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changing state.  TPM_NV_DefineSpace, TPM_NV_WriteValue, TPM_NV_ReadValue ignore disabled and deactivated when 
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Rev 111 July 2008 TPM_SaveState gives priority to keys where parentPCRStatus is TRUE.  Informative security warning when field upgrade 
adds new features.  TPM_MakeIdentity normative that the signing key digestAtRelease is not validated.

Rev 112 Jan 2009 Create and load storage and migrate key, ownership commands check for default exponent, TPM_CMK_CreateBlob MAY 
check unused restrictTicket and sigTicket, TPM_NV_WriteValue does auth checks before changing bGlobalLock

Rev 113 Jan 2009 Identity key checks for default exponent.  TPM_SHA1Update actions added.  TPM_NV_WriteValue, TPM_NV_ReadValue 
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Rev 114 Jan 2009 No changes

Rev 116 Aug 2009 No Changes
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1. Scope and Audience
The TPM main specification is an industry specification that enables trust in computing 
platforms in general. The main specification is broken into parts to make the role of each 
document clear. A version of the specification (like 1.2) requires all parts to be a complete 
specification.

This is Part 3, the commands that the TPM will use.

This document is an industry specification that enables trust in computing platforms in 
general. 
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1.1 Key words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 
“SHOULD  NOT,”  “RECOMMENDED,”  “MAY,”  and  “OPTIONAL”  in  the  chapters  2-10 
normative statements are to be interpreted as described in [RFC-2119].
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1.2 Action Order
1. The order of ordinal actions is advisory.  

In particular, the order in which errors are checked is vendor specific.  The TPM SHOULD 
check for error conditions as much as possible before executing actions that alter  the 
TPM state.

See also Part 2 “Return Codes” for a discussion of error code requirements.

2. After  input  parameter  parsing  errors,  the  state  of  the  TPM may  or  may  not  be 
changed.   The  TSS  can  use  TPM_GetCapability  to  determine  what  state  has  been 
affected.

For example, authorized commands terminate authorization sessions on error, since the 
response cannot roll the nonce.  However, if the incoming session handle parameter cannot 
be parsed, the session cannot be terminated.
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1.3 Statement Type
Please note a very important distinction between different sections of text throughout this 
document.  You  will  encounter  two  distinctive  kinds  of  text:  informative  comment  and 
normative statements. Because most of the text in this specification will  be of the kind 
normative statements, the authors have informally defined it as the default and, as such, 
have specifically called out text of the kind informative comment. They have done this by 
flagging the beginning and end of each informative comment and highlighting its text in 
gray.  This  means  that  unless  text  is  specifically  marked  as  of  the  kind  informative 
comment, you can consider it of the kind normative statements. 

For example:

Start of informative comment:
This is the first paragraph of several paragraphs containing text of the kind informative 
comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TPM specification the user must read the specification.  (This use of 
MUST does not require any action).

End of informative comment.
This is the first paragraph of one or more paragraphs (and/or sections) containing the text 
of the kind normative statements ... 

To understand the TPM specification the user MUST read the specification. (This use of 
MUST indicates a keyword usage and requires an action). 
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2. Description and TODO
This document is  to  show the changes necessary to  create the 1.2 version of  the TCG 
specification. Some of the sections are brand new text; some are rewritten sections of the 
1.1 version. Upon approval of the 1.2 changes, there will be a merging of the 1.1 and 1.2 
versions to create a single 1.2 document.
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3. Admin Startup and State
Start of informative comment:
This section is the commands that start a TPM.

End of informative comment.

3.1 TPM_Init
Start of informative comment:
TPM_Init is a physical method of initializing a TPM. There is no TPM_Init ordinal as this is a 
platform message sent on the platform internals to the TPM. On a PC this command arrives 
at the TPM via the LPC bus and informs the TPM that the platform is performing a boot 
process. 

TPM_Init puts the TPM into a state where it waits for the command TPM_Startup (which 
specifies the type of initialization that is required. 

End of informative comment.

Definition
TPM_Init();

Operation of the TPM. This is not a command that any software can execute. It is inherent 
in the design of the TPM and the platform that the TPM resides on.

Parameters
None

Description
1. The TPM_Init signal indicates to the TPM that platform initialization is taking place. The 

TPM SHALL set the TPM into a state such that the only legal command to receive after 
the TPM_Init is the TPM_Startup command. The TPM_Startup will further indicate to the 
TPM how to handle and initialize the TPM resources.

2. The  platform design MUST be  that  the  TPM is  not  the  only  component undergoing 
initialization. If the TPM_Init signal forces the TPM to perform initialization then the 
platform MUST ensure that  ALL components of the platform receive an initialization 
signal. This is to prevent an attacker from causing the TPM to initialize to a state where 
various masquerades are allowable. For instance, on a PC causing the TPM to initialize 
and expect measurements in PCR0 but the remainder of the platform does not initialize.

3. The design of the TPM MUST be such that the ONLY mechanism that signals TPM_Init 
also signals initialization to the other platform components.

Actions
1. The TPM sets TPM_STANY_FLAGS -> postInitialise to TRUE. 
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3.2 TPM_Startup
Start of informative comment:
TPM_Startup is always preceded by TPM_Init, which is the physical indication (a system-
wide reset) that TPM initialization is necessary.

There are many events on a platform that can cause a reset and the response to these 
events can require different operations to occur on the TPM. The mere reset indication does 
not contain sufficient information to inform the TPM as to what type of reset is occurring. 
Additional information known by the platform initialization code needs transmitting to the 
TPM. The TPM_Startup command provides the mechanism to transmit the information.

The TPM can startup in three different modes:

A “clear” start where all variables go back to their default or non-volatile set state

A “save” start where the TPM recovers appropriate information and restores various values 
based on a prior TPM_SaveState. This recovery requires an invocation of TPM_Init to be 
successful.

A failing "save" start must shut down the TPM. The CRTM cannot leave the TPM in a state 
where an untrusted upper software layer could issue a "clear" and then extend PCR's and 
thus mimic the CRTM.

A “deactivated” start where the TPM turns itself off and requires another TPM_Init before 
the TPM will execute in a fully operational state.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_Startup

4 2 2S 2 TPM_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Startup

Description
TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

1. If the TPM is in failure mode
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a. TPM_STANY_FLAGS -> postInitialize is still set to FALSE

b. The TPM returns TPM_FAILEDSELFTEST

Actions
1. If TPM_STANY_FLAGS -> postInitialise is FALSE, 

a. Then the TPM MUST return TPM_INVALID_POSTINIT, and exit this capability

2. If stType = TPM_ST_CLEAR

a. Ensure that sessions associated with resources TPM_RT_CONTEXT, TPM_RT_AUTH, 
TPM_RT_DAA_TPM, and TPM_RT_TRANS are invalidated

b. Reset TPM_STCLEAR_DATA -> PCR[] values to each correct default value

i. pcrReset is FALSE, set to 0x00..00

ii. pcrReset is TRUE, set to 0xFF..FF

c. Set the following TPM_STCLEAR_FLAGS to their default state

i. PhysicalPresence

ii. PhysicalPresenceLock

iii. disableForceClear

d. The TPM MAY initialize auditDigest to all zeros

i. If not initialized to all zeros, the TPM SHALL ensure that auditDigest contains 
a valid value.

ii. If initialization fails, the TPM SHALL set auditDigest to all zeros and SHALL set 
the internal TPM state so that  the TPM returns TPM_FAILEDSELFTEST to all 
subsequent commands.

e. The  TPM  SHALL  set  TPM_STCLEAR_FLAGS  ->  deactivated  to  the  same  state  as 
TPM_PERMANENT_FLAGS -> deactivated

f. The TPM MUST set the TPM_STANY_DATA fields to:

i. TPM_STANY_DATA->contextNonceSession is set to all zeros

ii. TPM_STANY_DATA->contextCount is set to 0

iii. TPM_STANY_DATA->contextList is set to 0

g. The TPM MUST set TPM_STCLEAR_DATA fields to:

i. Invalidate contextNonceKey

ii. countID to zero

iii. ownerReference to TPM_KH_OWNER

h. The TPM MUST set the following TPM_STCLEAR_FLAGS to

i. bGlobalLock to FALSE

i. Determine which keys should remain in the TPM 

i. For each key that has a valid preserved value in the TPM 
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(1) if parentPCRStatus is TRUE then call TPM_FlushSpecific(keyHandle)

(2) if isVolatile is TRUE then call TPM_FlushSpecific(keyHandle)

ii. Keys under control of the OwnerEvict flag MUST stay resident in the TPM

3. If stType = TPM_ST_STATE

a. If the TPM has no state to restore, the TPM MUST set the internal state such that it 
returns TPM_FAILEDSELFTEST to all subsequent commands.

b. The TPM MAY determine for each session type (authorization, transport, DAA, …) to 
release or maintain the session information. The TPM reports how it manages sessions 
in the TPM_GetCapability command.

c. The TPM SHALL take all necessary actions to ensure that all  PCRs contain valid 
preserved values. If the TPM is unable to successfully complete these actions, it SHALL 
enter the TPM failure mode.

i. For resettable PCR the TPM MUST set the value of TPM_STCLEAR_DATA -> 
PCR[]to the resettable PCR default value. The TPM MUST NOT restore a resettable 
PCR to a preserved value

d. The TPM MAY initialize auditDigest to all zeros.

i. Otherwise,  the  TPM  SHALL  take  all  actions  necessary  to  ensure  that 
auditDigest contains a valid value. If the TPM is unable to successfully complete 
these actions, the TPM SHALL initialize auditDigest to all zeros and SHALL set the 
internal  state  such  that  the  TPM  returns  TPM_FAILEDSELFTEST  to  all 
subsequent commands.

e. The TPM MUST restore the following flags to their preserved states:

i. All values in TPM_STCLEAR_FLAGS

ii. All values in TPM_STCLEAR_DATA 

f. The TPM MUST restore all keys that have a valid preserved value.

g. The  TPM  resumes  normal  operation.  If  the  TPM  is  unable  to  resume  normal 
operation, it SHALL enter the TPM failure mode.

4. If stType = TPM_ST_DEACTIVATED

a. Invalidate sessions

i. Ensure  that  all  resources  associated  with  saved  and  active  sessions  are 
invalidated

b. Set the TPM_STCLEAR_FLAGS to their default state.

c. Set TPM_STCLEAR_FLAGS -> deactivated to TRUE

5. The TPM MUST ensure that state associated with TPM_SaveState is invalidated

6. The TPM MUST set TPM_STANY_FLAGS -> postInitialise to FALSE
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3.3 TPM_SaveState
Start of informative comment:
This warns a TPM to save some state information.

If the relevant shielded storage is non-volatile, this command need have no effect.

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of 
external  power in time to  move data  to  non-volatile  memory,  this  command should be 
presented before the TPM enters a low or no power state.

Resettable PCRs are tied to platform state that does not survive a sleep state.  If the PCRs 
did not reset, they would falsely indicate that the platform state was already present when it 
came out of sleep.  Since some setup is required first, there would be a gap where PCRs 
indicated the wrong state.  Therefore, the PCRs must be recreated.

Any loaded keys may be preserved.  Keys with parentPCRStatus TRUE are not given priority 
because of security concerns.  Rather, since the key might be part of a storage tree that 
requires  PCR  value  transitions,  it  might  not  be  directly  loadable  after 
TPM_Startup(ST_STATE).  For a TPM implementation that does not save all loaded keys, the 
platform should issue a TPM_SaveContext / TPM_LoadContext sequence for those loaded 
keys.  contextNonceKey will be restored, guaranteeing that the saved key context can be 
restored.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Description
1. Preserved values MUST be non-volatile.

2. If data is never stored in a volatile medium, that data MAY be used as preserved data. In 
such cases, no explicit action may be required to preserve that data.
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3. If an explicit action is required to preserve data, it MUST be possible for the TPM to 
determine whether preserved data is valid.

4. If a parameter mirrored by any preserved value is altered, all preserved values MUST be 
declared invalid.

5. The TPM MAY declare all preserved values invalid in response to any command other 
than TPM_Init.

Actions
1. Store TPM_STCLEAR_DATA -> PCR contents except for

a. If the PCR attribute pcrReset is TRUE

b. Any platform identified debug PCR

2. The auditDigest MUST be handled according to the audit requirements as reported by 
TPM_GetCapability.

a. If the ordinalAuditStatus is TRUE for the TPM_SaveState ordinal and the auditDigest 
is  being  stored  in  the  saved  state,  the  saved  auditDigest  MUST  include  the 
TPM_SaveState input parameters and MUST NOT include the output parameters.

3. All values in TPM_STCLEAR_DATA MUST be preserved.

4. All values in TPM_STCLEAR_FLAGS MUST be preserved.

5. The contents of  any key that  is  currently loaded SHOULD be preserved if  the key's 
parentPCRStatus indicator is TRUE. 

6. The contents of  any key that  has TPM_KEY_CONTROL_OWNER_EVICT set MUST be 
preserved

7. The contents of any key that is currently loaded MAY be preserved.

8. The  contents  of  sessions  (authorization,  transport,  DAA,  etc.)  MAY be  preserved  as 
reported by TPM_GetCapability.
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4. Admin Testing

4.1 TPM_SelfTestFull
Start of informative comment:
TPM_SelfTestFull tests all of the TPM capabilities. 

Unlike TPM_ContinueSelfTest, which may optionally return immediately and then perform 
the tests, TPM_SelfTestFull always performs the tests and then returns success or failure.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Actions
1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function.

a. If the self-test succeeds, return TPM_SUCCESS.

b. If the self-test fails, return TPM_FAILEDSELFTEST.

2. Failure of any test results in overall failure, and the TPM goes into failure mode.

3. If the TPM has not executed the action of TPM_ContinueSelfTest, the TPM

a. MAY perform the full self-test.

b. MAY return TPM_NEEDS_SELFTEST.
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4.2 TPM_ContinueSelfTest
Start of informative comment:
TPM_ContinueSelfTest informs the TPM that  it  should complete the self-test of  all  TPM 
functions.

The TPM may return success immediately and then perform the self-test, or it may perform 
the self-test and then return success or failure.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Description
1. Prior to executing the actions of TPM_ContinueSelfTest, if the TPM receives a command 

C1 that uses an untested TPM function, the TPM MUST take one of these actions:

a. The TPM MAY return TPM_NEEDS_SELFTEST

i. This indicates that the TPM has not tested the internal resources required to 
execute C1.

ii. The TPM does not execute C1.

iii. The caller MUST issue TPM_ContinueSelfTest before re-issuing the command 
C1.

(1) If  the  TPM  permits  TPM_SelfTestFull  prior  to  completing  the  actions  of 
TPM_ContinueSelfTest,  the  caller  MAY  issue  TPM_SelfTestFull  rather  than 
TPM_ContinueSelfTest.

b. The TPM MAY return TPM_DOING_SELFTEST

i. This  indicates  that  the  TPM is  doing  the  actions  of  TPM_ContinueSelfTest 
implicitly, as if the TPM_ContinueSelfTest command had been issued.

ii. The TPM does not execute C1.
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iii. The caller  MUST wait  for  the actions of  TPM_ContinueSelfTest  to  complete 
before reissuing the command C1.

c. The TPM MAY return TPM_SUCCESS or an error code associated with C1.

i. This  indicates  that  the  TPM  has  completed  the  actions  of 
TPM_ContinueSelfTest and has completed the command C1.

ii. The error code MAY be TPM_FAILEDSELFTEST.

Actions
1. If TPM_PERMANENT_FLAGS -> FIPS is TRUE or TPM_PERMANENT_FLAGS -> TPMpost 

is TRUE

a. The TPM MUST run all self-tests

2. Else 

a. The TPM MUST complete all self-tests that are outstanding

i. Instead of completing all outstanding self-tests the TPM MAY run all self-tests

3. The TPM either

a. MAY immediately return TPM_SUCCESS

i. When TPM_ContinueSelfTest finishes execution, it MUST NOT respond to the 
caller with a return code.

b. MAY  complete  the  self-test  and  then  return  TPM_SUCCESS  or 
TPM_FAILEDSELFTEST.
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4.3 TPM_GetTestResult
Start of informative comment:
TPM_GetTestResult provides manufacturer specific information regarding the results of the 
self-test. This command will work when the TPM is in self-test failure mode. The reason for 
allowing this command to operate in the failure mode is to allow TPM manufacturers to 
obtain diagnostic information.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

4 4 3S 4 UINT32 outDataSize The size of the outData area

5 <> 4S <> BYTE[] outData The outData this is manufacturer specific

Description
This command will  work when the TPM is in self test failure mode or limited operation 
mode.

Actions
1. The  TPM  SHALL  respond  to  this  command  with  a  manufacturer  specific  block  of 

information that describes the result of the latest self-test

2. The information MUST NOT contain any data that uniquely identifies an individual TPM.
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5. Admin Opt-in

5.1 TPM_SetOwnerInstall
Start of informative comment:
When enabled but without an owner this command sets the PERMANENT flag that allows or 
disallows the ability to insert an owner.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

4 1 2S 1 BOOL state State to which ownership flag is to be set.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

Action
1. If  the  TPM  has  a  current  owner,  this  command  immediately  returns  with 

TPM_SUCCESS.

2. The TPM validates the assertion of physical presence. The TPM then sets the value of 
TPM_PERMANENT_FLAGS -> ownership to the value in state.
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5.2 TPM_OwnerSetDisable
Start of informative comment:
The TPM owner sets the PERMANENT disable flag to TRUE or FALSE.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 1 2S 1 BOOL disableState Value for disable state 

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Action
1. The  TPM  SHALL  authenticate  the  command  as  coming  from  the  TPM  Owner.  If 

unsuccessful, the TPM SHALL return TPM_AUTHFAIL.

