h1

10.Return f1 as outData

92 Level 2 Revision 116 28 February 2011
TCG Published

459
460
461

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905

462
463



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.4 TPM_MigrateKey
Start of informative comment:
The TPM_MigrateKey command performs the function of a migration authority.

The  command  is  relatively  simple;  it  just  decrypts  the  input  packet  (coming  from 
TPM_CreateMigrationBlob or TPM_CMK_CreateBlob) and then re-encrypts it with the input 
public key. The output of this command would then be sent to TPM_ConvertMigrationBlob 
or TPM_CMK_ConvertMigration on the target TPM.

TPM_MigrateKey does not make ANY assumptions about the contents of the encrypted blob. 
Since it does not have the XOR string, it cannot actually determine much about the key 
that is being migrated.

This command exists to permit the TPM to be a migration authority. If used in this way, it is 
expected that the physical security of the system containing the TPM and the AuthData 
value for the MA key would be tightly controlled.

To  prevent  the  execution  of  this  command using  any  other  key  as  a  parent  key,  this 
command works only if keyUsage for maKeyHandle is TPM_KEY_MIGRATE.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 TPM_KEY_HANDLE maKeyHandle Handle of the key to be used to migrate the key.

5 <> 2S <> TPM_PUBKEY pubKey Public key to which the blob is to be migrated

6 4 3S 4 UINT32 inDataSize The size of inData

7 <> 4S <> BYTE[ ] inData The input blob

8 4 TPM_AUTHHANDLE maAuthHandle The authorization session handle used for maKeyHandle. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: maKeyHandle.usageAuth.

Level 2 Revision 116 28 February 2011 93
TCG Published

464
465

1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

1922

466
467



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The re-encrypted blob

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

8 20 TPM_AUTHDATA keyAuth The authorization session digest for the target key. HMAC key: 
maKeyHandle.usageAuth

Actions
1. Validate that keyAuth authorizes the use of the key pointed to by maKeyHandle

2. The TPM validates that the key pointed to by maKeyHandle has a key usage value of 
TPM_KEY_MIGRATE,  and  that  the  allowed  encryption  scheme  is 
TPM_ES_RSAESOAEP_SHA1_MGF1.

3. The TPM validates that pubKey is of a size supported by the TPM and that its size is 
consistent with the input blob and maKeyHandle.

4. The TPM decrypts inData and re-encrypts it using pubKey.

94 Level 2 Revision 116 28 February 2011
TCG Published

468
469
470

1923

1924
1925
1926
1927
1928
1929
1930
1931

471
472



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.5 TPM_CMK_SetRestrictions
Start of informative comment:
This command is used by the Owner to dictate the usage of a certified-migration key with 
delegated authorization (authorization other than actual owner authorization).

This command is provided for privacy reasons and must not itself be delegated, because a 
certified-migration-key may involve a contractual relationship between the Owner and an 
external entity. 

Since restrictions are validated at DSAP session use, there is no need to invalidate DSAP 
sessions when the restriction value changes.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 4 2S 4 TPM_CMK_DELEGATE restriction The bit mask of how to set the restrictions on CMK keys

5 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S  4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Description
TPM_PERMANENT_DATA -> restrictDelegate is used as follows

1. If the session type is TPM_PID_DSAP and TPM_KEY -> keyFlags -> migrateAuthority is 
TRUE

Level 2 Revision 116 28 February 2011 95
TCG Published

473
474

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

1942

1943

1944
1945
1946
1947

475
476



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. If

TPM_KEY_USAGE  is  TPM_KEY_SIGNING  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_SIGNING is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_STORAGE  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_STORAGE is TRUE, or

TPM_KEY_USAGE is TPM_KEY_BIND and restrictDelegate -> TPM_CMK_DELEGATE_BIND 
is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_LEGACY  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_LEGACY is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_MIGRATE  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_MIGRATE is TRUE

then the key can be used.

b. Else return TPM_INVALID_KEYUSAGE.

Actions
1. Validate  the  ordinal  and  parameters  using  TPM  Owner  authentication,  return 

TPM_AUTHFAIL on error

2. Set TPM_PERMANENT_DATA -> TPM_CMK_DELEGATE -> restrictDelegate = restriction

3. Return TPM_SUCCESS

96 Level 2 Revision 116 28 February 2011
TCG Published

477
478
479

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1961
1962
1963
1964
1965

480
481



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.6 TPM_CMK_ApproveMA
Start of informative comment:
This command creates an authorization ticket, to allow the TPM owner to specify which 
Migration  Authorities  they  approve  and  allow  users  to  create  certified-migration-keys 
without further involvement with the TPM owner.

It  is  the  responsibility  of  the  TPM Owner to  determine  whether  a  particular  Migration 
Authority is suitable to control migration

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 2S 20 TPM_DIGEST migrationAuthorityDigest A digest of a TPM_MSA_COMPOSITE structure (itself one or more 
digests of public keys belonging to migration authorities)

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth Authorization HMAC, key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 3S 20 TPM_HMAC outData HMAC of migrationAuthorityDigest

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC, key: ownerAuth.

Action
The TPM SHALL perform the following:

1. Validate the AuthData to use the TPM by the TPM Owner

2. Create M2 a TPM_CMK_MA_APPROVAL structure

Level 2 Revision 116 28 February 2011 97
TCG Published

482
483

1966
1967
1968
1969
1970
1971
1972
1973

1974

1975

1976
1977
1978
1979

484
485



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. Set M2 ->migrationAuthorityDigest to migrationAuthorityDigest

3. Set outData = HMAC(M2) using tpmProof as the secret

4. Return TPM_SUCCESS

98 Level 2 Revision 116 28 February 2011
TCG Published

486
487
488

1980
1981
1982

489
490



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.7 TPM_CMK_CreateKey
Start of informative comment:
The TPM_CMK_CreateKey command both generates and creates a secure storage bundle for 
asymmetric keys whose migration is controlled by a migration authority. 

TPM_CMK_CreateKey is very similar to TPM_CreateWrapKey, but: (1) the resultant key must 
be a migratable key and can be migrated only by TPM_CMK_CreateBlob; (2) the command is 
Owner authorized via a ticket. 

TPM_CMK_CreateKey  creates  an  otherwise  normal  migratable  key  except  that  (1) 
migrationAuth is an HMAC of the migration authority and the new key’s public key, signed 
by tpmProof (instead of being tpmProof); (2) the migrationAuthority bit is set TRUE; (3) the 
payload type is TPM_PT_MIGRATE_RESTRICTED.

The migration-selection/migration authority is specified by passing in a public key (actually 
the  digests  of  one  or  more  public  keys,  so  more  than  one  migration  authority  can  be 
specified). 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the key.

6 <> 3S <> TPM_KEY12 keyInfo Information about key to be created, pubkey.keyLength and 
keyInfo.encData elements are 0. MUST be TPM_KEY12

7 20 4S 20 TPM_HMAC migrationAuthorityApproval A ticket, created by the TPM Owner using TPM_CMK_ApproveMA, 
approving a TPM_MSA_COMPOSITE structure

8 20 5S 20 TPM_DIGEST migrationAuthorityDigest The digest of a TPM_MSA_COMPOSITE structure

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parent key authorization. 
Must be an OSAP session.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Ignored

12 20 TPM_AUTHDATA pubAuth The authorization session digest that authorizes the use of the public 
key in parentHandle. HMAC key: parentKey.usageAuth.

Level 2 Revision 116 28 February 2011 99
TCG Published

491
492

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998

493
494



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 <> 3S <> TPM_KEY12 wrappedKey The TPM_KEY structure which includes the public and encrypted private 
key. MUST be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL do the following:

1. Validate  the  AuthData  to  use  the  key  pointed  to  by  parentHandle.  Return 
TPM_AUTHFAIL on any error

2. Validate the session type for parentHandle is OSAP

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 
error code TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. Verify that parentHandle-> keyFlags-> migratable == FALSE

6. If keyInfo -> keyFlags -> migratable is FALSE, return TPM_INVALID_KEYUSAGE

7. If keyInfo -> keyFlags -> migrateAuthority is FALSE , return TPM_INVALID_KEYUSAGE

8. Verify that the migration authority is authorized

a. Create M1 a TPM_CMK_MA_APPROVAL structure

i. Set M1 ->migrationAuthorityDigest to migrationAuthorityDigest 

b. Verify that migrationAuthorityApproval == HMAC(M1) using tpmProof as the secret 
and return error TPM_MA_AUTHORITY on mismatch

9. Validate key parameters

a. keyInfo  ->  keyUsage  MUST  NOT  be  TPM_KEY_IDENTITY  or 
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE

10.If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

100 Level 2 Revision 116 28 February 2011
TCG Published

495
496
497

1999

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

498
499



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE

a. algorithmID MUST be TPM_ALG_RSA

b. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

c. sigScheme MUST be TPM_SS_NONE

d. key size MUST be 2048

e. exponentSize MUST be 0

12.If keyInfo -> tag is NOT TPM_TAG_KEY12 return error TPM_INVALID_STRUCTURE

13.Map wrappedKey to a TPM_KEY12 structure

14.Create  DU1  by  decrypting  dataUsageAuth  according  to  the  ADIP  indicated  by 
authHandle.

15.Set continueAuthSession to FALSE

16.Generate asymmetric key according to algorithm information in keyInfo

17.Fill in the wrappedKey structure with information from the newly generated key. 

a. Set wrappedKey -> encData -> usageAuth to DU1

b. Set wrappedKey -> encData -> payload to TPM_PT_MIGRATE_RESTRICTED

c. Create thisPubKey, a TPM_PUBKEY structure containing wrappedKey’s public key 
and algorithm parameters

d. Create M2 a TPM_CMK_MIGAUTH structure

i. Set M2 -> msaDigest to migrationAuthorityDigest

ii. Set M2 -> pubKeyDigest to SHA-1 (thisPubKey)

e. Set wrappedKey -> encData -> migrationAuth equal to HMAC(M2), using tpmProof as 
the shared secret

18.If keyInfo->PCRInfoSize is non-zero 

a. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure

b. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo 

c. Set  wrappedKey ->  digestAtCreation  to  the  TPM_COMPOSITE_HASH indicated by 
creationPCRSelection

d. Set wrappedKey -> localityAtCreation to TPM_STANY_FLAGS -> localityModifier

19.Encrypt the private portions of the wrappedKey structure using the key in parentHandle

20.Return the newly generated key in the wrappedKey parameter

Level 2 Revision 116 28 February 2011 101
TCG Published

500
501

2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052

502
503



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

11.8 TPM_CMK_CreateTicket
Start of informative comment:
The TPM_CMK_CreateTicket  command uses a  public  key to  verify  the  signature  over  a 
digest.

TPM_CMK_CreateTicket returns a ticket that can be used to prove to the same TPM that 
signature verification with a particular public key was successful.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 <> 2S <> TPM_PUBKEY verificationKey The public key to be used to check signatureValue

5 20 3S 20 TPM_DIGEST signedData The data to be verified

6 4 4S 4 UINT32 signatureValueSize The size of the signatureValue

7 <> 5S <> BYTE[] signatureValue The signatureValue to be verified

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

102 Level 2 Revision 116 28 February 2011
TCG Published

504
505
506

2053
2054
2055
2056
2057
2058
2059

2060

507
508



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 20 3S 20 TPM_HMAC sigTicket Ticket that proves digest created on this TPM

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key:. ownerAuth.

Actions
The TPM SHALL do the following:

1. Validate the TPM Owner authentication to use the command

2. Validate that the key type and algorithm are correct

a. Validate that verificationKey -> algorithmParms -> algorithmID == TPM_ALG_RSA

b. Validate that verificationKey -> algorithmParms ->encScheme == TPM_ES_NONE

c. Validate  that  verificationKey  ->algorithmParms  ->sigScheme  is 
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

3. Use verificationKey to verify that signatureValue is a valid signature on signedData, and 
return error TPM_BAD_SIGNATURE on mismatch

4. Create M2 a TPM_CMK_SIGTICKET

a. Set M2 -> verKeyDigest to the SHA-1 (verificationKey)

b. Set M2 -> signedData to signedData

5. Set sigTicket = HMAC(M2) signed by using tpmProof as the secret

6. Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 103
TCG Published

509
510

2061

2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

511
512



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

11.9 TPM_CMK_CreateBlob
Start of informative comment:
TPM_CMK_CreateBlob command is very similar to TPM_CreateMigrationBlob, except that it: 
(1)  uses  an  extra  ticket  (restrictedKeyAuth)  instead  of  a  migrationAuth  authorization 
session;  (2)  uses  the  migration  options  TPM_MS_RESTRICT_MIGRATE  or 
TPM_MS_RESTRICT_APPROVE; (3) produces a wrapped key blob whose migrationAuth is 
independent of tpmProof.

If the destination (parent) public key is the MA, migration is implicitly permitted. Further 
checks are required if the MA is not the destination (parent) public key, and merely selects 
a migration destination: (1) sigTicket must prove that restrictTicket was signed by the MA; 
(2) restrictTicket must vouch that the target public key is approved for migration to the 
destination (parent) public key. (Obviously, this more complex method may also be used by 
an MA to approve migration to that MA.) In both cases, the MA must be one of the MAs 
implicitly listed in the migrationAuth of the target key-to-be-migrated. 

When the migrationType is TPM_MS_RESTRICT_MIGRATE, restrictTicket and sigTicket are 
unused.  The TPM may test that the corresponding sizes are zero, so the caller should set 
them to zero for interoperability.

End of informative comment.

104 Level 2 Revision 116 28 February 2011
TCG Published

513
514
515

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094

516
517



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either TPM_MS_RESTRICT_MIGRATE or 
TPM_MS_RESTRICT_APPROVE

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 20 4S 20 TPM_DIGEST pubSourceKeyDigest The digest of the TPM_PUBKEY of the entity to be migrated

8 4 5S 4 UINT32 msaListSize The size of the msaList parameter, which is a variable length 
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 restrictTicketSize The size of the restrictTicket parameter 

11 <> 8S <> BYTE[] restrictTicket

If migrationType is TPM_MS_RESTRICT_APPROVE, a 
TPM_CMK_AUTH structure, containing the digests of the public keys 
belonging to the Migration Authority, the destination parent key and the 
key-to-be-migrated.

12 4 9S 4 UINT32 sigTicketSize The size of the sigTicket parameter

13 <> 10S <> BYTE[] sigTicket
If migrationType is TPM_MS_RESTRICT_APPROVE, a TPM_HMAC 
structure, generated by the TPM, signaling a valid signature over 
restrictTicket

14 4 11S 4 UINT32 encDataSize The size of the encData parameter

15 <> 12S <> BYTE[] encData The encrypted entity that is to be modified.

16 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

17 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

18 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

19 20 20 TPM_AUTHDATA parentAuth HMAC key: parentKey.usageAuth.

Level 2 Revision 116 28 February 2011 105
TCG Published

518
519

2095

520
521



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[ ] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[ ] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth HMAC key: parentKey.usageAuth.

Description
The TPM does not check the PCR values when migrating values locked to a PCR.

Actions
1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. The TPM MAY verify that migrationType == migrationKeyAuth -> migrationScheme and 
return TPM_BAD_MODE on error.

a. The TPM MAY ignore migrationType.

3. Verify that parentHandle-> keyFlags-> migratable == FALSE

4. Create d1 by decrypting encData using the key pointed to by parentHandle.

5. Verify that the digest within migrationKeyAuth is legal for this TPM and public key

6. Verify  that  d1  ->  payload  ==  TPM_PT_MIGRATE_RESTRICTED  or 
TPM_PT_MIGRATE_EXTERNAL

7. Verify that the migration authorities in msaList are authorized to migrate this key

a. Create M2 a TPM_CMK_MIGAUTH structure

i. Set M2 -> msaDigest to SHA-1[msaList]

ii. Set M2 -> pubKeyDigest to pubSourceKeyDigest

b. Verify that  d1 -> migrationAuth == HMAC(M2)  using tpmProof  as the secret and 
return error TPM_MA_AUTHORITY on mismatch

8. If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_MIGRATE

a. Verify that intended migration destination is an MA:

106 Level 2 Revision 116 28 February 2011
TCG Published

522
523
524

2096

2097
2098

2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

525
526



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

i. For one of n=1 to n=(msaList -> MSAlist), verify that SHA-1[migrationKeyAuth 
-> migrationKey] == msaList -> migAuthDigest[n]

b. Validate that the MA key is the correct type

i. Validate  that  migrationKeyAuth  ->  migrationKey  ->  algorithmParms  -> 
algorithmID == TPM_ALG_RSA

ii. Validate  that  migrationKeyAuth  ->  migrationKey  ->  algorithmParms  -> 
encScheme is an encryption scheme supported by the TPM

iii. Validate  that  migrationKeyAuth  ->  migrationKey  ->algorithmParms  -> 
sigScheme is TPM_SS_NONE

c. The TPM MAY validate that restrictTicketSize is zero.

d. The TPM MAY validate that sigTicketSize is zero.

9. else If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_APPROVE

a. Verify that the intended migration destination has been approved by the MSA:

i. Verify that for one of the n=1 to n=(msaList -> MSAlist) values of msaList -> 
migAuthDigest[n], sigTicket == HMAC (V1) using tpmProof as the secret where V1 
is a TPM_CMK_SIGTICKET structure such that:

(1) V1 -> verKeyDigest = msaList -> migAuthDigest[n]

(2) V1 -> signedData = SHA-1[restrictTicket]

ii. If  [restrictTicket  ->  destinationKeyDigest]  !=  SHA-1[migrationKeyAuth  -> 
migrationKey], return error TPM_MA_DESTINATION 

iii. If  [restrictTicket  ->  sourceKeyDigest]  !=  pubSourceKeyDigest,  return  error 
TPM_MA_SOURCE 

10.Else return with error TPM_BAD_PARAMETER.

11.Build two bytes array, K1 and K2, using d1: 

a. K1  =  TPM_STORE_ASYMKEY.privKey[0..19] 
(TPM_STORE_ASYMKEY.privKey.keyLength  +  16  bytes  of 
TPM_STORE_ASYMKEY.privKey.key), sizeof(K1) = 20

b. K2  =  TPM_STORE_ASYMKEY.privKey[20..131]  (position  16-127  of 
TPM_STORE_ASYMKEY . privKey.key), sizeof(K2) = 112

12.Build M1 a TPM_MIGRATE_ASYMKEY structure

a. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_CMK_MIGRATE

b. TPM_MIGRATE_ASYMKEY.usageAuth = TPM_STORE_ASYMKEY.usageAuth 

c. TPM_MIGRATE_ASYMKEY.pubDataDigest = TPM_STORE_ASYMKEY. pubDataDigest 

d. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 

e. TPM_MIGRATE_ASYMKEY.partPrivKey = K2

13.Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 
encoding of m using OAEP parameters m, pHash, and seed

a. m is the previously created M1 

Level 2 Revision 116 28 February 2011 107
TCG Published

527
528

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154

529
530



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. pHash = SHA-1( SHA-1[msaList] || pubSourceKeyDigest)

c. seed = s1 = the previously created K1

14.Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 
Return r1 in the random parameter

15.Create x1 by XOR of o1 with r1

16.Copy r1 into the output field “random”

17.Encrypt x1 with the migrationKeyAuth-> migrationKey

108 Level 2 Revision 116 28 February 2011
TCG Published

531
532
533

2155
2156
2157
2158
2159
2160
2161

534
535



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.10 TPM_CMK_ConvertMigration
Start of informative comment:
TPM_CMK_ConvertMigration completes the migration of certified migration blobs.

This command takes a certified migration blob and creates a normal wrapped blob with 
payload type TPM_PT_MIGRATE_EXTERNAL. The migrated blob must be loaded into the 
TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public 
keys  is  not  specified by  TPM because  they are  not  security  sensitive.  Migration of  the 
associated public keys may be specified in a platform specific specification. A TPM_KEY 
structure must be recreated before the migrated key can be used by the target TPM in a 
TPM_LoadKey command.

TPM_CMK_ConvertMigration  checks  that  one  of  the  MAs  implicitly  listed  in  the 
migrationAuth of the target key has approved migration of the target key to the destination 
(parent) key, and that the settings (flags etc.) in the target key are those of a CMK.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 60 2S 60 TPM_CMK_AUTH restrictTicket The digests of public keys belonging to the Migration Authority, the 
destination parent key and the key-to-be-migrated.

6 20 3S 20 TPM_HMAC sigTicket A signature ticket, generated by the TPM, signaling a valid signature 
over restrictTicket

7 <> 4S <> TPM_KEY12 migratedKey The public key of the key-to-be-migrated. The private portion MUST be 
TPM_MIGRATE_ASYMKEY properly XOR’d

8 4 5S 4 UINT32 msaListSize The size of the msaList parameter, which is a variable length 
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 randomSize Size of random

11 <> 8S <> BYTE [ ] random Random value used to hide key data.

12 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA parentAuth Authorization HMAC: parentKey.usageAuth

Level 2 Revision 116 28 February 2011 109
TCG Published

536
537

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176

2177

538
539



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth Authorization HMAC key .usageAuth

Action
1. Validate the AuthData to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE

3. Create d1 by decrypting the migratedKey -> encData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1 a TPM_MIGRATE_ASYMKEY, seed and pHash by OAEP decoding o1

6. Create migratedPubKey a TPM_PUBKEY structure corresponding to migratedKey

a. Verify that pHash == SHA-1( SHA-1[msaList] || SHA-1(migratedPubKey )

7. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field

8. Create d2 a TPM_STORE_ASYMKEY structure. 

a. Set the TPM_STORE_ASYMKEY -> privKey field to k1

b. Set d2 -> usageAuth to m1 -> usageAuth

c. Set d2 -> pubDataDigest to m1 -> pubDataDigest

9. Verify that parentHandle-> keyFlags -> migratable == FALSE

10.Verify  that  m1  ->  payload  ==  TPM_PT_CMK_MIGRATE  then  set  d2->  payload  = 
TPM_PT_MIGRATE_EXTERNAL

11.Verify  that  for  one  of  the  n=1  to  n=(msaList  ->  MSAlist)  values  of  msaList  -> 
migAuthDigest[n] sigTicket == HMAC (V1) using tpmProof as the secret where V1 is a 
TPM_CMK_SIGTICKET structure such that:

a. V1 -> verKeyDigest = msaList -> migAuthDigest[n]

b. V1 -> signedData = SHA-1[restrictTicket]

12.Create parentPubKey, a TPM_PUBKEY structure corresponding to parentHandle

110 Level 2 Revision 116 28 February 2011
TCG Published

540
541
542

2178

2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201

543
544



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.If  [restrictTicket  ->  destinationKeyDigest]  !=  SHA-1(parentPubKey),  return  error 
TPM_MA_DESTINATION 

14.Verify that migratedKey is corresponding to d2

15.If  migratedKey  ->  keyFlags  ->  migratable  is  FALSE,  and  return  error 
TPM_INVALID_KEYUSAGE

16.If  migratedKey  ->  keyFlags  ->  migrateAuthority  is  FALSE,  return  error 
TPM_INVALID_KEYUSAGE

17.If  [restrictTicket  ->  sourceKeyDigest]  !=  SHA-1(migratedPubKey),  return  error 
TPM_MA_SOURCE 

18.Create M2 a TPM_CMK_MIGAUTH structure

a. Set M2 -> msaDigest to SHA-1[msaList]

b. Set M2 -> pubKeyDigest to SHA-1[migratedPubKey]

19.Set d2 -> migrationAuth = HMAC(M2) using tpmProof as the secret

20.Create outData using the key in parentHandle to perform the encryption

Level 2 Revision 116 28 February 2011 111
TCG Published

545
546

2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

547
548



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12. Maintenance Functions (optional)
Start of informative comment:
When a maintenance archive is created with generateRandom FALSE, the maintenance blob 
is XOR encrypted with the owner authorization before encryption with the maintenance 
public key. This prevents the manufacturer from obtaining plaintext data. The receiving 
TPM must have the same owner authorization as the sending TPM in order to XOR decrypt 
the archive.

When generateRandom is TRUE, the maintenance blob is XOR encrypted with random data, 
which  is  also  returned.  This  permits  someone  trusted  by  the  Owner  to  load  the 
maintenance  archive  into  the  replacement  platform  in  the  absence  of  the  Owner  and 
manufacturer, without the Owner having to reveal information about his auth value. The 
receiving and sending TPM's may have different owner authorizations. The random data is 
transferred from the sending TPM owner to the receiving TPM owner out of band, so the 
maintenance blob remains hidden from the manufacturer.

This is a typical maintenance sequence:

1. Manufacturer:

• generates maintenance key pair

• gives public key to TPM1 owner

2. TPM1: TPM_LoadManuMaintPub

• load maintenance public key

3. TPM1: TPM_CreateMaintenanceArchive

• XOR encrypt with owner auth or random

• encrypt the maintenance archive with maintenance public key

4. TPM2:

• Take ownership

• Create and activate an AIK

• Certify the SRK with the AIK, proving that the SRK came from a legitimate TPM

4. Manufacturer:

• decrypt maintenance archive with maintenance private key

• (still XOR encrypted with owner auth or random)

• validate the TPM2 SRK certification

• encrypt the maintenance archive with TPM2 SRK public key

5. TPM2: TPM_LoadMaintenanceArchive

• decrypt the maintenance archive with SRK private key

• XOR decrypt with owner auth or random

End of informative comment.

112 Level 2 Revision 116 28 February 2011
TCG Published

549
550
551

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

552
553



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Level 2 Revision 116 28 February 2011 113
TCG Published

554
555

2252

556
557



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12.1 TPM_CreateMaintenanceArchive
Start of informative comment:
This command creates the maintenance archive. It can only be executed by the owner, and 
may be shut off with the TPM_KillMaintenanceFeature command.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 1 2S 1 BOOL generateRandom Use RNG or Owner auth to generate ‘random’.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 4 3S 4 UINT32 randomSize Size of the returned random data. Will be 0 if generateRandom is FALSE.

5 <> 4S <> BYTE [ ] random Random data to XOR with result.

6 4 5S 4 UINT32 archiveSize Size of the encrypted archive

7 <> 6S <> BYTE [ ] archive Encrypted key archive.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
Upon authorization being confirmed this command does the following:

114 Level 2 Revision 116 28 February 2011
TCG Published

558
559
560

2253

2254
2255
2256
2257
2258

2259

2260

2261
2262

561
562



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

1. Validates  that  the  TPM_PERMANENT_FLAGS  ->  allowMaintenance  is  TRUE.  If  it  is 
FALSE, the TPM SHALL return TPM_DISABLED_CMD and exit this capability.

2. Validates the TPM Owner AuthData.

3. If  the  value  of  TPM_PERMANENT_DATA  ->  manuMaintPub  is  zero,  the  TPM  MUST 
return the error code TPM_KEYNOTFOUND

4. Build  a1  a  TPM_KEY  structure  using  the  SRK.  The  encData  field  is  not  a  normal 
TPM_STORE_ASYMKEY structure but rather a TPM_MIGRATE_ASYMKEY structure built 
using the following actions.

5. Build a TPM_STORE_PRIVKEY structure from the SRK. This privKey element should be 
132 bytes long for a 2K RSA key.

6. Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is 
the first 20 bytes of privKey, k2 contains the remainder of privKey.

7. Build m1 by creating and filling in a TPM_MIGRATE_ASYMKEY structure

a. m1 -> usageAuth is set to TPM_PERMANENT_DATA -> tpmProof

b. m1 -> pubDataDigest is set to the digest value of the SRK fields from step 4

c. m1 -> payload is set to TPM_PT_MAINT

d. m1 -> partPrivKey is set to k2

8. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 
encoding of m using OAEP parameters of

a. m = TPM_MIGRATE_ASYMKEY structure (step 7)

b. pHash = TPM_PERMANENT_DATA -> ownerAuth

c. seed = s1 = k1 (step 6)

9. If generateRandom = TRUE

a. Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same 
size as o1. Set random parameter to r1

10.If generateRandom = FALSE

a. Create r1 by applying MGF1 to the TPM Owner AuthData. The size of r1 MUST be the 
same size as o1. Set randomSize to 0.

11.Create x1 by XOR of o1 with r1

12.Encrypt x1 with the manuMaintPub key using the TPM_ES_RSAESOAEP_SHA1_MGF1 
encryption scheme.

13.Set a1 -> encData to the encryption of x1

14.Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE

15.Return a1 in the archive parameter

Level 2 Revision 116 28 February 2011 115
TCG Published

563
564

2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296

565
566



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12.2 TPM_LoadMaintenanceArchive
Start of informative comment:
This  command  loads  in  a  Maintenance  archive  that  has  been  massaged  by  the 
manufacturer to load into another TPM.

If the maintenance archive was created using the owner authorization for XOR encryption, 
the current owner authorization must be used for decryption. The owner authorization does 
not change.

If the maintenance archive was created using random data for the XOR encryption, the 
vendor specific arguments must include the random data. The owner authorization may 
change.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

4 4 2S 4 UINT32 archiveSize Sice of the encrypted archive

5 <> 3S <> BYTE[] archive Encrypted key archive

… … Vendor specific arguments

- 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

- 20 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

-- 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

116 Level 2 Revision 116 28 February 2011
TCG Published

567
568
569

2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307

2308

2309

570
571



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 4 TPM_RESULT returnCode The return code of the operation. 

4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

.. .. Vendor specific arguments

- 20 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

- 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth, the original value and not the new auth value

Description
The maintenance mechanisms in the TPM MUST not  require  the TPM to hold a global 
secret. The definition of global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of  
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption 
in the maintenance process. The maintenance process MAY use a TPM Identity to deliver 
maintenance information to specific TPM’s.

The maintenance process can only change the SRK, tpmProof and TPM Owner AuthData 
fields.

The maintenance process can only access data in shielded locations where this data is 
necessary to validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TPM specification, protection profiles and security 
targets after maintenance. The maintenance MAY NOT decrease the security values from 
the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Actions
The TPM SHALL perform the following when executing the command

1. Validate the TPM Owner’s AuthData

2. Validate  that  the  maintenance  information  was  sent  by  the  TPME.  The  validation 
mechanism MUST use  a  strength  of  function  that  is  at  least  the  same  strength  of 
function as a digital signature performed using a 2048 bit RSA key.

3. The packet MUST contain m2 as defined in section 12.1.

4. Ensure that only the target TPM can interpret the maintenance packet. The protection 
mechanism MUST use  a  strength  of  function  that  is  at  least  the  same  strength  of 
function as a digital signature performed using a 2048 bit RSA key.

Level 2 Revision 116 28 February 2011 117
TCG Published

572
573

2310

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325

2326
2327
2328
2329
2330
2331
2332
2333
2334
2335

574
575



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

5. Execute the actions of TPM_OwnerClear.

6. Process the maintenance information 

a. Update the SRK

i. Set the SRK usageAuth to be the same as the source TPM owner's AuthData

b. Update TPM_PERMANENT_DATA -> tpmProof

c. Update TPM_PERMANENT_DATA -> ownerAuth

7. Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE

118 Level 2 Revision 116 28 February 2011
TCG Published

576
577
578

2336
2337
2338
2339
2340
2341
2342
2343

579
580



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

12.3 TPM_KillMaintenanceFeature
Start of informative comment:
The  TPM_KillMaintencanceFeature  is  a  permanent  action  that  prevents  ANYONE  from 
creating a maintenance archive. This action, once taken, is permanent until a new TPM 
Owner is set.

This action is to allow those customers who do not want the maintenance feature to not 
allow the use of the maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such 
a way that the only way to recover maintainability of the platform would be to wipe out the 
root keys. This feature is mandatory in any TPM that implements the maintenance feature. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Actions
1. Validate the TPM Owner AuthData

2. Set the TPM_PERMANENT_FLAGS.allowMaintenance flag to FALSE. 

Level 2 Revision 116 28 February 2011 119
TCG Published

581
582

2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354

2355

2356

2357
2358
2359

583
584



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12.4 TPM_LoadManuMaintPub
Start of informative comment:
The TPM_LoadManuMaintPub command loads the manufacturer’s public key for use in the 
maintenance process. The command installs manuMaintPub in PERMANENT data storage 
inside a TPM. Maintenance enables duplication of non-migratory data in protected storage. 
There is therefore a security hole if a platform is shipped before the maintenance public key 
has been installed in a TPM.

The command is expected to be used before installation of a TPM Owner or any key in TPM 
protected storage. It therefore does not use authorization.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

5 <> 3S <> TPM_PUBKEY pubKey The public key of the manufacturer to be in use for maintenance

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay 

Description
The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm 
with 2048bit keys.

pubKey  SHOULD unambiguously  identify  the  entity  that  will  perform the  maintenance 
process with the TPM Owner.

TPM_PERMANENT_DATA -> manuMaintPub SHALL exist in a TPM-shielded location, only.