2. The TPM SHALL set the TPM_PERMANENT_FLAGS -> disable flag to the value in the 
disableState parameter.
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5.3 TPM_PhysicalEnable
Start of informative comment:
Sets the PERMANENT disable flag to FALSE using physical presence as authorization.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to FALSE.
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5.4 TPM_PhysicalDisable
Start of informative comment:
Sets the PERMANENT disable flag to TRUE using physical presence as authorization

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to TRUE.
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5.5 TPM_PhysicalSetDeactivated
Start of informative comment:
Changes the TPM persistant deactivated flag using physical presence as authorization.

This command is not available when the TPM is disabled.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

4 1 2S 1 BOOL state State to which deactivated flag is to be set.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

Action
1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.deactivated flag to the value in the 
state parameter.
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5.6 TPM_SetTempDeactivated
Start of informative comment:
This command allows the operator of the platform to deactivate the TPM until the next boot 
of the platform. 

This  command  requires  operator  authentication.  The  operator  can  provide  the 
authentication  by  either  the  assertion  of  physical  presence  or  presenting  the  operator 
AuthData value.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 4 4 TPM_AUTHHANDLE authHandle Auth handle for operation validation. Session type MUST be OIAP

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA operatorAuth HMAC key: operatorAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
operatorAuth.

Action
1. If tag = TPM_TAG_RQU_AUTH1_COMMAND

a. If TPM_PERMANENT_FLAGS -> operator is FALSE return TPM_NOOPERATOR

b. Validate  command  and  parameters  using  operatorAuth,  on  error  return 
TPM_AUTHFAIL
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2. Else

a. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE

3. The TPM SHALL set the TPM_STCLEAR_FLAGS.deactivated flag to the value TRUE.
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5.7 TPM_SetOperatorAuth
Start of informative comment:
This command allows the setting of the operator AuthData value.

There is no confidentiality applied to the operator authentication as the value is sent under 
the assumption of  being local to  the platform. If  there is  a concern regarding the path 
between the TPM and the keyboard then unless the keyboard is using encryption and a 
secure channel an attacker can read the values.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

4 20 2S 20 TPM_SECRET operatorAuth The operator AuthData

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

Action
1. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_DATA -> operatorAuth

3. The TPM SHALL set TPM_PERMANENT_FLAGS -> operator to TRUE
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6. Admin Ownership

6.1 TPM_TakeOwnership
Start of informative comment:
This command inserts the TPM Ownership value into the TPM.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2S 2 TPM_PROTOCOL_ID protocolID The ownership protocol in use.

5 4 3S 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4S <> BYTE[ ] encOwnerAuth The owner AuthData encrypted with PUBEK

7 4 5S 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 <> 6S <> BYTE[ ] encSrkAuth The SRK AuthData encrypted with PUBEK

9 <> 7S <> TPM_KEY srkParams Structure containing all parameters of new SRK. pubKey.keyLength & 
encSize are both 0. This structure MAY be TPM_KEY12.

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for this command

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA ownerAuth Authorization session digest for input params. HMAC key: the new 
ownerAuth value. See actions for validation operations
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 <> 3S <> TPM_KEY srkPub Structure containing all parameters of new SRK. srkPub.encData is set to 
0. This structure MAY be TPM_KEY12.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
the new ownerAuth value

Description
The type of the output srkPub MUST be the same as the type of the input srkParams, either 
both TPM_KEY or both TPM_KEY12.

Actions
1. If TPM_PERMANENT_DATA -> ownerAuth is valid return TPM_OWNER_SET

2. If TPM_PERMANENT_FLAGS -> ownership is FALSE return TPM_INSTALL_DISABLED

3. If  TPM_PERMANENT_DATA  ->  endorsementKey  is  invalid  return 
TPM_NO_ENDORSEMENT

4. Verify that authHandle is of type OIAP on error return TPM_AUTHFAIL

5. If protocolID is not TPM_PID_OWNER, the TPM MAY return TPM_BAD_PARAMETER

6. Create A1 a TPM_SECRET by decrypting encOwnerAuth using PRIVEK as the key

a. This requires that A1 was encrypted using the PUBEK

b. Validate that A1 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

7. Validate  the  command  and  parameters  using  A1  and  ownerAuth,  on  error  return 
TPM_AUTHFAIL

8. Validate srkParams

a. If  srkParams  ->  keyUsage  is  not  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

b. If srkParams -> migratable is TRUE return TPM_INVALID_KEYUSAGE

c. If  srkParams  ->  algorithmParms  ->  algorithmID  is  NOT  TPM_ALG_RSA  return 
TPM_BAD_KEY_PROPERTY

d. If  srkParams  ->  algorithmParms  ->  encScheme  is  NOT 
TPM_ES_RSAESOAEP_SHA1_MGF1 return TPM_BAD_KEY_PROPERTY
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e. If  srkParams  ->  algorithmParms  ->  sigScheme  is  NOT  TPM_SS_NONE  return 
TPM_BAD_KEY_PROPERTY

f. srkParams -> algorithmParms -> parms -> keyLength MUST be greater than or equal 
to 2048, on error return TPM_BAD_KEY_PROPERTY

g. If  srkParams  ->  algorithmParms  ->  parms  ->  exponentSize  is  not  0,  return 
TPM_BAD_KEY_PROPERTY

h. If TPM_PERMANENT_FLAGS -> FIPS is TRUE 

i. If  srkParams  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS 

9. Generate K1 according to the srkParams, on error return TPM_BAD_KEY_PROPERTY

a. This includes copying PCRInfo from srkParams to K1

10.Create A2 a TPM_SECRET by decrypting encSrkAuth using the PRIVEK

a. This requires A2 to be encrypted using the PUBEK

b. Validate that A2 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

c. Store A2 in K1 -> usageAuth

11.Store K1 in TPM_PERMANENT_DATA -> srk

12.Store A1 in TPM_PERMANENT_DATA -> ownerAuth

13.Create TPM_PERMANENT_DATA -> contextKey according to the rules for the algorithm 
in use by the TPM to save context blobs

14.Create TPM_PERMANENT_DATA -> delegateKey according to the rules for the algorithm 
in use by the TPM to save delegate blobs

15.Create TPM_PERMANENT_DATA -> tpmProof by using the TPM RNG

16.Export TPM_PERMANENT_DATA -> srk as srkPub

17.Set TPM_PERMANENT_FLAGS -> readPubek to FALSE

18.Calculate resAuth using the newly established TPM_PERMANENT_DATA -> ownerAuth
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6.2 TPM_OwnerClear
Start of informative comment:
The TPM_OwnerClear command performs the clear operation under Owner authentication. 
This command is available until the Owner executes the TPM_DisableOwnerClear, at which 
time any further invocation of this command returns TPM_CLEAR_DISABLED.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Ignored

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Fixed value FALSE

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
old ownerAuth.

Actions
1. Verify that the TPM Owner authorizes the command and all of the input, on error return 

TPM_AUTHFAIL.

2. If  TPM_PERMANENT_FLAGS  ->  disableOwnerClear  is  TRUE  then  return 
TPM_CLEAR_DISABLED.

3. Unload all loaded keys.

a. This includes owner evict keys
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b. If  TPM_PERMANENT_FLAGS  ->  FIPS  is  TRUE,  the  memory  locations  containing 
secret or private keys MUST be set to all zeros.

4. The TPM MUST NOT modify the following TPM_PERMANENT_DATA items

a. endorsementKey

b. revMajor

c. revMinor

d. manuMaintPub

e. auditMonotonicCounter

f. monotonicCounter

g. pcrAttrib

h. rngState

i. EKReset

j. lastFamilyID

k. tpmDAASeed

l. authDIR[0]

m. daaProof

n. daaBlobKey

5. The TPM MUST invalidate the following TPM_PERMANENT_DATA items and any internal 
resources associated with these items

a. ownerAuth

b. srk

c. delegateKey

d. delegateTable

e. contextKey

f. tpmProof

g. operatorAuth

6. The TPM MUST reset to manufacturing defaults the following TPM_PERMANENT_DATA 
items

a. noOwnerNVWrite MUST be set to 0

b. ordinalAuditStatus

c. restrictDelegate

7. The TPM MUST invalidate or reset all fields of TPM_STANY_DATA

a. Nonces SHALL be reset

b. Lists (e.g. contextList) SHALL be invalidated

8. The TPM MUST invalidate or reset all fields of TPM_STCLEAR_DATA except the PCR’s
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a. Nonces SHALL be reset

b. Lists (e.g. contextList) SHALL be invalidated

c. deferredPhysicalPresence MUST be set to 0

9. The TPM MUST set the following TPM_PERMANENT_FLAGS to their default values

a. disable

b. deactivated

c. readPubek

d. disableOwnerClear

e. disableFullDALogicInfo

f. allowMaintenance

g. readSRKPub

10.The TPM MUST set the following TPM_PERMANENT_FLAGS

a. ownership to TRUE

b. operator to FALSE

c. maintenanceDone to FALSE

11.The TPM releases all TPM_PERMANENT_DATA -> monotonicCounter settings

a. This  includes  invalidating  all  currently  allocated  counters.  The  result  will  be  no 
currently  allocated counters  and the  new owner will  need to  allocate  counters.  The 
actual count value will continue to increase.

12.The TPM MUST deallocate all defined NV storage areas where

a.  TPM_NV_PER_OWNERWRITE is TRUE if nvIndex does not have the “D” bit set

b.  TPM_NV_PER_OWNERREAD is TRUE if nvIndex does not have the “D” bit set

c. The TPM MUST NOT deallocate any other currently defined NV storage areas.

13.The TPM MUST invalidate all familyTable entries

14.The TPM MUST terminate all sessions, active or saved.
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6.3 TPM_ForceClear
Start of informative comment:
The TPM_ForceClear command performs the Clear operation under physical access. This 
command is available until the execution of the TPM_DisableForceClear, at which time any 
further invocation of this command returns TPM_CLEAR_DISABLED.

TPM_ForceClear can succeed even if no owner is installed.  In that case, it does whatever 
TPM_OwnerClear actions that it can.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Actions
1. The TPM SHALL check for  the assertion of  physical  presence,  if  not  present return 

TPM_BAD_PRESENCE

2. If TPM_STCLEAR_FLAGS -> disableForceClear is TRUE return TPM_CLEAR_DISABLED

3. The TPM SHALL execute the actions of TPM_OwnerClear (except for the TPM Owner 
authentication check)
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6.4 TPM_DisableOwnerClear
Start of informative comment:
The TPM_DisableOwnerClear command disables the ability to execute the TPM_OwnerClear 
command permanently. Once invoked the only method of  clearing the TPM will  require 
physical access to the TPM.

After the execution of  TPM_ForceClear, ownerClear is  re-enabled and must be explicitly 
disabled again by the new TPM Owner.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. The TPM verifies that the authHandle properly authorizes the owner.

2. The TPM sets the TPM_PERMANENT_FLAGS -> disableOwnerClear flag to TRUE.
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3. When  this  flag  is  TRUE  the  only  mechanism  that  can  clear  the  TPM  is  the 
TPM_ForceClear command. The TPM_ForceClear command requires physical access to 
the TPM to execute.
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6.5 TPM_DisableForceClear
Start of informative comment:
The  TPM_DisableForceClear  command  disables  the  execution  of  the  TPM_ForceClear 
command until the next startup cycle. Once this command is executed, the TPM_ForceClear 
is disabled until another startup cycle is run.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Actions
1. The TPM sets the TPM_STCLEAR_FLAGS.disableForceClear flag in the TPM that disables 

the execution of the TPM_ForceClear command.
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6.6 TSC_PhysicalPresence
Start of informative comment:
Some TPM operations require the indication of a human’s physical presence at the platform. 
The presence of the human either provides another indication of platform ownership or a 
mechanism to ensure that the execution of the command is not the result  of  a remote 
software process.

This  command  allows  a  process  on  the  platform to  indicate  the  assertion  of  physical 
presence. As this command is executable by software there must be protections against the 
improper invocation of this command.

The physicalPresenceHWEnable  and physicalPresenceCMDEnable  indicate  the ability  for 
either  SW  or  HW  to  indicate  physical  presence.  These  flags  can  be  reset  until  the 
physicalPresenceLifetimeLock is set. The platform manufacturer should set these flags to 
indicate the capabilities of the platform the TPM is bound to.

The command provides two sets of functionality. The first is to enable, permanently, either 
the HW or the SW ability to assert physical presence. The second is to allow SW, if enabled,  
to assert physical presence.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

4 2 2S 2 TPM_PHYSICAL_PRESENCE physicalPresence The state to set the TPM’s Physical Presence flags.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

Actions
1. For  documentation ease,  the bits  break into  two categories.  The first  is  the lifetime 

settings and the second is the assertion settings.

a. Define A1 to be the lifetime settings: TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK, 
TPM_PHYSICAL_PRESENCE_HW_ENABLE, TPM_PHYSICAL_PRESENCE_CMD_ENABLE, 
TPM_PHYSICAL_PRESENCE_HW_DISABLE,  and 
TPM_PHYSICAL_PRESENCE_CMD_DISABLE
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b. Define  A2  to  be  the  assertion  settings:  TPM_PHYSICAL_PRESENCE_LOCK, 
TPM_PHYSICAL_PRESENCE_PRESENT, and TPM_PHYSICAL_PRESENCE_NOTPRESENT

Lifetime lock settings
2. If any A1 setting is present

a. If  TPM_PERMANENT_FLAGS  ->  physicalPresenceLifetimeLock  is  TRUE,  return 
TPM_BAD_PARAMETER

b. If any A2 setting is present return TPM_BAD_PARAMETER

c. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_ENABLE  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_DISABLE  are  TRUE,  return 
TPM_BAD_PARAMETER. 

d. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_ENABLE  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_DISABLE  are  TRUE,  return 
TPM_BAD_PARAMETER. 

e. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_ENABLE  is  TRUE  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to TRUE

f. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_HW_DISABLE  is  TRUE  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to FALSE

g. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_ENABLE  is  TRUE,  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to TRUE.

h. If  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_CMD_DISABLE  is  TRUE,  Set 
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to FALSE.

i. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK is TRUE

i. Set TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock to TRUE

j. Return TPM_SUCCESS

SW physical presence assertion
3. If any A2 setting is present

a. If any A1 setting is present return TPM_BAD_PARAMETER

i. This  check here  just  for  consistency,  the prior  checks would have already 
ensured that this was ok

b. If  TPM_PERMANENT_FLAGS  ->  physicalPresenceCMDEnable  is  FALSE,  return 
TPM_BAD_PARAMETER

c. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK and physicalPresence 
-> TPM_PHYSICAL_PRESENCE_PRESENT are TRUE, return TPM_BAD_PARAMETER

d. If  both  physicalPresence  ->  TPM_PHYSICAL_PRESENCE_PRESENT  and 
physicalPresence  ->  TPM_PHYSICAL_PRESENCE_NOTPRESENT  are  TRUE,  return 
TPM_BAD_PARAMETER

e. If  TPM_STCLEAR_FLAGS  ->  physicalPresenceLock  is  TRUE,  return 
TPM_BAD_PARAMETER
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f. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE

ii. Set TPM_STCLEAR_FLAGS -> physicalPresenceLock to TRUE

iii. Return TPM_SUCCESS

g. If physicalPresence -> TPM_PHYSICAL_PRESENCE_PRESENT is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to TRUE

h. If physicalPresence -> TPM_PHYSICAL_PRESENCE_NOTPRESENT is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE

i. Return TPM_SUCCESS

4. Else // There were no A1 or A2 parameters set

a. Return TPM_BAD_PARAMETER

36 Level 2 Revision 116 28 February 2011
TCG Published

207
208
209

860
861
862
863
864
865
866
867
868
869
870

210
211



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

6.7 TSC_ResetEstablishmentBit
Start of informative comment:
The PC TPM Interface Specification (TIS) specifies setting tpmEstablished to TRUE upon 
execution  of  the  HASH_START sequence.  The  setting  implies  the  creation  of  a  Trusted 
Operating  System on  the  platform.  Platforms  will  use  the  value  of  tpmEstablished  to 
determine if operations necessary to maintain the security perimeter are necessary. 

The tpmEstablished bit provides a non-volatile, secure reporting that a HASH_START was 
previously run on the platform. When a platform makes use of the tpmEstablished bit, the 
platform can reset tpmEstablished as the operation is no longer necessary.

For example, a platform could use tpmEstablished to ensure that, if HASH_START had ever 
been, executed the platform could use the value to invoke special  processing. Once the 
processing is complete the platform will wish to reset tpmEstablished to avoid invoking the 
special process again. 

The TPM_PERMANENT_FLAGS -> tpmEstablished bit described in the TPM specifications 
uses positive logic. The TPM_ACCESS register uses negative logic, so that TRUE is reflected 
as a 0.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Actions
1. Validate the assertion of locality 3 or locality 4

2. Set TPM_PERMANENT_FLAGS -> tpmEstablished to FALSE

3. Return TPM_SUCCESS
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7. The Capability Commands
Start of informative comment:
The TPM has numerous capabilities that a remote entity may wish to know about. These 
items include support of algorithms, key sizes, protocols and vendor-specific additions. The 
TPM_GetCapability command allows the TPM to report back to the requestor what type of 
TPM it is dealing with.

The request for information requires the requestor to specify which piece of information that 
is required. The request does not allow the “merging” of multiple requests and returns only 
a single piece of information.

In  failure  mode,  the  TPM  returns  a  limited  set  of  information  that  includes  the  TPM 
manufacturer and version.

In version 1.2 with the deletion of TPM_GetCapabilitySigned the way to obtain a signed 
listing  of  the  capabilities  is  to  create  a  transport  session,  perform  TPM_GetCapability 
commands  to  list  the  information  and  then  close  the  transport  session  using 
TPM_ReleaseTransportSigned.

End of informative comment.
1. The standard information provided in TPM_GetCapability MUST NOT provide  unique 

information

a. The TPM has no control of information placed into areas on the TPM like the NV store 
that is reported by the TPM. Configuration information for these areas could conceivably 
be unique
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7.1 TPM_GetCapability
Start of informative comment:
This command returns current information regarding the TPM.

The  limitation  on  what  can  be  returned  in  failure  mode  restricts  the  information  a 
manufacturer may return when capArea indicates TPM_CAP_MFR.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 3S 4 UINT32 respSize The length of the returned capability response

5 <> 4S <> BYTE[ ] resp The capability response
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Actions
1. The TPM validates the capArea and subCap indicators. If the information is available, 

the TPM creates the response field and fills in the actual information.

2. The structure document contains the list of caparea and subCap values

3. If the TPM is in failure mode or limited operation mode, the TPM MUST return 

a. TPM_CAP_VERSION

b. TPM_CAP_VERSION_VAL

c. TPM_CAP_MFR

d. TPM_CAP_PROPERTY -> TPM_CAP_PROP_MANUFACTURER

e. TPM_CAP_PROPERTY -> TPM_CAP_PROP_DURATION

f. TPM_CAP_PROPERTY -> TPM_CAP_PROP_TIS_TIMEOUT

g. The TPM MAY return any other capability.
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7.2 TPM_SetCapability
Start of informative comment:
This command sets values in the TPM.

A  setValue  that  is  inconsistent  with  the  capArea  and  subCap  is  considered  a  bad 
parameter.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be set

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

7 4 5S 4 UINT32 setValueSize The size of the value to set

8 <> 6S <> BYTE[] setValue The value to set

9 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA ownerAuth Authorization. HMAC key: owner.usageAuth.
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key:owner.usageAuth.

Actions
1. If  tag  =  TPM_TAG_RQU_AUTH1_COMMAND,  validate  the  command  and  parameters 

using ownerAuth, return TPM_AUTHFAIL on error

2. The TPM validates the capArea and subCap indicators, including the ability to set value 
based on any set restrictions

3. If the capArea and subCap indicators conform with one of the entries in the structure 
TPM_CAPABILITY_AREA (Values for TPM_SetCapability)

a. The TPM sets the relevant flag/data to the value of setValue parameter. 

4. Else

a. Return the error code TPM_BAD_PARAMETER.
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7.3 TPM_GetCapabilityOwner
Start of informative comment:
TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and 
the volatile flags in a single operation.

The flags summarize many operational aspects of the TPM. The information represented by 
some flags is private to the TPM Owner. So, for simplicity, proof of ownership of the TPM 
must be presented to retrieve the set of flags. When necessary, the flags that are not private 
to the Owner can be deduced by Users via other (more specific) means.

The normal TPM authentication mechanisms are  sufficient to  prove the integrity  of  the 
response. No additional integrity check is required. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal:  TPM_ORD_GetCapbilityOwner

4 4  TPM_AUTHHANDLE authHandle The authorization handle used for Owner authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key: 
OwnerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetCapabilityOwner

4 4 3S 4 TPM_VERSION version A properly filled out version structure.

5 4 4S 4 UINT32 non_volatile_flags The current state of the non-volatile flags.

6 4 5S 4 UINT32 volatile_flags The current state of the volatile flags.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: OwnerAuth.
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Description
For 31>=N>=0

1. Bit-N of the TPM_PERMANENT_FLAGS structure is the Nth bit after the opening bracket 
in  the  definition  of  TPM_PERMANENT_FLAGS  in  the  version  of  the  specification 
indicated by the parameter “version”. The bit immediately after the opening bracket is 
the 0th bit.

2. Bit-N of the TPM_STCLEAR_FLAGS structure is the Nth bit after the opening bracket in 
the definition of TPM_STCLEAR_FLAGS in the version of the specification indicated by 
the parameter “version”. The bit immediately after the opening bracket is the 0th bit.

3. Bit-N of non_volatile_flags corresponds to the Nth bit in TPM_PERMANENT_FLAGS, and 
the lsb of non_volatile_flags corresponds to bit0 of TPM_PERMANENT_FLAGS

4. Bit-N of volatile_flags corresponds to the Nth bit in TPM_STCLEAR_FLAGS, and the lsb 
of volatile_flags corresponds to bit0 of TPM_STCLEAR_FLAGS

Actions
1. The TPM validates that the TPM Owner authorizes the command.

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state 
as  the  corresponding  bit  in  TPM_PERMANENT_FLAGS.  Bits  in  non_volatile_flags  for 
which there is no corresponding bit in TPM_PERMANENT_FLAGS are set to zero.

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the 
corresponding bit in TPM_STCLEAR_FLAGS. Bits in volatile_flags for which there is no 
corresponding bit in TPM_STCLEAR_FLAGS are set to zero.

4. The TPM generates the parameter “version”.

5. The TPM returns non_volatile_flags, volatile_flags and version to the caller.
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8. Auditing

8.1  Audit Generation 
Start of informative comment:
The  TPM  generates  an  audit  event  in  response  to  the  TPM  successfully  executing  a 
command that has the audit flag set to TRUE for that command ordinal.

The TPM maintains an extended value for all audited operations. 

End of informative comment.

Description
1. The TPM extends the audit  digest  whenever the ordinalAuditStatus is  TRUE for the 

ordinal about to be executed.

2. The TPM extends the audit digest only when a command is successfully executed.

a. If the ordinal is unknown, unimplemented, or cannot be determined, no auditing is 
performed.

3. Corner cases

a. TPM_SaveState: Only the input parameters are audited, and the audit occurs before 
the state is saved.  If an error occurs while or after the state is saved, the audit still  
occurs.

b. TPM_SetOrdinalAuditStatus:  In  the  case  where  the  ordinalToAudit  is 
TPM_ORD_SetOrdinalAuditStatus, audit is based on the initial state, not the final 
state.

Actions
The TPM will execute the ordinal and perform auditing in the following manner:

1. Execute command

a. Execution implies the performance of the listed actions for the ordinal.

2. If the command will return TPM_SUCCESS

a. If TPM_STANY_DATA -> auditDigest is all zeros

i. Increment TPM_PERMANENT_DATA -> auditMonotonicCounter by 1

b. Create A1 a TPM_AUDIT_EVENT_IN structure

i. Set  A1  ->  inputParms  to  the  digest  of  the  input  parameters  from the 
command

1. Digest value according to the HMAC digest rules of the "above the 
line" parameters (i.e. the first HMAC digest calculation).

ii. Set  A1  ->  auditCount  to  TPM_PERMANENT_DATA  -> 
auditMonotonicCounter
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c. Set  TPM_STANY_DATA  ->  auditDigest  to  SHA-1  (TPM_STANY_DATA  -> 
auditDigest || A1)

d. Create A2 a TPM_AUDIT_EVENT_OUT structure

i. Set A2 -> outputParms to the digest of the output parameters from the 
command

1. Digest value according to the HMAC digest rules of the "above the 
line" parameters (i.e. the first HMAC digest calculation).

ii. Set  A2  ->  auditCount  to  TPM_PERMANENT_DATA  -> 
auditMonotonicCounter

e. Set  TPM_STANY_DATA  ->  auditDigest  to  SHA-1  (TPM_STANY_DATA  -> 
auditDigest || A2)
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8.2 Effect of audit failing
Start of informative comment:
The TPM audit process could have an internal error when attempting to audit a command. 
To indicate the audit failure, the TPM will return TPM_AUDITFAIL_SUCCESSFUL.  This new 
functionality changes the 1.1 TPM functionality when this condition occurs.

Since no audit occurs if the command fails, The TPM_AUDITFAIL_UNSUCCESSFUL return 
code is no longer used.

End of informative comment.
1. When, in performing the audit process, the TPM has an internal failure (unable to write, 

SHA-1 failure etc.) the TPM MUST set the internal TPM state such that the TPM returns 
the TPM_FAILEDSELFTEST error on subsequent attempts to execute a command.

2. The return code for the command uses the following rules

a. Command result success, audit success -> return TPM_SUCCESS

b. Command result failure, no audit -> return command result failure

c. Command result success, audit failure -> return TPM_AUDITFAIL_SUCCESSFUL

3. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST 
always  return  TPM_FAILEDSELFTEST  for  every  command  other  than 
TPM_GetTestResult.  This state must persist regardless of power cycling, the execution 
of TPM_Init or any other actions.
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8.3 TPM_GetAuditDigest
Start of informative comment:
This returns the current audit digest. The external audit log has the responsibility to track 
the parameters that constitute the audit digest.

This value may be unique to an individual TPM. The value however will be changing at a 
rate set by the TPM Owner. Those attempting to use this value may find it changing without 
their knowledge. This value represents a very poor source of tracking uniqueness.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigest

4 4 UINT32 startOrdinal The starting ordinal for the list of audited ordinals

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. 

5 10 TPM_COUNTER_VALUE counterValue The current value of the audit monotonic counter

4 20 TPM_DIGEST auditDigest Log of all audited events

5 1 BOOL more TRUE if the output does not contain a full list of audited ordinals

5 4 UINT32 ordSize Size of the ordinal list in bytes

6 <> UINT32[] ordList List of ordinals that are audited.

Description
1. This command is never audited.

Actions
1. The TPM sets auditDigest to TPM_STANY_DATA -> auditDigest

2. The TPM sets counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

3. The TPM creates an ordered list of audited ordinals. The list starts at startOrdinal listing 
each ordinal that is audited.

a. If startOrdinal is 0 then the first ordinal that could be audited would be TPM_OIAP 
(ordinal 0x0000000A)
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b. The next ordinal would be TPM_OSAP (ordinal 0x0000000B)

4. If the ordered list does not fit in the output buffer the TPM sets more to TRUE

5. Return TPM_STANY_DATA -> auditDigest as auditDigest
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8.4 TPM_GetAuditDigestSigned
Start of informative comment:
The signing of the audit log returns the entire digest value and the list of currently audited 
commands.

The inclusion of the list of audited commands as an atomic operation is to tie the current 
digest value with the list of commands that are being audited. 

Note to future architects
When auditing functionality is active in a TPM, it may seem logical to remove this ordinal 
from the  active  set  of  ordinals  as  the  signing  functionality  of  this  command could  be 
handled in a signed transport session. While true, this command has a secondary affect 
also, resetting the audit log digest. As the reset requires TPM Owner authentication, there 
must be some way in this command to reflect the TPM Owner wishes. By requiring that a 
TPM Identity key be the only key that can sign and reset, the TPM Owner’s authentication is 
implicit in the execution of the command (TPM Identity Keys are created and controlled by 
the TPM Owner only). Hence, while one might want to remove an ordinal this is not one that 
can be removed if auditing is functional.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 1 2S 1 BOOL closeAudit Indication if audit session should be closed

6 20 3S 20 TPM_NONCE antiReplay A nonce to prevent replay attacks

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for key authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: key.usageAuth.
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 10 3S 10 TPM_COUNTER_VALUE counterValue The value of the audit monotonic counter

5 20 4S 20 TPM_DIGEST auditDigest Log of all audited events

6 20 5S 20 TPM_DIGEST ordinalDigest Digest of all audited ordinals

 7 4 6S 4 UINT32 sigSize The size of the sig parameter

8 <> 7S <> BYTE[] sig The signature of the area

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth Authorization HMAC key: key.usageAuth.

Actions
1. Validate the AuthData and parameters using keyAuth, return TPM_AUTHFAIL on error

2. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

3. The TPM validates that the key pointed to by keyHandle has a signature scheme of 
TPM_SS_RSASSAPKCS1v15_SHA1  or  TPM_SS_RSASSAPKCS1v15_INFO,  return 
TPM_INVALID_KEYUSAGE on error

4. Create D1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set D1 -> fixed to “ADIG”

b. Set D1 -> replay to antiReplay

c. Create  D3  a  list  of  all  audited  ordinals  as  defined  in  the  TPM_GetAuditDigest 
UINT32[] ordList outgoing parameter

d. Create D4 the SHA-1 of D3

e. Set auditDigest to TPM_STANY_DATA -> auditDigest

f. Set counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

g. Create D2 the concatenation of auditDigest || counterValue || D4

h. Set D1 -> data to D2

i. Create a digital  signature of the SHA-1 of D1 by using the signature scheme for 
keyHandle

j. Set ordinalDigest to D4

5. If closeAudit == TRUE 
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a. If keyHandle->keyUsage is TPM_KEY_IDENTITY

i. TPM_STANY_DATA -> auditDigest MUST be set to all zeros.

b. Else

i. Return TPM_INVALID_KEYUSAGE
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8.5 TPM_SetOrdinalAuditStatus
Start of informative comment:
Set the audit flag for a given ordinal. Requires the authentication of the TPM Owner.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TPM_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set 

5 1 3S 1 BOOL auditState Value for audit flag

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Validate the AuthData to execute the command and the parameters

2. Validate that the ordinal points to a valid TPM ordinal, return TPM_BADINDEX on error

a. Valid TPM ordinal means an ordinal that the TPM implementation supports

3. Set the non-volatile flag associated with ordinalToAudit to the value in auditState
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9. Administrative Functions - Management

9.1 TPM_FieldUpgrade
Start of informative comment: 
The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is 
in  the  field.  Given  the  varied  nature  of  TPM implementations  there  will  be  numerous 
methods  of  performing  an  upgrade  of  the  protected  capabilities.  This  command,  when 
implemented, provides a manufacturer specific method of performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this 
command.  The  command  may  be  more  than  one  command  and  actually  a  series  of 
commands.

The  IDL  definition  is  to  create  an  ordinal  for  the  command.  However,  the  remaining 
parameters are manufacturer specific.

The policy to determine when it is necessary to perform the actions of TPM_RevokeTrust is 
outside the TPM spec and determined by other TCG workgroups.

TPM_FieldUpgrade is gated by either owner authorization or deferred assertion of Physical 
Presence  (via  the  TPM_STCLEAR_DATA  ->  deferredPhysicalPresence  -> 
unownedFieldUpgrade flag). This gating is acknowledgement that the entity that sets the 
security policy for a platform must approve field upgrade for that platform. This gating can 
block a global attack on TPMs when the TPME’s privilege information (private key) has been 
compromised. For blocking to be effective in an unowned TPM, the TPM’s ownership flag 
must  be  FALSE.  (This  prevents  software  from  taking  ownership  and  executing 
TPM_FieldUpgrade with owner authorization.) 

If an owner is present, field upgrade MUST be owner authorized, as the actions indicate. 
This prevents an attacker from using physical presence to upgrade a TPM without detection 
by the owner.

The advantages of deferred assertion of Physical Presence are that it:

• permits a TPM to be upgraded if taking ownership is undesirable or impractical.

• permits  a  TPM to  be  upgraded in  the  OS environment  (where  Physical  Presence 
typically cannot be asserted), when the TPM has no owner. 

If  it  is  acceptable  to  take  ownership  of  a  TPM  temporarily,  an  alternative  to  deferred 
assertion of Physical Presence is the process: (1)  take ownership;  (2)  perform an owner 
authorized field upgrade; (3) clear the owner from the TPM.

There  is  no  requirement for  patch confidentiality.   Confidentiality  may be  implemented 
using  a  manufacturer  specific  mechanism,  and  may  use  a  global  secret  such  as  a 
symmetric encryption key.

The TPM may set the volatile deactivated flag to TRUE if a reboot is required after the field  
upgrade.  There is no requirement to do so. 

The TPM must check owner authorization before changing the TPM state or beginning the 
upgrade.   This  prevents  a  non-owner  from  mounting  a  denial-of-service  attack.   It  is 
understood that a TPM may not be able to stage the entire upgrade patch inside the TPM 
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before checking owner authorization.  That TPM may be forced to move the patch outside 
the owner authorization HMAC.  

Ideally, if the upgrade fails (e.g., due to an authentication failure) the TPM firmware should 
remain unchanged.  It is understood that a TPM may not be able to stage the entire upgrade 
patch inside the TPM for authentication before beginning the upgrade.  On a failure, that 
TPM may be forced to roll the firmware back to a ROMed version.  It may go into an upgrade 
failure state, where it requires a successful field upgrade before continuing.

If a field upgrade adds or deletes features, the security implications must be analyzed.  The 
associated state must be set to prevent attacks.  See, for example, allowMaintenance in Part 
2.  In addition, if a field upgrade adds maintenance commands, it must atomically install 
the manufacturer’s maintenance public key.

End of informative comment.

IDL Definition
TPM_RESULT TPM_FieldUpgrade(

[in, out] TPM_AUTH* ownerAuth,
…);

Type
This is an optional command and a TPM is not required to implement this command in any 
form.

Parameters
Type Name Description

TPM_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Description
The patch integrity and authenticity verification mechanisms in the TPM MUST not require 
the TPM to hold a global secret. The definition of global secret is a secret value shared by 
more than one TPM.  

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of  
field upgrade. The TPM MUST NOT use the endorsement key for identification or encryption 
in the upgrade process. The upgrade process MAY use a TPM Identity to deliver upgrade 
information to specific TPM’s.

The upgrade process SHOULD only change protected capabilities.  The upgrade process 
SHOULD NOT change shielded locations.

The upgrade process MUST NOT change the disabled or deactivated state from TRUE to 
FALSE.

The upgrade process SHOULD only access data in shielded locations where this data is 
necessary to validate the TPM Owner, validate the TPME and manipulate the blob.
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The execution of a TPM_FieldUpgrade command in a TPM MUST leave the TPM in a state 
that conforms to a version of TCG's TPM specification and conforms to any extant TCG-
defined credentials (certificates) that attest to that upgraded TPM.

The security target used to valuate this TPM MUST include this command in the TOE.

If the owner authorization fails, the state of the TPM (volatile, nonvolatile, and firmware) 
MUST remain unchanged.  The only exception shall  be the dictionary attack mitigation 
state, which should process the authentication failure.