If  an  entity  (Platform Entity)  does  not  support  the  maintenance  process  but  issues  a 
platform credential for a platform containing a TPM that supports the maintenance process, 
the value of TPM_PERMANENT_DATA -> manuMaintPub MUST be set to zero before the 
platform leaves the entity’s control. That is, this ordinal can only be run once, and used to 
either load the key or load a NULL key.

120 Level 2 Revision 116 28 February 2011
TCG Published

585
586
587

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369

2370

2371

2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382

588
589



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Actions
The first valid TPM_LoadManuMaintPub command received by a TPM SHALL 

1. Store the parameter pubKey as TPM_PERMANENT_DATA -> manuMaintPub.

2. Set checksum to SHA-1 of (pubKey || antiReplay)

3. Export the checksum

4. Subsequent  calls  to  TPM_LoadManuMaintPub  SHALL  return  code 
TPM_DISABLED_CMD.

Level 2 Revision 116 28 February 2011 121
TCG Published

590
591

2383
2384
2385
2386
2387
2388
2389

592
593



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12.5 TPM_ReadManuMaintPub
Start of informative comment:
The  TPM_ReadManuMaintPub  command  is  used  to  check  whether  the  manufacturer’s 
public maintenance key in a TPM has the expected value. This may be useful during the 
manufacture process. The command returns a digest of the installed key, rather than the 
key itself. This hinders discovery of the maintenance key, which may (or may not) be useful  
for manufacturer privacy.

The command is expected to be used before installation of a TPM Owner or any key in TPM 
protected storage. It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description
This  command  returns  the  hash  of  the  antiReplay  nonce  and  the  previously  loaded 
manufacturer’s maintenance public key.

Actions
The TPM_ReadManuMaintPub command SHALL 

1. Create  “checksum”  by  concatenating  data  to  form  (TPM_PERMANENT_DATA  -> 
manuMaintPub ||antiReplay) and passing the concatenated data through SHA-1.

2. Export the checksum

122 Level 2 Revision 116 28 February 2011
TCG Published

594
595
596

2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2400

2401

2402
2403
2404

2405
2406
2407
2408
2409

597
598



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13. Cryptographic Functions

13.1 TPM_SHA1Start
Start of informative comment:
This capability starts the process of calculating a SHA-1 digest.

The exposure of the SHA-1 processing is a convenience to platforms in a mode that do not 
have  sufficient  memory  to  perform  SHA-1  themselves.  As  such,  the  use  of  SHA-1  is 
restrictive on the TPM.

The TPM may not allow any other types of processing during the execution of a SHA-1 
session. There is only one SHA-1 session active on a TPM.  The exclusivity of a SHA-1 
context  is  due  to  the  relatively  large  volatile  buffer  it  requires  in  order  to  hold  the 
intermediate  results  between  the  SHA-1  context  commands.   This  buffer  can  be  in 
contradiction to other command needs.

After  the  execution  of  TPM_SHA1Start,  and  prior  to  TPM_SHA1Complete  or 
TPM_SHA1CompleteExtend, the receipt of any command other than TPM_SHA1Update will 
cause the invalidation of the SHA-1 session.  

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

4 4 3S 4 UINT32 maxNumBytes Maximum number of bytes that can be sent to TPM_SHA1Update. Must be a 
multiple of 64 bytes.

Description
1. This  capability  prepares  the  TPM  for  a  subsequent  TPM_SHA1Update, 

TPM_SHA1Complete  or  TPM_SHA1CompleteExtend  command.  The  capability  SHALL 
open a thread that calculates a SHA-1 digest.

Level 2 Revision 116 28 February 2011 123
TCG Published

599
600

2410

2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425

2426

2427

2428
2429
2430
2431

601
602



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

2. After  receipt  of  TPM_SHA1Start,  and  prior  to  the  receipt  of  TPM_SHA1Complete  or 
TPM_SHA1CompleteExtend,  receipt  of  any  command  other  than  TPM_SHA1Update 
invalidates the SHA-1 session.

a. If the command received is TPM_ExecuteTransport, the SHA-1 session invalidation is 
based on the wrapped command, not the TPM_ExecuteTransport ordinal.

b. A SHA-1 thread (start, update, complete) MUST take place either completely outside 
a transport session or completely within a single transport session.

124 Level 2 Revision 116 28 February 2011
TCG Published

603
604
605

2432
2433
2434
2435
2436
2437
2438

606
607



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.2 TPM_SHA1Update
Start of informative comment:
This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of 
the process, the digest remains pending.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

4 4 2S 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64 bytes.

5 <> 3S <> BYTE [ ] hashData Bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

Description
This command SHALL incorporate complete blocks of data into the digest of an existing 
SHA-1 thread. Only integral numbers of complete blocks (64 bytes each) can be processed.

Actions
1. If there is no existing SHA-1 thread, return TPM_SHA_THREAD

2. If numBytes is not a multiple of 64

a. Return TPM_SHA_ERROR

b. The TPM MAY terminate the SHA-1 thread

3. If numBytes is greater than maxNumBytes returned by TPM_SHA1Start

a. Return TPM_SHA_ERROR

b. The TPM MAY terminate the SHA-1 thread

4. Incorporate hashData into the digest of the existing SHA-1 thread.

Level 2 Revision 116 28 February 2011 125
TCG Published

608
609

2439
2440
2441
2442
2443

2444

2445

2446
2447
2448

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458

610
611



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

13.3 TPM_SHA1Complete
Start of informative comment:
This capability terminates a pending SHA-1 calculation.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 4 2S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

5 <> 3S <> BYTE [ ] hashData Final bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

Description
This command SHALL incorporate a partial or complete block of data into the digest of an 
existing SHA-1 thread, and terminate that thread. hashDataSize MAY have values in the 
range of 0 through 64, inclusive.

If the SHA-1 thread has received no bytes the TPM SHALL calculate the SHA-1 of the empty  
buffer.

126 Level 2 Revision 116 28 February 2011
TCG Published

612
613
614

2459
2460
2461
2462

2463

2464

2465
2466
2467
2468
2469
2470

615
616



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.4 TPM_SHA1CompleteExtend
Start of informative comment:
This capability terminates a pending SHA-1 calculation and EXTENDS the result into a 
Platform Configuration Register using a SHA-1 hash process.

This command is designed to complete a hash sequence and extend a PCR in memory-less 
environments.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 4 2S 4 TPM_PCRINDEX pcrNum Index of the PCR to be modified

5 4 3S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 <> 4S <> BYTE [ ] hashData Final bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

5 20 4S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description
This command SHALL incorporate a partial or complete block of data into the digest of an 
existing SHA-1 thread, EXTEND the resultant digest into a PCR, and terminate the SHA-1 
session. hashDataSize MAY have values in the range of 0 through 64, inclusive. 

The  SHA-1  session  MUST  terminate  even  if  the  command  returns  an  error,  e.g. 
TPM_BAD_LOCALITY.

Actions
5. Validate that pcrNum represents a legal PCR number. On error, return TPM_BADINDEX.

6. Map V1 to TPM_STANY_DATA

7. Map L1 to V1 -> localityModifier

Level 2 Revision 116 28 February 2011 127
TCG Published

617
618

2471
2472
2473
2474
2475
2476
2477

2478

2479

2480
2481
2482
2483
2484
2485

2486
2487
2488
2489

619
620



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

8. If the current locality, held in L1, is not selected in TPM_PERMANENT_DATA -> pcrAttrib 
[pcrNum]. pcrExtendLocal, return TPM_BAD_LOCALITY

9. Create H1 the TPM_DIGEST of the SHA-1 session ensuring that hashData, if  any, is 
added to the SHA-1 session

10.Perform the actions of TPM_Extend using H1 as the data and pcrNum as the PCR to 
extend

128 Level 2 Revision 116 28 February 2011
TCG Published

621
622
623

2490
2491
2492
2493
2494
2495

624
625



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.5 TPM_Sign
Start of informative comment:
The Sign command signs data and returns the resulting digital signature.

The TPM does not allow TPM_Sign with a TPM_KEY_IDENTITY (AIK) because TPM_Sign can 
sign arbitrary data and could be used to fake a quote.  (This could have been relaxed to 
allow TPM_Sign with an AIK if  the signature scheme is _INFO  For an _INFO key,  the 
metadata prevents TPM_Sign from faking a quote.)

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 4 2s 4 UINT32 areaToSignSize The size of the areaToSign parameter

6 <> 3s <> BYTE[] areaToSign The value to sign

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[ ] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Level 2 Revision 116 28 February 2011 129
TCG Published

626
627

2496
2497
2498
2499
2500
2501
2502
2503

2504

2505

628
629



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Description
The TPM MUST support all values of areaToSignSize that are legal for the defined signature 
scheme and key size. The maximum value of areaToSignSize is determined by the defined 
signature scheme and key size. 

In the case of PKCS1v15_SHA1 the areaToSignSize MUST be TPM_DIGEST (the hash size of 
a  SHA-1  operation  -  see  8.5.1  TPM_SS_RSASSAPKCS1v15_SHA1).  In  the  case  of 
PKCS1v15_DER the maximum size of areaToSign is k-11 octets, where k is limited by the 
key size (see TPM_SS_RSASSAPKCS1v15_DER).

Actions
1. The TPM validates the AuthData to use the key pointed to by keyHandle. 

2. If the areaToSignSize is 0 the TPM returns TPM_BAD_PARAMETER.

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING or TPM_KEY_LEGACY, if not 
return the error code TPM_INVALID_KEYUSAGE

4. The  TPM  verifies  that  the  signature  scheme  and  key  size  can  properly  sign  the 
areaToSign parameter.

5. If signature scheme is TPM_SS_RSASSAPKCS1v15_SHA1 then

a. Validate that areaToSignSize is 20 return TPM_BAD_PARAMETER on error

b. Set S1 to areaToSign

6. Else if signature scheme is TPM_SS_RSASSAPKCS1v15_DER then

a. Validate  that  areaToSignSize  is  at  least  11  bytes  less  than  the  key  size,  return 
TPM_BAD_PARAMETER on error

b. Set S1 to areaToSign

7. else if signature scheme is TPM_SS_RSASSAPKCS1v15_INFO then

a. Create S2 a TPM_SIGN_INFO structure

b. Set S2 -> fixed to “SIGN”

c. Set S2 -> replay to nonceOdd

i. If  nonceOdd  is  not  present  due  to  an  unauthorized  command  return 
TPM_BAD_PARAMETER

d. Set S2 -> dataLen to areaToSignSize

e. Set S2 -> data to areaToSign

f. Set S1 to the SHA-1(S2)

8. Else return TPM_INVALID_KEYUSAGE

9. The TPM computes the signature, sig, using the key referenced by keyHandle using S1 
as the value to sign

10.Return the computed signature in Sig

130 Level 2 Revision 116 28 February 2011
TCG Published

630
631
632

2506
2507
2508
2509
2510
2511
2512
2513

2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540

633
634



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.6 TPM_GetRandom
Start of informative comment:
TPM_GetRandom  returns  the  next  bytesRequested  bytes  from  the  random  number 
generator to the caller.

It is recommended that a TPM implement the RNG in a manner that would allow it to return 
RNG bytes such that the frequency of bytesRequested being more than the number of bytes 
available is an infrequent occurrence.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 2S 4 UINT32 bytesRequested Number of bytes to return

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 3S 4 UINT32 randomBytesSize The number of bytes returned

5 <> 4S <> BYTE[ ] randomBytes The returned bytes

Actions
1. The TPM determines if amount bytesRequested is available from the TPM.

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY 
be less than bytesRequested.

3. Set randomBytes to the next randomBytesSize bytes from the RNG

Level 2 Revision 116 28 February 2011 131
TCG Published

635
636

2541
2542
2543
2544
2545
2546
2547
2548

2549

2550

2551
2552
2553
2554
2555

637
638



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

13.7 TPM_StirRandom
Start of informative comment:
TPM_StirRandom adds entropy to the RNG state.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

4 4 2S 4 UINT32 dataSize Number of bytes of input

5 <> 3S <> BYTE[ ] inData Data to add entropy to RNG state

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

Actions
1. If dataSize is not less than 256 bytes, the TPM MAY return TPM_BAD_PARAMETER.

2. The TPM updates the state of the current RNG using the appropriate mixing function. 

132 Level 2 Revision 116 28 February 2011
TCG Published

639
640
641

2556
2557
2558
2559

2560

2561

2562
2563
2564

642
643



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13.8 TPM_CertifyKey
Start of informative comment:
The TPM_CertifyKey operation allows one key to certify the public portion of another key.

A TPM identity key may be used to certify non-migratable keys but is not permitted to 
certify migratory keys or certified migration keys. As such, it allows the TPM to make the 
statement “this key is held in a TPM-shielded location, and it will never be revealed.” For 
this statement to have veracity, the Challenger must trust the policies used by the entity 
that issued the identity and the maintenance policy of the TPM manufacturer.

Signing and legacy keys may be used to certify both migratable and non-migratable keys. 
Then the  usefulness  of  a  certificate  depends  on the  trust  in  the  certifying  key  by  the 
recipient of the certificate.

The key to be certified must be loaded before TPM_CertifyKey is called.

The determination to use the TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 on the output is 
based on which PCRs and what localities the certified key is restricted to. A key to be 
certified that does not have locality restrictions and which uses no PCRs greater than PCR 
#15 will cause this command to return and sign a TPM_CERTIFY_INFO structure, which 
provides compatibility with V1.1 TPMs.

When this command is run to certify all other keys (those that use PCR #16 or higher, as 
well as those limited by locality in any way), it will return and sign a TPM_CERTIFY_INFO2 
structure.

TPM_CertifyKey does not support the case where (a)  the certifying key requires a usage 
authorization  to  be  provided  but  (b)  the  key-to-be-certified  does  not.  In  such  cases, 
TPM_CertifyKey2 must be used. TPM_CertifyKey cannot be used to certify CMKs.

If a command tag (in the parameter array) specifies only one authorisation session, then the 
TPM  convention  is  that  the  first  session  listed  is  ignored  (authDataUsage  must  be 
TPM_AUTH_NEVER for this key) and the incoming session data is used for the second auth 
session in the list. In TPM_CertifyKey, the first session is the certifying key and the second 
session is the key-to-be-certified. In TPM_CertifyKey2,  the first  session is the key-to-be-
certified and the second session is the certifying key.

The key handles of both the certifying key and the key to be certified are not included in the  
HMAC protecting the command.  This permits key handle virtualization (swapping of keys 
in  and  out  of  the  TPM  that  results  in  different  key  handles  while  at  the  same  time 
maintaining key identifiers of upper layer software).  In environments where the interface to 
the  TPM is  accessible  by  other parties,  the  key handles  not  being protected allows an 
attacker to change the handle of the key to be certified. This can be avoided by processing 
this command within a transport session and making sure that antiReplay indeed contains 
a nonce.

End of informative comment.

Level 2 Revision 116 28 February 2011 133
TCG Published

644
645

2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602

646
647



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to 
prevent replay-attacks)

7 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA certAuth The authorization session digest for inputs and certHandle. HMAC key: 
certKey.auth.

11 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed. 

2H2 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

12 20 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

13 1 4H2 1 BOOL continueKeySession The continue use flag for the authorization session handle

14 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: key.usageAuth.

134 Level 2 Revision 116 28 February 2011
TCG Published

648
649
650

2603

651
652



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 <> 3S <> TPM_CERTIFY_INFO certifyInfo TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 structure that 
provides information relative to keyhandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[ ] outData The signature of certifyInfo

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters and 
parentHandle. HMAC key: certKey -> auth.

10 20 2H2 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

11 1 4H2 1 BOOL continueKeySession Continue use flag for target key session

12 20 TPM_AUTHDATA keyAuth The authorization session digest for the target key. HMAC key: 
key.auth.

Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of 

TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

2. Verify command and key AuthData values:

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND

i. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTH2FAIL on error

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND

i. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTHFAIL on error

c. else if tag is TPM_TAG_RQU_COMMAND

i. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.

Level 2 Revision 116 28 February 2011 135
TCG Published

653
654

2604

2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621

655
656



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

ii. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error.

3. If keyHandle -> payload is not TPM_PT_ASYM, return TPM_INVALID_KEYUSAGE.

4. If  the  key  pointed  to  by  certHandle  is  an  identity  key  (certHandle  ->  keyUsage  is 
TPM_KEY_IDENTITY)

a. If keyHandle -> keyFlags -> migratable is TRUE return TPM_MIGRATEFAIL

5. Validate  that  certHandle  ->  keyUsage  is  TPM_KEY_SIGN,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

6. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGN,  TPM_KEY_STORAGE, 
TPM_KEY_IDENTITY,  TPM_KEY_BIND  or  TPM_KEY_LEGACY,  if  not  return 
TPM_INVALID_KEYUSAGE

7. If keyHandle -> digestAtRelease requires the use of PCRs 16 or higher to calculate or if 
keyHandle -> localityAtRelease is not 0x1F

a. Set V1 to 1.2

8. Else

a. Set V1 to 1.1

9. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> 
PCR registers and compare to keyHandle -> digestAtRelease and if a mismatch 
return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

b. If V1 is 1.1

i. Create C1 a TPM_CERTIFY_INFO structure

ii. Fill in C1 with the information from the key pointed to by keyHandle

iii. The TPM MUST set c1 -> pcrInfoSize to 44.

iv. The TPM MUST set c1 -> pcrInfo to a TPM_PCR_INFO structure properly filled 
out using the information from keyHandle.

v. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00.

c. Else

i. Create C1 a TPM_CERTIFY_INFO2 structure

ii. Fill in C1 with the information from the key pointed to by keyHandle

iii. Set C1 -> pcrInfoSize to the size of an appropriate TPM_PCR_INFO_SHORT 
structure.

iv. Set C1 -> pcrInfo to a properly filled out TPM_PCR_INFO_SHORT structure, 
using the information from keyHandle.

v. Set C1 -> migrationAuthoritySize to 0

136 Level 2 Revision 116 28 February 2011
TCG Published

657
658
659

2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659

660
661



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

10.Else

a. Create C1 a TPM_CERTIFY_INFO structure

b. Fill in C1 with the information from the key pointed to by keyHandle

c. The TPM MUST set c1 -> pcrInfoSize to 0

11.Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 
that <key> is the actual public modulus, and does not include any structure formatting.

12.Set C1 -> pubKeyDigest to H1

13.The TPM copies the antiReplay parameter to c1 -> data.

14.The TPM sets certifyInfo to C1.

15.The TPM creates m1, a message digest formed by taking the SHA-1 of c1.

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 
signed blob is returned in outData.

Level 2 Revision 116 28 February 2011 137
TCG Published

662
663

2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671

664
665



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

13.9 TPM_CertifyKey2
Start of informative comment:
This command is based on TPM_CertifyKey, but includes the ability to certify a Certifiable 
Migration Key (CMK), which requires extra input parameters. 

TPM_CertifyKey2 always produces a TPM_CERTIFY_INFO2 structure.

TPM_CertifyKey2 does not  support  the  case  where  (a)  the key-to-be-certified requires  a 
usage authorization to be provided but (b) the certifying key does not. 

If a command tag (in the parameter array) specifies only one authorisation session, then the 
TPM  convention  is  that  the  first  session  listed  is  ignored  (authDataUsage  must  be 
TPM_NO_READ_PUBKEY_AUTH  or  TPM_AUTH_NEVER  for  this  key)  and  the  incoming 
session data is used for the second auth session in the list. In TPM_CertifyKey2, the first 
session is the key to be certified and the second session is the certifying key.

The key handles of both the certifying key and the key to be certified are not included in the  
HMAC protecting the command.  This permits key handle virtualization (swapping of keys 
in  and  out  of  the  TPM  that  results  in  different  key  handles  while  at  the  same  time 
maintaining key identifiers of upper layer software).  In environments where the interface to 
the  TPM is  accessible  by  other parties,  the  key handles  not  being protected allows an 
attacker to change the handle of the key to be certified. This can be avoided by processing 
this command within a transport session and making sure that antiReplay indeed contains 
a nonce.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

5 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

6 20 2S 20 TPM_DIGEST migrationPubDigest The digest of a TPM_MSA_COMPOSITE structure, containing at least 
one public key of a Migration Authority

7 20 3S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to 
prevent replay-attacks)

8 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed. 

2H1 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

9 20 3H1 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

10 1 4H1 1 BOOL continueKeySession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: key.usageAuth.

12 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle. 

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

138 Level 2 Revision 116 28 February 2011
TCG Published

666
667
668

2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692

2693

669
670



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

13 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

14 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA certAuth Authorization HMAC key: certKey.auth.

Level 2 Revision 116 28 February 2011 139
TCG Published

671
672

673
674



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 <> 3S <> TPM_CERTIFY_INFO2 certifyInfo TPM_CERTIFY_INFO2 relative to keyHandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[ ] outData The signed public key.

7 20 2H1 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE keyNonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL keyContinueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA keyResAuth Authorization HMAC key: keyHandle -> auth.

10 20 2H2 20 TPM_NONCE certNonceEven Even nonce newly generated by TPM

3H2 20 TPM_NONCE AuthLastNonceOdd Nonce generated by system associated with certAuthHandle

11 1 4H2 1 BOOL CertContinueAuthSession Continue use flag for cert key session

12 20 20 TPM_AUTHDATA certResAuth Authorization HMAC key: certHandle -> auth.

Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of 

TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

2. Verify command and key AuthData values:

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND

i. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTH2FAIL on error

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND

i. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTH2FAIL on error

c. else if tag is TPM_TAG_RQU_COMMAND

i. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error

140 Level 2 Revision 116 28 February 2011
TCG Published

675
676
677

2694

2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713

678
679



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

ii. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.

3. If  the  key  pointed  to  by  certHandle  is  an  identity  key  (certHandle  ->  keyUsage  is 
TPM_KEY_IDENTITY)

a. If  keyHandle  ->  keyFlags  ->  migratable  is  TRUE  and  [keyHandle  ->  keyFlags-> 
migrateAuthority is FALSE or (keyHandle -> payload != TPM_PT_MIGRATE_RESTRICTED 
and  keyHandle  ->  payload  !=  TPM_PT_MIGRATE_EXTERNAL)]  return 
TPM_MIGRATEFAIL

4. Validate  that  certHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

5. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_STORAGE, 
TPM_KEY_IDENTITY,  TPM_KEY_BIND  or  TPM_KEY_LEGACY,  if  not  return 
TPM_INVALID_KEYUSAGE

6. The TPM SHALL create a c1 a TPM_CERTIFY_INFO2 structure from the key pointed to 
by keyHandle

7. Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 
that <key> is the actual public modulus, and does not include any structure formatting.

8. Set C1 -> pubKeyDigest to H1

9. Copy the antiReplay parameter to c1 -> data

10.Copy other keyHandle parameters into C1

11.If  keyHandle  ->  payload  ==  TPM_PT_MIGRATE_RESTRICTED  or 
TPM_PT_MIGRATE_EXTERNAL

a. create thisPubKey, a TPM_PUBKEY structure containing the public key, algorithm 
and parameters corresponding to keyHandle

b. Verify that the migration authorization is valid for this key

i. Create M2 a TPM_CMK_MIGAUTH structure

ii. Set M2 -> msaDigest to migrationPubDigest

iii. Set M2 -> pubkeyDigest to SHA-1[thisPubKey]

iv. Verify  that  [keyHandle  ->  migrationAuth]  ==  HMAC(M2)  signed  by  using 
tpmProof as the secret and return error TPM_MA_SOURCE on mismatch

c. Set C1 -> migrationAuthority = SHA-1(migrationPubDigest || keyHandle -> payload)

d. if keyHandle -> payload == TPM_PT_MIGRATE_RESTRICTED

i. Set C1 -> payloadType = TPM_PT_MIGRATE_RESTRICTED

e. if keyHandle -> payload == TPM_PT_MIGRATE_EXTERNAL

i. Set C1 -> payloadType = TPM_PT_MIGRATE_EXTERNAL

12.Else

a. set C1 -> migrationAuthority = NULL

b. set C1 -> migrationAuthoritySize =0

Level 2 Revision 116 28 February 2011 141
TCG Published

680
681

2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751

682
683



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

c. Set C1 -> payloadType = TPM_PT_ASYM

13.If keyHandle -> pcrInfoSize is not 0

a. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle 
key.

b. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key

c. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> 
PCR registers and compare to keyHandle -> digestAtRelease and if a mismatch 
return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

14.Else

a. The TPM MUST set c1 -> pcrInfoSize to 0

15.The TPM creates m1, a message digest formed by taking the SHA-1 of c1

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 
signed blob is returned in outData

142 Level 2 Revision 116 28 February 2011
TCG Published

684
685
686

2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766

687
688



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

14. Endorsement Key Handling
Start of informative comment:
There are two create EK commands. The first matches the 1.1 functionality. The second 
provides the mechanism to enable revokeEK.

The TPM and platform manufacturer decide on the inclusion or exclusion of the ability to 
execute revokeEK. 

The restriction to have the TPM generate the EK does not remove the manufacturing option 
to  “squirt”  the EK.  During  manufacturing,  the  TPM does not  enforce  all  protections or 
requirements; hence, the restriction on only TPM generation of the EK is also not in force.

End of informative comment.
1. A  TPM  SHALL  NOT  install  an  EK  unless  generated  on  the  TPM  by  execution  of 

TPM_CreateEndorsementKeyPair or TPM_CreateRevocableEK

Level 2 Revision 116 28 February 2011 143
TCG Published

689
690

2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778

691
692



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

14.1 TPM_CreateEndorsementKeyPair
Start of informative comment:
This  command  creates  the  TPM  endorsement  key.  It  returns  a  failure  code  if  an 
endorsement key already exists. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Actions
1. If an EK already exists, return TPM_DISABLED_CMD

2. Validate the keyInfo parameters for the key description

a. If  the  algorithm type  is  RSA the  key  length  MUST be  a  minimum of  2048.  For 
interoperability the key length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be 
comparable to RSA 2048

c. The other parameters of keyInfo (encScheme, sigScheme, etc.) are ignored.

3. Create a key pair called the “endorsement key pair” using a TPM-protected capability. 
The  type  and  size  of  key  are  that  indicated  by  keyInfo.   Set  encScheme  to 
TPM_ES_RSAESOAEP_SHA1_MGF1.

4. Create checksum by performing SHA-1 on the concatenation of (PUBEK || antiReplay)

5. Store the PRIVEK

6. Create TPM_PERMANENT_DATA -> tpmDAASeed from the TPM RNG

144 Level 2 Revision 116 28 February 2011
TCG Published

693
694
695

2779
2780
2781
2782
2783

2784

2785

2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799

696
697



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7. Create TPM_PERMANENT_DATA -> daaProof from the TPM RNG

8. Create TPM_PERMANENT_DATA -> daaBlobKey from the TPM RNG

9. Set TPM_PERMANENT_FLAGS -> CEKPUsed to TRUE

10.Set TPM_PERMANENT_FLAGS -> enableRevokeEK to FALSE

Level 2 Revision 116 28 February 2011 145
TCG Published

698
699

2800
2801
2802
2803

700
701



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

14.2 TPM_CreateRevocableEK
Start of informative comment:
This  command  creates  the  TPM  endorsement  key.  It  returns  a  failure  code  if  an 
endorsement key already exists. The TPM vendor may have a separate mechanism to create 
the EK and “squirt” the value into the TPM.

The  input  parameters  specify  whether  the  EK  is  capable  of  being  reset,  whether  the 
AuthData value to reset the EK will be generated by the TPM, and the new AuthData value 
itself if it is not to be generated by the TPM. The output parameter is the new AuthData 
value that must be used when resetting the EK (if it is capable of being reset). 

The command TPM_RevokeTrust must be used to reset an EK (if  it  is capable of being 
reset).

Owner  authorisation  is  unsuitable  for  authorizing  resetting  of  an  EK:  someone  with 
Physical Presence can remove a genuine Owner, install a new Owner, and revoke the EK. 
The genuine Owner can reinstall, but the platform will have lost its original attestation and 
may not be trusted by challengers. Therefore if a password is to be used to revoke an EK, it  
must be a separate password, given to the genuine Owner.

In v1.2 an OEM has extra choices when creating EKs.

a) An OEM could manufacture all of its TPMs with enableRevokeEK==TRUE.

If  the OEM has tracked the EKreset passwords for these TPMs,  the OEM can give  the 
passwords to customers. The customers can use the passwords as supplied, change the 
passwords, or clear the EKs and create new EKs with new passwords.

If EKreset passwords are random values, the OEM can discard those values and not give 
them to customers. There is then a low probability (statistically zero) chance of a local DOS 
attack to reset the EK by guessing the password. The chance of a remote DOS attack is zero 
because Physical Presence must also be asserted to use TPM_RevokeTrust.

b) An OEM could manufacture some of its TPMs with enableRevokeEK==FALSE. Then the 
EK  can  never  be  revoked,  and  the  chance  of  even  a  local  DOS  attack  on  the  EK  is 
eliminated.

End of informative comment.
This is an optional command

146 Level 2 Revision 116 28 February 2011
TCG Published

702
703
704

2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833

705
706



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

6 1 4S 1 BOOL generateReset If TRUE use TPM RNG to generate EKreset. If FALSE use the passed 
value inputEKreset

7 20 5S 20 TPM_NONCE inputEKreset The authorization value to be used with TPM_RevokeTrust if 
generateReset==FALSE, else the parameter is present but ignored

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

6 20 5S 20 TPM_NONCE outputEKreset The AuthData value to use TPM_RevokeTrust

Actions
1. If an EK already exists, return TPM_DISABLED_CMD

2. Perform the actions of TPM_CreateEndorsementKeyPair, if any errors return with error

3. Set TPM_PERMANENT_FLAGS -> enableRevokeEK to TRUE

a. If generateReset is TRUE then 

i. Set TPM_PERMANENT_DATA -> EKreset to the next value from the TPM RNG

b. Else

i. Set TPM_PERMANENT_DATA -> EKreset to inputEKreset

4. Return PUBEK, checksum and Ekreset

5. The outputEKreset AuthData is sent in the clear. There is no uniqueness on the TPM 
available to actually perform encryption or use an encrypted channel. The assumption is 
that this operation is occurring in a controlled environment and sending the value in the 
clear is acceptable.

Level 2 Revision 116 28 February 2011 147
TCG Published

707
708

2834

2835

2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848

709
710



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

14.3 TPM_RevokeTrust
Start of informative comment:
This command clears the EK and sets the TPM back to a pure default state. The generation 
of the AuthData value occurs during the generation of the EK. It is the responsibility of the 
EK generator to properly protect and disseminate the RevokeTrust AuthData.

End of informative comment.
This is an optional command

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

4 20 2S 20 TPM_NONCE EKReset The value that will be matched to EK Reset

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

Actions
1. The TPM MUST validate that TPM_PERMANENT_FLAGS -> enableRevokeEK is TRUE, 

return TPM_PERMANENTEK on error

2. The TPM MUST validate that the EKReset matches TPM_PERMANENT_DATA -> EKReset 
return TPM_AUTHFAIL on error.

3. Ensure that physical presence is being asserted

4. Perform the actions of TPM_OwnerClear (excepting the command authentication)

a. NV items with the pubInfo -> nvIndex D value set MUST be deleted. This changes the 
TPM_OwnerClear handling of the same NV areas

b. Set TPM_PERMANENT_FLAGS -> nvLocked to FALSE

5. Invalidate TPM_PERMANENT_DATA -> tpmDAASeed

6. Invalidate TPM_PERMANENT_DATA -> daaProof

7. Invalidate TPM_PERMANENT_DATA -> daaBlobKey

8. Invalidate the EK and any internal state associated with the EK

148 Level 2 Revision 116 28 February 2011
TCG Published

711
712
713

2849
2850
2851
2852
2853
2854
2855

2856

2857

2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871

714
715



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

14.4 TPM_ReadPubek
Start of informative comment:
Return the endorsement key public portion. This value should have controls placed upon 
access, as it is a privacy sensitive value.

The  readPubek  flag  is  set  to  FALSE  by  TPM_TakeOwnership  and  set  to  TRUE  by 
TPM_OwnerClear, thus mirroring if a TPM Owner is present. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description
This command returns the PUBEK. 

Actions
The TPM_ReadPubek command SHALL 

1. If TPM_PERMANENT_FLAGS -> readPubek is FALSE return TPM_DISABLED_CMD

2. If no EK is present the TPM MUST return TPM_NO_ENDORSEMENT

3. Create checksum by performing SHA-1 on the concatenation of (pubEndorsementKey || 
antiReplay).

4. Export the PUBEK and checksum. 

Level 2 Revision 116 28 February 2011 149
TCG Published

716
717

2872
2873
2874
2875
2876
2877
2878

2879

2880

2881
2882

2883
2884
2885
2886
2887
2888
2889

718
719



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

14.5 TPM_OwnerReadInternalPub
Start of informative comment:
A TPM Owner authorized command that returns the public portion of the EK or SRK.