Actions
The TPM SHALL perform the following when executing the command:

1. If TPM Owner is installed

a. Validate  the  command  and  parameters  using  TPM  owner  authentication,  return 
TPM_AUTHFAIL on error

2. Else

a. If  TPM_STCLEAR_DATA  ->  deferredPhysicalPresence  ->  unownedFieldUpgrade  is 
FALSE return TPM_BAD_PRESENCE. 

3. Validate that the upgrade information was sent by the TPME. The validation mechanism 
MUST use a strength of function that is at least the same strength of function as a 
digital signature performed using a 2048 bit RSA key.

4. Validate that the upgrade target is the appropriate TPM model and version.

5. Process the upgrade information and update the protected capabilities

6. Set the TPM_PERMANENT_DATA -> revMajor and TPM_PERMANENT_DATA -> revMinor 
to the values indicated in the upgrade. The selection of the value is a manufacturer 
option. 

a. The TPM MAY validate that the upgrade major and minor revision are monotonically 
increasing. 

b. The TPM MAY allow upgrade  with  a  major  and minor  revision that  is  less  than 
currently installed in the TPM.

7. The TPM MAY set the TPM_STCLEAR_FLAGS.deactivated to TRUE
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9.2 TPM_SetRedirection
Start of informative comment:
The redirection command attaches a key to a redirection receiver.

When making the connection to a GPIO channel the authorization restrictions are set at 
connection time and not for each invocation that uses the channel.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can implement redirection.

5 4 2S 4 TPM_REDIR_COMMAND redirCmd The command to execute

6 4 3S 4 UINT32 inputDataSize The size of the input data

7 <> 4S <> BYTE inputData Manufacturer parameter

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Action
1. If tag == TPM_TAG_RQU_AUTH1_COMMAND
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a. Validate the command and parameters using TPM Owner authentication, on error 
return TPM_AUTHFAIL

2. if redirCmd == TPM_REDIR_GPIO

a. Validate that keyHandle points to a loaded key, return TPM_INVALID_KEYHANDLE 
on error

b. Validate the key attributes specify redirection, return TPM_BAD_TYPE on error 

c. Validate that inputDataSize is 4, return TPM_BAD_PARAM_SIZE on error

d. Validate  that  inputData  points  to  a  valid  GPIO  channel,  return 
TPM_BAD_PARAMETER on error

e. Map C1 to the TPM_GPIO_CONFIG_CHANNEL structure indicated by inputData

f. If C1 -> attr specifies TPM_GPIO_ATTR_OWNER

i. If tag != TPM_TAG_RQU_AUTH1_COMMAND return TPM_AUTHFAIL

g. If C1 -> attr specifies TPM_GPIO_ATTR_PP

i. If  TPM_STCLEAR_FLAGS  ->  physicalPresence  ==  FALSE,  then  return 
TPM_BAD_PRESENCE

h. Return TPM_SUCCESS

3. The TPM MAY support other redirection types. These types may be specified by TCG or 
provided by the manufacturer.
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9.3 TPM_ResetLockValue
Start of informative comment:
Command that resets the TPM dictionary attack mitigation values

This allows the TPM owner to cancel the effect of a number of successive authorization 
failures.  Dictionary  attack  mitigation  is  vendor  specific,  and  the  actions  here  are  one 
possible implementation. The TPM may treat an authorization failure outside the mitigation 
time as a normal failure and not disable the command.

If this command itself has an authorization failure, it is blocked for the remainder of the 
lock out period. This prevents a dictionary attack on the owner authorization using this 
command.

It is understood that this command allows the TPM owner to perform a dictionary attack on 
other authorization values by alternating a trial and this command.  Similarly, delegating 
this command allows the owner’s delegate to perform a dictionary attack.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key TPM Owner auth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: TPM Owner auth
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Action
1. If TPM_STCLEAR_DATA -> disableResetLock is TRUE return TPM_AUTHFAIL

a. The  internal  dictionary  attack  mechanism  will  set  TPM_STCLEAR_DATA  -> 
disableResetLock to FALSE when the timeout period expires

2. If the command and parameters validation using ownerAuth fails

a. Set TPM_STCLEAR_DATA -> disableResetLock to TRUE

b. Restart the TPM dictionary attack lock out period

c. Return TPM_AUTHFAIL

3. Reset the internal TPM dictionary attack mitigation mechanism

a. The mechanism is vendor specific  and can include time outs, reboots, and other 
mitigation strategies
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10. Storage functions

10.1 TPM_Seal
Start of informative comment:
The SEAL operation allows software to explicitly state the future “trusted” configuration that 
the platform must be in for the secret to be revealed. The SEAL operation also implicitly 
includes the relevant platform configuration (PCR-values) when the SEAL operation was 
performed. The SEAL operation uses the tpmProof value to BIND the blob to an individual 
TPM.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect 
when the SEAL operation was performed is returned to the caller, as well as the secret data.  
This proof may, or may not, be of interest. If the SEALed secret is used to authenticate the 
platform to a third party, a caller is normally unconcerned about the state of the platform 
when the secret was SEALed, and the proof may be of no interest. On the other hand, if the  
SEALed secret is used to authenticate a third party to the platform, a caller is normally 
concerned about the state of the platform when the secret was SEALed. Then the proof is of 
interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to 
prove that the platform is a particular platform that is in a particular configuration), the 
only requirement is that that key can be used only when the platform is in that future 
configuration. Then there is no interest in the platform configuration when the secret key 
was  SEALed.  An  example  of  this  case  is  when  SEAL  is  used  to  store  a  network 
authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log 
on to the platform. The OS uses a SEALED blob to store the encryption key for the user-
database. However, the nature of SEAL is that any SW stack can SEAL a blob for any other 
software stack. Hence, the OS can be attacked by a second OS replacing both the SEALED-
blob encryption key, and the user database itself, allowing untrusted parties access to the 
services  of  the  OS.  To  thwart  such  attacks,  SEALED  blobs  include  the  past  SW 
configuration.  Hence,  if  the  OS is  concerned about  such  attacks,  it  may  check to  see 
whether the past configuration is one that is known to be trusted.

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity 
with other commands that require the encryption of more than one parameter, the string 
used for XOR encryption is generated by concatenating a nonce (created during the OSAP 
session) with the session shared secret and then hashing the result.

The sealed data blob does not have a protected identifier.  On a platform that does not 
prevent unauthorized access to data, a data blob can be exchanged by a lower layer without 
detection.  The upper layer software must take additional measures to protect the relation 
between its identifier of the data blob and the blob itself.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo The PCR selection information. The caller MAY use 
TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[ ] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization. 
Must be an OSAP session for this command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 <> 3S <> TPM_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result of the 
TPM_Seal operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Description
TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

Actions
1. Validate the authorization to use the key pointed to by keyHandle

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER
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3. If  the  keyUsage  field  of  the  key  indicated  by  keyHandle  does  not  have  the  value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE.

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 
TPM_INVALID_KEY_USAGE.

5. Determine the version of pcrInfo

a. If pcrInfoSize is 0 

i. set V1 to 1

b. Else 

i. Point X1 as TPM_PCR_INFO_LONG structure to pcrInfo

ii. If X1 -> tag is TPM_TAG_PCR_INFO_LONG 

(1) Set V1 to 2

iii. Else 

(1) Set V1 to 1

6. If V1 is 1 then

a. Create S1 a TPM_STORED_DATA structure

7. else

a. Create S1 a TPM_STORED_DATA12 structure

b. Set S1 -> et to 0

8. Set S1 -> encDataSize to 0

9. Set S1 -> encData to all zeros

10.Set S1 -> sealInfoSize to pcrInfoSize

11.If pcrInfoSize is not 0 then

a. if V1 is 1 then

i. Validate pcrInfo as a valid TPM_PCR_INFO structure, return TPM_BADINDEX 
on error

ii. Set S1 -> sealInfo -> pcrSelection to pcrInfo -> pcrSelection

iii. Create h1 the composite hash of the PCR selected by pcrInfo -> pcrSelection

iv. Set S1 -> sealInfo -> digestAtCreation to h1

v. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

b. else

i. Validate  pcrInfo  as  a  valid  TPM_PCR_INFO_LONG  structure,  return 
TPM_BADINDEX on error

ii. Set S1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection

iii. Set S1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection

iv. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease
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v. Set S1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease

vi. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 
pcrInfo -> creationPCRSelection

vii. Set S1 -> sealInfo -> digestAtCreation to h2

viii. Set  S1  ->  sealInfo  ->  localityAtCreation  to  TPM_STANY_FLAGS  -> 
localityModifier

12.Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

13.The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 
possible.

14.Create S2 a TPM_SEALED_DATA structure

a. Set S2 -> payload to TPM_PT_SEAL

b. Set S2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof

c. Create h3 the SHA-1 of S1

d. Set S2 -> storedDigest to h3

e. Set S2 -> authData to a1

f. Set S2 -> dataSize to inDataSize

g. Set S2 -> data to inData

15.Validate that the size of S2 can be encrypted by the key pointed to by keyHandle, return 
TPM_BAD_DATASIZE on error

16.Create s3 the encryption of S2 using the key pointed to by keyHandle

17.Set continueAuthSession to FALSE

18.Set S1 -> encDataSize to the size of s3

19.Set S1 -> encData to s3

20.Return S1 as sealedData
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10.2 TPM_Unseal
Start of informative comment:
The TPM_Unseal operation will  reveal TPM_Seal’ed data only if it  was encrypted on this 
platform and the current configuration (as defined by the named PCR contents) is the one 
named as qualified to decrypt it. Internally, TPM_Unseal accepts a data blob generated by a 
TPM_Seal operation. TPM_Unseal decrypts the structure internally, checks the integrity of 
the resulting data, and checks that the PCR named has the value named during TPM_Seal. 
Additionally, the caller must supply appropriate AuthData for blob and for the key that was 
used to seal that data. 

If the integrity, platform configuration and authorization checks succeed, the sealed data is 
returned to the caller; otherwise, an error is generated. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 <> 2S <> TPM_STORED_DATA inData The encrypted data generated by TPM_Seal.

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC 
key: parentKey.usageAuth.

10 4 TPM_AUTHHANDLE dataAuthHandle The authorization session handle used to authorize inData. 

2H2 20 TPM_NONCE dataLastNonceEven Even nonce previously generated by TPM

11 20 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with entityAuthHandle

12 1 4H2 1 BOOL continueDataSession Continue usage flag for dataAuthHandle.

13 20 TPM_AUTHDATA dataAuth The authorization session digest for the encrypted entity. HMAC key: 
entity.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 3S 4 UINT32 secretSize The used size of the output area for secret

5 <> 4S <> BYTE[ ] secret Decrypted data that had been sealed

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: parentKey.usageAuth.

9 20 2H2 20 TPM_NONCE dataNonceEven Even nonce newly generated by TPM.

3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with dataAuthHandle

10 1 4H2 1 BOOL continueDataSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA dataAuth The authorization session digest used for the dataAuth session. HMAC 
key: entity.usageAuth.

Actions
1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle, 

on error return TPM_AUTHFAIL

2. If  the keyUsage field of  the key indicated by parentHandle  does not  have the value 
TPM_KEY_STORAGE, the TPM MUST return the error code TPM_INVALID_KEYUSAGE. 

3. The TPM MUST check that the TPM_KEY_FLAGS -> Migratable flag has the value FALSE 
in  the  key indicated by  parentHandle.  If  not,  the TPM MUST return the error  code 
TPM_INVALID_KEYUSAGE

4. Determine the version of inData

a. If inData -> tag = TPM_TAG_STORED_DATA12

i. Set V1 to 2

ii. Map S2 a TPM_STORED_DATA12 structure to inData

b. Else If inData -> ver = 1.1

i. Set V1 to 1

ii. Map S2 a TPM_STORED_DATA structure to inData

c. Else

i. Return TPM_BAD_VERSION

5. Create d1 by decrypting S2 -> encData using the key pointed to by parentHandle

6. Validate d1
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a. d1 MUST be a TPM_SEALED_DATA structure

b. d1 -> tpmProof MUST match TPM_PERMANENT_DATA -> tpmProof

c. Set S2 -> encDataSize to 0

d. Set S2 -> encData to all zeros

e. Create h1 the SHA-1 of S2

f. d1 -> storedDigest MUST match h1

g. d1 -> payload MUST be TPM_PT_SEAL

h. Any failure MUST return TPM_NOTSEALED_BLOB

7. If S2 -> sealInfoSize is not 0 then

a. If V1 is 1 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO structure

ii. Create  h2  the  composite  hash  of  the  PCR  selected  by  S2  ->  pcrInfo  -> 
pcrSelection

b. If V1 is 2 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO_LONG structure

ii. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 
S2 -> pcrInfo -> releasePCRSelection

iii. Check  that  S2  ->  pcrInfo  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

(1) For example if TPM_STANY_DATA -> localityModifier was 2 then S2 -> 
pcrInfo -> localityAtRelease -> TPM_LOC_TWO would have to be TRUE

c. Compare  h2  with  S2  ->  pcrInfo  ->  digestAtRelease,  on  mismatch  return 
TPM_WRONGPCRVAL

8. The TPM MUST validate authorization to use d1 by checking that the HMAC calculation 
using  d1  ->  authData  as  the  shared  secret  matches  the  dataAuth.  Return 
TPM_AUTHFAIL on mismatch.

9. If V1 is 2 and S2 -> et specifies encryption (i.e. is not all zeros) then

a. If tag is not TPM_TAG_RQU_AUTH2_COMMAND, return TPM_AUTHFAIL

b. Verify that the authHandle session type is TPM_PID_OSAP or TPM_PID_DSAP, return 
TPM_BAD_MODE on error.

c. If the MSB of S2 -> et is TPM_ET_XOR

i. Use MGF1 to create string X1 of length sealedDataSize. The inputs to MGF1 
are; authLastnonceEven, nonceOdd, “XOR”, and authHandle -> sharedSecret. The 
four concatenated values form the Z value that is the seed for MFG1.

ii. Create o1 by XOR of d1 -> data and X1

d. Else
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i. Create o1 by encrypting d1 -> data using the algorithm indicated by inData -> 
et

ii. Key is from authHandle -> sharedSecret

iii. IV is SHA-1 of (authLastNonceEven || nonceOdd)

e. Set continueAuthSession to FALSE

10.else

a. Set o1 to d1 -> data

11.Set the return secret as o1

12.Return TPM_SUCCESS
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10.3 TPM_UnBind
Start of informative comment:
TPM_UnBind takes the data blob that  is  the result  of  a  Tspi_Data_Bind command and 
decrypts it for export to the User. The caller must authorize the use of the key that will  
decrypt the incoming blob.

TPM_UnBind operates on a block-by-block basis, and has no notion of any relation between 
one block and another.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform UnBind 
operations.

5 4 2S 4 UINT32 inDataSize The size of the input blob

6 <> 3S <> BYTE[ ] inData Encrypted blob to be decrypted

7 4 TPM_AUTHHANDLE authHandle The handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the inputs and use of 
keyHandle. HMAC key: key.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind

4 4 3S 4 UINT32 outDataSize The length of the returned decrypted data

5 <> 4S <> BYTE[ ] outData The resulting decrypted data.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Description
TPM_UnBind SHALL operate on a single block only.

Actions
The TPM SHALL perform the following:

1. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

2. Validate the AuthData to use the key pointed to by keyHandle

3. If  the  keyUsage  field  of  the  key  referenced  by  keyHandle  does  not  have  the  value 
TPM_KEY_BIND  or  TPM_KEY_LEGACY,  the  TPM  must  return  the  error  code 
TPM_INVALID_KEYUSAGE

4. Decrypt the inData using the key pointed to by keyHandle

5. if  (keyHandle  ->  encScheme does not  equal  TPM_ES_RSAESOAEP_SHA1_MGF1)  and 
(keyHandle -> keyUsage equals TPM_KEY_LEGACY), 

a. The payload does not have TPM specific markers to validate, so no consistency check 
can be performed.

b. Set the output parameter outData to the value of the decrypted value of inData. 
(Padding associated with the encryption wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the 
decryption process.

6. else

a. Interpret the decrypted data under the assumption that it is a TPM_BOUND_DATA 
structure, and validate that the payload type is TPM_PT_BIND

b. Set  the  output  parameter  outData  to  the  value  of  TPM_BOUND_DATA  -> 
payloadData.  (Other  parameters  of  TPM_BOUND_DATA  SHALL  NOT  be  returned. 
Padding associated with the encryption wrapping of inData SHALL NOT be returned.)
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c. Set the output parameter outDataSize to the size of outData, as deduced from the 
decryption process and the interpretation of TPM_BOUND_DATA.

7. Return the output parameters.
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10.4 TPM_CreateWrapKey
Start of informative comment:
The TPM_CreateWrapKey command both generates and creates a secure storage bundle for 
asymmetric keys. 

The newly created key can be locked to a specific PCR value by specifying a set of PCR 
registers.

The key blob does not have a protected identifier.  On a platform that does not prevent 
unauthorized  access  to  data,  a  key  blob  can  be  exchanged  by  a  lower  layer  without 
detection.  The upper layer software must take additional measures to protect the relation 
between its identifier of the key blob and the blob itself.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the key.

6 20 3S 20 TPM_ENCAUTH dataMigrationAuth Encrypted migration AuthData for the key.

7 <> 4S <> TPM_KEY keyInfo Information about key to be created, pubkey.keyLength and 
keyInfo.encData elements are 0. MAY be TPM_KEY12

8 4 TPM_AUTHHANDLE authHandle parent key authorization. Must be an OSAP session.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth Authorization HMAC key: parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 <> 3S <> TPM_KEY wrappedKey The TPM_KEY structure which includes the public and encrypted private 
key. MAY be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE
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7 20 TPM_AUTHDATA resAuth Authorization HMAC key: parentKey.usageAuth.
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 Actions
The TPM SHALL do the following:

1. Validate  the  AuthData  to  use  the  key  pointed  to  by  parentHandle.  Return 
TPM_AUTHFAIL on any error.

2. Validate the session type for parentHandle is OSAP.

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 
error code TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. If parentHandle -> keyFlags -> migratable is TRUE and keyInfo -> keyFlags -> migratable 
is FALSE then return TPM_INVALID_KEYUSAGE

6. Validate key parameters

a. keyInfo  ->  keyUsage  MUST  NOT  be  TPM_KEY_IDENTITY  or 
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE

b. If  keyInfo  ->  keyFlags  ->  migrateAuthority  is  TRUE  then  return 
TPM_INVALID_KEYUSAGE

7. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

8. If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

iii. sigScheme MUST be TPM_SS_NONE

iv. key size MUST be 2048

v. exponentSize MUST be 0

9. Determine the version of key

a. If keyInfo -> ver is 1.1

i. Set V1 to 1

ii. Map wrappedKey to a TPM_KEY structure

iii. Validate all remaining TPM_KEY structures

b. Else if keyInfo -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Map wrappedKey to a TPM_KEY12 structure

iii. Validate all remaining TPM_KEY12 structures
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10.Create  DU1  by  decrypting  dataUsageAuth  according  to  the  ADIP  indicated  by 
authHandle

11.Create  DM1  by  decrypting  dataMigrationAuth  according  to  the  ADIP  indicated  by 
authHandle

12.Set continueAuthSession to FALSE

13.Generate asymmetric key according to algorithm information in keyInfo

14.Fill in the wrappedKey structure with information from the newly generated key. 

a. Set wrappedKey -> encData -> usageAuth to DU1

b. If  the  KeyFlags  ->  migratable  bit  is  set  to  1,  the  wrappedKey  ->  encData  -> 
migrationAuth SHALL contain the decrypted value from dataMigrationAuth. 

c. If  the  KeyFlags  ->  migratable  bit  is  set  to  0,  the  wrappedKey  ->  encData  -> 
migrationAuth SHALL be set to the value tpmProof

15.If keyInfo->PCRInfoSize is non-zero 

a. If V1 is 1

i. Set  wrappedKey  ->  pcrInfo  to  a  TPM_PCR_INFO  structure  using  the 
pcrSelection to indicate the PCR’s in use

b. Else 

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure 

c. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo

d. Set  wrappedKey ->  digestAtCreation  to  the  TPM_COMPOSITE_HASH indicated by 
creationPCRSelection

e. If V1 is 2 set wrappedKey -> localityAtCreation to TPM_STANY_DATA -> locality

16.Encrypt the private portions of the wrappedKey structure using the key in parentHandle

17.Return the newly generated key in the wrappedKey parameter
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10.5 TPM_LoadKey2
Start of informative comment:
Before the TPM can use a key to either wrap, unwrap, unbind, seal, unseal, sign or perform 
any other action, it needs to be present in the TPM. The TPM_LoadKey2 function loads the 
key into the TPM for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 
The assumption is that the handle may change due to key management operations. It is the 
responsibility of upper level software to maintain the mapping between handle and any 
label used by external software.

To  permit  this  mapping  between handle  and  upper  software  labels  (called  key  handle 
virtualization),  the key handle returned by TPM_LoadKey2 must not be included in the 
response HMAC.  This may cause problems if several keys are authorized using the same 
authorization data.  Care should be taken to assign different authorization data to each key.

This  command has  the  responsibility  of  enforcing  restrictions  on  the  use  of  keys.  For 
example, when attempting to load a STORAGE key it will be checked for the restrictions on 
a storage key (2048 size etc.).

The  load  command  must  maintain  a  record  of  whether  any  previous  key  in  the  key 
hierarchy was bound to a PCR using parentPCRStatus.

The  flag  parentPCRStatus  enables  the  possibility  of  checking  that  a  platform  passed 
through some particular state or states before finishing in the current state. A grandparent 
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 
linked to state-3, for example. The use of the child key then indicates that the platform 
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 
has not  passed through the previous states.  Hence keys with  parentPCRStatus==TRUE 
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 
has passed AND the key is non-migratory, the key must have been created by the TPM. So 
there is every reason to believe that the key poses no security threat to the TPM. While there 
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 
migratory key is a real key,  arising from a general  sense of unease about execution of 
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 
cycle,  but  this  may  be  expensive.  For  RSA  keys,  it  is  therefore  suggested  that  the 
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 
and checking that there is no remainder.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey Incoming key structure, both encrypted private and clear public portions. 
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2

4 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate  the  command  and  the  parameters  using  parentAuth  and  parentHandle  -> 
usageAuth

2. If  parentHandle  ->  keyUsage  is  NOT  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 
error code TPM_BAD_KEY_PROPERTY

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 
in parentHandle
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6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY

a. Reproduce  inKey ->  TPM_STORE_ASYMKEY ->  pubDataDigest  using the  fields  of 
inKey, and check that the reproduced value is the same as pubDataDigest

7. Validate the consistency of the key and it’s key usage. 

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 
public  and private  components of  the  asymmetric  key  pair.  If  inKey ->  keyFlags  -> 
migratable  is  FALSE,  the  TPM  MAY  verify  consistency  of  the  public  and  private 
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 
there is no remainder.

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY 
-> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

ii. If  keyInfo  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. sigScheme MUST be TPM_SS_NONE

h. If inKey -> keyUsage is TPM_KEY_IDENTITY

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. encScheme MUST be TPM_ES_NONE

i. If the decrypted inKey -> pcrInfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using 
any PCR registers.

j. Else

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 
composite hash whenever the key will be in use
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ii. The  TPM  MUST  handle  both  version  1.1  TPM_PCR_INFO  and  1.2 
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure

(1) The TPM MUST validate the TPM_PCR_INFO or TPM_PCR_INFO_LONG 
structures  for  legal  values.   However,  the  digestAtRelease  and 
localityAtRelease are not validated for authorization until use time.

8. Perform any processing  necessary  to  make  TPM_STORE_ASYMKEY key available  for 
operations

9. Load key and key information into internal memory of the TPM. If insufficient memory 
exists return error TPM_NOSPACE.

10.Assign inKeyHandle according to internal TPM rules.

11.Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

12.If  parentHandle  indicates  that  it  is  using  PCR  registers,  then  set  inKeyHandle  -> 
parentPCRStatus to TRUE. 
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10.6 TPM_GetPubKey
Start of informative comment:
The owner of  a  key may wish to  obtain  the public  key value  from a loaded key.  This 
information may have privacy concerns so the command must have authorization from the 
key owner. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 4 TPM_KEY_HANDLE keyHandle TPM handle of key.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA keyAuth Authorization HMAC key: key.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 <> 3S <> TPM_PUBKEY pubKey Public portion of key in keyHandle.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. Validate the command parameters using keyHandle -> usageAuth, on error return 
TPM_AUTHFAIL

2. Else 
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a. Verify  that  keyHandle  ->  authDataUsage  is   TPM_NO_READ_PUBKEY_AUTH   or 
TPM_AUTH_NEVER, on error return TPM_AUTHFAIL

3. If keyHandle == TPM_KH_SRK then 

a. If  TPM_PERMANENT_FLAGS  ->  readSRKPub  is  FALSE  then  return 
TPM_INVALID_KEYHANDLE

4. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified PCR registers and compare 
to keyHandle -> digestAtRelease and if a mismatch return TPM_WRONGPCRVAL

ii. If specified validate any locality requests

5. Create a TPM_PUBKEY structure and return 
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10.7 TPM_Sealx
Start of informative comment:
The TPM_Sealx command works exactly like the TPM_Seal command with the additional 
requirement  of  encryption  for  the  inData  parameter.  This  command also  places  in  the 
sealed blob the information that the TPM_Unseal also requires encryption.

TPM_Sealx requires the use of 1.2 data structures. The actions are the same as TPM_Seal 
without the checks for 1.1 data structure usage.

The method of incrementing the symmetric key counter value is different from that used by 
some standard crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter 
value.  TPM users should be aware of this to avoid errors when the counter wraps.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo MUST use TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[ ] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization. 
Must be an OSAP session for this command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 <> 3S 4 TPM_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result of the 
TPM_Sealx operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth.

Actions
1. Validate the authorization to use the key pointed to by keyHandle

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

3. If  the  keyUsage  field  of  the  key  indicated  by  keyHandle  does  not  have  the  value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE.

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 
TPM_INVALID_KEY_USAGE.

5. Create S1 a TPM_STORED_DATA12 structure

6. Set S1 -> encDataSize to 0

7. Set S1 -> encData to all zeros

8. Set S1 -> sealInfoSize to pcrInfoSize

9. If pcrInfoSize is not 0 then

a. Validate pcrInfo as a valid TPM_PCR_INFO_LONG structure, return TPM_BADINDEX 
on error

b. Set S1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection

c. Set S1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection

d. Set S1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

e. Set S1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease

f. Create  h2  the  composite  hash  of  the  TPM_STCLEAR_DATA  ->  PCR  selected  by 
pcrInfo -> creationPCRSelection

g. Set S1 -> sealInfo -> digestAtCreation to h2

h. Set S1 -> sealInfo -> localityAtCreation to TPM_STANY_DATA -> localityModifier

10.Create S2 a TPM_SEALED_DATA structure
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11.Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

a. If authHandle indicates XOR encryption for the AuthData secrets

i. Set S1 -> et to TPM_ET_XOR || TPM_ET_KEY

(1) TPM_ET_KEY  is  added  because  TPM_Unseal  uses  zero  as  a  special  value 
indicating no encryption.

b. Else

i. Set S1 -> et to the algorithm indicated by authHandle

12.The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 
possible.

13.If authHandle indicates XOR encryption

a. Use  MGF1  to  create  string  X2  of  length  inDataSize.  The  inputs  to  MGF1  are; 
authLastNonceEven,  nonceOdd,  “XOR”,  and  authHandle  ->  sharedSecret.  The  four 
concatenated values form the Z value that is the seed for MFG1.

b. Create o1 by XOR of inData and X2

14.Else

a. Create o1 by decrypting inData using the algorithm indicated by authHandle

b. Key is from authHandle -> sharedSecret

c. CTR is SHA-1 of (authLastNonceEven || nonceOdd)

15.Create S2 a TPM_SEALED_DATA structure

a. Set S2 -> payload to TPM_PT_SEAL

b. Set S2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof

c. Create h3 the SHA-1 of S1

d. Set S2 -> storedDigest to h3

e. Set S2 -> authData to a1

f. Set S2 -> dataSize to inDataSize

g. Set S2 -> data to o1

16.Validate that the size of S2 can be encrypted by the key pointed to by keyHandle, return 
TPM_BAD_DATASIZE on error

17.Create s3 the encryption of S2 using the key pointed to by keyHandle

18.Set continueAuthSession to FALSE

19.Set S1 -> encDataSize to the size of s3

20.Set S1 -> encData to s3

21.Return S1 as sealedData
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11. Migration
Start of informative comment:
The migration of a key from one TPM to another is a vital aspect to many use models of the 
TPM. The migration commands are the commands that allow this operation to occur. 

There are two types of migratable keys, the version 1.1 migratable keys and the version 1.2 
certifiable migratable keys. 

End of informative comment.

11.1 TPM_CreateMigrationBlob
Start of informative comment:
The TPM_CreateMigrationBlob command implements the first step in the process of moving 
a  migratable  key  to  a  new  parent  or  platform.  Execution  of  this  command  requires 
knowledge of the migrationAuth field of the key to be migrated.

Migrate  mode  is  generally  used to  migrate  keys  from one  TPM to  another  for  backup, 
upgrade or to clone a key on another platform. To do this, the TPM needs to create a data 
blob that another TPM can deal with. This is done by loading in a backup public key that 
will be used by the TPM to create a new data blob for a migratable key. 

The TPM Owner does the selection and authorization of migration public keys at any time 
prior  to  the  execution  of  TPM_CreateMigrationBlob  by  performing  the 
TPM_AuthorizeMigrationKey command.

IReWrap mode is used directly to move the key to a new parent (on either this platform or 
another). The TPM simply re-encrypts the key using a new parent, and outputs a normal 
encrypted element that can be subsequently used by a TPM_LoadKey command.

TPM_CreateMigrationBlob implicitly  cannot be used to  migrate  a non-migratory key.  No 
explicit check is required. Only the TPM knows tpmProof. Therefore, it is impossible for the 
caller to submit an AuthData value equal to tpmProof and migrate a non-migratory key.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 4 4S 4 UINT32 encDataSize The size of the encData parameter

8 <> 5S <> BYTE[ ] encData The encrypted entity that is to be modified.

9 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

12 20 20 TPM_AUTHDATA parentAuth Authorization HMAC key: parentKey.usageAuth.

13 4 TPM_AUTHHANDLE entityAuthHandle The authorization session handle used for the encrypted entity. 

2H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

14 20 3H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

15 1 4H2 1 BOOL continueEntitySession Continue use flag for entity session

16 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[ ] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[ ] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: parentKey.usageAuth.

11 20 3H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

4H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

12 1 5 H2 1 BOOL continueEntitySession Continue use flag for entity session

13 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

Description
The TPM does not check the PCR values when migrating values locked to a PCR.

The second authorization session (using entityAuth) MUST be OIAP because OSAP does not 
have a suitable entityType

Actions
1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. Validate  that  parentHandle  ->  keyUsage  is  TPM_KEY_STORAGE,  if  not  return 
TPM_INVALID_KEYUSAGE

3. Create  d1  a  TPM_STORE_ASYMKEY structure  by  decrypting  encData  using  the  key 
pointed to by parentHandle.

a. Verify that d1 -> payload is TPM_PT_ASYM.

4. Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> 
migrationAuth as the secret.

5. Validate that migrationKeyAuth -> digest is the SHA-1 hash of (migrationKeyAuth -> 
migrationKey || migrationKeyAuth -> migrationScheme || TPM_PERMANENT_DATA -> 
tpmProof).

6. If migrationType == TPM_MS_MIGRATE the TPM SHALL perform the following actions:

a. Build two byte arrays, K1 and K2: 
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i. K1 = d1.privKey[0..19]  (d1.privKey.keyLength + 16 bytes of d1.privKey.key), 
sizeof(K1) = 20

ii. K2 = d1.privKey[20..131] (position 16-127 of d1 . privKey.key), sizeof(K2) = 112

b. Build M1 a TPM_MIGRATE_ASYMKEY structure

i. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_MIGRATE 

ii. TPM_MIGRATE_ASYMKEY.usageAuth = d1.usageAuth 

iii. TPM_MIGRATE_ASYMKEY.pubDataDigest = d1. pubDataDigest 

iv. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 

v. TPM_MIGRATE_ASYMKEY.partPrivKey = K2

c. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the 
OAEP encoding of m using OAEP parameters of 

i. m = M1 the TPM_MIGRATE_ASYMKEY structure

ii. pHash = d1->migrationAuth 

iii. seed = s1 = K1

d. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 
Return r1 in the Random parameter.

e. Create x1 by XOR of o1 with r1

f. Copy r1 into the output field “random”.

g. Encrypt x1 with the migration public key included in migrationKeyAuth.

7. If migrationType == TPM_MS_REWRAP the TPM SHALL perform the following actions:

a. Rewrap  the  key  using  the  public  key  in  migrationKeyAuth,  keeping  the  existing 
contents of that key.

b. Set randomSize to 0 in the output parameter array

8. Else

a. Return TPM_BAD_PARAMETER
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11.2 TPM_ConvertMigrationBlob
Start of informative comment:
This command takes a migration blob and creates a normal wrapped blob. The migrated 
blob must be loaded into the TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public 
keys  is  not  specified by  TPM because  they are  not  security  sensitive.  Migration of  the 
associated public keys may be specified in a platform specific specification. A TPM_KEY 
structure must be recreated before the migrated key can be used by the target TPM in a 
TPM_LoadKey command.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 4 2S 4 UINT32 inDataSize Size of inData

6 <> 3S <> BYTE [ ] inData The XOR’d and encrypted key

7 4 4S 4 UINT32 randomSize Size of random

8 <> 5S <> BYTE [ ] random Random value used to hide key data.

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA parentAuth The authorization session digest that authorizes the inputs and the 
migration of the key in parentHandle. HMAC key: parentKey.usageAuth
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth

Action
The TPM SHALL perform the following:

1. Validate the AuthData to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE

3. Create d1 by decrypting the inData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1 a TPM_MIGRATE_ASYMKEY structure, seed and pHash by OAEP decoding o1

6. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field

7. Create d2 a TPM_STORE_ASYMKEY structure

a.  Verify that m1 -> payload == TPM_PT_MIGRATE

b. Set d2 -> payload = TPM_PT_ASYM

c. Set d2 -> usageAuth to m1 -> usageAuth

d. Set d2 -> migrationAuth to pHash

e. Set d2 -> pubDataDigest to m1 -> pubDataDigest

f. Set d2 -> privKey field to k1

8. Create outData using the key in parentHandle to perform the encryption
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11.3 TPM_AuthorizeMigrationKey
Start of informative comment:
This command creates an authorization blob,  to allow the TPM owner to  specify which 
migration  facility  they  will  use  and allow users  to  migrate  information  without  further 
involvement with the TPM owner.

It is the responsibility of the TPM Owner to determine whether migrationKey is appropriate 
for migration. The TPM checks just the cryptographic strength of migrationKey.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 2 2S 2 TPM_MIGRATE_SCHEME migrationScheme Type of migration operation that is to be permitted for this key.

4 <> 3S <> TPM_PUBKEY migrationKey The public key to be authorized.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authorization. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 <> 3S <> TPM_MIGRATIONKEYAUTH outData Returned public key and authorization session digest.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: ownerAuth.

Action
The TPM SHALL perform the following:
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1. Check that the cryptographic strength of migrationKey is at least that of a 2048 bit RSA 
key. If migrationKey is an RSA key, this means that migrationKey MUST be 2048 bits or 
greater and MUST use the default exponent.