The keyHandle  parameter  is  included in  the  incoming session authorization to  prevent 
alteration of the value, causing a different key to be read. Unlike most key handles, which 
can be mapped by higher layer software, this key handle has only two fixed values.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 4 2S 4 TPM_KEY_HANDLE keyHandle Handle for either PUBEK or SRK

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 <> 3S <> TPM_PUBKEY publicPortion The public portion of the requested key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Validate the parameters and TPM Owner AuthData for this command

2. If keyHandle is TPM_KH_EK

a. Set publicPortion to PUBEK

150 Level 2 Revision 116 28 February 2011
TCG Published

720
721
722

2890
2891
2892
2893
2894
2895
2896

2897

2898

2899
2900
2901
2902

723
724



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3. Else If keyHandle is TPM_KH_SRK

a. Set publicPortion to the TPM_PUBKEY of the SRK

4. Else return TPM_BAD_PARAMETER

5. Export the public key of the referenced key

Level 2 Revision 116 28 February 2011 151
TCG Published

725
726

2903
2904
2905
2906

727
728



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

15. Identity Creation and Activation

15.1 TPM_MakeIdentity
Start of informative comment:
Generate a new Attestation Identity Key (AIK).

labelPrivCADigest identifies the privacy CA that the owner expects to be the target CA for 
the AIK.  The selection is not enforced by the TPM.  It is advisory only.  It is included 
because the TSS cannot be trusted to send the AIK to the correct privacy CA.  The privacy 
CA can use this parameter to validate that it is the target privacy CA and label intended by  
the TPM owner at the time the key was created.  The label can be used to indicate an 
application purpose.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MakeIdentity.

4 20 2S 20 TPM_ENCAUTH identityAuth Encrypted usage AuthData for the new identity

5 20 3S 20 TPM_CHOSENID_HASH labelPrivCADigest The digest of the identity label and privacy CA chosen for the AIK

6 <> 4S <> TPM_KEY idKeyParams
Structure containing all parameters of new identity key. 
pubKey.keyLength & idKeyParams.encData are both 0 MAY be 
TPM_KEY12

7 4  TPM_AUTHHANDLE srkAuthHandle The authorization session handle used for SRK authorization. 

2H1 20 TPM_NONCE srkLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

9 1 4H1 1 BOOL continueSrkSession Ignored

10 20 TPM_AUTHDATA srkAuth The authorization session digest for the inputs and the SRK. HMAC 
key: srk.usageAuth.

11 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication. 
Session type MUST be OSAP.

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession Ignored

14 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

152 Level 2 Revision 116 28 February 2011
TCG Published

729
730
731

2907

2908
2909
2910
2911
2912
2913
2914
2915
2916
2917

2918

732
733



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_MakeIdentity.

4 <> 3S <> TPM_KEY idKey The newly created identity key. MAY be TPM_KEY12

5 4 4S 4 UINT32 identityBindingSize The used size of the output area for identityBinding

6 <> 5S <> BYTE[ ] identityBinding Signature of TPM_IDENTITY_CONTENTS using idKey.private.

7 20 2H2 20 TPM_NONCE srkNonceEven Even nonce newly generated by TPM.

3H2 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

8 1 4H2 1 BOOL continueSrkSession Continue use flag. Fixed value of FALSE

9 20 TPM_AUTHDATA srkAuth The authorization session digest used for the outputs and srkAuth 
session. HMAC key: srk.usageAuth.

10 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

12 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Description
The public key of the new TPM identity SHALL be identityPubKey. The private key of the 
new TPM identity SHALL be tpm_signature_key.

Properties of the new identity
Type Name Description

TPM_PUBKEY identityPubKey This SHALL be the public key of a previously unused asymmetric key pair.

TPM_STORE_ASYMKEY tpm_signature_key This SHALL be the private key that forms a pair with identityPubKey and SHALL be 
extant only in a TPM-shielded location.

This capability also generates a TPM_KEY containing the tpm_signature_key.

If identityPubKey is stored on a platform it SHALL exist only in storage to which access is 
controlled and is available to authorized entities.

The  signing  of  TPM_ID_CONTENTS  is  not  an  authorized  use  of  the  key.   The 
TPM_PCR_INFO_xxx  “…AtRelease” values are not validated.

Actions
A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the 
following:

1. Validate the idKeyParams parameters for the key description

Level 2 Revision 116 28 February 2011 153
TCG Published

734
735

2919

2920
2921
2922

2923

2924
2925
2926
2927
2928
2929

2930
2931
2932
2933

736
737



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. If the algorithm type is RSA, the key length MUST be a minimum of 2048 and MUST 
use the default exponent. For interoperability the key length SHOULD be 2048.

b. If the algorithm type is other than RSA the strength provided by the key MUST be 
comparable to RSA 2048

c. If the TPM is not designed to create a key of the requested type, return the error code  
TPM_BAD_KEY_PROPERTY

d. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

2. Use  authHandle  to  verify  that  the  Owner  authorized  all  TPM_MakeIdentity  input 
parameters.

3. Use srkAuthHandle to verify that the SRK owner authorized all TPM_MakeIdentity input 
parameters.

4. Verify  that  idKeyParams  ->  keyUsage  is  TPM_KEY_IDENTITY.  If  it  is  not,  return 
TPM_INVALID_KEYUSAGE

5. Verify  that  idKeyParams  ->  keyFlags  ->  migratable  is  FALSE.  If  it  is  not,  return 
TPM_INVALID_KEYUSAGE

6. Create a1 by decrypting identityAuth according to the ADIP indicated by authHandle.

7. Set continueAuthSession and continueSRKSession to FALSE.

8. Determine the structure version

a. If idKeyParams -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Create idKey a TPM_KEY12 structure using idKeyParams as the default values 
for the structure

b. If idKeyParams -> ver is 1.1

i. Set V1 to 1

ii. Create idKey a TPM_KEY structure using idKeyParams as the default values 
for the structure

9. Set the digestAtCreation values for pcrInfo

a. For TPM_PCR_INFO_LONG include the locality of the current command

10.Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TPM-
protected capability, in accordance with the algorithm specified in idKeyParams

11.Ensure  that  the  AuthData  information  in  A1  is  properly  stored  in  the  idKey  as 
usageAuth.

12.Attach identityPubKey and tpm_signature_key to idKey

13.Set idKey -> migrationAuth to TPM_PERMANENT_DATA-> tpmProof

14.Ensure that all TPM_PAYLOAD_TYPE structures identify this key as TPM_PT_ASYM

15.Encrypt the private portion of idKey using the SRK as the parent key

154 Level 2 Revision 116 28 February 2011
TCG Published

738
739
740

2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

741
742



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16.Create  a  TPM_IDENTITY_CONTENTS  structure  named  idContents  using 
labelPrivCADigest and the information from idKey

17.Sign idContents using tpm_signature_key and TPM_SS_RSASSAPKCS1v15_SHA1. Store 
the result in identityBinding. 

Level 2 Revision 116 28 February 2011 155
TCG Published

743
744

2971
2972
2973
2974

745
746



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

15.2 TPM_ActivateIdentity
Start of informative comment:
The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance 
that the credential in the TPM_SYM_CA_ATTESTATION is for this TPM. The second purpose 
is to obtain the session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

This is an extension to the 1.1 functionality of TPM_ActivateIdentity. The blob sent to from 
the CA can be in the 1.1 format or the 1.2 format. The TPM determines the type from the 
size or version information in the blob.

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity 
before releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is 
required to  authorize  the TPM_ActivateIdentity command.  The owner may authorize  the 
command using either the TPM_OIAP or TPM_OSAP authorization protocols.

The creator of the ActivateIdentity package can specify if any PCR values are to be checked 
before releasing the session key.

End of informative comment. 

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ActivateIdentity

4 4 TPM_KEY_HANDLE idKeyHandle Identity key to be activated

5 4 2S 4 UINT32 blobSize Size of encrypted blob from CA

6 <> 3S <> BYTE [ ] blob The encrypted ASYM_CA_CONTENTS or TPM_EK_BLOB

7 4  TPM_AUTHHANDLE idKeyAuthHandle The authorization session handle used for ID key authorization. 

2H1 20 TPM_NONCE idKeyLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

9 1 4H1 1 BOOL continueIdKeySession Continue usage flag for idKeyAuthHandle.

10 20 TPM_AUTHDATA idKeyAuth The authorization session digest for the inputs and ID key. HMAC key: 
idKey.usageAuth.

11 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

14 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

156 Level 2 Revision 116 28 February 2011
TCG Published

747
748
749

2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990

2991

750
751



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ActivateIdentity

4 <> 3S <> TPM_SYMMETRIC_KEY symmetricKey The decrypted symmetric key.

5 20 2H1 20 TPM_NONCE idKeyNonceEven Even nonce newly generated by TPM.

3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

6 1 4H1 1 BOOL continueIdKeySession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA idKeyAuth The authorization session digest used for the returned parameters and 
idKeyAuth session. HMAC key: idKey.usageAuth.

8 20 2H2 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H2 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: ownerAuth.

Description
1. The command TPM_ActivateIdentity activates a TPM identity created using the command 

TPM_MakeIdentity.

2. The command assumes the availability of the private key associated with the identity. 
The command will verify the association between the keys during the process.

3. The command will decrypt the input blob and extract the session key and verify the 
connection between the public and private keys. The input blob can be in 1.1 or 1.2 
format.

Actions
A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do 
the following:

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 
all of the incoming parameters.

2. Using the idKeyAuthHandle, validate the AuthData to execute command and all of the 
incoming parameters

3. Validate  that  the  idKey  is  the  public  key  of  a  valid  TPM identity  by  checking  that 
idKeyHandle  ->  keyUsage  is  TPM_KEY_IDENTITY.  Return TPM_BAD_PARAMETER on 
mismatch

4. Create H1 the digest of a TPM_PUBKEY derived from idKey

5. Decrypt blob creating B1 using PRIVEK as the decryption key

6. Determine the type and version of B1

Level 2 Revision 116 28 February 2011 157
TCG Published

752
753

2992

2993
2994
2995
2996
2997
2998
2999
3000

3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013

754
755



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. If B1 -> tag is TPM_TAG_EK_BLOB then 

i. B1 is a TPM_EK_BLOB

b. Else

i. B1 is a TPM_ASYM_CA_CONTENTS. As there is no tag for this structure it is 
possible for the TPM to make a mistake here but other sections of the structure 
undergo validation

7. If B1 is a version 1.1 TPM_ASYM_CA_CONTENTS then

a. Compare H1 to B1 -> idDigest on mismatch return TPM_BAD_PARAMETER

b. Set K1 to B1 -> sessionKey

8. If B1 is a TPM_EK_BLOB then

a. Validate that B1 -> ekType is TPM_EK_TYPE_ACTIVATE, return TPM_BAD_TYPE if 
not.

b. Assign A1 as a TPM_EK_BLOB_ACTIVATE structure from B1 -> blob

c. Compare H1 to A1 -> idDigest on mismatch return TPM_BAD_PARAMETER

d. If A1 -> pcrSelection is not NULL

i. Compute a composite hash C1 using the PCR selection A1 -> pcrSelection

ii. Compare  C1  to  A1  ->  pcrInfo->digestAtRelease  and  return 
TPM_WRONGPCRVAL on a mismatch

e. If A1 -> pcrInfo specifies a locality ensure that the appropriate locality has 
been asserted, return TPM_BAD_LOCALITY on error

f. Set K1 to A1 -> symmetricKey

9. Return K1

158 Level 2 Revision 116 28 February 2011
TCG Published

756
757
758

3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035

759
760



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16. Integrity Collection and Reporting
Start of informative comment:
This section deals with what commands have direct access to the PCR

End of informative comment. 
1. The  TPM  SHALL  only  allow  the  following  commands  to  alter  the  value  of 

TPM_STCLEAR_DATA -> PCR

a. TPM_Extend

b. TPM_SHA1CompleteExtend

c. TPM_Startup

d. TPM_PCR_Reset

Level 2 Revision 116 28 February 2011 159
TCG Published

761
762

3036
3037
3038
3039
3040
3041
3042
3043
3044
3045

763
764



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

16.1 TPM_Extend
Start of informative comment:
This adds a new measurement to a PCR

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 4 2S 4 TPM_PCRINDEX pcrNum The PCR to be updated.

5 20 3S 20 TPM_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 20 3S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description
Add a measurement value to a PCR

Actions
1. Validate that pcrNum represents a legal PCR number. On error, return TPM_BADINDEX.

2. Map L1 to TPM_STANY_FLAGS -> localityModifier

3. Map P1 to TPM_PERMANENT_DATA -> pcrAttrib [pcrNum]. pcrExtendLocal

4. If,  for  the  value  of  L1,  the  corresponding  bit  is  not  set  in  the  bit  map  P1,  return 
TPM_BAD_LOCALITY

5. Create c1 by concatenating (TPM_STCLEAR_DATA -> PCR[pcrNum] || inDigest). This 
takes the current PCR value and concatenates the inDigest parameter.

6. Create h1 by performing a SHA-1 digest of c1.

7. Store h1 to TPM_STCLEAR_DATA -> PCR[pcrNum]

8. If TPM_PERMANENT_FLAGS -> disable is TRUE or TPM_STCLEAR_FLAGS -> deactivated 
is TRUE

160 Level 2 Revision 116 28 February 2011
TCG Published

765
766
767

3046
3047
3048
3049

3050

3051

3052
3053

3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065

768
769



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. Set outDigest to 20 bytes of 0x00

9. Else

a. Set outDigest to h1

Level 2 Revision 116 28 February 2011 161
TCG Published

770
771

3066
3067
3068

772
773



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

16.2 TPM_PCRRead
Start of informative comment:
The TPM_PCRRead operation provides  non-cryptographic  reporting  of  the  contents  of  a 
named PCR. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 4 2S 4 TPM_PCRINDEX pcrIndex Index of the PCR to be read

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 20 3S 20 TPM_PCRVALUE outDigest The current contents of the named PCR

Description
The TPM_PCRRead operation returns the current contents of  the named register to the 
caller. 

Actions
1. Validate  that  pcrIndex  represents  a  legal  PCR  number.  On  error,  return 

TPM_BADINDEX.

2. Set outDigest to TPM_STCLEAR_DATA -> PCR[pcrIndex]

3. Return TPM_SUCCESS

162 Level 2 Revision 116 28 February 2011
TCG Published

774
775
776

3069
3070
3071
3072
3073

3074

3075

3076
3077
3078

3079
3080
3081
3082
3083
3084

777
778



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16.3 TPM_Quote
Start of informative comment:
The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is 
required for operation. TPM_Quote uses a key to sign a statement that names the current 
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 
Challenger). 

The term "ExternalData" is used because an important use of TPM_Quote is to provide a 
digital  signature on arbitrary data, where the signature includes the PCR values of the 
platform at time of signing. Hence the "ExternalData" is not just for anti-replay purposes, 
although it is (of course) used for that purpose in an integrity challenge.

TPM_Quote should not use a TPM_KEY_SIGNING, because there is no way for the remote 
party to tell whether TPM_Quote or TPM_Sign created the signature.  The exception is a 
TPM_KEY_SIGNING key with the _INFO signature  scheme,  because  the  metadata 
differentiates TPM_Sign from TPM_Quote.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData 160 bits of externally supplied data (typically a nonce provided by a 
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key -> usageAuth.

Level 2 Revision 116 28 February 2011 163
TCG Published

779
780

3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099

3100

781
782



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 <> 3S <> TPM_PCR_COMPOSITE pcrData A structure containing the same indices as targetPCR, plus the 
corresponding current PCR values.

5 4 4S 4 UINT32 sigSize The used size of the output area for the signature

6 <> 5S <> BYTE[ ] sig The signed data blob.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
Key -> usageAuth.

Actions
1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle.

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  -> keyUsage  is  TPM_KEY_SIGNING, TPM_KEY_IDENTITY,  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

4. Validate targetPCR

a. targetPCR is a valid TPM_PCR_SELECTION structure

b. On errors return TPM_INVALID_PCR_INFO

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 
PCR indicated by targetPCR -> pcrSelect

6. Create Q1 a TPM_QUOTE_INFO structure

a. Set Q1 -> version to 1.1.0.0

b. Set Q1 -> fixed to “QUOT”

c. Set Q1 -> digestValue to H1

d. Set Q1 -> externalData to externalData

7. Sign SHA-1 hash of Q1 using keyHandle as the signature key

8. Return the signature in sig

164 Level 2 Revision 116 28 February 2011
TCG Published

783
784
785

3101

3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119

786
787



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16.4 TPM_PCR_Reset
Start of informative comment:
For PCR with the pcrReset attribute set to TRUE, this command resets the PCR back to the 
default value, this mimics the actions of TPM_Init. The PCR may have restrictions as to 
which locality can perform the reset operation.

Sending a null pcrSelection results in an error is due to the requirement that the command 
actually do something. If pcrSelection is null there are no PCR to reset and the command 
would then do nothing.

For PCR that are resettable, the presence of a Trusted Operating System (TOS) can change 
the  behavior  of  TPM_PCR_Reset.  The  following  pseudo  code  shows  how  the  behavior 
changes

At TPM_Startup 

If TPM_PCR_ATTRIBUTES->pcrReset is FALSE

Set PCR to 0x00…00

Else

Set PCR to 0xFF…FF

At TPM_PCR_Reset

If TPM_PCR_ATTRIBUTES->pcrReset is TRUE

If TOSPresent

Set PCR to 0x00…00

Else

Set PCR to 0xFF…FF

Else

Return error

The above pseudocode is for example only, for the details of a specific platform, the reader 
must review the platform specific specification. The purpose of the above pseudocode is to 
show that both pcrReset and the TOSPresent bit control the value in use to when the PCR 
resets.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

4 <> 2S <> TPM_PCR_SELECTION pcrSelection The PCR’s to reset

Level 2 Revision 116 28 February 2011 165
TCG Published

788
789

3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148

3149

790
791



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

Description
This command resets PCR values back to the default value. The command MUST validate 
that all PCR registers that are selected are available to be reset before resetting any PCR. 
This command MUST either reset all selected PCR registers or none of the PCR registers.

Actions
1. Validate that pcrSelection is valid

a. is a valid TPM_PCR_SELECTION structure

b. pcrSelection -> pcrSelect is non-zero

c. On errors return TPM_INVALID_PCR_INFO

2. Map L1 to TPM_STANY_FLAGS -> localityModifier

3. For each PCR selected perform the following

a. If  TPM_PERMANENT_DATA  ->  pcrAttrib[pcrIndex].pcrReset  is  FALSE,  return 
TPM_NOTRESETABLE

b. If,  for  the  value  L1,  the  corresponding  bit  is  clear  in  the  bit  map 
TPM_PERMANENT_DATA -> pcrAttrib[pcrIndex].pcrResetLocal, return TPM_NOTLOCAL

4. For each PCR selected perform the following

a. The PCR MAY only reset to 0x00…00 or 0xFF…FF

b. The logic to determine which value to use MUST be described by a platform specific 
specification

166 Level 2 Revision 116 28 February 2011
TCG Published

792
793
794

3150

3151
3152
3153
3154

3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169

795
796



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16.5 TPM_Quote2
Start of informative comment:
The TPM_Quote2 operation provides cryptographic reporting of PCR values. A loaded key is 
required for operation. TPM_Quote2 uses a key to sign a statement that names the current 
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 
Challenger). 

The term "externalData" is used because an important use of TPM_Quote2 is to provide a 
digital  signature on arbitrary data, where the signature includes the PCR values of the 
platform at time of signing. Hence the "externalData" is not just for anti-replay purposes, 
although it is (of course) used for that purpose in an integrity challenge.

TPM_Quote2 differs from TPM_Quote in that TPM_Quote2 uses TPM_PCR_INFO_SHORT to 
hold  information relative  to  the  PCR registers.  TPM_PCR_INFO_SHORT includes locality 
information  to  provide  the  requestor  a  more  complete  view  of  the  current  platform 
configuration.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData 160 bits of externally supplied data (typically a nonce provided by a 
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 1 4S 1 BOOL addVersion When TRUE add TPM_CAP_VERSION_INFO to the output

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key -> usageAuth.

Level 2 Revision 116 28 February 2011 167
TCG Published

797
798

3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184

3185

799
800



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 <> 3S <> TPM_PCR_INFO_SHORT pcrData The value created and signed for the quote

5 4 4S 4 UINT32 versionInfoSize Size of the version info

6 <> 5S <> TPM_CAP_VERSION_INFO versionInfo The version info

7 4 6S 4 UINT32 sigSize The used size of the output area for the signature

8 <> 7S <> BYTE[ ] sig The signed data blob.

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
Key -> usageAuth.

Actions
1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle.

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  -> keyUsage  is  TPM_KEY_SIGNING, TPM_KEY_IDENTITY,  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

4. Validate  targetPCR  is  a  valid  TPM_PCR_SELECTION  structure,  on  errors  return 
TPM_INVALID_PCR_INFO

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 
PCR[] indicated by targetPCR -> pcrSelect

6. Create S1 a TPM_PCR_INFO_SHORT

a. Set S1->pcrSelection to targetPCR

b. Set S1->localityAtRelease to TPM_STANY_DATA -> localityModifier

c. Set S1->digestAtRelease to H1

7. Create Q1 a TPM_QUOTE_INFO2 structure

a. Set Q1 -> fixed to “QUT2”

b. Set Q1 -> infoShort to S1

c. Set Q1 -> externalData to externalData

8. If addVersion is TRUE

a. Concatenate to Q1 a TPM_CAP_VERSION_INFO structure

168 Level 2 Revision 116 28 February 2011
TCG Published

801
802
803

3186

3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206

804
805



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. Set the output parameters for versionInfo

9. Else

a. Set versionInfoSize to 0

b. Return no bytes in versionInfo

10.Sign a SHA-1 hash of Q1 using keyHandle as the signature key

11.Return the signature in sig

Level 2 Revision 116 28 February 2011 169
TCG Published

806
807

3207
3208
3209
3210
3211
3212

808
809



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

17. Changing AuthData

17.1 TPM_ChangeAuth
Start of informative comment:
The TPM_ChangeAuth command allows the owner of an entity to change the AuthData for 
the entity.

This command cannot invalidate the old entity.  Therefore, the authorization change is only 
effective if the application can guarantee that the old entity can be securely destroyed.  If 
not, two valid entities will exist, one with the old and one with the new authorization secret.

If this command is delegated, the delegated party can expand its key use privileges.  That 
party can create a copy of the key with known authorization, and it can then use the key 
without any ordinal restrictions.

TPM_ChangeAuth requires the encryption of one parameter (“NewAuth”). For the sake of 
uniformity with other commands that require the encryption of more than one parameter, 
the  parameters  used  for  used  encryption  are  generated  from  the  authLastNonceEven 
(created during the OSAP session), nonceOdd, and the session shared secret.

The  parameter  list  to  this  command  must  always  include  two  authorization  sessions, 
regardless of the state of authDataUsage for the respective keys.

End of informative comment.

170 Level 2 Revision 116 28 February 2011
TCG Published

810
811
812

3213

3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230

813
814



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

PARAM HMAC
Type Name Description

# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key to the entity.

5 2 2 S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

6 20 3 S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

7 2 4 S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

8 4 5 S 4 UINT32 encDataSize The size of the encData parameter

9 <> 6 S <> BYTE[ ] encData The encrypted entity that is to be modified.

10 4  TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.

13 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC 
key: parentKey.usageAuth.

14 4  TPM_AUTHHANDLE entityAuthHandle The authorization session handle used for the encrypted entity. The 
session type MUST be OIAP 

2 H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

15 20 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

16 1 4 H2 1 BOOL continueEntitySession Ignored, entityAuthHandle is always terminated.

17 20 TPM_AUTHDATA entityAuth The authorization session digest for the inputs and encrypted entity. 
HMAC key: entity.usageAuth.

Level 2 Revision 116 28 February 2011 171
TCG Published

815
816

3231

817
818



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The modified, encrypted entity.

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters and 
parentHandle. HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

10 1 4 H2 1 BOOL continueEntitySession Continue use flag, fixed value of FALSE

11 20 TPM_AUTHDATA entityAuth The authorization session digest for the returned parameters and entity. 
HMAC key: entity.usageAuth, the original and not the new auth value

Description
1. The parentAuthHandle session type MUST be TPM_PID_OSAP.

2. In this capability, the SRK cannot be accessed as entityType TPM_ET_KEY, since the 
SRK is not wrapped by a parent key.

Actions
1. Verify  that  entityType  is  one  of  TPM_ET_DATA,  TPM_ET_KEY  and  return  the  error 

TPM_WRONG_ENTITYTYPE if not. 

2. Verify that parentAuthHandle session type is TPM_PID_OSAP return TPM_BAD_MODE 
on error

3. Verify that entityAuthHandle session type is TPM_PID_OIAP return TPM_BAD_MODE on 
error

4. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER.

5. The encData parameter MUST be the encData field from either the TPM_STORED_DATA 
or TPM_KEY structures.

6. Create  decryptAuth  by  decrypting  newAuth  according  to  the  ADIP  indicated  by 
parentHandle.

7. The TPM MUST validate the command using the AuthData in the parentAuth parameter

8. Validate  that  parentHandle  ->  keyUsage  is  TPM_KEY_STORAGE,  if  not  return 
TPM_INVALID_KEYUSAGE

172 Level 2 Revision 116 28 February 2011
TCG Published

819
820
821

3232

3233
3234
3235
3236

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251

822
823



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

9. After parameter validation, the TPM creates b1 by decrypting encData using the key 
pointed to by parentHandle.

10.The  TPM  MUST  validate  that  b1  is  a  valid  TPM  structure,  either  a 
TPM_STORE_ASYMKEY or a TPM_SEALED_DATA

a. Check the length and payload, return TPM_INVALID_STRUCTURE on any mismatch

b. The  TPM  must  validate  the  command  using  the  authorization  data  entityAuth 
parameter.   The  HMAC  key  is  TPM_STORE_ASYMKEY  ->  usageAuth  or 
TPM_SEALED_DATA -> authData.

11.The TPM replaces the AuthData for b1 with decryptAuth created above.

12.The  TPM  encrypts  b1  using  the  appropriate  mechanism  for  the  type  using  the 
parentKeyHandle to provide the key information.

13.The  TPM  MUST  enforce  the  destruction  of  both  the  parentAuthHandle  and 
entityAuthHandle sessions.

Level 2 Revision 116 28 February 2011 173
TCG Published

824
825

3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264

826
827



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

17.2 TPM_ChangeAuthOwner
Start of informative comment:
The  TPM_ChangeAuthOwner  command  allows  the  owner  of  an  entity  to  change  the 
AuthData for the TPM Owner or the SRK.

This command requires authorization from the current TPM Owner to execute.

TPM's  targeted for an environment (e.g.  a server)  with long lasting sessions should not 
invalidate all sessions.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

5 20 3S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

6 2 4S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 4 TPM_AUTHHANDLE ownerAuthHandle The authorization session handle used for the TPM Owner. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag the TPM ignores this value

10 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and ownerHandle. HMAC key: 
ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters and 
ownerHandle. HMAC key: ownerAuth, the original value and not the new 
auth value

174 Level 2 Revision 116 28 February 2011
TCG Published

828
829
830

3265
3266
3267
3268
3269
3270
3271
3272

3273

3274

831
832



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Actions
1. The TPM MUST validate the command using the AuthData in the ownerAuth parameter

2. The ownerAuthHandle session type MUST be TPM_PID_OSAP

3. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER.

4. Verify that entityType is either TPM_ET_OWNER or TPM_ET_SRK, and return the error 
TPM_WRONG_ENTITYTYPE if not. 

5. Create  decryptAuth  by  decrypting  newAuth  according  to  the  ADIP  indicated  by 
ownerAuthHandle. 

6. The  TPM  MUST  enforce  the  destruction  of  the  ownerAuthHandle  session  upon 
completion  of  this  command  (successful  or  unsuccessful).  This  includes  setting 
continueAuthSession to FALSE

7. Set the AuthData for the indicated entity to decryptAuth

8. The TPM MUST invalidate  all  owner authorized OSAP and DSAP sessions,  active  or 
saved.

9. The TPM MAY invalidate all sessions, active or saved

Level 2 Revision 116 28 February 2011 175
TCG Published

833
834

3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289

835
836



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

18. Authorization Sessions

18.1 TPM_OIAP

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

Actions
1. The TPM_OIAP command allows the creation of an authorization session handle and the 

tracking of the handle by the TPM. The TPM generates the handle and nonce.

2. The TPM has an internal limit as to the number of handles that may be open at one 
time, so the request for a new handle may fail if there is insufficient space available.

3. Internally the TPM will do the following:

a. TPM allocates space to save handle, protocol identification, both nonces and any 
other information the TPM needs to manage the session.

b. TPM generates authHandle and nonceEven, returns these to caller

4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven 
value.

5. When TPM_OIAP is  wrapped in  an encrypted transport  session,  no  input  or  output 
parameters are encrypted.

176 Level 2 Revision 116 28 February 2011
TCG Published

837
838
839

3290

3291

3292

3293

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306

840
841



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

18.1.1 Actions to validate an OIAP session
Start of informative comment:
This  section  describes  the  authorization-related  actions  of  a  TPM  when  it  receives  a 
command that has been authorized with the OIAP protocol.

Many commands use OIAP authorization. The following description is therefore necessarily 
abstract.

End of informative comment.

Actions
The TPM MUST perform the following operations:

1. The TPM MUST verify that the authorization session handle (H, say) referenced in the 
command points  to  a  valid  session.  If  it  does not,  the  TPM returns  the  error  code 
TPM_INVALID_AUTHHANDLE

2. The  TPM  SHALL  retrieve  the  latest  version  of  the  caller’s  nonce  (nonceOdd)  and 
continueAuthSession flag from the input parameter list, and store it in internal TPM 
memory with the authSession ‘H’.

3. The  TPM  SHALL  retrieve  the  latest  version  of  the  TPM’s  nonce  stored  with  the 
authorization session H (authLastNonceEven) computed during the previously executed 
command.

4. The TPM MUST retrieve the secret AuthData (SecretE, say) of the target entity. The entity 
and its secret must have been previously loaded into the TPM.

a. If the command using the OIAP session requires owner authorization

i. If  TPM_STCLEAR_DATA  ->  ownerReference  is  TPM_KH_OWNER,  the  secret 
AuthData is TPM_PERMANENT_DATA -> ownerAuth

ii. If TPM_STCLEAR_DATA -> ownerReference is pointing to a delegate row

(1) Set R1 a row index to TPM_STCLEAR_DATA -> ownerReference

(2) Set  D1  a  TPM_DELEGATE_TABLE_ROW  to  TPM_PERMANENT_DATA  -> 
delegateTable -> delRow[R1]

(3) Set the secret AuthData to D1 -> authValue

(4) Validate the TPM_DELEGATE_PUBLIC D1 -> pub 

(a) Validate D1 -> pub -> permissions based on the command ordinal

(b) Validate D1 -> pub -> pcrInfo based on the PCR values

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input 
command  parameters  and  authorization  parameters  per  Part  1  Object-Independent 
Authorization Protocol.

6. The TPM SHALL compare HM to the AuthData value received in the input parameters. If  
they are different, the TPM returns the error code TPM_AUTHFAIL if the authorization 
session  is  the  first  session  of  a  command,  or  TPM_AUTH2FAIL  if  the  authorization 

Level 2 Revision 116 28 February 2011 177
TCG Published

842
843

3307

3308
3309
3310
3311
3312
3313
3314

3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344

844
845



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

session is the second session of a command. Otherwise, the TPM executes the command 
which (for this example) produces an output that requires authentication. 

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and 
authorization  parameters  to  the  same  entity  secret  per  Part  1  Object-Independent 
Authorization Protocol.

9. The TPM returns the return code, output parameters,  authorization parameters and 
authorization session digest.

10.If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. 
Future references to H will return an error.

11.Each time that access to an entity (e.g., key) is authorized using OIAP, the TPM MUST 
validate the TPM_PCR_INFO_xxx  “…AtRelease” values if specified for the entity

a. The TPM SHOULD validate the values before using the shared secret to validate the 
command parameters.  This prevents a dictionary attack on the shared secret when the 
values are invalid for the entity.

178 Level 2 Revision 116 28 February 2011
TCG Published

846
847
848

3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359

849
850



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

18.2 TPM_OSAP
Start of informative comment:
The TPM_OSAP command creates the authorization session handle, the shared secret and 
generates nonceEven and nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 2 TPM_ENTITY_TYPE entityType The type of entity in use 

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 20 TPM_NONCE nonceOddOSAP The nonce generated by the caller associated with the shared secret.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenOSAP Nonce generated by TPM and associated with shared secret.

Description
1. The TPM_OSAP command allows the creation of an authorization session handle and the 

tracking of  the handle  by the TPM. The  TPM generates the handle,  nonceEven and 
nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, 
so the request for a new handle may fail if there is insufficient space available.

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows 
the caller to continue to send in AuthData for each command but not have to request 
the information or cache the actual AuthData.

4. When TPM_OSAP is wrapped in an encrypted transport  session, no input or output 
parameters are encrypted.

5. If the owner pointer is pointing to a delegate row, the TPM internally MUST treat the 
OSAP session as a DSAP session

Level 2 Revision 116 28 February 2011 179
TCG Published

851
852

3360
3361
3362
3363
3364

3365

3366

3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379

853
854



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6. TPM_ET_SRK or TPM_ET_KEYHANDLE with a value of TPM_KH_SRK MUST specify the 
SRK.

7. If the entity is tied to PCR values, the PCR’s are not validated during the TPM_OSAP 
ordinal session creation.  The PCR’s are validated when the OSAP session is used.

Actions
1. The TPM creates S1 a storage area that keeps track of the information associated with 

the authorization. 

2. S1 MUST track the following information

a. Protocol identification (i.e. TPM_PID_OSAP)

b. nonceEven

i. Initialized to the next value from the TPM RNG

c. shared secret 

d. ADIP encryption scheme from TPM_ENTITY_TYPE entityType

e. Any other internal TPM state the TPM needs to manage the session

3. The TPM MUST create and MAY track the following information

a. nonceEvenOSAP

i. Initialized to the next value from the TPM RNG

4. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 
calculation is the secret AuthData assigned to the key handle identified by entityValue. 
The input to the HMAC calculation is the concatenation of nonces nonceEvenOSAP and 
nonceOddOSAP. The output of the HMAC calculation is the shared secret which is saved 
in the authorization area associated with authHandle

5. Check if the ADIP encryption scheme specified by entityType is supported, if not return 
TPM_INAPPROPRIATE_ENC.

6. If entityType = TPM_ET_KEYHANDLE

a. The entity to authorize is a key held in the TPM. entityValue contains the keyHandle 
that holds the key. 

b. If entityValue is TPM_KH_OPERATOR return TPM_BAD_HANDLE

7. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored

b. The HMAC key is the secret pointed to by ownerReference (owner secret or delegated 
secret)

8. else if entityType = TPM_ET_SRK

a. The entity to authorize is the SRK. entityValue is ignored.

9. else if entityType = TPM_ET_COUNTER

a. The entity is a monotonic counter, entityValue contains the counter handle

10.else if entityType = TPM_ET_NV

180 Level 2 Revision 116 28 February 2011
TCG Published

855
856
857

3380
3381
3382
3383

3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

858
859



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. The entity is a NV index, entityValue contains the NV index

11.else return TPM_BAD_PARAMETER 

12.On each subsequent use of the OSAP session the TPM MUST generate a new nonce 
value.

13.The TPM MUST ensure that OSAP shared secret is only available while the OSAP session 
is valid.

14.The session MUST terminate upon any of the following conditions:

a. The command that uses the session returns an error

b. The resource is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt 
an input parameter (TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner  is  executed  and  this  session  is  attached  to  the  owner 
authorization

f. The  session  explicitly  terminated  with  continueAuth,  TPM_Reset  or 
TPM_FlushSpecific

g. All OSAP sessions associated with the delegation table MUST be invalidated when 
any of the following commands execute:

i. TPM_Delegate_Manage

ii. TPM_Delegate_CreateOwnerDelegation with Increment==TRUE

iii. TPM_Delegate_LoadOwnerDelegation

Level 2 Revision 116 28 February 2011 181
TCG Published

860
861

3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437

862
863



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

18.2.1 Actions to validate an OSAP session
Start of informative comment:
This  section  describes  the  authorization-related  actions  of  a  TPM  when  it  receives  a 
command that has been authorized with the OSAP protocol.

Many commands use OSAP authorization. The following description is therefore necessarily 
abstract.

End of informative comment

Actions
1. On reception of a command with ordinal C1 that uses an authorization session, the TPM 

SHALL perform the following actions:

2. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target 
entity when the authorization session was established with TPM_OSAP. The entity and 
its secret must have been previously loaded into the TPM.

3. The TPM MUST verify that the authorization session handle (H, say) referenced in the 
command points  to  a  valid  session.  If  it  does not,  the  TPM returns  the  error  code 
TPM_INVALID_AUTHHANDLE.

4. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according 
to Part 1 Object-Specific Authorization Protocol.

5. The TPM SHALL compare HM1 to the AuthData value received in the command. If they 
are different, the TPM returns the error code TPM_AUTHFAIL if the authorization session 
is the first session of a command, or TPM_AUTH2FAIL if the authorization session is the 
second session of  a  command.,  the TPM executes command C1 which produces an 
output (O, say) that requires authentication and uses a particular return code (RC, say).

6. The TPM SHALL generate the latest version of the even nonce (nonceEven).

7. The TPM MUST calculate the HMAC (HM2) of the return parameters according to section 
Part 1 Object-Specific Authorization Protocol.

8. The TPM returns HM2 in the parameter list.

9. The TPM SHALL retrieve the continue flag from the received command. If the flag is 
FALSE, the TPM SHALL terminate the session and destroy the thread associated with 
handle H.

10.If  the  shared  secret  was  used  to  provide  confidentiality  for  data  in  the  received 
command, the TPM SHALL terminate the session and destroy the thread associated with 
handle H.

11.Each time that access to an entity (e.g., key) is authorized using OSAP, the TPM MUST 

a. ensure that the OSAP shared secret is that derived from the entity using TPM_OSAP

b. validate the TPM_PCR_INFO_xxx  “…AtRelease” values if specified for the entity

182 Level 2 Revision 116 28 February 2011
TCG Published

864
865
866

3438

3439
3440
3441
3442
3443
3444
3445

3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474

867
868



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

i. The  TPM  SHOULD  validate  the  values  before  using  the  shared  secret  to 
validate  the  command parameters.   This  prevents  a  dictionary  attack  on  the 
shared secret when the values are invalid for the entity.

Level 2 Revision 116 28 February 2011 183
TCG Published

869
870

3475
3476
3477

871
872



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

18.3 TPM_DSAP
Start of informative comment:
The  TPM_DSAP  command  creates  the  authorization  session  handle  using  a  delegated 
AuthData  value  passed  into  the  command  as  an  encrypted  blob  or  from  the  internal 
delegation table. It can be used to start an authorization session for a user key or the 
owner.

As  in  TPM_OSAP,  it  generates  a  shared  secret  and  generates  nonceEven  and 
nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 2 TPM_ENTITY_TYPE entityType The type of delegation information to use 

5 4 TPM_KEY_HANDLE keyHandle Key for which delegated authority corresponds, or 0 if delegated owner activity. 
Only relevant if entityValue equals TPM_DELEGATE_KEY_BLOB

6 20 TPM_NONCE nonceOddDSAP The nonce generated by the caller associated with the shared secret.

7 4 UINT32 entityValueSize The size of entityValue.

8 <> 2S <> BYTE [ ] entityValue

TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB or index 
MUST not be empty
If entityType is TPM_ET_DEL_ROW then entityValue is a 
TPM_DELEGATE_INDEX

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenDSAP Nonce generated by TPM and associated with shared secret.

Description
1. The TPM_DSAP command allows the creation of an authorization session handle and the 

tracking of  the handle  by the TPM. The  TPM generates the handle,  nonceEven and 
nonceEvenOSAP.

184 Level 2 Revision 116 28 February 2011
TCG Published

873
874
875

3478
3479
3480
3481
3482
3483
3484
3485
3486

3487

3488

3489
3490
3491
3492

876
877



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

2. The TPM has an internal limit on the number of handles that may be open at one time, 
so the request for a new handle may fail if there is insufficient space available.

3. The TPM_DSAP allows the binding of a delegated authorization to a specific entity. This 
allows the caller to continue to send in AuthData for each command but not have to 
request the information or cache the actual AuthData. 

4. Each ordinal that uses the DSAP session MUST validate that TPM_PERMANENT_DATA 
-> restrictDelegate does not restrict delegation, based on keyHandle -> keyUsage and 
keyHandle -> keyFlags, return TPM_INVALID_KEYUSAGE on error.

5. On each subsequent use of the DSAP session the TPM MUST generate a new nonce 
value and check if the ordinal to be executed has delegation to execute. The TPM MUST 
ensure that the DSAP shared secret is only available while the DSAP session is valid.

6. When TPM_DSAP is wrapped in an encrypted transport session

a. For input the only parameter encrypted is entityValue

b. For output no parameters are encrypted

7. The DSAP session MUST terminate under any of the following conditions

a. The command that uses the session returns an error

b. If attached to a key, when the key is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt 
an input parameter (TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner  is  executed  and  this  session  is  attached  to  the  owner 
authorization

f. The  session  explicitly  terminated  with  continueAuth,  TPM_Reset  or 
TPM_FlushSpecific

g.  All  DSAP  sessions  MUST  be  invalidated  when  any  of  the  following  commands 
execute:

i. TPM_Delegate_CreateOwnerDelegation 

ii. When Increment is TRUE

iii. TPM_Delegate_LoadOwnerDelegation

iv. TPM_Delegate_Manage

entityType = TPM_ET_DEL_OWNER_BLOB

The entityValue parameter contains an owner delegation blob structure.

entityType = TPM_ET_DEL_ROW

The entityValue parameter contains a row number in the nv Delegation table  which 
should be used for the AuthData value.

entityType = TPM_DEL_KEY_BLOB

The entityValue parameter contains a key delegation blob structure.

Level 2 Revision 116 28 February 2011 185
TCG Published

878
879

3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529

880
881



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Actions
1. If entityType == TPM_ET_DEL_OWNER_BLOB

a. Map entityValue to B1 a TPM_DELEGATE_OWNER_BLOB

b. Validate  that  B1  is  a  valid  TPM_DELEGATE_OWNER_BLOB,  return 
TPM_WRONG_ENTITYTYPE on error

c. Locate  B1  ->  pub  ->  familyID in  the  TPM_FAMILY_TABLE and set  familyRow to 
indicate row, return TPM_BADINDEX if not found

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that B1->verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy B1 -> integrityDigest to H2

ii. Set B1 -> integrityDigest to all zeros

iii. Create H3 the HMAC of B1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

h. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting B1 -> sensitiveArea using 
TPM_DELEGATE_KEY

i. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

ii. Return TPM_BAD_DELEGATE on error

j. Set A1 to S1 -> authValue

2. Else if entityType == TPM_ET_DEL_ROW

a. Verify that entityValue points to a valid row in the delegation table.

b. Set D1 to the delegation information in the row.

c. Set A1 to D1->authValue.

d. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 
row, return TPM_BADINDEX if not found

e. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

f. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

g. Verify that D1->verificationCount equals FR -> verificationCount.

3. Else if entityType == TPM_ET_DEL_KEY_BLOB

a. Map entityValue to K1 a TPM_DELEGATE_KEY_BLOB

b. Validate  that  K1  is  a  valid  TPM_DELEGATE_KEY_BLOB,  return 
TPM_WRONG_ENTITYTYPE on error

c. Locate  K1  ->  pub  ->  familyID in  the  TPM_FAMILY_TABLE and set  familyRow to 
indicate that row, return TPM_BADINDEX if not found

186 Level 2 Revision 116 28 February 2011
TCG Published

882
883
884

3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565

885
886



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that K1 -> pub -> verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy K1 -> integrityDigest to H2

ii. Set K1 -> integrityDigest to all zeros

iii. Create H3 the HMAC of K1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

h. Validate that K1 -> pubKeyDigest identifies keyHandle, return TPM_KEYNOTFOUND 
on error

i. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting K1 -> sensitiveArea using 
TPM_DELEGATE_KEY

j. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

ii. Return TPM_BAD_DELEGATE on error

k. Set A1 to S1 -> authValue

4. Else return TPM_BAD_PARAMETER

5. Generate  a  new  authorization  session  handle  and  reserve  space  to  save  protocol 
identification, shared secret, pcrInfo, both nonces, ADIP encryption scheme, delegated 
permission bits and any other information the TPM needs to manage the session.

6. Read two new values from the RNG to generate nonceEven and nonceEvenOSAP.

7. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 
calculation is A1. The input to the HMAC calculation is the concatenation of nonces 
nonceEvenOSAP and nonceOddOSAP. The output of the HMAC calculation is the shared 
secret which is saved in the authorization area associated with authHandle.

Level 2 Revision 116 28 February 2011 187
TCG Published

887
888

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590

889
890



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

18.4 TPM_SetOwnerPointer
Start of informative comment:
This command will set a reference to which secret the TPM will use when executing an 
owner secret related OIAP or OSAP session. 

This command should only be used to provide an owner delegation function for legacy code 
that does not itself  support delegation.  Normally,  TPM_STCLEAR_DATA->ownerReference 
points to TPM_KH_OWNER, indicating that OIAP and OSAP sessions should use the owner 
authorization. This command allows ownerReference to point to an index in the delegation 
table, indicating that OIAP and OSAP sessions should use the delegation authorization.

In use, a TSS supporting delegation would create and load the owner delegation and set the 
owner pointer to that delegation. From then on, a legacy TSS application would use its OIAP 
and OSAP sessions with the delegated owner authorization.

Since  this  command  is  not  authorized,  the  ownerReference  is  open  to  DoS  attacks. 
Applications  can  attempt  to  recover  from  a  failing  owner  authorization  by  resetting 
ownerReference to an appropriate value.

This command intentionally does not clear OSAP sessions.  A TPM 1.1 application gets the 
benefit of owner delegation, while the original owner can use a pre-existing OSAP session 
with the actual owner authorization.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_ COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

4 2 2S 2 TPM_ENTITY_TYPE entityType The type of entity in use 

5 4 3S 4 UINT32 entityValue The selection value based on entityType

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_ COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

Actions
1. Map TPM_STCLEAR_DATA to V1

2. If entityType = TPM_ET_DEL_ROW

188 Level 2 Revision 116 28 February 2011
TCG Published

891
892
893

3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609

3610

3611

3612
3613
3614

894
895



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. This value indicates that the entity is a delegate row. entityValue is a delegate index 
in the delegation table. 

b. Validate that entityValue points to a legal row within the delegate table stored within 
the TPM. If not return TPM_BADINDEX

i. Set D1 to the delegation information in the row.

c. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 
row, return TPM_BADINDEX if not found.

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that B1->verificationCount equals FR -> verificationCount.

g. The TPM sets V1-> ownerReference to entityValue

h. Return TPM_SUCCESS

3. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored. 

b. The TPM sets V1-> ownerReference to TPM_KH_OWNER

c. Return TPM_SUCCESS

4. Return TPM_BAD_PARAMETER

Level 2 Revision 116 28 February 2011 189
TCG Published

896
897

3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631

898
899



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19. Delegation Commands

19.1 TPM_Delegate_Manage
Start of informative comment:
TPM_Delegate_Manage  is  the  fundamental  process  for  managing  the  Family  tables, 
including  enabling/disabling  Delegation  for  a  selected  Family.  Normally 
TPM_Delegate_Manage  must  be  executed  at  least  once  (to  create  Family  tables  for  a 
particular family) before any other type of Delegation command in that family can succeed.

TPM_Delegate_Manage is authorized by the TPM Owner if an Owner is installed, because 
changing  a  table  is  a  privileged  Owner  operation.  If  no  Owner  is  installed, 
TPM_Delegate_Manage requires no privilege to  execute. This does not disenfranchise an 
Owner,  since  there  is  no  Owner,  and  simplifies  loading  of  tables  during  platform 
manufacture or on first-boot. Burn-out of TPM non-volatile storage by inappropriate use is 
mitigated by the TPM’s normal limits on NV-writes in the absence of an Owner. Tables can 
be locked after loading, to prevent subsequent tampering, and only unlocked by the Owner, 
his delegate, or the act of removing the Owner (even if there is no Owner).

TPM_Delegate_Manage command is customized by opCode:

(1) TPM_FAMILY_ENABLE enables/disables use of a family and all the rows of the delegate 
table belonging to that family, 

(2) TPM_FAMILY_ADMIN can be used to prevent further management of the Tables until an 
Owner is installed, or until the Owner is removed from the TPM. (Note that the Physical  
Presence  command  TPM_ForceClear  always  enables  further  management,  even  if 
TPM_ForceClear is used when no Owner is installed.)

 (3) TPM_FAMILY_CREATE creates a new family. Sessions are invalidated even in this case 
because the lastFamilyID could wrap.

(4) TPM_FAMILY_INVALIDATE invalidates an existing family.  The TPM_SELFTEST_FAILED 
error code is returned because the familyRow has already been validated earlier.  Failure 
here indicates a malfunction of the TPM.

The  rationale  for  Action  19.1 is  that  invalidating  the  family  ID  prevents  the  use  of 
associated delegate rows, whether or not those delegate rows are themselves invalidated. 
Omitting the delegate row invalidation avoids an NV write.

End of informative comment.

190 Level 2 Revision 116 28 February 2011
TCG Published

900
901
902

3632

3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662

903
904



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 2S 4 TPM_FAMILY_ID familyID The familyID that is to be managed

5 4 3s 4 TPM_FAMILY_OPERATION opCode Operation to be performed by this command.

6 4 4s 4 UINT32 opDataSize Size in bytes of opData

7 <> 5s <> BYTE [ ] opData Data necessary to implement opCode

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 3S 4 UINT32 retDataSize Size in bytes of retData

5 <> 4S <> BYTE [ ] retData Returned data

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Action
1. If opCode != TPM_FAMILY_CREATE

a. Locate  familyID  in  the  TPM_FAMILY_TABLE  and  set  familyRow  to  indicate  row, 
return TPM_BADINDEX if not found

b. Set  FR,  a  TPM_FAMILY_TABLE_ENTRY,  to  TPM_FAMILY_TABLE.  famTableRow 
[familyRow]

2. If tag = TPM_TAG_RQU_AUTH1_COMMAND

a. Validate the command and parameters using ownerAuth, return TPM_AUTHFAIL on 
error

Level 2 Revision 116 28 February 2011 191
TCG Published

905
906

3663

3664

3665
3666
3667
3668
3669
3670
3671
3672
3673

907
908



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 
ownerReference delegation)

i. If opCode = TPM_FAMILY_CREATE

(1) The TPM MUST ignore familyID

ii. Else

(1) Verify  that  the  familyID  associated  with  authHandle  matches  the 
familyID parameter, return TPM_DELEGATE_FAMILY on error

3. Else

a. If TPM_PERMANENT_DATA -> ownerAuth is valid, return TPM_AUTHFAIL

b. If  opCode  !=  TPM_FAMILY_CREATE  and  FR  ->  flags  -> 
TPM_DELEGATE_ADMIN_LOCK is TRUE, return TPM_DELEGATE_LOCK

c. Validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

4. The TPM invalidates sessions

a. MUST invalidate all DSAP sessions

b. MUST invalidate all OSAP sessions associated with the delegation table

c. MUST set TPM_STCLEAR_DATA -> ownerReference to TPM_KH_OWNER

d. MAY invalidate any other session

5. If opCode == TPM_FAMILY_CREATE 

a. Validate that sufficient space exists within the TPM to store an additional family and 
map F2 to the newly allocated space.

b. Validate that opData is a TPM_FAMILY_LABEL

i. If opDataSize != sizeof(TPM_FAMILY_LABEL) return TPM_BAD_PARAM_SIZE

c. Map F2 to a TPM_FAMILY_TABLE_ENTRY

i. Set F2 -> tag to TPM_TAG_FAMILY_TABLE_ENTRY

ii. Set F2 -> familyLabel to opData

d. Increment TPM_PERMANENT_DATA -> lastFamilyID by 1

e. Set F2 -> familyID = TPM_PERMANENT_DATA -> lastFamilyID 

f. Set F2 -> verificationCount = 1

g. Set F2 -> flags -> TPM_FAMFLAG_ENABLED to FALSE

h. Set F2 -> flags -> TPM_DELEGATE_ADMIN_LOCK to FALSE

i. Set retDataSize = 4

192 Level 2 Revision 116 28 February 2011
TCG Published

909
910
911

3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708

912
913



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

j. Set retData = F2 -> familyID

k. Return TPM_SUCCESS

6. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

7. If opCode == TPM_FAMILY_ADMIN

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set (FR -> flags -> TPM_DELEGATE_ADMIN_LOCK) = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

8. else If opCode == TPM_FAMILY_ENABLE

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set FR -> flags-> TPM_FAMFLAG_ENABLED = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

9. else If opCode == TPM_FAMILY_INVALIDATE

a. Invalidate all data associated with familyRow

i. All data is all information pointed to by FR 

ii. return TPM_SELFTEST_FAILED on failure

b. The TPM MAY invalidate delegate rows that contain the same familyID.

c. Set retDataSize = 0

d. Return TPM_SUCCESS

10.Else return TPM_BAD_PARAMETER

Level 2 Revision 116 28 February 2011 193
TCG Published

914
915

3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729

916
917



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19.2 TPM_Delegate_CreateKeyDelegation
Start of informative comment:
This command delegates privilege to use a key by creating a blob that can be used by 
TPM_DSAP. 

There is no check for appropriateness of the key’s key usage against the key permission 
settings. If the key usage is incorrect, this command succeeds, but the delegated command 
will fail.

These blobs CANNOT be used as input data for TPM_LoadOwnerDelegation because the 
internal TPM delegate table can store owner delegations only. 

(TPM_Delegate_CreateOwnerDelegation must be used to delegate Owner privilege.)

The publicInfo -> familyID can specify a disabled family row.  The family row is checked 
when the key delegation is used in a DSAP session, not when it is created.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key.

5 <> 2S <> TPM_DELEGATE_PUBLIC publicInfo The public information necessary to fill in the blob

6 20 3S 20 TPM_ENCAUTH delAuth The encrypted new AuthData for the blob. The encryption key is the 
shared secret from the authorization session protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth

194 Level 2 Revision 116 28 February 2011
TCG Published

918
919
920

3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742

3743

3744

921
922



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_KEY_BLOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Description
1. The use restrictions that may be present on the key pointed to by keyHandle are not 

enforced for this command. Stated another way, TPM_CreateKeyDelegation is not a use 
of the key.

Action
1. Verify AuthData for the command and parameters using privAuth

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

3. If  the  key  authentication  is  in  fact  a  delegation,  then the  TPM SHALL validate  the 
command and parameters using Delegation authorisation, then

a. Validate  that  authHandle  ->  familyID  equals  publicInfo  ->  familyID  return 
TPM_DELEGATE_FAMILY on error

b. If  TPM_FAMILY_TABLE.famTableRow[  authHandle  ->  familyID]  ->  flags  -> 
TPM_FAMFLAG_ENABLED is FALSE, return error TPM_DISABLED_CMD.

c. Verify  that  the delegation bits  in publicInfo do  not  grant  more permissions then 
currently delegated. Otherwise return error TPM_AUTHFAIL 

4. Check that publicInfo -> delegateType is TPM_DEL_KEY_BITS

5. Verify  that  authHandle  indicates  an  OSAP  or  DSAP  session  return 
TPM_INVALID_AUTHHANDLE on error

6. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle.

7. Create  h1  the  SHA-1  of  TPM_STORE_PUBKEY  structure  of  the  key  pointed  to  by 
keyHandle

8. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE

Level 2 Revision 116 28 February 2011 195
TCG Published

923
924

3745

3746
3747
3748
3749

3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769

925
926



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. Set M1 -> authValue to a1

c. The  TPM  MAY  add  additional  information  of  a  sensitive  nature  relative  to  the 
delegation

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

10.Create P1 a TPM_DELEGATE_KEY_BLOB

a. Set P1 -> tag to TPM_TAG_DELG_KEY_BLOB

b. Set P1 -> pubKeyDigest to H1

c. Set P1 -> pub to PublicInfo

d. Set P1 -> pub -> verificationCount to familyRow -> verificationCount

e. Set P1 -> integrityDigest to all zeros

f. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The 
information MAY include symmetric IV, symmetric mode of encryption and other data 
that allows the TPM to process the blob in the future.

g. Set P1 -> sensitiveSize to the size of M2

h. Set P1 -> sensitiveArea to M2

11.Calculate H2 the HMAC of P1 using tpmProof as the secret

12.Set P1 -> integrityDigest to H2

13.Ignore continueAuthSession on input set continueAuthSession to FALSE on output

14.Return P1 as blob

196 Level 2 Revision 116 28 February 2011
TCG Published

927
928
929

3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788

930
931



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

19.3 TPM_Delegate_CreateOwnerDelegation
Start of informative comment:
TPM_Delegate_CreateOwnerDelegation  delegates  the  Owner’s  privilege  to  use  a  set  of 
command ordinals, by creating a blob. Such blobs can be used as input data for TPM_DSAP 
or TPM_Delegate_LoadOwnerDelegation.

TPM_Delegate_CreateOwnerDelegation includes the ability to void all existing delegations 
(by incrementing the verification count) before creating the new delegation. This ensures 
that the new delegation will be the only delegation that can operate at Owner privilege in 
this family. This new delegation could be used to enable a security monitor (a local separate  
entity, or remote separate entity, or local host entity) to reinitialize a family and perhaps 
perform external verification of delegation settings. Normally the ordinals for a delegated 
security monitor would include TPM_Delegate_CreateOwnerDelegation (this command) in 
order  to  permit  the  monitor  to  create  further  delegations,  and 
TPM_Delegate_UpdateVerification to reactivate some previously voided delegations.

If  the  verification  count  is  incremented  and  the  new delegation  does  not  delegate  any 
privileges (to any ordinals) at all, or uses an authorisation value that is then discarded, this  
family’s  delegations  are  all  void  and  delegation  must  be  managed  using  actual  Owner 
authorisation.

(TPM_Delegate_CreateKeyDelegation must be used to delegate privilege to use a key.)

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation.

4 1 2S 1 BOOL increment Flag dictates whether verificationCount will be incremented

5 <> 3S <> TPM_DELEGATE_PUBLIC publicInfo The public parameters for the blob

6 20 4S 20 TPM_ENCAUTH delAuth The encrypted new AuthData for the blob. The encryption key is the 
shared secret from the OSAP protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Level 2 Revision 116 28 February 2011 197
TCG Published

932
933

3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808

3809

934
935



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_OWNER_B
LOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth

Action
1. The TPM SHALL authenticate the command using TPM Owner authentication. Return 

TPM_AUTHFAIL on failure.

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
the row return TPM_BADINDEX if not found

a. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

3. If the TPM Owner authentication is in fact a delegation

a. Validate  that  authHandle  ->  familyID  equals  publicInfo  ->  familyID  return 
TPM_DELEGATE_FAMILY on error

b. If  FR  ->  flags  ->  TPM_FAMFLAG_ENABLED  is  FALSE,  return  error 
TPM_DISABLED_CMD.

c. Verify  that  the delegation bits  in publicInfo do  not  grant  more permissions then 
currently delegated. Otherwise, return error TPM_AUTHFAIL. 

4. Check that publicInfo -> delegateType is TPM_DEL_OWNER_BITS

5. Verify  that  authHandle  indicates  an  OSAP  or  DSAP  session  return 
TPM_INVALID_AUTHHANDLE on error

6. If increment == TRUE

a. Increment FR -> verificationCount

b. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER

c. The TPM invalidates sessions

i. MUST invalidate all DSAP sessions

ii. MUST invalidate all OSAP sessions associated with the delegation table

iii. MAY invalidate any other session

198 Level 2 Revision 116 28 February 2011
TCG Published

936
937
938

3810

3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

939
940



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle.

8. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE

b. Set M1 -> authValue to a1

c. Set other M1 fields as determined by the TPM vendor

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

10.Create B1 a TPM_DELEGATE_OWNER_BLOB

a. Set B1 -> tag to TPM_TAG_DELG_OWNER_BLOB

b. Set B1 -> pub to publicInfo

c. Set B1 -> sensitiveSize to the size of M2

d. Set B1 -> sensitiveArea to M2

e. Set B1 -> integrityDigest to all zeros

f. Set B1 -> pub -> verificationCount to FR -> verificationCount

11.The  TPM  sets  additionalArea  and  additionalAreaSize  appropriate  for  this  TPM.  The 
information MAY include symmetric IV, symmetric mode of encryption and other data 
that allows the TPM to process the blob in the future.

12.Create H1 the HMAC of B1 using tpmProof as the secret

13.Set B1 -> integrityDigest to H1

14.Ignore continueAuthSession on input set continueAuthSession to FALSE on output

15.Return B1 as blob

Level 2 Revision 116 28 February 2011 199
TCG Published

941
942

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853

943
944



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19.4 TPM_Delegate_LoadOwnerDelegation
Start of informative comment:
This  command  loads  a  delegate  table  row  blob  into  a  non-volatile  delegate  table  row. 
TPM_Delegate_LoadOwnerDelegation can be used during manufacturing or on first  boot 
(when no Owner is  installed),  or  after  an Owner is  installed.  If  an  Owner is  installed, 
TPM_Delegate_LoadOwnerDelegation  requires  Owner  authorisation,  and  sensitive 
information must be encrypted.

Burn-out of TPM non-volatile storage by inappropriate use is mitigated by the TPM’s normal 
limits on NV-writes in the absence of an Owner. Tables can be locked after loading using 
TPM_Delegate_Manage, to prevent subsequent tampering.

A management system outside the TPM is  expected to  manage  the delegate  table  rows 
stored on the TPM, and can overwrite any previously stored data.   There is  no way to 
explicitly delete a delegation entry.  A new entry can overwrite an invalid entry.

This command cannot be used to load key delegation blobs into the TPM

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_Delegate_LoadOwnerDelegation

4

4

3S

4

TP
M_
DE
LE
GA
TE
_I

ND
EX

ind
ex

Th
e 

ind
ex 
of 
the 
del
eg
ate 
ro

4 3S 4 TPM_DELEGATE_INDEX index The index of the delegate row to be written

200 Level 2 Revision 116 28 February 2011
TCG Published

945
946
947

3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868

3869

948
949



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

w 
to 
be 
wri
tte
n

5 4 4S 4 UINT32 blobSize The size of the delegate blob

6 <> 5S <> TPM_DELEGATE_OWNER
_BLOB blob Delegation information, including encrypted portions as appropriate

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Level 2 Revision 116 28 February 2011 201
TCG Published

950
951

952
953



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S  4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_LoadOwnerDelegation

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions
1. Map blob to D1 a TPM_DELEGATE_OWNER_BLOB.

a. Validate that D1 -> tag == TPM_TAG_DELEGATE_OWNER_BLOB

2. Locate D1 -> pub -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

3. Set FR to TPM_FAMILY_TABLE -> famTableRow[familyRow]

4. If TPM Owner is installed

a. Validate  the  command and  parameters  using  TPM Owner  authentication,  return 
TPM_AUTHFAIL on error

b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 
ownerReference delegation), verify that D1 -> pub -> familyID matches authHandle -> 
familyID, on error return TPM_DELEGATE_FAMILY

5. Else

a. If tag is not TPM_TAG_RQU_COMMAND, return TPM_AUTHFAIL

b. If  FR  ->  flags  ->  TPM_DELEGATE_ADMIN_LOCK  is  TRUE  return 
TPM_DELEGATE_LOCK

c. Validate max NV writes without an owner

i. Set NV1 to PD -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set PD -> noOwnerNVWrite to NV1

6. If FR -> flags -> TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

7. If TPM Owner is installed, validate the integrity of the blob

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to all zeros

202 Level 2 Revision 116 28 February 2011
TCG Published

954
955
956

3870

3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895

957
958



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3, return TPM_AUTHFAIL on mismatch

8. If TPM Owner is installed, create S1 a TPM_DELEGATE_SENSITIVE area by decrypting 
D1 -> sensitiveArea using TPM_DELEGATE_KEY. Otherwise set S1 = D1 -> sensitiveArea

9. Validate S1

a. Validate  that  S1  ->  tag  ==  TPM_TAG_DELEGATE_SENSITIVE,  return 
TPM_INVALID_STRUCTURE on error

10.Validate that index is a valid value for delegateTable, return TPM_BADINDEX on error

11.The TPM invalidates sessions

a. MUST invalidate all DSAP sessions

b. MUST invalidate all OSAP sessions associated with the delegation table

c. MAY invalidate any other session

12.Copy data to the delegate table row

a. Copy the TPM_DELEGATE_PUBLIC from D1 -> pub to TPM_DELEGATE_TABLE -> 
delRow[index] -> pub.

b. Copy  the  TPM_SECRET  from  S1  ->  authValue  to  TPM_DELEGATE_TABLE  -> 
delRow[index] -> authValue.

c. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER

d. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

13.Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 203
TCG Published

959
960

3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915

961
962



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19.5 TPM_Delegate_ReadTable
Start of informative comment:
This command reads from the TPM the public contents of the family and delegate tables 
that are stored on the TPM. Such data is required during external verification of tables.