2. Validate the AuthData to use the TPM by the TPM Owner

3. Create a f1 a TPM_MIGRATIONKEYAUTH structure

4. Verify  that  migrationKey->  algorithmParms  ->  encScheme  is 
TPM_ES_RSAESOAEP_SHA1_MGF1,  and  return  the  error  code 
TPM_INAPPROPRIATE_ENC if it is not

5. Set f1 -> migrationKey to the input migrationKey

6. Set f1 -> migrationScheme to the input migrationScheme

7. Create  v1  by  concatenating  (migrationKey  ||  migrationScheme  || 
TPM_PERMANENT_DATA -> tpmProof)

8. Create h1 by performing a SHA-1 hash of v1

9. Set f1 -> digest to h1

10.Return f1 as outData

92 Level 2 Revision 116 28 February 2011
TCG Published

459
460
461

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905

462
463



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

11.4 TPM_MigrateKey
Start of informative comment:
The TPM_MigrateKey command performs the function of a migration authority.

The  command  is  relatively  simple;  it  just  decrypts  the  input  packet  (coming  from 
TPM_CreateMigrationBlob or TPM_CMK_CreateBlob) and then re-encrypts it with the input 
public key. The output of this command would then be sent to TPM_ConvertMigrationBlob 
or TPM_CMK_ConvertMigration on the target TPM.

TPM_MigrateKey does not make ANY assumptions about the contents of the encrypted blob. 
Since it does not have the XOR string, it cannot actually determine much about the key 
that is being migrated.

This command exists to permit the TPM to be a migration authority. If used in this way, it is 
expected that the physical security of the system containing the TPM and the AuthData 
value for the MA key would be tightly controlled.

To  prevent  the  execution  of  this  command using  any  other  key  as  a  parent  key,  this 
command works only if keyUsage for maKeyHandle is TPM_KEY_MIGRATE.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 TPM_KEY_HANDLE maKeyHandle Handle of the key to be used to migrate the key.

5 <> 2S <> TPM_PUBKEY pubKey Public key to which the blob is to be migrated

6 4 3S 4 UINT32 inDataSize The size of inData

7 <> 4S <> BYTE[ ] inData The input blob

8 4 TPM_AUTHHANDLE maAuthHandle The authorization session handle used for maKeyHandle. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: maKeyHandle.usageAuth.
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Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The re-encrypted blob

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

8 20 TPM_AUTHDATA keyAuth The authorization session digest for the target key. HMAC key: 
maKeyHandle.usageAuth

Actions
1. Validate that keyAuth authorizes the use of the key pointed to by maKeyHandle

2. The TPM validates that the key pointed to by maKeyHandle has a key usage value of 
TPM_KEY_MIGRATE,  and  that  the  allowed  encryption  scheme  is 
TPM_ES_RSAESOAEP_SHA1_MGF1.

3. The TPM validates that pubKey is of a size supported by the TPM and that its size is 
consistent with the input blob and maKeyHandle.

4. The TPM decrypts inData and re-encrypts it using pubKey.
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11.5 TPM_CMK_SetRestrictions
Start of informative comment:
This command is used by the Owner to dictate the usage of a certified-migration key with 
delegated authorization (authorization other than actual owner authorization).

This command is provided for privacy reasons and must not itself be delegated, because a 
certified-migration-key may involve a contractual relationship between the Owner and an 
external entity. 

Since restrictions are validated at DSAP session use, there is no need to invalidate DSAP 
sessions when the restriction value changes.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 4 2S 4 TPM_CMK_DELEGATE restriction The bit mask of how to set the restrictions on CMK keys

5 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S  4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Description
TPM_PERMANENT_DATA -> restrictDelegate is used as follows

1. If the session type is TPM_PID_DSAP and TPM_KEY -> keyFlags -> migrateAuthority is 
TRUE
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a. If

TPM_KEY_USAGE  is  TPM_KEY_SIGNING  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_SIGNING is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_STORAGE  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_STORAGE is TRUE, or

TPM_KEY_USAGE is TPM_KEY_BIND and restrictDelegate -> TPM_CMK_DELEGATE_BIND 
is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_LEGACY  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_LEGACY is TRUE, or

TPM_KEY_USAGE  is  TPM_KEY_MIGRATE  and  restrictDelegate  -> 
TPM_CMK_DELEGATE_MIGRATE is TRUE

then the key can be used.

b. Else return TPM_INVALID_KEYUSAGE.

Actions
1. Validate  the  ordinal  and  parameters  using  TPM  Owner  authentication,  return 

TPM_AUTHFAIL on error

2. Set TPM_PERMANENT_DATA -> TPM_CMK_DELEGATE -> restrictDelegate = restriction

3. Return TPM_SUCCESS
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11.6 TPM_CMK_ApproveMA
Start of informative comment:
This command creates an authorization ticket, to allow the TPM owner to specify which 
Migration  Authorities  they  approve  and  allow  users  to  create  certified-migration-keys 
without further involvement with the TPM owner.

It  is  the  responsibility  of  the  TPM Owner to  determine  whether  a  particular  Migration 
Authority is suitable to control migration

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 2S 20 TPM_DIGEST migrationAuthorityDigest A digest of a TPM_MSA_COMPOSITE structure (itself one or more 
digests of public keys belonging to migration authorities)

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth Authorization HMAC, key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 3S 20 TPM_HMAC outData HMAC of migrationAuthorityDigest

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC, key: ownerAuth.

Action
The TPM SHALL perform the following:

1. Validate the AuthData to use the TPM by the TPM Owner

2. Create M2 a TPM_CMK_MA_APPROVAL structure
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a. Set M2 ->migrationAuthorityDigest to migrationAuthorityDigest

3. Set outData = HMAC(M2) using tpmProof as the secret

4. Return TPM_SUCCESS
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11.7 TPM_CMK_CreateKey
Start of informative comment:
The TPM_CMK_CreateKey command both generates and creates a secure storage bundle for 
asymmetric keys whose migration is controlled by a migration authority. 

TPM_CMK_CreateKey is very similar to TPM_CreateWrapKey, but: (1) the resultant key must 
be a migratable key and can be migrated only by TPM_CMK_CreateBlob; (2) the command is 
Owner authorized via a ticket. 

TPM_CMK_CreateKey  creates  an  otherwise  normal  migratable  key  except  that  (1) 
migrationAuth is an HMAC of the migration authority and the new key’s public key, signed 
by tpmProof (instead of being tpmProof); (2) the migrationAuthority bit is set TRUE; (3) the 
payload type is TPM_PT_MIGRATE_RESTRICTED.

The migration-selection/migration authority is specified by passing in a public key (actually 
the  digests  of  one  or  more  public  keys,  so  more  than  one  migration  authority  can  be 
specified). 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the key.

6 <> 3S <> TPM_KEY12 keyInfo Information about key to be created, pubkey.keyLength and 
keyInfo.encData elements are 0. MUST be TPM_KEY12

7 20 4S 20 TPM_HMAC migrationAuthorityApproval A ticket, created by the TPM Owner using TPM_CMK_ApproveMA, 
approving a TPM_MSA_COMPOSITE structure

8 20 5S 20 TPM_DIGEST migrationAuthorityDigest The digest of a TPM_MSA_COMPOSITE structure

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parent key authorization. 
Must be an OSAP session.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Ignored

12 20 TPM_AUTHDATA pubAuth The authorization session digest that authorizes the use of the public 
key in parentHandle. HMAC key: parentKey.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 <> 3S <> TPM_KEY12 wrappedKey The TPM_KEY structure which includes the public and encrypted private 
key. MUST be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL do the following:

1. Validate  the  AuthData  to  use  the  key  pointed  to  by  parentHandle.  Return 
TPM_AUTHFAIL on any error

2. Validate the session type for parentHandle is OSAP

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 
error code TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. Verify that parentHandle-> keyFlags-> migratable == FALSE

6. If keyInfo -> keyFlags -> migratable is FALSE, return TPM_INVALID_KEYUSAGE

7. If keyInfo -> keyFlags -> migrateAuthority is FALSE , return TPM_INVALID_KEYUSAGE

8. Verify that the migration authority is authorized

a. Create M1 a TPM_CMK_MA_APPROVAL structure

i. Set M1 ->migrationAuthorityDigest to migrationAuthorityDigest 

b. Verify that migrationAuthorityApproval == HMAC(M1) using tpmProof as the secret 
and return error TPM_MA_AUTHORITY on mismatch

9. Validate key parameters

a. keyInfo  ->  keyUsage  MUST  NOT  be  TPM_KEY_IDENTITY  or 
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE

10.If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS
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11.If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE

a. algorithmID MUST be TPM_ALG_RSA

b. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

c. sigScheme MUST be TPM_SS_NONE

d. key size MUST be 2048

e. exponentSize MUST be 0

12.If keyInfo -> tag is NOT TPM_TAG_KEY12 return error TPM_INVALID_STRUCTURE

13.Map wrappedKey to a TPM_KEY12 structure

14.Create  DU1  by  decrypting  dataUsageAuth  according  to  the  ADIP  indicated  by 
authHandle.

15.Set continueAuthSession to FALSE

16.Generate asymmetric key according to algorithm information in keyInfo

17.Fill in the wrappedKey structure with information from the newly generated key. 

a. Set wrappedKey -> encData -> usageAuth to DU1

b. Set wrappedKey -> encData -> payload to TPM_PT_MIGRATE_RESTRICTED

c. Create thisPubKey, a TPM_PUBKEY structure containing wrappedKey’s public key 
and algorithm parameters

d. Create M2 a TPM_CMK_MIGAUTH structure

i. Set M2 -> msaDigest to migrationAuthorityDigest

ii. Set M2 -> pubKeyDigest to SHA-1 (thisPubKey)

e. Set wrappedKey -> encData -> migrationAuth equal to HMAC(M2), using tpmProof as 
the shared secret

18.If keyInfo->PCRInfoSize is non-zero 

a. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure

b. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo 

c. Set  wrappedKey ->  digestAtCreation  to  the  TPM_COMPOSITE_HASH indicated by 
creationPCRSelection

d. Set wrappedKey -> localityAtCreation to TPM_STANY_FLAGS -> localityModifier

19.Encrypt the private portions of the wrappedKey structure using the key in parentHandle

20.Return the newly generated key in the wrappedKey parameter
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11.8 TPM_CMK_CreateTicket
Start of informative comment:
The TPM_CMK_CreateTicket  command uses a  public  key to  verify  the  signature  over  a 
digest.

TPM_CMK_CreateTicket returns a ticket that can be used to prove to the same TPM that 
signature verification with a particular public key was successful.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 <> 2S <> TPM_PUBKEY verificationKey The public key to be used to check signatureValue

5 20 3S 20 TPM_DIGEST signedData The data to be verified

6 4 4S 4 UINT32 signatureValueSize The size of the signatureValue

7 <> 5S <> BYTE[] signatureValue The signatureValue to be verified

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 20 3S 20 TPM_HMAC sigTicket Ticket that proves digest created on this TPM

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key:. ownerAuth.

Actions
The TPM SHALL do the following:

1. Validate the TPM Owner authentication to use the command

2. Validate that the key type and algorithm are correct

a. Validate that verificationKey -> algorithmParms -> algorithmID == TPM_ALG_RSA

b. Validate that verificationKey -> algorithmParms ->encScheme == TPM_ES_NONE

c. Validate  that  verificationKey  ->algorithmParms  ->sigScheme  is 
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

3. Use verificationKey to verify that signatureValue is a valid signature on signedData, and 
return error TPM_BAD_SIGNATURE on mismatch

4. Create M2 a TPM_CMK_SIGTICKET

a. Set M2 -> verKeyDigest to the SHA-1 (verificationKey)

b. Set M2 -> signedData to signedData

5. Set sigTicket = HMAC(M2) signed by using tpmProof as the secret

6. Return TPM_SUCCESS
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11.9 TPM_CMK_CreateBlob
Start of informative comment:
TPM_CMK_CreateBlob command is very similar to TPM_CreateMigrationBlob, except that it: 
(1)  uses  an  extra  ticket  (restrictedKeyAuth)  instead  of  a  migrationAuth  authorization 
session;  (2)  uses  the  migration  options  TPM_MS_RESTRICT_MIGRATE  or 
TPM_MS_RESTRICT_APPROVE; (3) produces a wrapped key blob whose migrationAuth is 
independent of tpmProof.

If the destination (parent) public key is the MA, migration is implicitly permitted. Further 
checks are required if the MA is not the destination (parent) public key, and merely selects 
a migration destination: (1) sigTicket must prove that restrictTicket was signed by the MA; 
(2) restrictTicket must vouch that the target public key is approved for migration to the 
destination (parent) public key. (Obviously, this more complex method may also be used by 
an MA to approve migration to that MA.) In both cases, the MA must be one of the MAs 
implicitly listed in the migrationAuth of the target key-to-be-migrated. 

When the migrationType is TPM_MS_RESTRICT_MIGRATE, restrictTicket and sigTicket are 
unused.  The TPM may test that the corresponding sizes are zero, so the caller should set 
them to zero for interoperability.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either TPM_MS_RESTRICT_MIGRATE or 
TPM_MS_RESTRICT_APPROVE

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 20 4S 20 TPM_DIGEST pubSourceKeyDigest The digest of the TPM_PUBKEY of the entity to be migrated

8 4 5S 4 UINT32 msaListSize The size of the msaList parameter, which is a variable length 
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 restrictTicketSize The size of the restrictTicket parameter 

11 <> 8S <> BYTE[] restrictTicket

If migrationType is TPM_MS_RESTRICT_APPROVE, a 
TPM_CMK_AUTH structure, containing the digests of the public keys 
belonging to the Migration Authority, the destination parent key and the 
key-to-be-migrated.

12 4 9S 4 UINT32 sigTicketSize The size of the sigTicket parameter

13 <> 10S <> BYTE[] sigTicket
If migrationType is TPM_MS_RESTRICT_APPROVE, a TPM_HMAC 
structure, generated by the TPM, signaling a valid signature over 
restrictTicket

14 4 11S 4 UINT32 encDataSize The size of the encData parameter

15 <> 12S <> BYTE[] encData The encrypted entity that is to be modified.

16 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

17 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

18 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

19 20 20 TPM_AUTHDATA parentAuth HMAC key: parentKey.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[ ] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[ ] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth HMAC key: parentKey.usageAuth.

Description
The TPM does not check the PCR values when migrating values locked to a PCR.

Actions
1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. The TPM MAY verify that migrationType == migrationKeyAuth -> migrationScheme and 
return TPM_BAD_MODE on error.

a. The TPM MAY ignore migrationType.

3. Verify that parentHandle-> keyFlags-> migratable == FALSE

4. Create d1 by decrypting encData using the key pointed to by parentHandle.

5. Verify that the digest within migrationKeyAuth is legal for this TPM and public key

6. Verify  that  d1  ->  payload  ==  TPM_PT_MIGRATE_RESTRICTED  or 
TPM_PT_MIGRATE_EXTERNAL

7. Verify that the migration authorities in msaList are authorized to migrate this key

a. Create M2 a TPM_CMK_MIGAUTH structure

i. Set M2 -> msaDigest to SHA-1[msaList]

ii. Set M2 -> pubKeyDigest to pubSourceKeyDigest

b. Verify that  d1 -> migrationAuth == HMAC(M2)  using tpmProof  as the secret and 
return error TPM_MA_AUTHORITY on mismatch

8. If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_MIGRATE

a. Verify that intended migration destination is an MA:
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i. For one of n=1 to n=(msaList -> MSAlist), verify that SHA-1[migrationKeyAuth 
-> migrationKey] == msaList -> migAuthDigest[n]

b. Validate that the MA key is the correct type

i. Validate  that  migrationKeyAuth  ->  migrationKey  ->  algorithmParms  -> 
algorithmID == TPM_ALG_RSA

ii. Validate  that  migrationKeyAuth  ->  migrationKey  ->  algorithmParms  -> 
encScheme is an encryption scheme supported by the TPM

iii. Validate  that  migrationKeyAuth  ->  migrationKey  ->algorithmParms  -> 
sigScheme is TPM_SS_NONE

c. The TPM MAY validate that restrictTicketSize is zero.

d. The TPM MAY validate that sigTicketSize is zero.

9. else If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_APPROVE

a. Verify that the intended migration destination has been approved by the MSA:

i. Verify that for one of the n=1 to n=(msaList -> MSAlist) values of msaList -> 
migAuthDigest[n], sigTicket == HMAC (V1) using tpmProof as the secret where V1 
is a TPM_CMK_SIGTICKET structure such that:

(1) V1 -> verKeyDigest = msaList -> migAuthDigest[n]

(2) V1 -> signedData = SHA-1[restrictTicket]

ii. If  [restrictTicket  ->  destinationKeyDigest]  !=  SHA-1[migrationKeyAuth  -> 
migrationKey], return error TPM_MA_DESTINATION 

iii. If  [restrictTicket  ->  sourceKeyDigest]  !=  pubSourceKeyDigest,  return  error 
TPM_MA_SOURCE 

10.Else return with error TPM_BAD_PARAMETER.

11.Build two bytes array, K1 and K2, using d1: 

a. K1  =  TPM_STORE_ASYMKEY.privKey[0..19] 
(TPM_STORE_ASYMKEY.privKey.keyLength  +  16  bytes  of 
TPM_STORE_ASYMKEY.privKey.key), sizeof(K1) = 20

b. K2  =  TPM_STORE_ASYMKEY.privKey[20..131]  (position  16-127  of 
TPM_STORE_ASYMKEY . privKey.key), sizeof(K2) = 112

12.Build M1 a TPM_MIGRATE_ASYMKEY structure

a. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_CMK_MIGRATE

b. TPM_MIGRATE_ASYMKEY.usageAuth = TPM_STORE_ASYMKEY.usageAuth 

c. TPM_MIGRATE_ASYMKEY.pubDataDigest = TPM_STORE_ASYMKEY. pubDataDigest 

d. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 

e. TPM_MIGRATE_ASYMKEY.partPrivKey = K2

13.Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 
encoding of m using OAEP parameters m, pHash, and seed

a. m is the previously created M1 
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b. pHash = SHA-1( SHA-1[msaList] || pubSourceKeyDigest)

c. seed = s1 = the previously created K1

14.Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 
Return r1 in the random parameter

15.Create x1 by XOR of o1 with r1

16.Copy r1 into the output field “random”

17.Encrypt x1 with the migrationKeyAuth-> migrationKey
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11.10 TPM_CMK_ConvertMigration
Start of informative comment:
TPM_CMK_ConvertMigration completes the migration of certified migration blobs.