There  are  no  restrictions  on  the  execution  of  this  command;  anyone  can  read  this 
information  regardless  of  the  state  of  the  PCRs,  regardless  of  whether  they  know any 
specific AuthData value and regardless of whether or not the enable and admin bits are set 
one way or the other.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

4 4 3S 4 UINT32 familyTableSize Size in bytes of familyTable

5 <> 4S <> BYTE [ ] familyTable Array of TPM_FAMILY_TABLE_ENTRY elements

6 4 5S 4 UINT32 delegateTableSize Size in bytes of delegateTable

7 <> 6S <> BYTE[] delegateTable Array of TPM_DELEGATE_INDEX and TPM_DELEGATE_PUBLIC 
elements

Actions
1. Set  familyTableSize  to  the  number  of  valid  families  on  the  TPM  times 

sizeof(TPM_FAMILY_TABLE_ELEMENT).

2. Copy the valid entries in the internal family table to the output array familyTable

3. Set delegateTableSize to the number of valid delegate table entries on the TPM times 
(sizeof(TPM_DELEGATE_PUBLIC) + 4).

4. For each valid entry 

a. Write the TPM_DELEGATE_INDEX to delegateTable

b. Copy the TPM_DELEGATE_PUBLIC to delegateTable 

204 Level 2 Revision 116 28 February 2011
TCG Published

963
964
965

3916
3917
3918
3919
3920
3921
3922
3923
3924

3925

3926

3927
3928
3929
3930
3931
3932
3933
3934
3935

966
967



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5. Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 205
TCG Published

968
969

3936

970
971



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

19.6 TPM_Delegate_UpdateVerification
Start of informative comment:
TPM_UpdateVerification sets the verificationCount in an entity (a blob or a delegation row) 
to the current family value, in order that the delegations represented by that entity will 
continue to be accepted by the TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 2S 4 UINT32 inputSize The size of inputData

5 <> 3S <> BYTE inputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB 
or TPM_DELEGATE_INDEX

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth Authorization HMAC key: ownerAuth.

206 Level 2 Revision 116 28 February 2011
TCG Published

972
973
974

3937
3938
3939
3940
3941
3942

3943

975
976



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 3S 4 UINT32 outputSize The size of the output

5 <> 4S <> BYTE outputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB 

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Verify the TPM Owner, directly or indirectly through delegation, authorizes the command 

and parameters, on error return TPM_AUTHFAIL

2. Determine  the  type  of  inputData  (TPM_DELEGATE_TABLE_ROW  or 
TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB) and map D1 to that 
structure

a. Mapping to TPM_DELEGATE_TABLE_ROW requires taking inputData as a tableIndex 
and locating the appropriate row in the table

3. If D1 is a TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB, validate the 
integrity of D1

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to all zeros

c. Create H3 the HMAC of D1 using tpmProof as the secret 

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

4. Locate (D1 -> pub -> familyID) in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

6. If  delegated,  verify  that  family  of  the  delegated  Owner-auth  is  the  same  as  D1: 
(authHandle  ->  familyID)  ==  (D1  ->  pub  ->  familyID);  otherwise  return  error 
TPM_DELEGATE_FAMILY

7. If delegated, verify that the family of the delegated Owner-auth is enabled: if (authHandle 
-> familyID -> flags TPM_FAMFLAG_ENABLED) is FALSE, return TPM_DISABLED_CMD

8. Set D1 -> verificationCount to FR -> verificationCount

Level 2 Revision 116 28 February 2011 207
TCG Published

977
978

3944

3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967

979
980



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

9. If  D1  is  a  TPM_DELEGATE_OWNER_BLOB  or  TPM_DELEGATE_KEY_BLOB  set  the 
integrity of D1

a. Set D1 -> integrityDigest to all zeros

b. Create H1 the HMAC of D1 using tpmProof as the secret

c. Set D1 -> integrityDigest to H1

10.If D1 is a blob recreate the blob and return it

208 Level 2 Revision 116 28 February 2011
TCG Published

981
982
983

3968
3969
3970
3971
3972
3973

984
985



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

19.7 TPM_Delegate_VerifyDelegation
Start of informative comment:
TPM_VerifyDelegation interprets a delegate blob and returns success or failure, depending 
on whether the blob is currently valid. The delegate blob is NOT loaded into the TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

4 4 2S 4 UINT32 delegationSize The length of the delegated information blob

5 <> 3S <> BYTE[ ] delegation TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

Actions
1. Determine  the  type  of  blob,  If  delegation  ->  tag  is  equal  to 

TPM_TAG_DELGATE_OWNER_BLOB then

a. Map D1 a TPM_DELEGATE_OWNER_BLOB to delegation

2. Else if delegation -> tag = TPM_TAG_DELG_KEY_BLOB

a. Map D1 a TPM_DELEGATE_KEY_BLOB to delegation

3. Else return TPM_BAD_PARAMETER

4. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, 
return TPM_BADINDEX if not found

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

6. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

7. Validate  that  D1  ->  pub  ->  verificationCount  matches  FR  ->  verificationCount,  on 
mismatch return TPM_FAMILYCOUNT

8. Validate the integrity of D1

a. Copy D1 -> integrityDigest to H2

Level 2 Revision 116 28 February 2011 209
TCG Published

986
987

3974
3975
3976
3977
3978

3979

3980

3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

988
989



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. Set D1 -> integrityDigest to all zeros

c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

9. Create S1 a TPM_DELEGATE_SENSITIVE area by decrypting D1 -> sensitiveArea using 
TPM_DELEGATE_KEY

10.Validate S1 values

a. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

b. Return TPM_BAD_PARAMETER on error

11.Return TPM_SUCCESS

210 Level 2 Revision 116 28 February 2011
TCG Published

990
991
992

3996
3997
3998
3999
4000
4001
4002
4003
4004

993
994



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

20. Non-volatile Storage
Start of informative comment:
This section handles the allocation and use of the TPM non-volatile storage.

End of informative comment.
If nvIndex refers to the DIR, the TPM ignores actions containing access control checks that  
have no meaning for the DIR. The TPM only checks the owner authorization.

Level 2 Revision 116 28 February 2011 211
TCG Published

995
996

4005
4006
4007
4008
4009
4010

997
998



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

20.1 TPM_NV_DefineSpace
Start of informative comment:
This establishes the space necessary for the indicated index. The definition will include the 
access requirements for writing and reading the area.  

Previously defined space at the index and new size is non-zero (and space is available, 
etc.) –> redefine the index

No previous space at the index and new size is non-zero (and space is available, 
etc.)-> define the index

Previously defined space at the index and new size is 0 -> delete the index

No previous space at the index and new size is 0 -> error

The space definition size does not include the area needed to manage the space.

Setting TPM_PERMANENT_FLAGS -> nvLocked TRUE when it is already TRUE is not an 
error.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_DefineSpace

4 <> 2S <> TPM_NV_DATA_PUBLIC pubInfo The public parameters of the NV area

5 20 3S 20 TPM_ENCAUTH encAuth The encrypted AuthData, only valid if the attributes require subsequent 
authorization

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for ownerAuth

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_DefineSpace

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

212 Level 2 Revision 116 28 February 2011
TCG Published

999
1000
1001

4011

4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025

4026

4027

1002
1003



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed to FALSE

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Description
For  the  case  where  pubInfo  ->  dataSize  is  0,  pubInfo  ->  pcrInfoRead  and  pubInfo  -> 
pcrInfoWrite are not used.  However, since the general principle is to validate parameters 
before changing state, the TPM SHOULD parse pubInfo completely before invalidating the 
data area.

Actions
1. If pubInfo -> nvIndex == TPM_NV_INDEX_LOCK and tag = TPM_TAG_RQU_COMMAND

a. If  pubInfo -> dataSize is not 0, the command MAY return TPM_BADINDEX.

b. Set TPM_PERMANENT_FLAGS -> nvLocked to TRUE

c. Return TPM_SUCCESS

2. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 
for the Max NV writes are ignored

a. Ignored  checks  include  physical  presence,  owner  authorization,  'D'  bit  check, 
bGlobalLock, no authorization with a TPM owner present, bWriteSTClear, the check that 
pubInfo  ->  dataSize  is  0  in  Action  5.c.  (the  no-authorization  case)  ,  disabled  and 
deactivated.

i. The  check  that  pubInfo  ->  dataSize  is  0  is  still  enforced  in  Action  6.f. 
(returning after deleting a previously defined storage area) and Action 9.f.  (not 
allowing a space of size 0 to be defined).

ii. If ownerAuth is present, the TPM MAY check the authorization HMAC.

b. The check for pubInfo -> nvIndex == TPM_NV_INDEX0 in Action 3. is not ignored.

3. If  pubInfo  ->  nvIndex  has  the  D  bit  (bit  28)  set  to  a  1  or  pubInfo  ->  nvIndex  == 
TPM_NV_INDEX0 then 

a. Return TPM_BADINDEX

b. The D bit specifies an index value that is set in manufacturing and can never be 
deleted or added to the TPM

c. Index value TPM_NV_INDEX0 is reserved and cannot be defined

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. The  TPM  MUST  validate  the  command  and  parameters  using  the  TPM  Owner 
authentication and ownerAuth, on error return TPM_AUTHFAIL

b. authHandle session type MUST be OSAP

c. Create A1 by decrypting encAuth according to the ADIP indicated by authHandle.

5. else

a. Validate the assertion of physical presence. Return TPM_BAD_PRESENCE on error.

Level 2 Revision 116 28 February 2011 213
TCG Published

1004
1005

4028
4029
4030
4031
4032

4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061

1006
1007



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. If TPM Owner is present then return TPM_OWNER_SET.

c. If pubInfo -> dataSize is 0 then return TPM_BAD_DATASIZE. Setting the size to 0 
represents an attempt to delete the value without TPM Owner authentication.

d. Validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set NV1_INCREMENTED to TRUE

e. Set A1 to encAuth. There is no nonce or authorization to create the encryption string, 
hence the AuthData value is passed in the clear

6. If pubInfo -> nvIndex points to a valid previously defined storage area then

a. Map D1 a TPM_NV_DATA_SENSITIVE to the storage area

b. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK then

i. If  TPM_STCLEAR_FLAGS  ->  bGlobalLock  is  TRUE  then  return 
TPM_AREA_LOCKED

c. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

i. If D1 -> pubInfo -> bWriteSTClear is TRUE then return TPM_AREA_LOCKED

d. Invalidate the data area currently pointed to by D1 and ensure that if the area is 
reallocated no residual information is left

e. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

f. The TPM invalidates authorization sessions

i. MUST invalidate all authorization sessions associated with D1

ii. MAY invalidate any other authorization session

g. If pubInfo -> dataSize is 0 then return TPM_SUCCESS

7. Parse pubInfo -> pcrInfoRead

a. Validate pcrInfoRead structure on error return TPM_INVALID_STRUCTURE

i. Validation includes proper PCR selections and locality selections

8. Parse pubInfo -> pcrInfoWrite

a. Validate pcrInfoWrite structure on error return TPM_INVALID_STRUCTURE

i. Validation includes proper PCR selections and locality selections

b. If pcrInfoWrite -> localityAtRelease disallows some localities

i. Set writeLocalities to TRUE

c. Else

i. Set writeLocalities to FALSE

214 Level 2 Revision 116 28 February 2011
TCG Published

1008
1009
1010

4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096

1011
1012



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

9. Validate that the attributes are consistent

a. The  TPM  SHALL  ignore  the  bReadSTClear,  bWriteSTClear  and  bWriteDefine 
attributes during the execution of this command

b. If  TPM_NV_PER_OWNERWRITE is  TRUE and TPM_NV_PER_AUTHWRITE is  TRUE 
return TPM_AUTH_CONFLICT

c. If  TPM_NV_PER_OWNERREAD  is  TRUE  and  TPM_NV_PER_AUTHREAD  is  TRUE 
return TPM_AUTH_CONFLICT

d. If  TPM_NV_PER_OWNERWRITE  and  TPM_NV_PER_AUTHWRITE  and 
TPM_NV_PER_WRITEDEFINE  and  TPM_NV_PER_PPWRITE  and  writeLocalities  are  all 
FALSE

i. Return TPM_PER_NOWRITE

e. Validate pubInfo -> nvIndex

i. Make sure that the index is applicable for this TPM. Return TPM_BADINDEX 
on error. A valid index is platform and context sensitive. That is, attempting to 
validate an index may be successful in one configuration and invalid in another 
configuration.  The  individual  index  values  MUST  indicate  if  there  are  any 
restrictions on the use of the index.

ii. TPM_NV_INDEX_DIR is always an invalid defined index.

f. If dataSize is 0 return TPM_BAD_PARAM_SIZE

10.Create D1 a TPM_NV_DATA_SENSITIVE structure

a. Set D1 -> pubInfo to pubInfo

b. Set D1 -> authValue to A1

c. Set D1 -> pubInfo -> bReadSTClear to FALSE

d. Set D1 -> pubInfo -> bWriteSTClear to FALSE

e. Set D1 -> pubInfo -> bWriteDefine to FALSE

11.Validate that sufficient NV is available to store D1 and pubInfo -> dataSize bytes of data

a. Return TPM_NOSPACE if pubInfo -> dataSize is not available in the TPM

12.If pubInfo -> nvIndex is not TPM_NV_INDEX_TRIAL 

a. Reserve NV space for pubInfo -> dataSize 

b. Set all bytes in the newly defined area to 0xFF

c. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

13.Ignore continueAuthSession on input and set to FALSE on output

14.Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 215
TCG Published

1013
1014

4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130

1015
1016



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

20.2 TPM_NV_WriteValue
Start of informative comment:
This command writes the value to a defined area. The write can be TPM Owner authorized 
or unauthorized and protected by other attributes and will work when no TPM Owner is 
present.

The action setting bGlobalLock to  TRUE is intentionally  before  the action checking the 
owner authorization.  This allows code (e.g., a BIOS) to lock NVRAM without knowing the 
owner authorization.

The  DIR  (TPM_NV_INDEX_DIR)  has  the  attributes  TPM_NV_PER_OWNERWRITE  and 
TPM_NV_WRITEALL.

Certain platform manufacturers or software might require specific error handling in Action 
20.2.

Owner authorization is not required when nvLocked is FALSE.  If the host does send owner 
authorization,  Action  20.2 indicates  that  it  should  be  correct,  since  some  TPM 
implementations may validate it.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the NV Area

6 4 4S 4 UINT32 dataSize The size of the data parameter

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValue

216 Level 2 Revision 116 28 February 2011
TCG Published

1017
1018
1019

4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146

4147

4148

1020
1021



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Description
For TPM_NV_INDEX_DIR, the ordinal MUST NOT set an error code for the “if dataSize = 0” 
action.  However, the flags set in this case are not applicable to the DIR.

Actions
1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 

for the max NV writes are ignored

a. Ignored  checks  include  physical  presence,  owner  authorization, 
TPM_NV_PER_OWNERWRITE, PCR, bWriteDefine, bGlobalLock, bWriteSTClear, locality, 
disabled and deactivated.

b. TPM_NV_PER_AUTHWRITE is not ignored.

c. If ownerAuth is present, the TPM MAY check the authorization HMAC.

2. Locate  and set D1 to the TPM_NV_DATA_AREA that  corresponds to  nvIndex,  return 
TPM_BADINDEX on error

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0]

3. If TPM_PERMANENT_FLAGS -> nvLocked is TRUE

a. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is TRUE

i. If TPM_PERMANENT_FLAGS -> disable is TRUE, return TPM_DISABLED

ii. If TPM_STCLEAR_FLAGS -> deactivated is TRUE, return TPM_DEACTIVATED

b. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is FALSE

i. If  TPM_PERMANENT_FLAGS  ->  disable  is  TRUE,  the  TPM  MAY  return 
TPM_DISABLED

ii. If  TPM_STCLEAR_FLAGS  ->  deactivated  is  TRUE,  the  TPM  MAY  return 
TPM_DEACTIVATED

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If  D1  ->  permission  ->  TPM_NV_PER_OWNERWRITE  is  FALSE  return 
TPM_AUTH_CONFLICT

i. This check is ignored if nvIndex is TPM_NV_INDEX0.

b. Validate  command  and  parameters  using  ownerAuth  HMAC  with  TPM  Owner 
authentication as the secret, return TPM_AUTHFAIL on error

5. Else

a. If  D1  ->  permission  ->  TPM_NV_PER_OWNERWRITE  is  TRUE  return 
TPM_AUTH_CONFLICT

i. This check is ignored if nvIndex is TPM_NV_INDEX0.

Level 2 Revision 116 28 February 2011 217
TCG Published

1022
1023

4149
4150
4151

4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181

1024
1025



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. If no TPM Owner validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv.  Set NV1_INCREMENTED to TRUE

6. If nvIndex is TPM_NV_INDEX0 then 

a. If dataSize is not 0, the TPM MAY return TPM_BADINDEX.

b. Set TPM_STCLEAR_FLAGS -> bGlobalLock to TRUE

c. Return TPM_SUCCESS

7. If  D1  ->  permission  ->  TPM_NV_PER_AUTHWRITE  is  TRUE  return 
TPM_AUTH_CONFLICT

8. Check  that  D1  ->  pcrInfoWrite  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

9. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

10.If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED

11.If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED

12.If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 ->bWriteSTClear is TRUE return TPM_AREA_LOCKED

13.If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of TPM_STCLEAR_DATA -> 
PCR[]

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoWrite

b. Compare P1 to D1 -> pcrInfoWrite -> digestAtRelease return TPM_WRONGPCRVAL 
on mismatch

14.If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

15.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

218 Level 2 Revision 116 28 February 2011
TCG Published

1026
1027
1028

4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217

1029
1030



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

e. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

16.Set D1 -> bReadSTClear to FALSE

17.Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 219
TCG Published

1031
1032

4218
4219
4220
4221
4222
4223
4224

1033
1034



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

20.3 TPM_NV_WriteValueAuth
Start of informative comment:
This command writes to a previously defined area. The area must require authorization to 
write. Use this command when authorization other than the owner authorization is to be 
used. Otherwise, use TPM_NV_WriteValue.

The Part 2 ordinal table indicates that TPM_NV_WriteValueAuth requires an owner present. 
This is normative, although it was a mistake.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the chunk

6 4 4S 4 UINT32 dataSize The size of the data area

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for NV element authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValueAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE NonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Actions
1. Locate  and set D1 to the TPM_NV_DATA_AREA that  corresponds to  nvIndex,  return 

TPM_BADINDEX on error

220 Level 2 Revision 116 28 February 2011
TCG Published

1035
1036
1037

4225
4226
4227
4228
4229
4230
4231
4232

4233

4234

4235
4236
4237

1038
1039



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

2. If  D1  ->  attributes  does  not  specify  TPM_NV_PER_AUTHWRITE  then  return 
TPM_AUTH_CONFLICT

3. Validate authValue using D1 -> authValue, return TPM_AUTHFAIL on error

4. Check  that  D1  ->  pcrInfoWrite  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

5. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

6. If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoWrite

b. Compare P1 to digestAtRelease return TPM_WRONGPCRVAL on mismatch

7. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED 

8. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED

9. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 -> bWriteSTClear is TRUE return TPM_AREA_LOCKED

10.If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

11.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

12.Set D1 -> bReadSTClear to FALSE

13.Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 221
TCG Published

1040
1041

4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268

1042
1043



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

20.4 TPM_NV_ReadValue
Start of informative comment:
Read a value from the NV store. This command uses optional owner authentication.

Action 1 indicates that if the NV area is not locked then reading of the NV area continues 
without ANY authorization. This is intentional, and allows a platform manufacturer to set 
the NV areas, read them back, and then lock them all without having to install a TPM 
owner.

Certain platform manufacturers or software might require specific error handling in Action 
20.4.

Owner authorization is not required when nvLocked is FALSE.  If the host does send owner 
authorization,  Action  20.4 indicates  that  it  should  be  correct,  since  some  TPM 
implementations may validate it.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the area

6 4 4S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_NV_ReadValue

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data to set the area to

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

222 Level 2 Revision 116 28 February 2011
TCG Published

1044
1045
1046

4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281

4282

4283

1047
1048



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Actions
1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks are 

ignored.

a. Ignored checks include physical presence, owner authorization, PCR, bReadSTClear, 
locality, TPM_NV_PER_OWNERREAD, disabled and deactivated.

b. TPM_NV_PER_AUTHREAD is not ignored.

c. If ownerAuth is present, the TPM MAY check the authorization HMAC.

2. Set D1 a TPM_NV_DATA_AREA structure to the area pointed to by nvIndex, if not found 
return TPM_BADINDEX

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0]

3. If TPM_PERMANENT_FLAGS -> nvLocked is TRUE

a. If D1 -> permission -> TPM_NV_PER_OWNERREAD is TRUE

i. If TPM_PERMANENT_FLAGS -> disable is TRUE, return TPM_DISABLED

ii. If TPM_STCLEAR_FLAGS -> deactivated is TRUE, return TPM_DEACTIVATED

b. If D1 -> permission -> TPM_NV_PER_OWNERREAD is FALSE

i. If  TPM_PERMANENT_FLAGS  ->  disable  is  TRUE,  the  TPM  MAY  return 
TPM_DISABLED

ii. If  TPM_STCLEAR_FLAGS  ->  deactivated  is  TRUE,  the  TPM  MAY  return 
TPM_DEACTIVATED

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If D1 -> TPM_NV_PER_OWNERREAD is FALSE return TPM_AUTH_CONFLICT

b. Validate command and parameters using TPM Owners authentication on error return 
TPM_AUTHFAIL

5. Else

a. If D1 -> TPM_NV_PER_AUTHREAD is TRUE return TPM_AUTH_CONFLICT

b. If D1 -> TPM_NV_PER_OWNERREAD is TRUE return TPM_AUTH_CONFLICT

6. Check  that  D1  ->  pcrInfoRead  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

7. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

8. If D1 -> TPM_NV_PER_READ_STCLEAR then

Level 2 Revision 116 28 February 2011 223
TCG Published

1049
1050

4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317

1051
1052



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

9. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoRead

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 
mismatch

10.If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to NULL (output parameter dataSize to 0)

11.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

i. This includes partial reads of TPM_NV_INDEX_DIR.

12.Return TPM_SUCCESS

224 Level 2 Revision 116 28 February 2011
TCG Published

1053
1054
1055

4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332

1056
1057



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

20.5 TPM_NV_ReadValueAuth
Start of informative comment:
This command requires that the read be authorized by a value set with the blob.

The Part 2 ordinal table indicates that TPM_NV_ReadValueAuth requires an owner present. 
This is normative, although it was a mistake.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UNIT32 offset The offset from the data area

6 4 5S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle authThe auth handle for the NV element authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL authContinueSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA authHmac HMAC key: nv element authorization

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_ReadValueAuth

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data

6 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE authLastNonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL authContinueSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA authHmacOut HMAC key: nv element authorization

Actions
1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, on error 

return TPM_BADINDEX 

Level 2 Revision 116 28 February 2011 225
TCG Published

1058
1059

4333
4334
4335
4336
4337
4338

4339

4340

4341
4342
4343

1060
1061



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

2. If D1 -> TPM_NV_PER_AUTHREAD is FALSE return TPM_AUTH_CONFLICT

3. Validate authHmac using D1 -> authValue on error return TPM_AUTHFAIL

4. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

5. Check  that  D1  ->  pcrInfoRead  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

6. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoRead

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 
mismatch

7. If D1 specifies TPM_NV_PER_READ_STCLEAR then

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

8. If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to all zeros

9. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

10.Return TPM_SUCCESS

226 Level 2 Revision 116 28 February 2011
TCG Published

1062
1063
1064

4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367

1065
1066



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

21. Session Management
Start of informative comment:
Three TPM_RT_CONTEXT session resources located in TPM_STANY_DATA work together to 
control session save and load: contextNonceSession, contextCount, and contextList[].

All three MUST initialized at TPM_Startup(ST_CLEAR) and TPM_Startup(ST_DEACTIVATED) 
and  MAY  be  initialized  at  TPM_Startup(ST_STATE).   Initializing  invalidates  all  saved 
sessions.  They MAY be restored by TPM_Startup(ST_STATE).  This case would allow saved 
sessions  to  be  loaded.   The  actual  ST_STATE  operation  is  reported  by  the 
TPM_RT_CONTEXT startup effect.

TPM_SaveContext creates a contextBlob containing an encrypted contextNonceSession.  The 
nonce is checked by TPM_LoadContext.  So initializing contextNonceSession invalidates all 
saved contexts.  The nonce is large and protected, making a replay infeasible.

The contextBlob also contains a public but protected contextCount.  The count increments 
for each saved contextBlob.  The TPM also saves contextCount in contextList[].  The TPM 
validates  contextBlob  against  the  contextList[]  during  TPM_LoadContext.  Since  the 
contextList[] is finite, it limits the number of valid saved sessions.  Since the contextCount 
cannot be allowed to wrap, it limits the total number of saved sessions.

After a contextBlob is loaded, its contextCount entry is removed from contextList[].  This 
releases space in the context list for future entries.  It also invalidates the contextBlob.  So a 
saved contextBlob can be loaded only once.

TPM_FlushSpecific can also specify a contextCount to be removed from the contextList[], 
allowing invalidation of an individual contextBlob.  This is different from TPM_FlushSpecific 
specifying a session handle, which invalidates a loaded session, not a saved contextBlob.

End of informative comment.

21.1 TPM_KeyControlOwner
Start of informative comment:
This command controls some attributes of keys that are stored within the TPM key cache.

OwnerEvict:  If  this bit  is  set to true, this  key remains in the TPM non-volatile  storage 
through all TPM_Startup events. The only way to evict this key is for the TPM Owner to 
execute this command again,  setting the owner control  bit  to  false  and then executing 
TPM_FlushSpecific.

The key handle does not reference an authorized entity and is not validated.

The check for two remaining key slots ensures that users can load the two keys required to 
execute many commands.  Since only the owner can flush owner evict keys, non-owner 
commands could be blocked if this test was not performed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC Type Name Description

Level 2 Revision 116 28 February 2011 227
TCG Published

1067
1068

4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392

4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404

4405

1069
1070



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KeyControlOwner

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key.

5 <> 2S <> TPM_PUBKEY pubKey The public key associated with the loaded key

6 4 3S 4 TPM_KEY_CONTROL bitName The name of the bit to be modified

7 1 4S 1 BOOL bitValue The value to set the bit to

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

9 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 20 TPM_AUTHDATA ownerAuth HMAC authorization: key ownerAuth

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_KeyControlOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM.

3H1 20 TPM_NONCE nonceOdd Nonce generated by system 

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC authorization: key ownerAuth

Description
1. Set an internal bit within the key cache that controls some attribute of a loaded key.

Actions
1. Validate  the  AuthData  using  the  owner  authentication  value,  on  error  return 

TPM_AUTHFAIL

2. Validate that keyHandle refers to a loaded key, return TPM_INVALID_KEYHANDLE on 
error.

3. Validate that pubKey matches the key held by the TPM pointed to by keyHandle, return 
TPM_BAD_PARAMETER on mismatch

a. This check is added so that virtualization of the keyHandle does not result in attacks, 
as the keyHandle is not associated with an authorization value

4. Validate that bitName is valid, return TPM_BAD_MODE on error.

5. If bitName == TPM_KEY_CONTROL_OWNER_EVICT

228 Level 2 Revision 116 28 February 2011
TCG Published

1071
1072
1073

4406

4407
4408

4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419

1074
1075



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. If bitValue == TRUE

i. Verify that after this operation at least two key slots will be present within the 
TPM that can store any type of key both of which do NOT have the OwnerEvict bit 
set, on error return TPM_NOSPACE

ii. Verify that for this key handle, parentPCRStatus is FALSE and isVolatile is 
FALSE.  Return TPM_BAD_PARAMETER on error.

iii. Set ownerEvict within the internal key storage structure to TRUE.

b. Else if bitValue == FALSE

i. Set ownerEvict within the internal key storage structure to FALSE.

6. Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 229
TCG Published

1076
1077

4420
4421
4422
4423
4424
4425
4426
4427
4428
4429

1078
1079



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

21.2 TPM_SaveContext
Start of informative comment:
TPM_SaveContext saves a loaded resource outside the TPM. After successful execution of 
the command, the TPM automatically releases the internal memory for sessions but leaves 
keys in place.

There is no assumption that a saved context blob is stored in a safe, protected area. Since 
the context blob can be loaded at any time, do not rely on TPM_SaveContext to restrict  
access to an entity such as a key. If use of the entity should be restricted, means such as 
authorization secrets or PCR’s should be used.

In general, TPM_SaveContext can save a transport session.  However, it cannot save an 
exclusive  transport  session,  because  any  ordinal  other  than  TPM_ExecuteTransport 
terminates the exclusive transport session.  This action prevents the exclusive transport 
session from being saved and reloaded while intervening commands are hidden from the 
transport log.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 TPM_HANDLE handle Handle of the resource being saved. 

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being saved

6 16 3S 16 BYTE[16] label Label for identification purposes

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 3S 4 UINT32 contextSize The actual size of the outgoing context blob

5 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Description
1. The caller of the function uses the label field to add additional sequencing, anti-replay or 

other items to the blob. The information does not need to be confidential but needs to be 
part of the blob integrity.

230 Level 2 Revision 116 28 February 2011
TCG Published

1080
1081
1082

4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444

4445

4446

4447
4448
4449
4450

1083
1084



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Actions
1. Map V1 to TPM_STANY_DATA

2. Validate  that  handle  points  to  resource  that  matches  resourceType,  return 
TPM_INVALID_RESOURCE on error

3. Validate  that  resourceType  is  a  resource  from  the  following  list  if  not  return 
TPM_INVALID_RESOURCE

a. TPM_RT_KEY

b. TPM_RT_AUTH

c. TPM_RT_TRANS

d. TPM_RT_DAA_TPM

4. Locate the correct nonce

a. If resourceType is TPM_RT_KEY

i. If TPM_STCLEAR_DATA -> contextNonceKey is all zeros 

(1) Set TPM_STCLEAR_DATA -> contextNonceKey to the next value from 
the TPM RNG 

ii. Map N1 to TPM_STCLEAR_DATA -> contextNonceKey

iii. If  the  key  has  TPM_KEY_CONTROL_OWNER_EVICT  set  then  return 
TPM_OWNER_CONTROL

b. Else

i. If V1 -> contextNonceSession is all zeros

(1) Set V1 -> contextNonceSession to the next value from the TPM RNG

ii. Map N1 to V1 -> contextNonceSession

5. Set K1 to TPM_PERMANENT_DATA -> contextKey

6. Create R1 by putting the sensitive  part  of  the resource pointed to by handle into a 
structure. The structure is a TPM manufacturer option. The TPM MUST ensure that ALL 
sensitive information of the resource is included in R1.

7. Create C1 a TPM_CONTEXT_SENSITIVE structure

a. C1 forms the inner encrypted wrapper for the blob. All saved context blobs MUST 
include  a  TPM_CONTEXT_SENSITIVE  structure  and  the  TPM_CONTEXT_SENSITIVE 
structure MUST be encrypted.

b. Set C1 -> contextNonce to N1

c. Set C1 -> internalData to R1

8. Create B1 a TPM_CONTEXT_BLOB

a. Set B1 -> tag to TPM_TAG_CONTEXTBLOB

b. Set B1 -> resourceType to resourceType

c. Set B1 -> handle to handle

d. Set B1 -> integrityDigest to all zeros

Level 2 Revision 116 28 February 2011 231
TCG Published

1085
1086

4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487

1087
1088



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

e. Set B1 -> label to label

f. Set B1 -> additionalData to information determined by the TPM manufacturer. This 
data will help the TPM to reload and reset context. This area MUST NOT hold any data 
that is sensitive (symmetric IV are fine, prime factors of an RSA key are not). 

i. For OSAP sessions and for DSAP sessions attached to keys, the hash of the 
entity MUST be included in additionalData

g. Set B1 -> additionalSize to the size of additionalData

h. Set B1 -> sensitiveSize to the size of C1

i. Set B1 -> sensitiveData to C1

9. If resourceType is TPM_RT_KEY

a. Set B1 -> contextCount to 0

10.Else

a. If V1 -> contextCount > 232-2 then

i. Return with TPM_TOOMANYCONTEXTS

b. Else

i. Validate that the TPM can still manage the new count value

(1) If the distance between the oldest saved context and the contextCount 
is too large return TPM_CONTEXT_GAP

ii. Find contextIndex such that V1 -> contextList[contextIndex] equals 0. If not 
found exit with TPM_NOCONTEXTSPACE

iii. Increment V1 -> contextCount by 1

iv. Set V1-> contextList[contextIndex] to V1 -> contextCount

v. Set B1 -> contextCount to V1 -> contextCount

c. The  TPM  MUST  invalidate  all  information  regarding  the  resource  except  for 
information needed for reloading

11.Calculate  B1  ->  integrityDigest  the  HMAC  of  B1  using  TPM_PERMANENT_DATA  -> 
tpmProof as the secret

12.Create E1 by encrypting C1 using K1 as the key

a. Set B1 -> sensitiveSize to the size of E1

b. Set B1 -> sensitiveData to E1

13.Set contextSize to the size of B1

14.Return B1 in contextBlob

232 Level 2 Revision 116 28 February 2011
TCG Published

1089
1090
1091

4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519

1092
1093



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

21.3 TPM_LoadContext
Start of informative comment:
TPM_LoadContext loads into the TPM a previously saved context. The command returns a 
handle. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE entityHandle The handle the TPM MUST use to locate the entity tied to the OSAP/DSAP 
session

5 1 2S 1 BOOL keepHandle Indication if the handle MUST be preserved

6 4 3S 4 UINT32 contextSize The size of the following context blob.

7 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE handle The handle assigned to the resource after it has been successfully loaded.

Actions
1. Map contextBlob to B1, a TPM_CONTEXT_BLOB structure

2. Map V1 to TPM_STANY_DATA

3. Create  M1  by  decrypting  B1  ->  sensitiveData  using  TPM_PERMANENT_DATA  -> 
contextKey

4. Create  C1 and  R1  by  splitting  M1 into  a  TPM_CONTEXT_SENSITIVE structure  and 
internal resource data

5. Check contextNonce

a. If B1 -> resourceType is NOT TPM_RT_KEY

i. If  C1  ->  contextNonce  does  not  equal  V1  ->  contextNonceSession  return 
TPM_BADCONTEXT

Level 2 Revision 116 28 February 2011 233
TCG Published

1094
1095

4520
4521
4522
4523
4524

4525

4526

4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537

1096
1097



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

ii. Validate that the resource pointed to by the context is loaded (i.e. for OSAP the 
key  referenced  is  loaded  and  DSAP  connected  to  the  key)  return 
TPM_RESOURCEMISSING

(1) For OSAP sessions and for DSAP sessions attached to keys, the TPM 
MUST validate that the hash of the entity matches the entity held by the TPM 

(2) For OSAP and DSAP sessions referring to a key, verify that entityHandle 
identifies  the  key  linked  to  this  OSAP/DSAP  session,  if  not  return 
TPM_BAD_HANDLE.

b. Else

i. If C1 -> internalData -> parentPCRStatus is FALSE and C1 -> internalData -> 
isVolatile is FALSE

(1) Ignore C1 -> contextNonce

ii. else

(1) If  C1  ->  contextNonce  does  not  equal  TPM_STCLEAR_DATA  -> 
contextNonceKey return TPM_BADCONTEXT

6. Validate the structure

a. Set H1 to B1 -> integrityDigest

b. Set B1 -> integrityDigest to all zeros

c. Copy M1 to B1 -> sensitiveData

d. Create H2 the HMAC of B1 using TPM_PERMANENT_DATA -> tpmProof as the HMAC 
key

e. If H2 does not equal H1 return TPM_BADCONTEXT

7. If keepHandle is TRUE

a. Set handle to B1 -> handle 

b. If the TPM is unable to restore the handle the TPM MUST return TPM_BAD_HANDLE

8. Else

a. The TPM SHOULD attempt to restore the handle but if not possible it MAY set the 
handle to any valid for B1 -> resourceType

9. If B1 -> resourceType is NOT TPM_RT_KEY

a. Find  contextIndex  such  that  V1  ->  contextList[contextIndex]  equals  B1  -> 
TPM_CONTEXT_BLOB -> contextCount

b. If not found then return TPM_BADCONTEXT

c. Set V1 -> contextList[contextIndex] to 0

10.Process B1 to return the resource back into TPM use

234 Level 2 Revision 116 28 February 2011
TCG Published

1098
1099
1100

4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571

1101
1102



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

22. Eviction
Start of informative comment:
The TPM has numerous resources held inside of the TPM that may need eviction. The need 
for eviction occurs when the number or resources in use by the TPM exceed the available 
space. For resources that are hard to reload (i.e. keys tied to PCR values) the outside entity 
should first perform a context save before evicting items.

In version 1.1 there were separate commands to evict separate resource types. This new 
command set uses the resource  types defined for  context saving and creates a generic 
command that will evict all resource types.

End of informative comment.
The TPM MUST NOT flush the EK or SRK using this command.

Version 1.2 deprecates the following commands:

● TPM_Terminate_Handle

● TPM_EvictKey

● TPM_Reset

Level 2 Revision 116 28 February 2011 235
TCG Published

1103
1104

4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586

1105
1106



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

22.1 TPM_FlushSpecific
Start of informative comment:
TPM_FlushSpecific flushes from the TPM a specific handle.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

4 4 TPM_HANDLE handle The handle of the item to flush

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being flushed

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

Description
TPM_FlushSpecific releases the resources associated with the given handle. 

Actions
1. If resourceType is TPM_RT_CONTEXT

a. The handle for a context is not a handle but the "context count" value. The TPM uses 
the  "context  count"  value  to  locate  the proper  contextList  entry  and sets R1 to the 
contextList entry

2. Else if resourceType is TPM_RT_KEY

a. Set R1 to the key pointed to by handle

b. If R1 -> ownerEvict is TRUE return TPM_KEY_OWNER_CONTROL

3. Else if resourceType is TPM_RT_AUTH

a. Set R1 to the authorization session pointed to by handle

4. Else if resourceType is TPM_RT_TRANS

a. Set R1 to the transport session pointed to by handle

5. Else if resourceType is TPM_RT_DAA_TPM

236 Level 2 Revision 116 28 February 2011
TCG Published

1107
1108
1109

4587
4588
4589
4590

4591

4592

4593
4594

4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607

1110
1111



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. Set R1 to the DAA session pointed to by handle

6. Else return TPM_INVALID_RESOURCE

7. Validate  that  R1 determined by resourceType and handle points to a valid allocated 
resource.  Return TPM_BAD_PARAMETER on error.

8. Invalidate R1 and all internal resources allocated to R1

a. Resources include authorization sessions

Level 2 Revision 116 28 February 2011 237
TCG Published

1112
1113

4608
4609
4610
4611
4612
4613

1114
1115



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

23. Timing Ticks
Start of informative comment:
The TPM timing ticks are always available for use. The association of timing ticks to actual 
time is a protocol that occurs outside of the TPM. See the design document for details.

The setting of the clock type variable is a one time operation that allows the TPM to be 
configured to the type of platform that is installed on. 

The ability for the TPM to continue to increment the timer ticks across power cycles of the 
platform is a TPM and platform manufacturer decision.

End of informative comment.

23.1 TPM_GetTicks
Start of informative comment:
This command returns the current tick count of the TPM.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

4 32 3S 32 TPM_CURRENT_TICKS currentTime The current time held in the TPM

Description
This command returns the current time held in the TPM. It is the responsibility of the  
external system to maintain any relation between this time and a UTC value or local real 
time value.

Actions
1. Set T1 to the internal TPM_CURRENT_TICKS structure

2. Return T1 as currentTime.

238 Level 2 Revision 116 28 February 2011
TCG Published

1116
1117
1118

4614
4615
4616
4617
4618
4619
4620
4621
4622

4623
4624
4625
4626

4627

4628

4629
4630
4631
4632

4633
4634
4635

1119
1120



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

23.2 TPM_TickStampBlob
Start of informative comment:
This command applies a time stamp to the passed blob. The TPM makes no representation 
regarding the blob merely that the blob was present at the TPM at the time indicated.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti replay value added to signature

6 20 3S 20 TPM_DIGEST digestToStamp The digest to perform the tick stamp on

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth

Level 2 Revision 116 28 February 2011 239
TCG Published

1121
1122

4636
4637
4638
4639
4640

4641

1123
1124



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 32 3S 32 TPM_CURRENT_TICKS currentTicks The current time according to the TPM

5 4 4S 4 UINT32 sigSize The length of the returned digital signature

6 <> 5S <> BYTE[ ] sig The resulting digital signature.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Description
The function performs a digital signature on the hash of digestToStamp and the current tick 
count.

It is the responsibility of the external system to maintain any relation between tick count 
and a UTC value or local real time value.

Actions
1. The TPM validates the AuthData to use the key pointed to by keyHandle. 

2. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return the error code TPM_INVALID_KEYUSAGE.

3. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

4. If TPM_STCLEAR_DATA -> currentTicks is not properly initialized

a. Initialize the TPM_STCLEAR_DATA -> currentTicks

5. Create T1, a TPM_CURRENT_TICKS structure.

6. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set H1 -> fixed to “TSTP”

b. Set H1 -> replay to antiReplay

c. Create H2 the concatenation of digestToStamp || T1

d. Set H1 -> dataLen to the length of H2

e. Set H1 -> data to H2

240 Level 2 Revision 116 28 February 2011
TCG Published

1125
1126
1127

4642

4643
4644
4645
4646
4647

4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662

1128
1129



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

7. The TPM computes the signature, sig,  using the key referenced by keyHandle, using 
SHA-1 of H1 as the information to be signed

8. The TPM returns T1 as currentTicks parameter

Level 2 Revision 116 28 February 2011 241
TCG Published

1130
1131

4663
4664
4665

1132
1133



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

24. Transport Sessions

See Part 1 for rationale and security issues.

24.1 TPM_EstablishTransport
Start of informative comment:
This establishes the transport session. Depending on the attributes specified for the session 
this may establish shared secrets, encryption keys, and session logs. The session will be in 
use for by the TPM_ExecuteTransport command.

The only restriction on what can happen inside of a transport session is that there is no 
“nesting” of sessions. It is permissible to perform operations that delete internal state and 
make the TPM inoperable. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_KEY_HANDLE encHandle The handle to the key that encrypted the blob

5 <> 2S <> TPM_TRANSPORT_PUBLIC transPublic The public information describing the transport session

6 4 3S 4 UINT32 secretSize The size of the secret Area

7 <> 4S <> BYTE[] secret The encrypted secret area

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: encKey.usageAuth

242 Level 2 Revision 116 28 February 2011
TCG Published

1134
1135
1136

4666
4667
4668

4669
4670
4671
4672
4673
4674
4675
4676
4677

4678

4679

1137
1138



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_TRANSHANDLE transHandle The handle for the transport session

5 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 32 4S 32 TPM_CURRENT_TICKS currentTicks The current tick count 

7 20 5S 20 TPM_NONCE transNonceEven The even nonce in use for subsequent execute transport 

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth

Description
This  command establishes the  transport  sessions  shared secret.  The  encryption  of  the 
shared secret uses the public key of the key loaded in encKey.

Actions
1. If encHandle is TPM_KH_TRANSPORT then

a. If tag is NOT TPM_TAG_RQU_COMMAND return TPM_BADTAG

b. If  transPublic  ->  transAttributes  specifies  TPM_TRANSPORT_ENCRYPT  return 
TPM_BAD_SCHEME

c. If secretSize is not 20 return TPM_BAD_PARAM_SIZE

d. Set A1 to secret

2. Else

a. encHandle -> keyUsage MUST be TPM_KEY_STORAGE or TPM_KEY_LEGACY return 
TPM_INVALID_KEYUSAGE on error

b. If encHandle -> authDataUsage does not equal TPM_AUTH_NEVER and tag is NOT 
TPM_TAG_RQU_AUTH1_COMMAND return TPM_AUTHFAIL

c. Using  encHandle  ->  usageAuth  validate  the  AuthData  to  use  the  key  and  the 
parameters to the command

d. Create K1 a TPM_TRANSPORT_AUTH structure by decrypting secret using the key 
pointed to by encHandle

e. Validate K1 for tag

f. Set A1 to K1 -> authData

Level 2 Revision 116 28 February 2011 243
TCG Published

1139
1140

4680

4681
4682
4683

4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701

1141
1142



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

3. If transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT

a. If  TPM_PERMANENT_FLAGS -> FIPS is true  and transPublic  -> algId is  equal  to 
TPM_ALG_MGF1 return TPM_INAPPROPRIATE_ENC

b. Check  if  the  transPublic  ->  algId  is  supported,  if  not  return 
TPM_BAD_KEY_PROPERTY

c. If transPublic -> algid is TPM_ALG_AESXXX, check that transPublic -> encScheme is 
supported, if not return TPM_INAPPROPRIATE_ENC

d. Perform any initializations necessary for the algorithm

4. Generate transNonceEven from the TPM RNG

5. Create T1 a TPM_TRANSPORT_INTERNAL structure

a. Ensure that the TPM has sufficient internal space to allocate the transport session, 
return TPM_RESOURCES on error

b. Assign a T1 -> transHandle value. This value is assigned by the TPM

c. Set T1 -> transDigest to all zeros

d. Set T1 -> transPublic to transPublic

e. Set T1-> transNonceEven to transNonceEven

f. Set T1 -> authData to A1

6. If TPM_STANY_DATA -> currentTicks is not properly initialized

a. Initialize the TPM_STANY_DATA -> currentTicks

7. Set currentTicks to TPM_STANY_DATA -> currentTicks 

8. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L1 a TPM_TRANSPORT_LOG_IN structure

i. Set L1 -> parameters to SHA-1 (ordinal || transPublic || secretSize || secret)

ii. Set L1 -> pubKeyHash to all zeros

iii. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L1)

b. Create L2 a TPM_TRANSPORT_LOG_OUT structure

i. Set  L2  ->  parameters  to  SHA-1  (returnCode  ||  ordinal  ||  locality  || 
currentTicks || transNonceEven)

ii. Set L2 -> locality to the locality of this command

iii. Set L2 -> currentTicks to currentTicks, this MUST be the same value that is 
returned in the currentTicks parameter

iv. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L2)

9. If  T1  ->  transPublic  ->  transAttributes  has  TPM_TRANSPORT_EXCLUSIVE  then  set 
TPM_STANY_FLAGS -> transportExclusive to TRUE

a. Execution  of  any  command  other  than  TPM_ExecuteTransport  or 
TPM_ReleaseTransportSigned targeting this transport session will cause the abnormal 
invalidation of this transport session transHandle

244 Level 2 Revision 116 28 February 2011
TCG Published

1143
1144
1145

4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738

1146
1147



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. The TPM gives no indication, other than invalidation of transHandle, that the session 
is terminated

10.Return T1 -> transHandle as transHandle

Level 2 Revision 116 28 February 2011 245
TCG Published

1148
1149

4739
4740
4741

1150
1151



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

24.2 TPM_ExecuteTransport
Start of informative comment:
Delivers a wrapped TPM command to the TPM where the TPM unwraps the command and 
then executes the command. 

TPM_ExecuteTransport  uses the same rolling nonce paradigm as other  authorized TPM 
commands.  The  even  nonces  start  in  TPM_EstablishTransport  and  change  on  each 
invocation of TPM_ExecuteTransport.

The only restriction on what can happen inside of a transport session is that there is no 
“nesting” of sessions. It is permissible to perform operations that delete internal state and 
make the TPM inoperable. 

Because, in general, key handles are not logged, a digest of the corresponding public key is 
logged.  In cases where  the  key  handle  is  logged (e.g.  TPM_OwnerReadInternalPub),  the 
public key is also logged.

The  wrapped  command  is  audited  twice  –  once  according  to  the  actions  of 
TPM_ExecuteTransport  and  once  within  the  wrapped  command  itself  according  to  the 
special rules for auditing a command wrapped in an encrypted transport session.

The method of incrementing the symmetric key counter value is different from that used by 
some standard crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter 
value.  TPM users should be aware of this to avoid errors when the counter wraps.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 4 2S 4 UINT32 wrappedCmdSize Size of the wrapped command

5 <> 3S <> BYTE[] wrappedCmd The wrapped command

6 4 TPM_TRANSHANDLE transHandle The transport session handle

2H1 20 TPM_NONCE transLastNonceEven Even nonce previously generated by TPM

7 20 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueTransSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

246 Level 2 Revision 116 28 February 2011
TCG Published

1152
1153
1154

4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761

4762

4763

1155
1156



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the ExecuteTransport command. This does not reflect 
the status of wrapped command.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 8 3S 8 UINT64 currentTicks The current ticks when the command was executed 

5 4 4S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 4 5S 4 UINT32 wrappedRspSize Size of the wrapped response

7 <> 6S <> BYTE[] wrappedRsp The wrapped response

8 20 2H1 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM 

3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueTransSession The continue use flag for the session

10 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

Description
1. This command executes a TPM command using the transport session.

2. Prior to execution of the wrapped command (action 11 below) failure of the transport 
session MUST have no effect on the resources referenced by the wrapped command. The 
exception is when the TPM goes into failure mode and return FAILED_SELFTEST for all 
subsequent commands.

3. After execution of the wrapped command, failure  of  the transport session MAY NOT 
affect wrapped command resources. That is, the TPM is not required to clean up the 
effects  of  the  wrapped  command.   Sessions  and  keys  MAY  remain  loaded.   It  is 
understood that the transport session will be returning an error code and not reporting 
any session nonces. Therefore, wrapped sessions are no longer useful to the caller.  It is 
the responsibility of the caller to clean up the result of the wrapped command. 

4. Execution of the wrapped command (action 11) SHOULD have no effect on the transport 
session. 

a. The  wrapped  command  SHALL  use  no  resources  of  the  transport  session,  this 
includes authorization sessions

b. If  the  wrapped command execution  returns  an  error  (action  11  below)  then the 
sessions for TPM_ExecuteTransport still operate properly.

c. The exception to  this is  when the wrapped command causes the TPM to go into 
failure mode and return TPM_FAILSELFTEST for all subsequent commands

5. Field layout

a. Notation

i. et indicates the outer TPM_ExecuteTransport command and response

Level 2 Revision 116 28 February 2011 247
TCG Published

1157
1158

4764

4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787

1159
1160



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

ii. w  indicates  the  inner  command  and  response  that  is  wrapped  by  the 
TPM_ExecuteTransport.

iii. (o)  indicates  optional  parameters  that  may  or  may  not  be  present  in  the  wrapped 
command.

b. Command representation

c. ******************************************************************************

d. TAGet | LENet | ORDet | wrappedCmdSize | wrappedCmd | AUTHet

e. ******************************************************************************

f. wrappedCmd looks like the following

g. ****************************************************************************************

h. TAGw | LENw | ORDw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o)

i. ****************************************************************************************

j.                                                                | LEN1   |

k.                                                                |   E1     | (encrypted)

l.                                                                |   C1     | (decrypted)

m. Response representation

n. *******************************************************************************

o. TAGet | LENet | RCet | … | wrappedRspSize | wrappedRsp | AUTHet

p. *******************************************************************************

q. wrappedRsp looks like the following

r. *************************************************************************************

s. TAGw | LENw | RCw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o)

t. *************************************************************************************

u.                                                            |  LEN2   |

v. |   -------------------------- C2  --------------------------------------------------  |

w.                                                            |   S2      | (decrypted)

x.                                                            |   E2      | (encrypted)

y. The only command and response parameter that is possibly encrypted is DATAw.

6. Additional DATAw comments

a. For TPM_FlushSpecific and TPM_SaveContext

i. The DATAw part of these commands does not include the handle.

(1) It is understood that encrypting the resourceType prevents a determination of 
the handle type.

ii. If the resourceType is TPM_RT_KEY, then the public key MUST be logged.

b. For TPM_DAA_Join and TPM_DAA_Sign

248 Level 2 Revision 116 28 February 2011
TCG Published

1161
1162
1163

4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822

1164
1165



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

i. The DATAw part of these commands does not include the input handle.  The 
output handle from stage 0 is included in DATAW.

c. For TPM_LoadKey2

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 
logged by the outgoing transport.

d. For TPM_LoadKey

i. The outgoing handle  is  part  of  the outgoing DATAw and is encrypted and 
logged.

e. For TPM_LoadContext

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 
logged by the outgoing transport.

(1) It is understood that encrypting the contextBlob prevents a determination of 
the handle type.

f. For TPM_OIAP and TPM_OSAP, no input or output parameters are encrypted 
or logged.

i. For  TPM_OSAP,  the  public  key  MUST  NOT  be  logged.   During  a  logged 
transport  session,  when  a  wrapped  command  uses  the  key,  the  public  key 
referenced by the key handle will be logged in the transport.  Thus, the audit trail  
is established for any key usage at that time.

g. For TPM_DSAP

i. For input, only entityValue is encrypted and logged.

ii. For output no parameters are encrypted or logged.

7. TPM_ExecuteTransport  returns  an  implementation  defined  result  when the  wrapped 
command would cause termination of the transport session.  Implementation defined 
possibilities  include  but  are  not  limited  to:  the  wrapped  command  may  execute, 
completely, partially, or not at all, the transport session may or may not be terminated, 
continueTransSession may not be processed or returned correctly, and an error may or 
may not be returned.  The wrapped commands include:

a. TPM_FlushSpecific, TPM_SaveContext targeting the transport session

b. TPM_OwnerClear, TPM_ForceClear, TPM_RevokeTrust

Actions
1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Parse wrappedCmd

a. Set TAGw, LENw, and ORDw to the parameters from wrappedCmd

b. Set E1 to DATAw

i. This  pointer  is  ordinal  dependent  and  requires  the  execute  transport 
command to parse wrappedCmd

c. Set LEN1 to the length of DATAw

Level 2 Revision 116 28 February 2011 249
TCG Published

1166
1167

4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852

4853
4854
4855
4856
4857
4858
4859
4860

1168
1169



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

i. DATAw always ends at the start of AUTH1w if AUTH1w is present

3. If LEN1 is less than 0, or if ORDw is unknown, unimplemented, or cannot be determined

a. Return TPM_BAD_PARAMETER

4. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1

i. Using the MGF1 function, create string G1 of length LEN1. The inputs to the 
MGF1 are transLastNonceEven, transNonceOdd, “in”, and T1 -> authData. These 
four values concatenated together form the Z value that is the seed for the MGF1.

ii. Create C1 by performing an XOR of G1 and wrappedCmd starting at E1.

b. If the encryption algorithm requires an IV or CTR, calculate the IV or CTR value

i. Using the MGF1 function, create string IV1 or CTR1 with a length set by the 
block  size  of  the  encryption  algorithm.  The  inputs  to  the  MGF1  are 
transLastNonceEven, transNonceOdd, and “in”. These three values concatenated 
together  form  the  Z  value  that  is  the  seed  for  the  MGF1.  Note  that  any 
terminating characters within the string “in” are ignored, so a total of 42 bytes are 
hashed.

ii. The symmetric key is taken from the first bytes of T1 -> authData.

iii. Decrypt DATAw and replace the DATAw area of E1 creating C1

c. TPM_OSAP, TPM_OIAP have no parameters encrypted

d. TPM_DSAP has special rules for parameter encryption

5. Else

a. Set C1 to the DATAw area E1 of wrappedCmd

6. Create H1 the SHA-1 of (ORDw || C1). 

a. C1 MUST point at the decrypted DATAw area of E1

b. The  TPM  MAY  use  this  calculation  for  both  execute  transport  authorization, 
authorization of the wrapped command and transport log creation

7. Validate the incoming transport session authorization

a. Set inParamDigest to SHA-1 (ORDet || wrappedCmdSize || H1)

b. Calculate the HMAC of (inParamDigest || transLastNonceEven || transNonceOdd || 
continueTransSession) using T1 -> authData as the HMAC key

c. Validate transAuth, on errors return TPM_AUTHFAIL

8. If TPM_ExecuteTransport requires auditing

a. Create TPM_AUDIT_EVENT_IN using H1 as the input parameter digest and update 
auditDigest

b. On any error return TPM_AUDITFAIL_UNSUCCESSFUL

9. If ORDw is from the list of following commands return TPM_NO_WRAP_TRANSPORT

a. TPM_EstablishTransport

250 Level 2 Revision 116 28 February 2011
TCG Published

1170
1171
1172

4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897

1173
1174



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. TPM_ExecuteTransport

c. TPM_ReleaseTransportSigned

10.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L2 a TPM_TRANSPORT_LOG_IN structure

b. Set L2 -> parameters to H1

c. If ORDw is a command with no key handles

i. Set L2 -> pubKeyHash to all zeros

d. If ORDw is a command with one key handle

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the key handle.

ii. Set L2 -> pubKeyHash to SHA-1 (K2)

e. If ORDw is a command with two key handles

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the first key handle.

ii. Create K3 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the second key handle.

iii. Set L2 -> pubKeyHash to SHA-1 (K2 || K3)

f. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L2)

g. If  ORDw  is  a  command  with  key  handles,  and  the  key  is  not  loaded,  return 
TPM_INVALID_KEYHANDLE.

11.Send the wrapped command to the normal TPM command parser, the output is C2 and 
the return code is RCw

a. If ORDw is a command that is audited then the TPM MUST perform the input and 
output audit of the command as part of this action.

b. The TPM MAY use H1 as the data value in the authorization and audit calculations 
during the execution of C1

12.Set CT1 to TPM_STANY_DATA -> currentTicks -> currentTicks and return CT1 in the 
currentTicks output parameter

13.Calculate S2 the pointer to the DATAw area of C2

a. Calculate LEN2 the length of S2 according to the same rules that calculated LEN1

14.Create H2 the SHA-1 of (RCw || ORDw || S2)

a. The TPM MAY use this calculation for execute transport authorization and transport 
log out creation

15.Calculate the outgoing transport session authorization

a. Create the new transNonceEven for the output of the command

b. Set outParamDigest to SHA-1 (RCet || ORDet || TPM_STANY_DATA -> currentTicks 
-> currentTicks || locality || wrappedRspSize || H2)

Level 2 Revision 116 28 February 2011 251
TCG Published

1175
1176

4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934

1177
1178



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

c. Calculate  transAuth,  the  HMAC  of  (outParamDigest  ||  transNonceEven  || 
transNonceOdd || continueTransSession) using T1 -> authData as the HMAC key

16.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L3 a TPM_TRANSPORT_LOG_OUT structure

b. Set L3 -> parameters to H2

c. Set L3 -> currentTicks to TPM_STANY_DATA -> currentTicks

d. Set L3 -> locality to TPM_STANY_DATA -> localityModifier

e. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L3)

17.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1

i. Using the MGF1 function, create string G2 of length LEN2. The inputs to the 
MGF1 are transNonceEven, transNonceOdd, “out”,  and T1 -> authData. These 
four values concatenated together form the Z value that is the seed for the MGF1.

ii. Create E2 by performing an XOR of G2 and C2 starting at S2.

b. Else

i. Create IV2 or CTR2 using the same algorithm as IV1 or CTR1 with the input 
values transNonceEven,  transNonceOdd,  and “out”.  Note  that  any terminating 
characters within the string “out” are ignored, so a total of 43 bytes are hashed.

ii. The symmetric key is taken from the first bytes of T1 -> authData

iii. Create E2 by encrypting C2 starting at S2

18.Else

a. Set E2 to the DATAw area S2 of wrappedRsp

19.If continueTransSession is FALSE

a. Invalidate all session data related to transHandle

20.If TPM_ExecuteTranport requires auditing

a. Create  TPM_AUDIT_EVENT_OUT  using  H2  for  the  parameters  and  update  the 
auditDigest

b. On  any  errors  return  TPM_AUDITFAIL_SUCCESSFUL  or 
TPM_AUDITFAIL_UNSUCCESSFUL depending on RCw

21.Return C2 but with S2 replaced by E2 in the wrappedRsp parameter

252 Level 2 Revision 116 28 February 2011
TCG Published

1179
1180
1181

4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964

1182
1183



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

24.3 TPM_ReleaseTransportSigned
Start of informative comment:
This command completes the transport session. If logging for this session is turned on, then 
this command returns a digital signature of the hash of all operations performed during the 
session. 

This  command  serves  no  purpose  if  logging  is  turned  off,  and  results  in  an  error  if  
attempted.

This  command uses two authorization sessions,  the key that  will  sign the log  and the 
authorization from the session. Having the session authorization proves that the requestor 
that is signing the log is the owner of the session. If this restriction is not put in then an 
attacker can close the log and sign using their own key. 

The hash of the session log includes the information associated with the input phase of 
execution  of  the  TPM_ReleaseTransportSigned  command.  It  cannot  include  the  output 
phase information.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that will perform the signing

5 20 2S 20 TPM_NONCE antiReplay Value provided by caller for anti-replay protection

6 4 TPM_AUTHHANDLE authHandle The authorization session to use key

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA keyAuth The authorization session digest that authorizes the use of key. HMAC 
key: key -> usageAuth

10 4 TPM_TRANSHANDLE transHandle The transport session handle

2H2 20 TPM_NONCE transLastNonceEven Even nonce in use by execute Transport

11 20 3H2 20 TPM_NONCE transNonceOdd Nonce supplied by caller for transport session

12 1 4H2 1 BOOL continueTransSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA transAuth HMAC for transport session key: transHandle -> authData

Level 2 Revision 116 28 February 2011 253
TCG Published

1184
1185

4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979

4980

1186
1187



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

5 32 4S 32 TPM_CURRENT_TICKS currentTicks The current ticks when the command executed

6 4 5S 4 UINT32 signSize The size of the signature area

7 <> 6S <> BYTE[] signature The signature of the digest

8 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM 

3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the session

10 20 TPM_AUTHDATA keyAuth HMAC: key -> usageAuth

11 20 2H2 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM 

3H2 20 TPM_NONCE transNonceOdd Nonce generated by caller

12 1 4H2 1 BOOL continueTransSession The continue use flag for the session

13 20 TPM_AUTHDATA transAuth HMAC: transHandle -> authData

Description
This command releases a transport session and signs the transport log

Actions
1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  if  not  return 
TPM_INVALID_KEYUSAGE

4. Using  key  ->  authData  validate  the  command  and  parameters,  on  error  return 
TPM_AUTHFAIL

5. Using transHandle -> authData validate the command and parameters, on error return 
TPM_AUTH2FAIL

6. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create A1 a TPM_TRANSPORT_LOG_OUT structure

b. Set A1 –> parameters to the SHA-1 (ordinal || antiReplay)

c. Set A1 -> currentTicks to TPM_STANY_DATA -> currentTicks 

d. Set A1 -> locality to the locality modifier for this command

254 Level 2 Revision 116 28 February 2011
TCG Published

1188
1189
1190

4981

4982
4983

4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998

1191
1192



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

e. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || A1)

7. Else

a. Return TPM_BAD_MODE

8. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set H1 -> fixed to “TRAN”

b. Set H1 -> replay to antiReplay

c. Set H1 -> data to T1 -> transDigest

d. Sign SHA-1 hash of H1 using the key pointed to by keyHandle

9. Invalidate all session data related to T1

10.Set continueTransSession to FALSE

11.Return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 255
TCG Published

1193
1194

4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009

1195
1196



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

25. Monotonic Counter

25.1 TPM_CreateCounter
Start of informative comment:
This  command  creates  the  counter  but  does  not  select  the  counter.  Counter  creation 
assigns an AuthData value to the counter and sets the counters original start value. The 
original start value is the current internal base value plus one. Setting the new counter to 
the internal  base avoids attacks on the system that  are  attempting to  use old counter 
values.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 20 2S 20 TPM_ENCAUTH encAuth The encrypted auth data for the new counter

5 4 3s 4 BYTE label Label to associate with counter

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 20 TPM_AUTHDATA ownerAuth Authorization ownerAuth.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 4 3s 4 TPM_COUNT_ID countID The handle for the counter

5 10 4S 10 TPM_COUNTER_VALUE counterValue The starting counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Fixed value of FALSE

8 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: ownerAuth.

Description

256 Level 2 Revision 116 28 February 2011
TCG Published

1197
1198
1199

5010

5011
5012
5013
5014
5015
5016
5017
5018

5019

5020

5021

1200
1201



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

This command creates a new monotonic counter. The TPM MUST support a minimum of 4 
concurrent counters.

Actions
The TPM SHALL do the following:

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 
all of the incoming parameters. The authorization session MUST be OSAP or DSAP

2. Ignore continueAuthSession on input and set continueAuthSession to FALSE on output

3. Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

4. Validate that there is sufficient internal space in the TPM to create a new counter. If  
there is insufficient space, the command returns an error.

a. The TPM MUST provide storage for a1, TPM_COUNTER_VALUE, countID, and any 
other internal data the TPM needs to associate with the counter

5. Increment the max counter value

6. Set the counter to the max counter value

7. Set the counter label to label

8. Create a countID

Level 2 Revision 116 28 February 2011 257
TCG Published

1202
1203

5022
5023

5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037

1204
1205



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

25.2 TPM_IncrementCounter
Start of informative comment:
This authorized command increments the indicated counter by one. Once a counter has 
been incremented then all subsequent increments must be for the same handle until  a 
successful TPM_Startup(ST_CLEAR) is executed.

The order for checking validation of the command parameters when no counter is active, 
keeps an attacker from creating a denial-of-service attack. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

4 4 2s 4 TPM_COUNT_ID countID The handle of a valid counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for counter authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth The authorization session digest that authorizes the use of countID. 
HMAC key: countID -> authData

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

5 10 3S 10 TPM_COUNTER_VALUE count The counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
countID -> authData

Description
This function increments the counter by 1.