This command takes a certified migration blob and creates a normal wrapped blob with 
payload type TPM_PT_MIGRATE_EXTERNAL. The migrated blob must be loaded into the 
TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public 
keys  is  not  specified by  TPM because  they are  not  security  sensitive.  Migration of  the 
associated public keys may be specified in a platform specific specification. A TPM_KEY 
structure must be recreated before the migrated key can be used by the target TPM in a 
TPM_LoadKey command.

TPM_CMK_ConvertMigration  checks  that  one  of  the  MAs  implicitly  listed  in  the 
migrationAuth of the target key has approved migration of the target key to the destination 
(parent) key, and that the settings (flags etc.) in the target key are those of a CMK.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 60 2S 60 TPM_CMK_AUTH restrictTicket The digests of public keys belonging to the Migration Authority, the 
destination parent key and the key-to-be-migrated.

6 20 3S 20 TPM_HMAC sigTicket A signature ticket, generated by the TPM, signaling a valid signature 
over restrictTicket

7 <> 4S <> TPM_KEY12 migratedKey The public key of the key-to-be-migrated. The private portion MUST be 
TPM_MIGRATE_ASYMKEY properly XOR’d

8 4 5S 4 UINT32 msaListSize The size of the msaList parameter, which is a variable length 
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 randomSize Size of random

11 <> 8S <> BYTE [ ] random Random value used to hide key data.

12 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA parentAuth Authorization HMAC: parentKey.usageAuth
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth Authorization HMAC key .usageAuth

Action
1. Validate the AuthData to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value 
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE

3. Create d1 by decrypting the migratedKey -> encData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1 a TPM_MIGRATE_ASYMKEY, seed and pHash by OAEP decoding o1

6. Create migratedPubKey a TPM_PUBKEY structure corresponding to migratedKey

a. Verify that pHash == SHA-1( SHA-1[msaList] || SHA-1(migratedPubKey )

7. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field

8. Create d2 a TPM_STORE_ASYMKEY structure. 

a. Set the TPM_STORE_ASYMKEY -> privKey field to k1

b. Set d2 -> usageAuth to m1 -> usageAuth

c. Set d2 -> pubDataDigest to m1 -> pubDataDigest

9. Verify that parentHandle-> keyFlags -> migratable == FALSE

10.Verify  that  m1  ->  payload  ==  TPM_PT_CMK_MIGRATE  then  set  d2->  payload  = 
TPM_PT_MIGRATE_EXTERNAL

11.Verify  that  for  one  of  the  n=1  to  n=(msaList  ->  MSAlist)  values  of  msaList  -> 
migAuthDigest[n] sigTicket == HMAC (V1) using tpmProof as the secret where V1 is a 
TPM_CMK_SIGTICKET structure such that:

a. V1 -> verKeyDigest = msaList -> migAuthDigest[n]

b. V1 -> signedData = SHA-1[restrictTicket]

12.Create parentPubKey, a TPM_PUBKEY structure corresponding to parentHandle
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13.If  [restrictTicket  ->  destinationKeyDigest]  !=  SHA-1(parentPubKey),  return  error 
TPM_MA_DESTINATION 

14.Verify that migratedKey is corresponding to d2

15.If  migratedKey  ->  keyFlags  ->  migratable  is  FALSE,  and  return  error 
TPM_INVALID_KEYUSAGE

16.If  migratedKey  ->  keyFlags  ->  migrateAuthority  is  FALSE,  return  error 
TPM_INVALID_KEYUSAGE

17.If  [restrictTicket  ->  sourceKeyDigest]  !=  SHA-1(migratedPubKey),  return  error 
TPM_MA_SOURCE 

18.Create M2 a TPM_CMK_MIGAUTH structure

a. Set M2 -> msaDigest to SHA-1[msaList]

b. Set M2 -> pubKeyDigest to SHA-1[migratedPubKey]

19.Set d2 -> migrationAuth = HMAC(M2) using tpmProof as the secret

20.Create outData using the key in parentHandle to perform the encryption

Level 2 Revision 116 28 February 2011 111
TCG Published

545
546

2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

547
548



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

12. Maintenance Functions (optional)
Start of informative comment:
When a maintenance archive is created with generateRandom FALSE, the maintenance blob 
is XOR encrypted with the owner authorization before encryption with the maintenance 
public key. This prevents the manufacturer from obtaining plaintext data. The receiving 
TPM must have the same owner authorization as the sending TPM in order to XOR decrypt 
the archive.

When generateRandom is TRUE, the maintenance blob is XOR encrypted with random data, 
which  is  also  returned.  This  permits  someone  trusted  by  the  Owner  to  load  the 
maintenance  archive  into  the  replacement  platform  in  the  absence  of  the  Owner  and 
manufacturer, without the Owner having to reveal information about his auth value. The 
receiving and sending TPM's may have different owner authorizations. The random data is 
transferred from the sending TPM owner to the receiving TPM owner out of band, so the 
maintenance blob remains hidden from the manufacturer.

This is a typical maintenance sequence:

1. Manufacturer:

• generates maintenance key pair

• gives public key to TPM1 owner

2. TPM1: TPM_LoadManuMaintPub

• load maintenance public key

3. TPM1: TPM_CreateMaintenanceArchive

• XOR encrypt with owner auth or random

• encrypt the maintenance archive with maintenance public key

4. TPM2:

• Take ownership

• Create and activate an AIK

• Certify the SRK with the AIK, proving that the SRK came from a legitimate TPM

4. Manufacturer:

• decrypt maintenance archive with maintenance private key

• (still XOR encrypted with owner auth or random)

• validate the TPM2 SRK certification

• encrypt the maintenance archive with TPM2 SRK public key

5. TPM2: TPM_LoadMaintenanceArchive

• decrypt the maintenance archive with SRK private key

• XOR decrypt with owner auth or random

End of informative comment.
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12.1 TPM_CreateMaintenanceArchive
Start of informative comment:
This command creates the maintenance archive. It can only be executed by the owner, and 
may be shut off with the TPM_KillMaintenanceFeature command.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 1 2S 1 BOOL generateRandom Use RNG or Owner auth to generate ‘random’.

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 4 3S 4 UINT32 randomSize Size of the returned random data. Will be 0 if generateRandom is FALSE.

5 <> 4S <> BYTE [ ] random Random data to XOR with result.

6 4 5S 4 UINT32 archiveSize Size of the encrypted archive

7 <> 6S <> BYTE [ ] archive Encrypted key archive.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
Upon authorization being confirmed this command does the following:
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1. Validates  that  the  TPM_PERMANENT_FLAGS  ->  allowMaintenance  is  TRUE.  If  it  is 
FALSE, the TPM SHALL return TPM_DISABLED_CMD and exit this capability.

2. Validates the TPM Owner AuthData.

3. If  the  value  of  TPM_PERMANENT_DATA  ->  manuMaintPub  is  zero,  the  TPM  MUST 
return the error code TPM_KEYNOTFOUND

4. Build  a1  a  TPM_KEY  structure  using  the  SRK.  The  encData  field  is  not  a  normal 
TPM_STORE_ASYMKEY structure but rather a TPM_MIGRATE_ASYMKEY structure built 
using the following actions.

5. Build a TPM_STORE_PRIVKEY structure from the SRK. This privKey element should be 
132 bytes long for a 2K RSA key.

6. Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is 
the first 20 bytes of privKey, k2 contains the remainder of privKey.

7. Build m1 by creating and filling in a TPM_MIGRATE_ASYMKEY structure

a. m1 -> usageAuth is set to TPM_PERMANENT_DATA -> tpmProof

b. m1 -> pubDataDigest is set to the digest value of the SRK fields from step 4

c. m1 -> payload is set to TPM_PT_MAINT

d. m1 -> partPrivKey is set to k2

8. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 
encoding of m using OAEP parameters of

a. m = TPM_MIGRATE_ASYMKEY structure (step 7)

b. pHash = TPM_PERMANENT_DATA -> ownerAuth

c. seed = s1 = k1 (step 6)

9. If generateRandom = TRUE

a. Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same 
size as o1. Set random parameter to r1

10.If generateRandom = FALSE

a. Create r1 by applying MGF1 to the TPM Owner AuthData. The size of r1 MUST be the 
same size as o1. Set randomSize to 0.

11.Create x1 by XOR of o1 with r1

12.Encrypt x1 with the manuMaintPub key using the TPM_ES_RSAESOAEP_SHA1_MGF1 
encryption scheme.

13.Set a1 -> encData to the encryption of x1

14.Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE

15.Return a1 in the archive parameter
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12.2 TPM_LoadMaintenanceArchive
Start of informative comment:
This  command  loads  in  a  Maintenance  archive  that  has  been  massaged  by  the 
manufacturer to load into another TPM.

If the maintenance archive was created using the owner authorization for XOR encryption, 
the current owner authorization must be used for decryption. The owner authorization does 
not change.

If the maintenance archive was created using random data for the XOR encryption, the 
vendor specific arguments must include the random data. The owner authorization may 
change.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

4 4 2S 4 UINT32 archiveSize Sice of the encrypted archive

5 <> 3S <> BYTE[] archive Encrypted key archive

… … Vendor specific arguments

- 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

- 20 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

-- 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 4 TPM_RESULT returnCode The return code of the operation. 

4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

.. .. Vendor specific arguments

- 20 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

- 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth, the original value and not the new auth value

Description
The maintenance mechanisms in the TPM MUST not  require  the TPM to hold a global 
secret. The definition of global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of  
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption 
in the maintenance process. The maintenance process MAY use a TPM Identity to deliver 
maintenance information to specific TPM’s.

The maintenance process can only change the SRK, tpmProof and TPM Owner AuthData 
fields.

The maintenance process can only access data in shielded locations where this data is 
necessary to validate the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TPM specification, protection profiles and security 
targets after maintenance. The maintenance MAY NOT decrease the security values from 
the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Actions
The TPM SHALL perform the following when executing the command

1. Validate the TPM Owner’s AuthData

2. Validate  that  the  maintenance  information  was  sent  by  the  TPME.  The  validation 
mechanism MUST use  a  strength  of  function  that  is  at  least  the  same  strength  of 
function as a digital signature performed using a 2048 bit RSA key.

3. The packet MUST contain m2 as defined in section 12.1.

4. Ensure that only the target TPM can interpret the maintenance packet. The protection 
mechanism MUST use  a  strength  of  function  that  is  at  least  the  same  strength  of 
function as a digital signature performed using a 2048 bit RSA key.
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5. Execute the actions of TPM_OwnerClear.

6. Process the maintenance information 

a. Update the SRK

i. Set the SRK usageAuth to be the same as the source TPM owner's AuthData

b. Update TPM_PERMANENT_DATA -> tpmProof

c. Update TPM_PERMANENT_DATA -> ownerAuth

7. Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE
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12.3 TPM_KillMaintenanceFeature
Start of informative comment:
The  TPM_KillMaintencanceFeature  is  a  permanent  action  that  prevents  ANYONE  from 
creating a maintenance archive. This action, once taken, is permanent until a new TPM 
Owner is set.

This action is to allow those customers who do not want the maintenance feature to not 
allow the use of the maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such 
a way that the only way to recover maintainability of the platform would be to wipe out the 
root keys. This feature is mandatory in any TPM that implements the maintenance feature. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Actions
1. Validate the TPM Owner AuthData

2. Set the TPM_PERMANENT_FLAGS.allowMaintenance flag to FALSE. 
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12.4 TPM_LoadManuMaintPub
Start of informative comment:
The TPM_LoadManuMaintPub command loads the manufacturer’s public key for use in the 
maintenance process. The command installs manuMaintPub in PERMANENT data storage 
inside a TPM. Maintenance enables duplication of non-migratory data in protected storage. 
There is therefore a security hole if a platform is shipped before the maintenance public key 
has been installed in a TPM.

The command is expected to be used before installation of a TPM Owner or any key in TPM 
protected storage. It therefore does not use authorization.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

5 <> 3S <> TPM_PUBKEY pubKey The public key of the manufacturer to be in use for maintenance

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay 

Description
The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm 
with 2048bit keys.

pubKey  SHOULD unambiguously  identify  the  entity  that  will  perform the  maintenance 
process with the TPM Owner.

TPM_PERMANENT_DATA -> manuMaintPub SHALL exist in a TPM-shielded location, only.

If  an  entity  (Platform Entity)  does  not  support  the  maintenance  process  but  issues  a 
platform credential for a platform containing a TPM that supports the maintenance process, 
the value of TPM_PERMANENT_DATA -> manuMaintPub MUST be set to zero before the 
platform leaves the entity’s control. That is, this ordinal can only be run once, and used to 
either load the key or load a NULL key.
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Actions
The first valid TPM_LoadManuMaintPub command received by a TPM SHALL 

1. Store the parameter pubKey as TPM_PERMANENT_DATA -> manuMaintPub.

2. Set checksum to SHA-1 of (pubKey || antiReplay)

3. Export the checksum

4. Subsequent  calls  to  TPM_LoadManuMaintPub  SHALL  return  code 
TPM_DISABLED_CMD.
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12.5 TPM_ReadManuMaintPub
Start of informative comment:
The  TPM_ReadManuMaintPub  command  is  used  to  check  whether  the  manufacturer’s 
public maintenance key in a TPM has the expected value. This may be useful during the 
manufacture process. The command returns a digest of the installed key, rather than the 
key itself. This hinders discovery of the maintenance key, which may (or may not) be useful  
for manufacturer privacy.

The command is expected to be used before installation of a TPM Owner or any key in TPM 
protected storage. It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description
This  command  returns  the  hash  of  the  antiReplay  nonce  and  the  previously  loaded 
manufacturer’s maintenance public key.

Actions
The TPM_ReadManuMaintPub command SHALL 

1. Create  “checksum”  by  concatenating  data  to  form  (TPM_PERMANENT_DATA  -> 
manuMaintPub ||antiReplay) and passing the concatenated data through SHA-1.

2. Export the checksum
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13. Cryptographic Functions

13.1 TPM_SHA1Start
Start of informative comment:
This capability starts the process of calculating a SHA-1 digest.

The exposure of the SHA-1 processing is a convenience to platforms in a mode that do not 
have  sufficient  memory  to  perform  SHA-1  themselves.  As  such,  the  use  of  SHA-1  is 
restrictive on the TPM.

The TPM may not allow any other types of processing during the execution of a SHA-1 
session. There is only one SHA-1 session active on a TPM.  The exclusivity of a SHA-1 
context  is  due  to  the  relatively  large  volatile  buffer  it  requires  in  order  to  hold  the 
intermediate  results  between  the  SHA-1  context  commands.   This  buffer  can  be  in 
contradiction to other command needs.

After  the  execution  of  TPM_SHA1Start,  and  prior  to  TPM_SHA1Complete  or 
TPM_SHA1CompleteExtend, the receipt of any command other than TPM_SHA1Update will 
cause the invalidation of the SHA-1 session.  

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

4 4 3S 4 UINT32 maxNumBytes Maximum number of bytes that can be sent to TPM_SHA1Update. Must be a 
multiple of 64 bytes.

Description
1. This  capability  prepares  the  TPM  for  a  subsequent  TPM_SHA1Update, 

TPM_SHA1Complete  or  TPM_SHA1CompleteExtend  command.  The  capability  SHALL 
open a thread that calculates a SHA-1 digest.
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2. After  receipt  of  TPM_SHA1Start,  and  prior  to  the  receipt  of  TPM_SHA1Complete  or 
TPM_SHA1CompleteExtend,  receipt  of  any  command  other  than  TPM_SHA1Update 
invalidates the SHA-1 session.

a. If the command received is TPM_ExecuteTransport, the SHA-1 session invalidation is 
based on the wrapped command, not the TPM_ExecuteTransport ordinal.

b. A SHA-1 thread (start, update, complete) MUST take place either completely outside 
a transport session or completely within a single transport session.
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13.2 TPM_SHA1Update
Start of informative comment:
This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of 
the process, the digest remains pending.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

4 4 2S 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64 bytes.

5 <> 3S <> BYTE [ ] hashData Bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

Description
This command SHALL incorporate complete blocks of data into the digest of an existing 
SHA-1 thread. Only integral numbers of complete blocks (64 bytes each) can be processed.

Actions
1. If there is no existing SHA-1 thread, return TPM_SHA_THREAD

2. If numBytes is not a multiple of 64

a. Return TPM_SHA_ERROR

b. The TPM MAY terminate the SHA-1 thread

3. If numBytes is greater than maxNumBytes returned by TPM_SHA1Start

a. Return TPM_SHA_ERROR

b. The TPM MAY terminate the SHA-1 thread

4. Incorporate hashData into the digest of the existing SHA-1 thread.
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13.3 TPM_SHA1Complete
Start of informative comment:
This capability terminates a pending SHA-1 calculation.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 4 2S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

5 <> 3S <> BYTE [ ] hashData Final bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

Description
This command SHALL incorporate a partial or complete block of data into the digest of an 
existing SHA-1 thread, and terminate that thread. hashDataSize MAY have values in the 
range of 0 through 64, inclusive.

If the SHA-1 thread has received no bytes the TPM SHALL calculate the SHA-1 of the empty  
buffer.
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13.4 TPM_SHA1CompleteExtend
Start of informative comment:
This capability terminates a pending SHA-1 calculation and EXTENDS the result into a 
Platform Configuration Register using a SHA-1 hash process.