The TPM MAY implement increment throttling to avoid burn problems

258 Level 2 Revision 116 28 February 2011
TCG Published

1206
1207
1208

5038
5039
5040
5041
5042
5043
5044
5045

5046

5047

5048
5049
5050

1209
1210



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Actions
1. If TPM_STCLEAR_DATA -> countID is 0

a. Validate that countID is a valid counter, return TPM_BAD_COUNTER on mismatch

b. Validate the command parameters using counterAuth

c. Set TPM_STCLEAR_DATA -> countID to countID

2. else

a. If TPM_STCLEAR_DATA -> countID does not equal countID

i. Return TPM_BAD_COUNTER

b. Validate the command parameters using counterAuth

3. Increments the counter by 1

4. Return new count value in count

Level 2 Revision 116 28 February 2011 259
TCG Published

1211
1212

5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061

1213
1214



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

25.3 TPM_ReadCounter
Start of informative comment:
Reading the counter provides the caller with the current number in the sequence. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 4 2S 4 TPM_COUNT_ID countID ID value of the counter

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 10 3S 10 TPM_COUNTER_VALUE count The counter value

Description
This returns the current value for the counter indicated. The counter MAY be any valid 
counter.

Actions
1. Validate that countID points to a valid counter. Return TPM_BAD_COUNTER on error.

2. Return count

260 Level 2 Revision 116 28 February 2011
TCG Published

1215
1216
1217

5062
5063
5064
5065

5066

5067

5068
5069
5070

5071
5072
5073

1218
1219



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

25.4 TPM_ReleaseCounter
Start of informative comment:
This command releases a counter such that no reads or increments of the indicated counter 
will succeed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for countID authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce associated with countID

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth The authorization session digest that authorizes the use of countID. 
HMAC key: countID -> authData

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
countID -> authData

Actions
The TPM uses countID to locate a valid counter. 

1. Authenticate  the  command  and  the  parameters  using  the  AuthData  pointed  to  by 
countID. Return TPM_AUTHFAIL on error 

2. The  TPM  invalidates  all  internal  information  regarding  the  counter.  This  includes 
releasing countID such that any subsequent attempts to use countID will fail.

3. The TPM invalidates sessions

Level 2 Revision 116 28 February 2011 261
TCG Published

1220
1221

5074
5075
5076
5077
5078

5079

5080

5081
5082
5083
5084
5085
5086
5087

1222
1223



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. MUST invalidate all OSAP sessions associated with the counter

b. MAY invalidate any other session

4. If TPM_STCLEAR_DATA -> countID equals countID, 

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value)

262 Level 2 Revision 116 28 February 2011
TCG Published

1224
1225
1226

5088
5089
5090
5091

1227
1228



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

25.5 TPM_ReleaseCounterOwner
Start of informative comment:
This command releases a counter such that no reads or increments of the indicated counter 
will succeed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest that authorizes the inputs. HMAC key: 
ownerAuth

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth

Description
This invalidates all information regarding a counter.

Actions
1. Validate that ownerAuth properly authorizes the command and parameters

2. The TPM uses countID to locate a valid counter. Return TPM_BAD_COUNTER if  not 
found.

Level 2 Revision 116 28 February 2011 263
TCG Published

1229
1230

5092
5093
5094
5095
5096

5097

5098

5099
5100

5101
5102
5103
5104

1231
1232



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

3. The  TPM  invalidates  all  internal  information  regarding  the  counter.  This  includes 
releasing countID such that any subsequent attempts to use countID will fail.

4. The TPM invalidates sessions

a. MUST invalidate all OSAP sessions associated with the counter

b. MAY invalidate any other session

5. If TPM_STCLEAR_DATA -> countID equals countID, 

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value)

264 Level 2 Revision 116 28 February 2011
TCG Published

1233
1234
1235

5105
5106
5107
5108
5109
5110
5111

1236
1237



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

26. DAA commands

26.1 TPM_DAA_Join
Start of informative comment:
TPM_DAA_Join is the process that establishes the DAA parameters in the TPM for a specific 
DAA issuing authority.

outputSize and outputData are always included in the outParamDigest.  This includes stage 
0, where the outputData contains the DAA session handle.

 End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 TPM_HANDLE handle Session handle

5 1 2S 1 BYTE stage Processing stage of join

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of JOIN

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of JOIN

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

Level 2 Revision 116 28 February 2011 265
TCG Published

1238
1239

5112

5113
5114
5115
5116
5117
5118
5119

5120

1240
1241



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 3S 4 UINT32 outputSize Size of outputData 

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

266 Level 2 Revision 116 28 February 2011
TCG Published

1242
1243
1244

5121

1245
1246



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Description
This table summaries the input, output and saved data that is associated with each stage of 
processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad
0 DAA_count 

(used as # repetitions of stage 1)
NULL initialise Session Handle NULL

1 n0 signatureValue rekeying NULL n0

2 DAA_issuerSettings signatureValue issuer settings NULL NULL

3 DAA_count NULL DAA_join_uo,
DAA_join_u1

NULL NULL

4 DAA_generic_R0 DAA_generic_n P1=R0^f0 mod n NULL P1

5 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^f1) mod n NULL P2

6 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^u0) mod n NULL P3

7 DAA_generic_S1 DAA_generic_n U = P3*(S1^u1) mod n U NULL

8 NE NULL U2 U2 NULL

9 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

10 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

11 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

12 DAA_generic_S1 DAA_generic_n P4 = P3*(S1^r3) mod n P4 NULL

13 DAA_generic_gamma w w1 = w^q mod gamma NULL w

14 DAA_generic_gamma NULL E = w^f mod gamma E w

15 DAA_generic_gamma NULL r = r0 + (2^power0)*r1 mod q,
E1 = w^r mod gamma

E1 NULL

16 c1 NULL c = hash(c1 || NT) nt NULL

17 NULL NULL s0 = r0 + c*f0 s0 NULL

18 NULL NULL s1 = r1 + c*f1 s1 NULL

19 NULL NULL s2 = r2 + c*u0
 mod 2^power1

s2 NULL

20 NULL NULL s12 = r2 + c*u0
>> power1

c s12

21 NULL NULL s3 = r3 + c*u1 + s12 s3 NULL

22 u2 NULL v0 = u2 + u0 mod 2^power1
v10 = u2 + u0 >> power1

enc(v0) v10

23 u3 NULL V1 = u3 + u1 + v10 enc(v1) NULL

24 NULL NULL enc(DAA_tpmSpecific) enc(DAA_tpmSpecific) NULL

Level 2 Revision 116 28 February 2011 267
TCG Published

1247
1248

5122
5123
5124

5125

1249
1250



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Actions
A Trusted Platform Module that receives a valid TPM_DAA_Join command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Join input parameters.

2. Any error return results in the TPM invalidating all resources associated with the join

3. Constant values of 0 or 1 are 1 byte integers, stages affected are

a. 4(j), 5(j), 14(f), 17(e)

4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are

a. 9(i), 10(h), 11(h), 12(h), 15(f),15(g), 17(d), 18(d), 19(d), 20(d), 21(d)

Start of informative comment:
5. Variable DAA_Count

a. In stage 0, DAA_Count denotes the length of the RSA key chain,  which certifies the 
main DAA public key and which will be loaded in stage 1.  It also denotes the number of 
times stage 1 is executed.

b. In stage 3 the variable DAA_count denotes the actual DAA counter. It allows a DAA 
issuer to keep track of the number of times it has issued 'different' DAA credentials to 
the same platform. (The counter does not need to be equal to the actual number.)

End of informative comment.

Stages
0. If stage==0

c. Determine that sufficient resources are available to perform a TPM_DAA_Join.

i. The  TPM  MUST  support  sufficient  resources  to  perform  one  (1) 
TPM_DAA_Join/  TPM_DAA_Sign.  The  TPM  MAY  support  additional 
TPM_DAA_Join/ TPM_DAA_Sign sessions.

ii. The TPM may share internal resources between the DAA operations and other 
variable resource requirements:

iii. If there are insufficient resources within the stored key pool (and one or 
more keys need to be removed to permit the DAA operation to execute) return 
TPM_NOSPACE

iv. If there are insufficient resources within the stored session pool (and 
one or more authorization or transport sessions need to be removed to permit 
the DAA operation to execute), return TPM_RESOURCES.

d. Set all fields in DAA_issuerSettings = NULL

e. set all fields in DAA_tpmSpecific = NULL

f. set all fields in DAA_session = NULL

g. Set all fields in DAA_joinSession = NULL

h. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 
error TPM_DAA_INPUT_DATA0 on mismatch

268 Level 2 Revision 116 28 February 2011
TCG Published

1251
1252
1253

5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142

5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162

1254
1255



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

i. Verify that inputData0 > 0, and return error TPM_DAA_INPUT_DATA0 on mismatch

j. Set DAA_tpmSpecific -> DAA_count = inputData0

k. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

l. set DAA_session -> DAA_stage = 1

m. Assign session handle for TPM_DAA_Join

n. set outputData = new session handle

i. The handle in outputData is included the output HMAC.

o. return TPM_SUCCESS

6. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return TPM_DAA_TPM_SETTINGS on mismatch

c. Verify  that  sizeOf(inputData0)  ==  DAA_SIZE_issuerModulus  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

d. If DAA_session -> DAA_scratch == NULL:

i. Set DAA_session -> DAA_scratch = inputData0

ii. set DAA_joinSession -> DAA_digest_n0 = SHA-1(DAA_session -> DAA_scratch)

iii. set DAA_tpmSpecific -> DAA_rekey = SHA-1(tpmDAASeed || DAA_joinSession 
-> DAA_digest_n0) 

e. Else (If DAA_session -> DAA_scratch != NULL):

i. Set signedData = inputData0

ii. Verify that sizeOf(inputData1) ==  DAA_SIZE_issuerModulus  and return error 
TPM_DAA_INPUT_DATA1 on mismatch

iii. Set signatureValue = inputData1

iv. Use  the  RSA  key  ==  [DAA_session  ->  DAA_scratch]  to  verify  that 
signatureValue  is  a  signature  on  signedData  using 
TPM_SS_RSASSAPKCS1v15_SHA1 (RSA PKCS1.5 with SHA-1), and return error 
TPM_DAA_ISSUER_VALIDITY on mismatch

v. Set DAA_session -> DAA_scratch = signedData

f. Decrement DAA_tpmSpecific -> DAA_count by 1 (unity)

g. If DAA_tpmSpecific -> DAA_count == 0:

i. increment DAA_session -> DAA_stage by 1

h. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

i. set outputData = NULL

Level 2 Revision 116 28 February 2011 269
TCG Published

1256
1257

5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199

1258
1259



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

j. return TPM_SUCCESS

7. If stage==2

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

c. Verify  that  sizeOf(inputData0)  ==  sizeOf(TPM_DAA_ISSUER)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

d. Set DAA_issuerSettings = inputData0. Verify that all fields in DAA_issuerSettings are 
present and return error TPM_DAA_INPUT_DATA0 if not.

e. Verify  that  sizeOf(inputData1)  ==  DAA_SIZE_issuerModulus  and  return  error 
TPM_DAA_INPUT_DATA1 on mismatch

f. Set signatureValue = inputData1

g. Set signedData = (DAA_joinSession -> DAA_digest_n0 ||DAA_issuerSettings)

h. Use the RSA key [DAA_session -> DAA_scratch] to verify that signatureValue is a 
signature on signedData using TPM_SS_RSASSAPKCS1v15_SHA1 (RSA PKCS1.5 with 
SHA-1),, and return error TPM_DAA_ISSUER_VALIDITY on mismatch

i. Set DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) 

j. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

k. Set DAA_session -> DAA_scratch = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS

8. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 
on mismatch 

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 
error TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_tpmSpecific -> DAA_count = inputData0

f. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u0

g. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u1

h. set outputData = NULL

i. increment DAA_session -> DAA_stage by 1

270 Level 2 Revision 116 28 February 2011
TCG Published

1260
1261
1262

5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236

1263
1264



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

j. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

k. return TPM_SUCCESS

9. If stage==4,

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_R0

i. Set n = DAA_generic_n

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q

k. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

l. Set DAA_session -> DAA_scratch = (X^f0) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

10.If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

Level 2 Revision 116 28 February 2011 271
TCG Published

1265
1266

5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273

1267
1268



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_R1

i. Set n = DAA_generic_n

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

k. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

l. Set Z = DAA_session -> DAA_scratch

m. Set DAA_session -> DAA_scratch = Z*(X^f1) mod n

n. set outputData = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

11.If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_S0

i. Set n = DAA_generic_n

j. Set Z = DAA_session -> DAA_scratch

k. Set Y = DAA_joinSession -> DAA_join_u0

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

12.If stage==7

272 Level 2 Revision 116 28 February 2011
TCG Published

1269
1270
1271

5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309

1272
1273



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_S1

i. Set n = DAA_generic_n

j. Set Y = DAA_joinSession -> DAA_join_u1

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. Set  DAA_session  ->  DAA_digest  to  the  SHA-1  (DAA_session  ->  DAA_scratch  || 
DAA_tpmSpecific -> DAA_count || DAA_joinSession -> DAA_digest_n0)

n. set outputData = DAA_session -> DAA_scratch

o. set DAA_session -> DAA_scratch = NULL

p. increment DAA_session -> DAA_stage by 1

q. return TPM_SUCCESS

13.If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_NE and return  error  TPM_DAA_INPUT_DATA0 on 
mismatch

e. Set NE = decrypt(inputData0, privEK) 

f. set outputData = SHA-1(DAA_session -> DAA_digest || NE) 

g. set DAA_session -> DAA_digest = NULL

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 273
TCG Published

1274
1275

5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346

1276
1277



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

14.If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label  them Y.   “r0”  || 
DAA_session -> DAA_contextSeed is the Z seed.

j. Set X = DAA_generic_R0

k. Set n = DAA_generic_n

l. Set DAA_session -> DAA_scratch = (X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

15.If stage==10

a. Verify  that  DAA_session  ->DAA_stage==10.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch h

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain  DAA_SIZE_r1  bytes  using  the  MGF1  function  and  label  them Y.  “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_R1

274 Level 2 Revision 116 28 February 2011
TCG Published

1278
1279
1280

5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384

1281
1282



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

16.If stage==11

a. Verify  that  DAA_session  ->DAA_stage==11.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label  them Y.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

17.If stage==12

a. Verify  that  DAA_session  ->DAA_stage==12.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings ) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

Level 2 Revision 116 28 February 2011 275
TCG Published

1283
1284

5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420

1285
1286



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label  them Y.   “r3”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. Set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

18.If stage==13

a. Verify  that  DAA_session->DAA_stage==13.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 
mismatch

g. Set w = inputData1

h. Set w1 = w^( DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

19.If stage==14

a. Verify  that  DAA_session  ->DAA_stage==14.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

276 Level 2 Revision 116 28 February 2011
TCG Published

1287
1288
1289

5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457

1290
1291



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings ) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

20.If stage==15

a. Verify  that  DAA_session  ->DAA_stage==15.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma).

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

21.If stage==16

a. Verify  that  DAA_session  ->DAA_stage==16.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

Level 2 Revision 116 28 February 2011 277
TCG Published

1292
1293

5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494

1294
1295



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  that  inputSize0  ==  sizeOf(TPM_DIGEST)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 ( DAA_session -> DAA_digest || NT )

h. Set outputData = NT 

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

22.If stage==17

a. Verify  that  DAA_session  ->DAA_stage==17.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest) * f0 in Z. Compute over the integers.  The 
computation is not reduced with a modulus.

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

23.If stage==18

a. Verify  that  DAA_session  ->DAA_stage==18.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

278 Level 2 Revision 116 28 February 2011
TCG Published

1296
1297
1298

5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531

1299
1300



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

d. Obtain  DAA_SIZE_r1 bytes  using the  MGF1 function and label  them r1.  “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)* f1 in Z. Compute over the integers.  The 
computation is not reduced with a modulus.

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

24.If stage==19

a. Verify  that  DAA_session  ->DAA_stage==19.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set s2 = r2 + (DAA_session -> DAA_digest)*( DAA_joinSession -> DAA_join_u0) mod 
2^DAA_power1 (Erase all but the lowest DAA_power1 bits of s2)

f. set outputData = s2

g. increment DAA_session -> DAA_stage by 1

h. return TPM_SUCCESS

25.If stage==20

a. Verify  that  DAA_session  ->DAA_stage==20.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set s12 = r2 + (DAA_session -> DAA_digest)*( DAA_joinSession -> DAA_join_u0) 

f. Shift s12 right by DAA_power1 bit (discard the lowest DAA_power1 bits).

g. Set DAA_session -> DAA_scratch = s12

Level 2 Revision 116 28 February 2011 279
TCG Published

1301
1302

5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569

1303
1304



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

h. Set outputData = DAA_session -> DAA_digest

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

26.If stage==21

a. Verify  that  DAA_session  ->DAA_stage==21.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch 

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label them r3.  “r3” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set  s3  =  r3  +  (DAA_session ->  DAA_digest)*(  DAA_joinSession ->  DAA_join_u1)  + 
(DAA_session -> DAA_scratch).

f. Set DAA_session -> DAA_scratch = NULL

g. set outputData = s3

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

27.If stage==22

a. Verify  that  DAA_session  ->DAA_stage==22.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_v0  and  return  error  TPM_DAA_INPUT_DATA0  on 
mismatch

e. Set u2 = inputData0

f. Set v0 = u2 + (DAA_joinSession -> DAA_join_u0) mod 2^DAA_power1 (Erase all but 
the lowest DAA_power1 bits of v0).

g. Set DAA_tpmSpecific -> DAA_digest_v0 = SHA-1(v0)

h. Set v10 = u2 + (DAA_joinSession -> DAA_join_u0) in Z. Compute over the integers. 
The computation is not reduced with a modulus.

i. Shift v10 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

j. Set DAA_session ->DAA_scratch = v10

k. Set outputData

i. Fill  in TPM_DAA_BLOB with a type of TPM_RT_DAA_V0 and encrypt the v0 
parameters using TPM_PERMANENT_DATA -> daaBlobKey

280 Level 2 Revision 116 28 February 2011
TCG Published

1305
1306
1307

5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607

1308
1309



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

ii. set outputData to the encrypted TPM_DAA_BLOB

l. increment DAA_session -> DAA_stage by 1

m. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

n. return TPM_SUCCESS

28.If stage==23

a. Verify  that  DAA_session  ->DAA_stage==23.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_v1  and  return  error  TPM_DAA_INPUT_DATA0  on 
mismatch

e. Set u3 = inputData0

f. Set v1 = u3 + DAA_joinSession -> DAA_join_u1 + DAA_session ->DAA_scratch

g. Set DAA_tpmSpecific -> DAA_digest_v1 = SHA-1(v1)

h. Set outputData

i. Fill  in TPM_DAA_BLOB with a type of TPM_RT_DAA_V1 and encrypt the v1 
parameters using TPM_PERMANENT_DATA -> daaBlobKey

ii. set outputData to the encrypted TPM_DAA_BLOB

i. Set DAA_session ->DAA_scratch = NULL

j. increment DAA_session -> DAA_stage by 1

k. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

l. return TPM_SUCCESS

29.If stage==24

a. Verify  that  DAA_session  ->DAA_stage==24.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. set  outputData  =  enc(DAA_tpmSpecific)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

e. Terminate the DAA session and all resources associated with the DAA join session 
handle.

f. return TPM_SUCCESS

Level 2 Revision 116 28 February 2011 281
TCG Published

1310
1311

5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645

1312
1313



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

30.If stage > 24, return error: TPM_DAA_STAGE

282 Level 2 Revision 116 28 February 2011
TCG Published

1314
1315
1316

5646

1317
1318



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

26.2 TPM_DAA_Sign
Start of informative comment:
outputSize and outputData are always included in the outParamDigest.  This includes stage 
0, where the outputData contains the DAA session handle.

 End of informative comment.
TPM protected capability; user must provide authorizations from the TPM Owner.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE Ordinal Command ordinal: TPM_ORD_DAA_Sign

4 4 TPM_HANDLE handle Handle to the sign session

5 1 2S 1 BYTE stage Stage of the sign process

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of DAA_Sign

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of DAA_Sign

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_DAA_Sign

4 4 3S 4 UINT32 outputSize Size of outputData 

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Level 2 Revision 116 28 February 2011 283
TCG Published

1319
1320

5647
5648
5649
5650
5651
5652

5653

5654

1321
1322



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Description
This table summaries the input, output and saved data that is associated with each stage of 
processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad
0 DAA_issuerSettings NULL initialise handle NULL

1 enc(DAA_tpmSpecific) NULL initialise NULL NULL

2 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

3 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

4 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

5 DAA_generic_S1 DAA_generic_n T = P3*(S1^r4) mod n T NULL

6 DAA_generic_gamma w w1 = w^q mod gamma NULL w

7 DAA_generic_gamma NULL E = w^f mod gamma E w

8 DAA_generic_gamma NULL r = r0 + (2^power0)*r1 
mod q,
E1 = w^r mod gamma

E1 NULL

9 c1 NULL c = hash(c1 || NT) NT NULL

10 b (selector) m or handle to AIK c = hash(c || 1 || m)
or 
c = hash(c || 0 || AIK-
modulus)

c NULL

11 NULL NULL s0 = r0 + c*f0 s0 NULL

12 NULL NULL s1 = r1 + c*f1 s1 NULL

13 enc(v0) NULL s2 = r2 + c*v0
 mod 2^power1

s2 NULL

14 enc(v0) NULL s12 = r2 + c*v0
>> power1

NULL s12

15 enc(v1) NULL s3 = r4 + c*v1 + s12 s3 NULL

When a TPM receives an Owner authorized command to input enc(DAA_tpmSpecific)  or 
enc(v0) or enc(v1), the TPM MUST verify that the TPM created the data and that neither the 
data nor the TPM's daaProof has been changed since the data was created. Loading one of 
these wrapped blobs does not require authorization, since correct blobs were created by the 
TPM under Owner authorization,  and unwrapped blobs cannot be  used without  Owner 
authorisation.  The  TPM MUST  NOT  restrict  the  number  of  times  that  the  contents  of 
enc(DAA_tpmSpecific) or enc(v0) or enc(v1) can be used by the same combination of TPM 
and daaProof that created them.

Actions
A Trusted Platform Module that receives a valid TPM_DAA_Sign command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Sign input parameters.

2. Any error results in the TPM invalidating all resources associated with the command

3. Constant values of 0 or 1 are 1 byte integers, stages affected are

a. 7(f), 11(e), 12(e)

284 Level 2 Revision 116 28 February 2011
TCG Published

1323
1324
1325

5655
5656
5657

5658
5659
5660
5661
5662
5663
5664
5665
5666

5667
5668
5669
5670
5671
5672

1326
1327



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are

a. 2(h), 3(h), 4(h), 5(h), 12(d), 13(f), 14(f), 15(f)

Stages
0. If stage==0

b. Determine that sufficient resources are available to perform a TPM_DAA_Sign.

i. The  TPM  MUST  support  sufficient  resources  to  perform  one  (1) 
TPM_DAA_Join/ TPM_DAA_Sign. The TPM MAY support addition TPM_DAA_Join/ 
TPM_DAA_Sign sessions.

ii. The TPM may share internal resources between the DAA operations and other 
variable resource requirements:

iii. If there are insufficient resources within the stored key pool (and one or more 
keys  need  to  be  removed  to  permit  the  DAA  operation  to  execute)  return 
TPM_NOSPACE

iv. If there are insufficient resources within the stored session pool (and one or 
more authorization or transport sessions need to be removed to permit the DAA 
operation to execute), return TPM_RESOURCES.

c. Set DAA_issuerSettings = inputData0

d. Verify  that  all  fields  in  DAA_issuerSettings  are  present  and  return  error 
TPM_DAA_INPUT_DATA0 if not.

e. set all fields in DAA_session = NULL

f. Assign new handle for session

g. Set outputData to new handle

i. The handle in outputData is included the output HMAC.

h. set DAA_session -> DAA_stage = 1

i. return TPM_SUCCESS

5. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Set  DAA_tpmSpecific  =  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

c. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

d. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific) 

e. set outputData = NULL

f. set DAA_session -> DAA_stage =2

g. return TPM_SUCCESS

6. If stage==2

Level 2 Revision 116 28 February 2011 285
TCG Published

1328
1329

5673
5674

5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709

1330
1331



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label  them Y.   “r0”  || 
DAA_session -> DAA_contextSeed is the Z seed.

j. Set X = DAA_generic_R0

k. Set n = DAA_generic_n

l. Set DAA_session -> DAA_scratch = (X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

7. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label  them Y.   “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_R1

j. Set n = DAA_generic_n

286 Level 2 Revision 116 28 February 2011
TCG Published

1332
1333
1334

5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747

1335
1336



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

8. If stage==4

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific)   and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label  them Y.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

9. If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

Level 2 Revision 116 28 February 2011 287
TCG Published

1337
1338

5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784

1339
1340



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label  them Y.   “r4”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

10.If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gammma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 
mismatch

g. Set w = inputData1

h. Set w1 = w^( DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

11.If stage==7

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

288 Level 2 Revision 116 28 February 2011
TCG Published

1341
1342
1343

5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821

1344
1345



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

12.If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. Set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma)

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

13.If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

Level 2 Revision 116 28 February 2011 289
TCG Published

1346
1347

5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858

1348
1349



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  that  inputSize0  ==  sizeOf(TPM_DIGEST)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 ( DAA_session -> DAA_digest || NT )

h. Set outputData = NT

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

14.If stage==10

a. Verify  that  DAA_session  ->DAA_stage==10.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that inputSize0 == sizeOf(BYTE), and return error TPM_DAA_INPUT_DATA0 on 
mismatch

e. Set  selector  =  inputData0,  verify  that  selector  ==  0  or  1,  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

f. If  selector  == 1,  verify  that  inputSize1 ==  sizeOf(TPM_DIGEST),  and return  error 
TPM_DAA_INPUT_DATA1 on mismatch

g. Set  DAA_session  ->  DAA_digest  to  SHA-1  (DAA_session  ->  DAA_digest  ||  1  || 
inputData1)

h. If selector == 0, verify that inputData1 is a handle to a TPM identity key (AIK), and 
return error TPM_DAA_INPUT_DATA1 on mismatch

i. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 0 || n2) 
where n2 is the modulus of the AIK

j. Set outputData = DAA_session -> DAA_digest 

k. increment DAA_session -> DAA_stage by 1

l. return TPM_SUCCESS.

15.If stage==11

a. Verify  that  DAA_session  ->DAA_stage==11.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

290 Level 2 Revision 116 28 February 2011
TCG Published

1350
1351
1352

5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895

1353
1354



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest)*(f0) 

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

16.If stage==12

a. Verify  that  DAA_session  ->DAA_stage==12.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)*(f1) 

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

17.If stage==13

a. Verify  that  DAA_session  ->DAA_stage==13.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v0=  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

Level 2 Revision 116 28 February 2011 291
TCG Published

1355
1356

5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934

1357
1358



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r2 bytes from the MGF1 function and label  them r2.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set s2 = r2 + (DAA_session -> DAA_digest)*(  DAA_private_v0) mod 2^DAA_power1 
(erase all but the lowest DAA_power1 bits of s2)

h. set outputData = s2

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

18.If stage==14

a. Verify  that  DAA_session  ->DAA_stage==14.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v0=  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0).

h. Shift s12 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

i. Set DAA_session -> DAA_scratch = s12

j. set outputData = NULL

k. increment DAA_session -> DAA_stage by 1

l. return TPM_SUCCESS

19.If stage==15

a. Verify  that  DAA_session  ->DAA_stage==15.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v1  =  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

292 Level 2 Revision 116 28 February 2011
TCG Published

1359
1360
1361

5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971

1362
1363



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

e. Verify that SHA-1(DAA_private_v1) == DAA_tpmSpecific -> DAA_digest_v1 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label them r4.  “r4” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set  s3  =  r4  +  (DAA_session  ->  DAA_digest)*(DAA_private_v1)  +  (DAA_session  -> 
DAA_scratch).

h. Set DAA_session -> DAA_scratch = NULL

i. set outputData = s3

j. Terminate the DAA session and all resources associated with the DAA sign session 
handle.

k. return TPM_SUCCESS

20.If stage > 15, return error: TPM_DAA_STAGE

Level 2 Revision 116 28 February 2011 293
TCG Published

1364
1365

5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983

1366
1367



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27. Deprecated commands
Start of informative comment:
This section covers the commands that were in version 1.1 but now have new functionality 
in other functions. The deprecated commands are still available in 1.2 but all new software  
should use the new functionality.

There is no requirement that the deprecated commands work with new structures.

End of informative comment.
1. Commands deprecated in version 1.2 MUST work with version 1.1 structures

2. Commands deprecated in version 1.2 MAY work with version 1.2 structures

294 Level 2 Revision 116 28 February 2011
TCG Published

1368
1369
1370

5984
5985
5986
5987
5988
5989
5990
5991
5992

1371
1372



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.1 Key commands
Start of informative comment:
The key commands are deprecated as the new way to handle keys is to use the standard 
context  commands.  So  TPM_EvictKey  is  now  handled  by  TPM_FlushSpecific, 
TPM_Terminate_Handle by TPM_FlushSpecific.

End of informative comment.

27.1.1 TPM_EvictKey

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

4 4 TPM_KEY_HANDLE evictHandle The handle of the key to be evicted.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

Actions
The TPM will invalidate the key stored in the specified handle and return the space to the 
available  internal  pool  for  subsequent  query  by  TPM_GetCapability  and  usage  by 
TPM_LoadKey. If the specified key handle does not correspond to a valid key, an error will 
be returned.

New 1.2 functionality
The command must check the status of the ownerEvict flag for the key and if the flag is 
TRUE return TPM_KEY_CONTROL_OWNER

Level 2 Revision 116 28 February 2011 295
TCG Published

1373
1374

5993
5994
5995
5996
5997
5998

5999

6000

6001

6002
6003
6004
6005
6006

6007
6008
6009

1375
1376



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.1.2 TPM_Terminate_Handle
Start of informative comment:
This allows the TPM manager to clear out information in a session handle.

The TPM may maintain the authorization session even though a key attached to it has been 
unloaded or  the  authorization  session  itself  has  been unloaded in  some  way.  When a 
command is executed that  requires this  session,  it  is  the responsibility  of  the external 
software  to  load  both  the  entity  and  the  authorization  session  information  prior  to 
command execution. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

4 4 TPM_AUTHHANDLE handle The handle to terminate 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

Description
The TPM SHALL terminate the session and destroy all data associated with the session 
indicated.

Actions
A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of 
the following events:

1. Completion of a received command whose authorization “continueUse” flag is FALSE.

2. Completion of a received command when a shared secret derived from the authorization 
session  was  exclusive-or’ed  with  data  (to  provide  confidentiality  for  that  data).  This 
occurs during execution of a TPM_ChangeAuth command, for example.

3. When the associated entity is destroyed (in the case of TPM Owner or SRK, for example)

4. Upon execution of TPM_Init

296 Level 2 Revision 116 28 February 2011
TCG Published

1377
1378
1379

6010
6011
6012
6013
6014
6015
6016
6017
6018

6019

6020

6021
6022
6023

6024
6025
6026
6027
6028
6029
6030
6031
6032

1380
1381



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

5. When the command returns an error. This is due to the fact that when returning an 
error the TPM does not send back nonceEven. There is no way to maintain the rolling 
nonces, hence the TPM MUST terminate the authorization session.

6. Failure of an authorization check belonging to that authorization session.

Level 2 Revision 116 28 February 2011 297
TCG Published

1382
1383

6033
6034
6035
6036

1384
1385



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.2 Context management
Start of informative comment:
The 1.1 context commands were written for specific resource types. The 1.2 commands are 
generic for all resource types. So the Savexxx commands are replaced by TPM_SaveContext 
and the LoadXXX commands by TPM_LoadContext.

End of informative comment.

27.2.1 TPM_SaveKeyContext
Start of informative comment:
TPM_SaveKeyContext saves a loaded key outside the TPM. After creation of the key context 
blob the TPM automatically releases the internal memory used by that key. The format of 
the key context blob is specific to a TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 TPM_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 3S 4 UINT32 keyContextSize The actual size of the outgoing key context blob. If the command fails the value 
will be 0

5 <> 4S <> BYTE[] keyContextBlob The key context blob.

Description
1. This  command  allows  saving  a  loaded  key  outside  the  TPM.  After  creation  of  the 

keyContextBlob, the TPM automatically releases the internal memory used by that key. 
The format of the key context blob is specific to a TPM.

2. A TPM protected capability belonging to the TPM that created a key context blob MUST 
be  the  only  entity  that  can  interpret  the  contents  of  that  blob.  If  a  cryptographic 
technique is  used for  this  purpose,  the level  of  security  provided by that  technique 
SHALL be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) 

298 Level 2 Revision 116 28 February 2011
TCG Published

1386
1387
1388

6037
6038
6039
6040
6041
6042

6043
6044
6045
6046
6047
6048

6049

6050

6051
6052
6053
6054
6055
6056
6057
6058

1389
1390



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

used in such a cryptographic technique MUST be generated using the TPM’s random 
number  generator.  Any  symmetric  key  MUST  be  used  within  the  power-on  session 
during which it was created, only.

3. A key context blob SHALL enable verification of the integrity of the contents of the blob 
by a TPM protected capability.

4. A key context blob SHALL enable verification of the session validity of the contents of the 
blob by a TPM protected capability. The method SHALL ensure that all key context blobs 
are rendered invalid if power to the TPM is interrupted. 

Level 2 Revision 116 28 February 2011 299
TCG Published

1391
1392

6059
6060
6061
6062
6063
6064
6065
6066

1393
1394



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.2.2 TPM_LoadKeyContext
Start of informative comment:
TPM_LoadKeyContext  loads  a  key  context  blob  into  the  TPM previously  retrieved  by  a 
TPM_SaveKeyContext  call.  After  successful  completion  the  handle  returned  by  this 
command can be used to access the key.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 2S 4 UINT32 keyContextSize The size of the following key context blob.

5 <> 3S <> BYTE[] keyContextBlob The key context blob.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 TPM_KEY_HANDLE keyHandle The handle assigned to the key after it has been successfully loaded.

Description
1. This command allows loading a key context blob into the TPM previously retrieved by a 

TPM_SaveKeyContext  call.  After  successful  completion  the  handle  returned  by  this 
command can be used to access the key.

2. The contents of a key context blob SHALL be discarded unless the contents have passed 
an integrity test. This test SHALL (statistically) prove that the contents of the blob are 
the same as when the blob was created.

3. The contents of a key context blob SHALL be discarded unless the contents have passed 
a session validity test. This test SHALL (statistically) prove that the blob was created by 
this TPM during this power-on session.

300 Level 2 Revision 116 28 February 2011
TCG Published

1395
1396
1397

6067

6068
6069
6070
6071
6072
6073

6074

6075

6076
6077
6078
6079
6080
6081
6082
6083
6084
6085

1398
1399



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.2.3 TPM_SaveAuthContext
Start of informative comment:
TPM_SaveAuthContext saves a loaded authorization session outside the TPM. After creation 
of the authorization context blob, the TPM automatically releases the internal memory used 
by that session. The format of the authorization context blob is specific to a TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 TPM_AUTHHANDLE authHandle Authorization session which will be kept outside the TPM 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 3S 4 UINT32 authContextSize The actual size of the outgoing authorization context blob. If the command fails 
the value will be 0.

5 <> 4S 4 BYTE[] authContextBlob The authorization context blob.

Description
This command allows saving a loaded authorization session outside the TPM. After creation 
of the authContextBlob, the TPM automatically releases the internal memory used by that 
session. The format of the authorization context blob is specific to a TPM.

A TPM protected capability belonging to the TPM that created an authorization context blob 
MUST be the only entity that can interpret the contents of that blob. If a cryptographic 
technique is used for this purpose, the level of security provided by that technique SHALL 
be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) used in such a 
cryptographic technique MUST be generated using the TPM’s random number generator. 
Any symmetric key MUST be used within the power-on session during which it was created, 
only.

An authorization context blob SHALL enable verification of the integrity of the contents of 
the blob by a TPM protected capability.

Level 2 Revision 116 28 February 2011 301
TCG Published

1400
1401

6086

6087
6088
6089
6090
6091
6092

6093

6094

6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107

1402
1403



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

An  authorization  context  blob  SHALL  enable  verification  of  the  session  validity  of  the 
contents of the blob by a TPM protected capability.  The method SHALL ensure that all 
authorization context blobs are rendered invalid if power to the TPM is interrupted. 

27.2.4 TPM_LoadAuthContext
Start of informative comment:
TPM_LoadAuthContext  loads  an  authorization  context  blob  into  the  TPM  previously 
retrieved by a TPM_SaveAuthContext call. After successful completion, the handle returned 
by this command can be used to access the authorization session.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 2S 4 UINT32 authContextSize The size of the following authorization context blob.

5 <> 3S <> BYTE[] authContextBlob The authorization context blob.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 TPM_KEY_HANDLE authHandle The handle assigned to the authorization session after it has been successfully 
loaded.

Description
This  command  allows  loading  an  authorization  context  blob  into  the  TPM  previously 
retrieved by a TPM_SaveAuthContext call. After successful completion, the handle returned 
by this command can be used to access the authorization session.

The contents of an authorization context blob SHALL be discarded unless the contents have 
passed an integrity test. This test SHALL (statistically) prove that the contents of the blob 
are the same as when the blob was created.

The contents of an authorization context blob SHALL be discarded unless the contents have 
passed a session validity test. This test SHALL (statistically) prove that the blob was created 
by this TPM during this power-on session.

For an OSAP authorization context blob referring to a key, verify that the key linked to this 
session is resident in the TPM.

302 Level 2 Revision 116 28 February 2011
TCG Published

1404
1405
1406

6108
6109
6110

6111
6112
6113
6114
6115
6116

6117

6118

6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130

1407
1408



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Level 2 Revision 116 28 February 2011 303
TCG Published

1409
1410

6131

1411
1412



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.3 DIR commands
Start of informative comment:
The DIR commands are replaced by the NV storage commands. 

The DIR [0] in 1.1 is now TPM_PERMANENT_DATA -> authDIR[0] and is always available for 
the TPM to use. It is accessed by DIR commands using dirIndex 0 and by NV commands 
using nvIndex TPM_NV_INDEX_DIR.

If the TPM vendor supports additional DIR registers, the TPM vendor may return errors or 
provide vendor specific mappings for those DIR registers to NV storage locations.

End of informative comment.
1. A  dirIndex  value  of  0  MUST  corresponds  to  an  NV  storage  nvIndex  value 

TPM_NV_INDEX_DIR.

2. The TPM vendor MAY return errors or MAY provide vendor specific mappings for DIR 
dirIndex values greater than 0 to NV storage locations.

304 Level 2 Revision 116 28 February 2011
TCG Published

1413
1414
1415

6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144

1416
1417



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.3.1 TPM_DirWriteAuth
Start of informative comment:
The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs 
are non-volatile memory registers held in a TPM-shielded location. Owner authentication is 
required to authorize this action. 

Access  is  also  provided  through the  NV  commands  with  nvIndex TPM_NV_INDEX_DIR. 
Owner authorization is not required when nvLocked is FALSE.

Version 1.2 requires only one DIR. If the DIR named does not exist, the TPM_DirWriteAuth 
operation returns TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR

5 20 3S 20 TPM_DIRVALUE newContents New value to be stored in named DIR

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs. HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions

Level 2 Revision 116 28 February 2011 305
TCG Published

1418
1419

6145
6146
6147
6148
6149
6150
6151
6152
6153
6154

6155

6156

6157

1420
1421



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

1. Validate  that  authHandle  contains  a  TPM  Owner  AuthData  to  execute  the 
TPM_DirWriteAuth command

2. Validate that dirIndex points to a valid DIR on this TPM

3. Write newContents into the DIR pointed to by dirIndex

306 Level 2 Revision 116 28 February 2011
TCG Published

1422
1423
1424

6158
6159
6160
6161

1425
1426



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.3.2 TPM_DirRead
Start of informative comment:
The TPM_DirRead operation provides read access to the DIRs. No authentication is required 
to perform this action because typically no cryptographically useful AuthData is available 
early in boot. TSS implementers may choose to provide other means of authorizing this 
action.  Version  1.2  requires  only  one  DIR.  If  the  DIR  named  does  not  exist,  the 
TPM_DirRead operation returns TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR to be read

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 20 3S 20 TPM_DIRVALUE dirContents The current contents of the named DIR

Actions
1. Validate that dirIndex points to a valid DIR on this TPM

2. Return the contents of the DIR in dirContents

Level 2 Revision 116 28 February 2011 307
TCG Published

1427
1428

6162

6163
6164
6165
6166
6167
6168
6169
6170

6171

6172

6173
6174
6175

1429
1430



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.4 Change Auth
Start of informative comment:
The  change  auth  commands  can  be  duplicated  by  creating  a  transport  session  with 
confidentiality and issuing the changeAuth command.

End of informative comment.

308 Level 2 Revision 116 28 February 2011
TCG Published

1431
1432
1433

6176
6177
6178
6179
6180

1434
1435



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.4.1 TPM_ChangeAuthAsymStart
Start of informative comment:
The TPM_ChangeAuthAsymStart starts the process of changing AuthData for an entity. It 
sets  up  an  OIAP  session  that  must  be  retained  for  use  by  its  twin 
TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart  creates  a  temporary  asymmetric  public  key  “tempkey”  to 
provide confidentiality for new AuthData to be sent to the TPM. TPM_ChangeAuthAsymStart 
certifies  that  tempkey  was  generated  by  a  genuine  TPM,  by  generating  a  certifyInfo 
structure that is signed by a TPM identity. The owner of that TPM identity must cooperate 
to produce this command, because TPM_ChangeAuthAsymStart requires authorization to 
use that identity.

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose 
authorization  is  to  be  changed.  That  owner  uses  certifyInfo  and  a 
TPM_IDENTITY_CREDENTIAL to verify that tempkey was generated by a genuine TPM. This 
is  done  by  verifying  the  TPM_IDENTITY_CREDENTIAL  using  the  public  key  of  a  CA, 
verifying the signature on the certifyInfo structure with the public key of the identity in 
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value 
inside certifyInfo. The owner uses tempkey to encrypt the desired new AuthData and inserts 
that encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that 
only a TPM with a specific identity can interpret the new AuthData.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.

4 4 TPM_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key

5 20 2s 20 TPM_NONCE antiReplay The nonce to be inserted into the certifyInfo structure 

6 <> 3S <> TPM_KEY_PARMS tempKey Structure contains all parameters of ephemeral key. 

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for idHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA idAuth Authorization. HMAC key: idKey.usageAuth.

Level 2 Revision 116 28 February 2011 309
TCG Published

1436
1437

6181

6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202

6203

1438
1439



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart

7 95 3S 95 TPM_CERTIFY_INFO certifyInfo The certifyInfo structure that is to be signed.

8 4 4S 4 UINT32 sigSize The used size of the output area for the signature

9 <> 5S <> BYTE[ ] sig The signature of the certifyInfo parameter.

10 4 6s 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier to be used by ChangeAuthAsymFinish for the 
ephemeral key

11 <> 7S <> TPM_KEY tempKey Structure containing all parameters and public part of ephemeral key. 
TPM_KEY.encSize is set to 0.

12 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

14 20 TPM_AUTHDATA resAuth Authorization. HMAC key: idKey.usageAuth.

Actions
1. The TPM SHALL verify the AuthData to use the TPM identity key held in idHandle. The 

TPM MUST verify that the key is a TPM identity key.

2. The  TPM  SHALL  validate  the  algorithm  parameters  for  the  key  to  create  from  the 
tempKey parameter.

3. Recommended key type is RSA

4. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024

5. For other key types the minimum key size strength MUST be comparable to RSA 512

6. If the TPM is not designed to create a key of the requested type, return the error code 
TPM_BAD_KEY_PROPERTY

7. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The 
newly created key is pointed to by ephHandle.

8. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TPM_KEY 
-> encSize MUST be 0.

9. The TPM SHALL fill in certifyInfo using k1 for the information. The certifyInfo -> data 
field is supplied by the antiReplay.

10.The TPM then signs the certifyInfo parameter using the key pointed to by idHandle. The 
resulting signed blob is returned in sig parameter

310 Level 2 Revision 116 28 February 2011
TCG Published

1440
1441
1442

6204

6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222

1443
1444



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Field Descriptions for certifyInfo parameter
Type Name Description

TPM_VERSION Version TPM version structure; Part 2 TPM_VERSION

keyFlags Redirection This SHALL be set to FALSE

Migratable This SHALL be set to FALSE

Volatile This SHALL be set to TRUE

TPM_AUTH_DATA_USAGE authDataUsage This SHALL be set to TPM_AUTH_NEVER

TPM_KEY_USAGE KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRInfoSize This SHALL be set to 0

TPM_DIGEST pubDigest This SHALL be the hash of the public key being certified.

TPM_NONCE Data This SHALL be set to antiReplay

TPM_KEY_PARMS info This specifies the type of key and its parameters.

BOOL parentPCRStatus This SHALL be set to FALSE.

Level 2 Revision 116 28 February 2011 311
TCG Published

1445
1446

6223

1447
1448



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.4.2 TPM_ChangeAuthAsymFinish
Start of informative comment:
The TPM_ChangeAuthAsymFinish command allows the owner of an entity to change the 
AuthData for the entity.

The  command requires  the  cooperation of  the  owner of  the  parent  of  the  entity,  since 
AuthData must be provided to use that parent entity. The command requires knowledge of 
the  existing  AuthData  information  and  passes  the  new  AuthData  information.  The 
newAuthLink  parameter  proves  knowledge  of  existing  AuthData  information  and  new 
AuthData information. The new AuthData information “encNewAuth” is encrypted using the 
“tempKey” variable obtained via TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the AuthData of a child, but is prevented 
from knowing the new AuthData for that child.

The changeProof parameter provides a proof that the new AuthData value was properly 
inserted into the entity. The inclusion of a nonce from the TPM provides an entropy source 
in the case where the AuthData value may be in itself be a low entropy value (hash of a 
password etc). 

 End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 TPM_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data

5 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key

6 2 3S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 20 4s 20 TPM_HMAC newAuthLink HMAC calculation that links the old and new AuthData values together

8 4 5S 4 UINT32 newAuthSize Size of encNewAuth

9 <> 6S <> BYTE[ ] encNewAuth New AuthData encrypted with ephemeral key.

10 4 7S 4 UINT32 encDataSize The size of the inData parameter

11 <> 8S <> BYTE[ ] encData The encrypted entity that is to be modified.

12 4 TPM_AUTHHANDLE authHandle Authorization for parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.

312 Level 2 Revision 116 28 February 2011
TCG Published

1449
1450
1451

6224

6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241

6242

6243

1452
1453



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The modified, encrypted entity.

6 20 5s 20 TPM_NONCE saltNonce A nonce value from the TPM RNG to add entropy to the changeProof 
value

7 <> 6S <> TPM_DIGEST changeProof Proof that AuthData has changed.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Description
If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM 
Owner authentication.

Actions
1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in 

parentHandle.

2. The encData field MUST be the encData field from TPM_STORED_DATA or TPM_KEY.

3. The TPM SHALL create e1 by decrypting the entity held in the encData parameter.

4. The  TPM  SHALL  create  a1  by  decrypting  encNewAuth  using  the  ephHandle  -> 
TPM_KEY_AUTHCHANGE  private  key.  a1  is  a  structure  of  type 
TPM_CHANGEAUTH_VALIDATE.

5. The TPM SHALL create b1 by performing the following HMAC calculation: b1 = HMAC 
(a1 -> newAuthSecret). The secret for this calculation is encData -> currentAuth. This 
means  that  b1  is  a  value  built  from  the  current  AuthData  value  (encData  -> 
currentAuth) and the new AuthData value (a1 -> newAuthSecret).

6. The TPM SHALL compare b1 with newAuthLink. The TPM SHALL indicate a failure if the 
values do not match.

7. The TPM SHALL replace e1 -> authData with a1 -> newAuthSecret

8. The TPM SHALL encrypt e1 using the appropriate functions for the entity type. The key 
to encrypt with is parentHandle.

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG.

Level 2 Revision 116 28 February 2011 313
TCG Published

1454
1455

6244

6245
6246
6247

6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265

1456
1457



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

10.The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with a1 -> n1) 
using a1 -> newAuthSecret as the HMAC secret.

11.The  TPM  MUST  destroy  the  TPM_KEY_AUTHCHANGE  key  associated  with  the 
authorization session.

314 Level 2 Revision 116 28 February 2011
TCG Published

1458
1459
1460

6266
6267
6268
6269

1461
1462



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.5 TPM_Reset
Start of informative comment:
TPM_Reset releases all resources associated with existing authorization sessions. This is 
useful if a TSS driver has lost track of the state in the TPM. 

End of informative comment.
Deprecated Command in 1.2

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Description
This is a deprecated command in V1.2. This command in 1.1 only referenced authorization 
sessions and is not upgraded to affect any other TPM entity in 1.2

Actions
1. The TPM invalidates all resources allocated to authorization sessions as per version 1.1 

extant in the TPM

a. This includes structures created by TPM_SaveAuthContext and TPM_SaveKeyContext

b. The TPM MUST invalidate OSAP sessions

c. The TPM MAY invalidate DSAP sessions

d. The TPM MUST NOT invalidate structures created by TPM_SaveContext

2. The TPM does not reset any PCR or DIR values.

3. The TPM does not reset any flags in the TPM_STCLEAR_FLAGS structure.

4. The TPM does not reset or invalidate any keys

Level 2 Revision 116 28 February 2011 315
TCG Published

1463
1464

6270
6271
6272
6273
6274
6275

6276

6277

6278
6279
6280

6281
6282
6283
6284
6285
6286
6287
6288
6289
6290

1465
1466



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.6 TPM_OwnerReadPubek
Start of informative comment:
Return the endorsement key public portion. This is authorized by the TPM Owner.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Description
This command returns the PUBEK. 

Actions
The TPM_OwnerReadPubek command SHALL 

1. Validate the TPM Owner AuthData to execute this command

2. Export the PUBEK

316 Level 2 Revision 116 28 February 2011
TCG Published

1467
1468
1469

6291
6292
6293
6294

6295

6296

6297
6298

6299
6300
6301
6302

1470
1471



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

27.7 TPM_DisablePubekRead
Start of informative comment:
The TPM Owner may wish to prevent any entity from reading the PUBEK. This command 
sets  the  non-volatile  flag  so  that  the  TPM_ReadPubek  command  always  returns 
TPM_DISABLED_CMD.

This command has in essence been deprecated as TPM_TakeOwnership now sets the value 
to false. The command remains at this time for backward compatibility.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authorization. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. This capability sets the TPM_PERMANENT_FLAGS -> readPubek flag to FALSE.

Level 2 Revision 116 28 February 2011 317
TCG Published

1472
1473

6303
6304
6305
6306
6307
6308
6309
6310

6311

6312

6313
6314

1474
1475



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.8 TPM_LoadKey
Start of informative comment:
Version 1.2 deprecates TPM_LoadKey due to the HMAC of the new key handle on return. 
The wrapping makes use of the handle difficult in an environment where the TSS, or other 
management entity, is changing the TPM handle to a virtual handle. 

Software using TPM_LoadKey on a 1.2 TPM can have a collision with the returned handle as 
the 1.2 TPM uses random values in the lower three bytes of the handle. All new software  
must use LoadKey2 to allow management software the ability to manage the key handle.

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or 
perform any other action, it needs to be present in the TPM. The TPM_LoadKey function 
loads the key into the TPM for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 
The assumption is that the handle may change due to key management operations. It is the 
responsibility of upper level software to maintain the mapping between handle and any 
label used by external software.

This  command has  the  responsibility  of  enforcing  restrictions  on  the  use  of  keys.  For 
example, when attempting to load a STORAGE key it will be checked for the restrictions on 
a storage key (2048 size etc.).

The  load  command  must  maintain  a  record  of  whether  any  previous  key  in  the  key 
hierarchy was bound to a PCR using parentPCRStatus.

The  flag  parentPCRStatus  enables  the  possibility  of  checking  that  a  platform  passed 
through some particular state or states before finishing in the current state. A grandparent 
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 
linked to state-3, for example. The use of the child key then indicates that the platform 
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 
has not  passed through the previous states.  Hence keys with  parentPCRStatus==TRUE 
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 
has passed AND the key is non-migratory, the key must have been created by the TPM. So 
there is every reason to believe that the key poses no security threat to the TPM. While there 
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 
migratory key is a real key,  arising from a general  sense of unease about execution of 
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 
cycle,  but  this  may  be  expensive.  For  RSA  keys,  it  is  therefore  suggested  that  the 
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 
and checking that there is no remainder.

End of informative comment.

318 Level 2 Revision 116 28 February 2011
TCG Published

1476
1477
1478

6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352

1479
1480



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey Incoming key structure, both encrypted private and clear public portions. 
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey

4 4 3S 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate  the  command  and  the  parameters  using  parentAuth  and  parentHandle  -> 
usageAuth

2. If  parentHandle  ->  keyUsage  is  NOT  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 
error code TPM_BAD_KEY_PROPERTY

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 
in parentHandle

Level 2 Revision 116 28 February 2011 319
TCG Published

1481
1482

6353

6354

6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365

1483
1484



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY

a. Reproduce  inKey ->  TPM_STORE_ASYMKEY ->  pubDataDigest  using the  fields  of 
inKey, and check that the reproduced value is the same as pubDataDigest

7. Validate the consistency of the key and it’s key usage. 

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 
public  and private  components of  the  asymmetric  key  pair.  If  inKey ->  keyFlags  -> 
migratable  is  FALSE,  the  TPM  MAY  verify  consistency  of  the  public  and  private 
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 
there is no remainder.

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY 
-> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

ii. If  keyInfo  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. sigScheme MUST be TPM_SS_NONE

h. If inKey -> keyUsage is TPM_KEY_IDENTITY

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. encScheme MUST be TPM_ES_NONE

i. If the decrypted inKey -> pcrInfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using 
any PCR registers.

j. Else

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 
composite hash whenever the key will be in use

320 Level 2 Revision 116 28 February 2011
TCG Published

1485
1486
1487

6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402

1488
1489



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

ii. The  TPM  MUST  handle  both  version  1.1  TPM_PCR_INFO  and  1.2 
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure

(1) The  TPM  MUST  validate  the  TPM_PCR_INFO  or  TPM_PCR_INFO_LONG 
structures  for  legal  values.   However,  the  digestAtRelease  and 
localityAtRelease are not validated for authorization until use time.

8. Perform any processing  necessary  to  make  TPM_STORE_ASYMKEY key available  for 
operations

9. Load key and key information into internal memory of the TPM. If insufficient memory 
exists, return error TPM_NOSPACE.

10.Assign inKeyHandle according to internal TPM rules.

11.Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

12.If  parentHandle  indicates  it  is  using  PCR  registers,  then  set  inKeyHandle  -> 
parentPCRStatus to TRUE. 

Level 2 Revision 116 28 February 2011 321
TCG Published

1490
1491

6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415

1492
1493



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

28. Deleted Commands
Start of informative comment:
These commands are no longer active commands. Their removal is due to security concerns 
with their use. 

End of informative comment.
1. The TPM MUST return TPM_BAD_ORDINAL for any deleted command

322 Level 2 Revision 116 28 February 2011
TCG Published

1494
1495
1496

6416
6417
6418
6419
6420
6421

1497
1498



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

28.1 TPM_GetCapabilitySigned
Start of informative comment:
Along  with  TPM_GetCapabilityOwner  this  command  allowed  the  possible  signature  of 
improper values.

TPM_GetCapabilitySigned is  almost the same as TPM_GetCapability.  The differences are 
that the input includes a challenge (a nonce) and the response includes a digital signature 
to vouch for the source of the answer.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 
and the caller have AuthData.

If a caller requires proof for a third party, the signing key must be one whose signature is 
trusted by the third party. A TPM-identity key may be suitable.

End of informative comment.

Deleted Ordinal
TPM_GetCapabilitySigned

Level 2 Revision 116 28 February 2011 323
TCG Published

1499
1500

6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433

6434
6435

1501
1502



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

28.2 TPM_GetOrdinalAuditStatus
Start of informative comment:
Get the status of the audit flag for the given ordinal. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus

4 4 TPM_COMMAND_CODE ordinalToQuery The ordinal whose audit flag is to be queried 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. 

4 1 BOOL State Value of audit flag for ordinalToQuery

Actions
1. The TPM returns the Boolean value for the given ordinal.  The value is  TRUE if  the 

command is being audited.

324 Level 2 Revision 116 28 February 2011
TCG Published

1503
1504
1505

6436
6437
6438
6439

6440

6441

6442
6443
6444

1506
1507



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

28.3 TPM_CertifySelfTest
Start of informative comment:
TPM_CertifySelfTest causes the TPM to perform a full self-test and return an authenticated 
value if the test passes.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 
and the caller have AuthData.

If a caller requires proof for a third party, the signing key must be one whose signature is 
trusted by the third party. A TPM-identity key may be suitable.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti Replay nonce to prevent replay of messages

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the inputs and use of 
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[ ] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Level 2 Revision 116 28 February 2011 325
TCG Published

1508
1509

6445
6446
6447
6448
6449
6450
6451
6452
6453

6454

6455

1510
1511



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

Description
The  key  in  keyHandle  MUST  have  a  KEYUSAGE  value  of  type  TPM_KEY_SIGNING  or 
TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual 
TPM.

Actions
1. The  TPM  SHALL  perform  TPM_SelfTestFull.  If  the  test  fails  the  TPM  returns  the 

appropriate error code.

2. After successful completion of the self-test the TPM then validates the authorization to 
use the key pointed to by keyHandle

a. If  the  key  pointed  to  by  keyHandle  has  a  signature  scheme  that  is  not 
TPM_SS_RSASSAPKCS1v15_SHA1, the TPM may either return TPM_BAD_SCHEME or 
may return TPM_SUCCESS and a vendor specific signature.

3. Create t1 the NOT null terminated string of "Test Passed", i.e. 11 bytes.

4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal.

5. The TPM signs the SHA-1 of m2 using the key identified by keyHandle, and returns the 
signature as sig.

326 Level 2 Revision 116 28 February 2011
TCG Published

1512
1513
1514

6456
6457
6458
6459
6460

6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473

1515
1516



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

28.4 TPM_GetAuditEvent

Start of informative comment:
Deleted

End of informative comment.

Deleted Ordinal
TPM_GetAuditEvent

Level 2 Revision 116 28 February 2011 327
TCG Published

1517
1518

6474
6475
6476
6477
6478

6479
6480

1519
1520



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

28.5 TPM_GetAuditEventSigned

Start of informative comment:
Deleted

End of informative comment.

Deleted Ordinal
TPM_GetAuditEventSigned

328 Level 2 Revision 116 28 February 2011
TCG Published

1521
1522
1523

6481
6482
6483
6484
6485

6486
6487
6488
6489

1524
1525


	1. Scope and Audience
	1.1 Key words
	1.2 Action Order
	1.3 Statement Type

	2. Description and TODO
	3. Admin Startup and State
	3.1 TPM_Init
	3.2 TPM_Startup
	3.3 TPM_SaveState

	4. Admin Testing
	4.1 TPM_SelfTestFull
	4.2 TPM_ContinueSelfTest
	4.3 TPM_GetTestResult

	5. Admin Opt-in
	5.1 TPM_SetOwnerInstall
	5.2 TPM_OwnerSetDisable
	5.3 TPM_PhysicalEnable
	5.4 TPM_PhysicalDisable
	5.5 TPM_PhysicalSetDeactivated
	5.6 TPM_SetTempDeactivated
	5.7 TPM_SetOperatorAuth

	6. Admin Ownership
	6.1 TPM_TakeOwnership
	6.2 TPM_OwnerClear
	6.3 TPM_ForceClear
	6.4 TPM_DisableOwnerClear
	6.5 TPM_DisableForceClear
	6.6 TSC_PhysicalPresence
	6.7 TSC_ResetEstablishmentBit

	7. The Capability Commands
	7.1 TPM_GetCapability
	7.2 TPM_SetCapability
	7.3 TPM_GetCapabilityOwner

	8. Auditing
	8.1  Audit Generation 
	8.2 Effect of audit failing
	8.3 TPM_GetAuditDigest
	8.4 TPM_GetAuditDigestSigned
	8.5 TPM_SetOrdinalAuditStatus

	9. Administrative Functions - Management
	9.1 TPM_FieldUpgrade
	9.2 TPM_SetRedirection
	9.3 TPM_ResetLockValue

	10. Storage functions
	10.1 TPM_Seal
	10.2 TPM_Unseal
	10.3 TPM_UnBind
	10.4 TPM_CreateWrapKey
	10.5 TPM_LoadKey2
	10.6 TPM_GetPubKey
	10.7 TPM_Sealx

	11. Migration
	11.1 TPM_CreateMigrationBlob
	11.2 TPM_ConvertMigrationBlob
	11.3 TPM_AuthorizeMigrationKey
	11.4 TPM_MigrateKey
	11.5 TPM_CMK_SetRestrictions
	11.6 TPM_CMK_ApproveMA
	11.7 TPM_CMK_CreateKey
	11.8 TPM_CMK_CreateTicket
	11.9 TPM_CMK_CreateBlob
	11.10 TPM_CMK_ConvertMigration

	12. Maintenance Functions (optional)
	12.1 TPM_CreateMaintenanceArchive
	12.2 TPM_LoadMaintenanceArchive
	12.3 TPM_KillMaintenanceFeature
	12.4 TPM_LoadManuMaintPub
	12.5 TPM_ReadManuMaintPub

	13. Cryptographic Functions
	13.1 TPM_SHA1Start
	13.2 TPM_SHA1Update
	13.3 TPM_SHA1Complete
	13.4 TPM_SHA1CompleteExtend
	13.5 TPM_Sign
	13.6 TPM_GetRandom
	13.7 TPM_StirRandom
	13.8 TPM_CertifyKey
	13.9 TPM_CertifyKey2

	14. Endorsement Key Handling
	14.1 TPM_CreateEndorsementKeyPair
	14.2 TPM_CreateRevocableEK
	14.3 TPM_RevokeTrust
	14.4 TPM_ReadPubek
	14.5 TPM_OwnerReadInternalPub

	15. Identity Creation and Activation
	15.1 TPM_MakeIdentity
	15.2 TPM_ActivateIdentity

	16. Integrity Collection and Reporting
	16.1 TPM_Extend
	16.2 TPM_PCRRead
	16.3 TPM_Quote
	16.4 TPM_PCR_Reset
	16.5 TPM_Quote2

	17. Changing AuthData
	17.1 TPM_ChangeAuth
	17.2 TPM_ChangeAuthOwner

	18. Authorization Sessions
	18.1 TPM_OIAP
	18.1.1 Actions to validate an OIAP session

	18.2 TPM_OSAP
	18.2.1 Actions to validate an OSAP session

	18.3 TPM_DSAP
	18.4 TPM_SetOwnerPointer

	19. Delegation Commands
	19.1 TPM_Delegate_Manage
	19.2 TPM_Delegate_CreateKeyDelegation
	19.3 TPM_Delegate_CreateOwnerDelegation
	19.4 TPM_Delegate_LoadOwnerDelegation
	19.5 TPM_Delegate_ReadTable
	19.6 TPM_Delegate_UpdateVerification
	19.7 TPM_Delegate_VerifyDelegation

	20. Non-volatile Storage
	20.1 TPM_NV_DefineSpace
	20.2 TPM_NV_WriteValue
	20.3 TPM_NV_WriteValueAuth
	20.4 TPM_NV_ReadValue
	20.5 TPM_NV_ReadValueAuth

	21. Session Management
	21.1 TPM_KeyControlOwner
	21.2 TPM_SaveContext
	21.3 TPM_LoadContext

	22. Eviction
	22.1 TPM_FlushSpecific

	23. Timing Ticks
	23.1 TPM_GetTicks
	23.2 TPM_TickStampBlob

	24. Transport Sessions
	24.1 TPM_EstablishTransport
	24.2 TPM_ExecuteTransport
	24.3 TPM_ReleaseTransportSigned

	25. Monotonic Counter
	25.1 TPM_CreateCounter
	25.2 TPM_IncrementCounter
	25.3 TPM_ReadCounter
	25.4 TPM_ReleaseCounter
	25.5 TPM_ReleaseCounterOwner

	26. DAA commands
	26.1 TPM_DAA_Join
	26.2 TPM_DAA_Sign

	27. Deprecated commands
	27.1 Key commands
	27.1.1 TPM_EvictKey
	27.1.2 TPM_Terminate_Handle

	27.2 Context management
	27.2.1 TPM_SaveKeyContext
	27.2.2 TPM_LoadKeyContext
	27.2.3 TPM_SaveAuthContext
	27.2.4 TPM_LoadAuthContext

	27.3 DIR commands
	27.3.1 TPM_DirWriteAuth
	27.3.2 TPM_DirRead

	27.4 Change Auth
	27.4.1 TPM_ChangeAuthAsymStart
	27.4.2 TPM_ChangeAuthAsymFinish

	27.5 TPM_Reset
	27.6 TPM_OwnerReadPubek
	27.7 TPM_DisablePubekRead
	27.8 TPM_LoadKey

	28. Deleted Commands
	28.1 TPM_GetCapabilitySigned
	28.2 TPM_GetOrdinalAuditStatus
	28.3 TPM_CertifySelfTest
	28.4 TPM_GetAuditEvent
	28.5 TPM_GetAuditEventSigned