This command is designed to complete a hash sequence and extend a PCR in memory-less 
environments.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 4 2S 4 TPM_PCRINDEX pcrNum Index of the PCR to be modified

5 4 3S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 <> 4S <> BYTE [ ] hashData Final bytes to be hashed

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

5 20 4S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description
This command SHALL incorporate a partial or complete block of data into the digest of an 
existing SHA-1 thread, EXTEND the resultant digest into a PCR, and terminate the SHA-1 
session. hashDataSize MAY have values in the range of 0 through 64, inclusive. 

The  SHA-1  session  MUST  terminate  even  if  the  command  returns  an  error,  e.g. 
TPM_BAD_LOCALITY.

Actions
5. Validate that pcrNum represents a legal PCR number. On error, return TPM_BADINDEX.

6. Map V1 to TPM_STANY_DATA

7. Map L1 to V1 -> localityModifier
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8. If the current locality, held in L1, is not selected in TPM_PERMANENT_DATA -> pcrAttrib 
[pcrNum]. pcrExtendLocal, return TPM_BAD_LOCALITY

9. Create H1 the TPM_DIGEST of the SHA-1 session ensuring that hashData, if  any, is 
added to the SHA-1 session

10.Perform the actions of TPM_Extend using H1 as the data and pcrNum as the PCR to 
extend
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13.5 TPM_Sign
Start of informative comment:
The Sign command signs data and returns the resulting digital signature.

The TPM does not allow TPM_Sign with a TPM_KEY_IDENTITY (AIK) because TPM_Sign can 
sign arbitrary data and could be used to fake a quote.  (This could have been relaxed to 
allow TPM_Sign with an AIK if  the signature scheme is _INFO  For an _INFO key,  the 
metadata prevents TPM_Sign from faking a quote.)

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 4 2s 4 UINT32 areaToSignSize The size of the areaToSign parameter

6 <> 3s <> BYTE[] areaToSign The value to sign

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[ ] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth
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Description
The TPM MUST support all values of areaToSignSize that are legal for the defined signature 
scheme and key size. The maximum value of areaToSignSize is determined by the defined 
signature scheme and key size. 

In the case of PKCS1v15_SHA1 the areaToSignSize MUST be TPM_DIGEST (the hash size of 
a  SHA-1  operation  -  see  8.5.1  TPM_SS_RSASSAPKCS1v15_SHA1).  In  the  case  of 
PKCS1v15_DER the maximum size of areaToSign is k-11 octets, where k is limited by the 
key size (see TPM_SS_RSASSAPKCS1v15_DER).

Actions
1. The TPM validates the AuthData to use the key pointed to by keyHandle. 

2. If the areaToSignSize is 0 the TPM returns TPM_BAD_PARAMETER.

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING or TPM_KEY_LEGACY, if not 
return the error code TPM_INVALID_KEYUSAGE

4. The  TPM  verifies  that  the  signature  scheme  and  key  size  can  properly  sign  the 
areaToSign parameter.

5. If signature scheme is TPM_SS_RSASSAPKCS1v15_SHA1 then

a. Validate that areaToSignSize is 20 return TPM_BAD_PARAMETER on error

b. Set S1 to areaToSign

6. Else if signature scheme is TPM_SS_RSASSAPKCS1v15_DER then

a. Validate  that  areaToSignSize  is  at  least  11  bytes  less  than  the  key  size,  return 
TPM_BAD_PARAMETER on error

b. Set S1 to areaToSign

7. else if signature scheme is TPM_SS_RSASSAPKCS1v15_INFO then

a. Create S2 a TPM_SIGN_INFO structure

b. Set S2 -> fixed to “SIGN”

c. Set S2 -> replay to nonceOdd

i. If  nonceOdd  is  not  present  due  to  an  unauthorized  command  return 
TPM_BAD_PARAMETER

d. Set S2 -> dataLen to areaToSignSize

e. Set S2 -> data to areaToSign

f. Set S1 to the SHA-1(S2)

8. Else return TPM_INVALID_KEYUSAGE

9. The TPM computes the signature, sig, using the key referenced by keyHandle using S1 
as the value to sign

10.Return the computed signature in Sig
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13.6 TPM_GetRandom
Start of informative comment:
TPM_GetRandom  returns  the  next  bytesRequested  bytes  from  the  random  number 
generator to the caller.

It is recommended that a TPM implement the RNG in a manner that would allow it to return 
RNG bytes such that the frequency of bytesRequested being more than the number of bytes 
available is an infrequent occurrence.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 2S 4 UINT32 bytesRequested Number of bytes to return

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 3S 4 UINT32 randomBytesSize The number of bytes returned

5 <> 4S <> BYTE[ ] randomBytes The returned bytes

Actions
1. The TPM determines if amount bytesRequested is available from the TPM.

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY 
be less than bytesRequested.

3. Set randomBytes to the next randomBytesSize bytes from the RNG
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13.7 TPM_StirRandom
Start of informative comment:
TPM_StirRandom adds entropy to the RNG state.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

4 4 2S 4 UINT32 dataSize Number of bytes of input

5 <> 3S <> BYTE[ ] inData Data to add entropy to RNG state

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

Actions
1. If dataSize is not less than 256 bytes, the TPM MAY return TPM_BAD_PARAMETER.

2. The TPM updates the state of the current RNG using the appropriate mixing function. 
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13.8 TPM_CertifyKey
Start of informative comment:
The TPM_CertifyKey operation allows one key to certify the public portion of another key.

A TPM identity key may be used to certify non-migratable keys but is not permitted to 
certify migratory keys or certified migration keys. As such, it allows the TPM to make the 
statement “this key is held in a TPM-shielded location, and it will never be revealed.” For 
this statement to have veracity, the Challenger must trust the policies used by the entity 
that issued the identity and the maintenance policy of the TPM manufacturer.

Signing and legacy keys may be used to certify both migratable and non-migratable keys. 
Then the  usefulness  of  a  certificate  depends  on the  trust  in  the  certifying  key  by  the 
recipient of the certificate.

The key to be certified must be loaded before TPM_CertifyKey is called.

The determination to use the TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 on the output is 
based on which PCRs and what localities the certified key is restricted to. A key to be 
certified that does not have locality restrictions and which uses no PCRs greater than PCR 
#15 will cause this command to return and sign a TPM_CERTIFY_INFO structure, which 
provides compatibility with V1.1 TPMs.

When this command is run to certify all other keys (those that use PCR #16 or higher, as 
well as those limited by locality in any way), it will return and sign a TPM_CERTIFY_INFO2 
structure.

TPM_CertifyKey does not support the case where (a)  the certifying key requires a usage 
authorization  to  be  provided  but  (b)  the  key-to-be-certified  does  not.  In  such  cases, 
TPM_CertifyKey2 must be used. TPM_CertifyKey cannot be used to certify CMKs.

If a command tag (in the parameter array) specifies only one authorisation session, then the 
TPM  convention  is  that  the  first  session  listed  is  ignored  (authDataUsage  must  be 
TPM_AUTH_NEVER for this key) and the incoming session data is used for the second auth 
session in the list. In TPM_CertifyKey, the first session is the certifying key and the second 
session is the key-to-be-certified. In TPM_CertifyKey2,  the first  session is the key-to-be-
certified and the second session is the certifying key.

The key handles of both the certifying key and the key to be certified are not included in the  
HMAC protecting the command.  This permits key handle virtualization (swapping of keys 
in  and  out  of  the  TPM  that  results  in  different  key  handles  while  at  the  same  time 
maintaining key identifiers of upper layer software).  In environments where the interface to 
the  TPM is  accessible  by  other parties,  the  key handles  not  being protected allows an 
attacker to change the handle of the key to be certified. This can be avoided by processing 
this command within a transport session and making sure that antiReplay indeed contains 
a nonce.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to 
prevent replay-attacks)

7 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA certAuth The authorization session digest for inputs and certHandle. HMAC key: 
certKey.auth.

11 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed. 

2H2 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

12 20 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

13 1 4H2 1 BOOL continueKeySession The continue use flag for the authorization session handle

14 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: key.usageAuth.
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Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 <> 3S <> TPM_CERTIFY_INFO certifyInfo TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 structure that 
provides information relative to keyhandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[ ] outData The signature of certifyInfo

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters and 
parentHandle. HMAC key: certKey -> auth.

10 20 2H2 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

11 1 4H2 1 BOOL continueKeySession Continue use flag for target key session

12 20 TPM_AUTHDATA keyAuth The authorization session digest for the target key. HMAC key: 
key.auth.

Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of 

TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

2. Verify command and key AuthData values:

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND

i. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTH2FAIL on error

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND

i. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTHFAIL on error

c. else if tag is TPM_TAG_RQU_COMMAND

i. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.
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ii. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error.

3. If keyHandle -> payload is not TPM_PT_ASYM, return TPM_INVALID_KEYUSAGE.

4. If  the  key  pointed  to  by  certHandle  is  an  identity  key  (certHandle  ->  keyUsage  is 
TPM_KEY_IDENTITY)

a. If keyHandle -> keyFlags -> migratable is TRUE return TPM_MIGRATEFAIL

5. Validate  that  certHandle  ->  keyUsage  is  TPM_KEY_SIGN,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

6. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGN,  TPM_KEY_STORAGE, 
TPM_KEY_IDENTITY,  TPM_KEY_BIND  or  TPM_KEY_LEGACY,  if  not  return 
TPM_INVALID_KEYUSAGE

7. If keyHandle -> digestAtRelease requires the use of PCRs 16 or higher to calculate or if 
keyHandle -> localityAtRelease is not 0x1F

a. Set V1 to 1.2

8. Else

a. Set V1 to 1.1

9. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> 
PCR registers and compare to keyHandle -> digestAtRelease and if a mismatch 
return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

b. If V1 is 1.1

i. Create C1 a TPM_CERTIFY_INFO structure

ii. Fill in C1 with the information from the key pointed to by keyHandle

iii. The TPM MUST set c1 -> pcrInfoSize to 44.

iv. The TPM MUST set c1 -> pcrInfo to a TPM_PCR_INFO structure properly filled 
out using the information from keyHandle.

v. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00.

c. Else

i. Create C1 a TPM_CERTIFY_INFO2 structure

ii. Fill in C1 with the information from the key pointed to by keyHandle

iii. Set C1 -> pcrInfoSize to the size of an appropriate TPM_PCR_INFO_SHORT 
structure.

iv. Set C1 -> pcrInfo to a properly filled out TPM_PCR_INFO_SHORT structure, 
using the information from keyHandle.

v. Set C1 -> migrationAuthoritySize to 0
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10.Else

a. Create C1 a TPM_CERTIFY_INFO structure

b. Fill in C1 with the information from the key pointed to by keyHandle

c. The TPM MUST set c1 -> pcrInfoSize to 0

11.Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 
that <key> is the actual public modulus, and does not include any structure formatting.

12.Set C1 -> pubKeyDigest to H1

13.The TPM copies the antiReplay parameter to c1 -> data.

14.The TPM sets certifyInfo to C1.

15.The TPM creates m1, a message digest formed by taking the SHA-1 of c1.

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 
signed blob is returned in outData.
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13.9 TPM_CertifyKey2
Start of informative comment:
This command is based on TPM_CertifyKey, but includes the ability to certify a Certifiable 
Migration Key (CMK), which requires extra input parameters. 

TPM_CertifyKey2 always produces a TPM_CERTIFY_INFO2 structure.

TPM_CertifyKey2 does not  support  the  case  where  (a)  the key-to-be-certified requires  a 
usage authorization to be provided but (b) the certifying key does not. 

If a command tag (in the parameter array) specifies only one authorisation session, then the 
TPM  convention  is  that  the  first  session  listed  is  ignored  (authDataUsage  must  be 
TPM_NO_READ_PUBKEY_AUTH  or  TPM_AUTH_NEVER  for  this  key)  and  the  incoming 
session data is used for the second auth session in the list. In TPM_CertifyKey2, the first 
session is the key to be certified and the second session is the certifying key.

The key handles of both the certifying key and the key to be certified are not included in the  
HMAC protecting the command.  This permits key handle virtualization (swapping of keys 
in  and  out  of  the  TPM  that  results  in  different  key  handles  while  at  the  same  time 
maintaining key identifiers of upper layer software).  In environments where the interface to 
the  TPM is  accessible  by  other parties,  the  key handles  not  being protected allows an 
attacker to change the handle of the key to be certified. This can be avoided by processing 
this command within a transport session and making sure that antiReplay indeed contains 
a nonce.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1  2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

5 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

6 20 2S 20 TPM_DIGEST migrationPubDigest The digest of a TPM_MSA_COMPOSITE structure, containing at least 
one public key of a Migration Authority

7 20 3S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to 
prevent replay-attacks)

8 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed. 

2H1 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

9 20 3H1 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

10 1 4H1 1 BOOL continueKeySession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth The authorization session digest for the inputs and key to be signed. 
HMAC key: key.usageAuth.

12 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle. 

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs
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13 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

14 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA certAuth Authorization HMAC key: certKey.auth.
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Outgoing Operands and Sizes
Param HMAC

Type Name Description
# Sz # Sz

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 <> 3S <> TPM_CERTIFY_INFO2 certifyInfo TPM_CERTIFY_INFO2 relative to keyHandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[ ] outData The signed public key.

7 20 2H1 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

3H1 20 TPM_NONCE keyNonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL keyContinueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA keyResAuth Authorization HMAC key: keyHandle -> auth.

10 20 2H2 20 TPM_NONCE certNonceEven Even nonce newly generated by TPM

3H2 20 TPM_NONCE AuthLastNonceOdd Nonce generated by system associated with certAuthHandle

11 1 4H2 1 BOOL CertContinueAuthSession Continue use flag for cert key session

12 20 20 TPM_AUTHDATA certResAuth Authorization HMAC key: certHandle -> auth.

Actions
1. The TPM validates that the key pointed to by certHandle has a signature scheme of 

TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

2. Verify command and key AuthData values:

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND

i. The TPM verifies the AuthData in keyAuthHandle provides authorization to 
use the key pointed to by keyHandle, return TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTH2FAIL on error

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND

i. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to 
use the key pointed to by certHandle, return TPM_AUTH2FAIL on error

c. else if tag is TPM_TAG_RQU_COMMAND

i. Verify  that  authDataUsage  is  TPM_AUTH_NEVER  or 
TPM_NO_READ_PUBKEY_AUTH  for  the  key  referenced  by  keyHandle,  return 
TPM_AUTHFAIL on error
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ii. Verify that  authDataUsage is  TPM_AUTH_NEVER for the key referenced by 
certHandle, return TPM_AUTHFAIL on error.

3. If  the  key  pointed  to  by  certHandle  is  an  identity  key  (certHandle  ->  keyUsage  is 
TPM_KEY_IDENTITY)

a. If  keyHandle  ->  keyFlags  ->  migratable  is  TRUE  and  [keyHandle  ->  keyFlags-> 
migrateAuthority is FALSE or (keyHandle -> payload != TPM_PT_MIGRATE_RESTRICTED 
and  keyHandle  ->  payload  !=  TPM_PT_MIGRATE_EXTERNAL)]  return 
TPM_MIGRATEFAIL

4. Validate  that  certHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

5. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_STORAGE, 
TPM_KEY_IDENTITY,  TPM_KEY_BIND  or  TPM_KEY_LEGACY,  if  not  return 
TPM_INVALID_KEYUSAGE

6. The TPM SHALL create a c1 a TPM_CERTIFY_INFO2 structure from the key pointed to 
by keyHandle

7. Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 
that <key> is the actual public modulus, and does not include any structure formatting.

8. Set C1 -> pubKeyDigest to H1

9. Copy the antiReplay parameter to c1 -> data

10.Copy other keyHandle parameters into C1

11.If  keyHandle  ->  payload  ==  TPM_PT_MIGRATE_RESTRICTED  or 
TPM_PT_MIGRATE_EXTERNAL

a. create thisPubKey, a TPM_PUBKEY structure containing the public key, algorithm 
and parameters corresponding to keyHandle

b. Verify that the migration authorization is valid for this key

i. Create M2 a TPM_CMK_MIGAUTH structure

ii. Set M2 -> msaDigest to migrationPubDigest

iii. Set M2 -> pubkeyDigest to SHA-1[thisPubKey]

iv. Verify  that  [keyHandle  ->  migrationAuth]  ==  HMAC(M2)  signed  by  using 
tpmProof as the secret and return error TPM_MA_SOURCE on mismatch

c. Set C1 -> migrationAuthority = SHA-1(migrationPubDigest || keyHandle -> payload)

d. if keyHandle -> payload == TPM_PT_MIGRATE_RESTRICTED

i. Set C1 -> payloadType = TPM_PT_MIGRATE_RESTRICTED

e. if keyHandle -> payload == TPM_PT_MIGRATE_EXTERNAL

i. Set C1 -> payloadType = TPM_PT_MIGRATE_EXTERNAL

12.Else

a. set C1 -> migrationAuthority = NULL

b. set C1 -> migrationAuthoritySize =0
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c. Set C1 -> payloadType = TPM_PT_ASYM

13.If keyHandle -> pcrInfoSize is not 0

a. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle 
key.

b. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key

c. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> 
PCR registers and compare to keyHandle -> digestAtRelease and if a mismatch 
return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

14.Else

a. The TPM MUST set c1 -> pcrInfoSize to 0

15.The TPM creates m1, a message digest formed by taking the SHA-1 of c1

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 
signed blob is returned in outData
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14. Endorsement Key Handling
Start of informative comment:
There are two create EK commands. The first matches the 1.1 functionality. The second 
provides the mechanism to enable revokeEK.

The TPM and platform manufacturer decide on the inclusion or exclusion of the ability to 
execute revokeEK. 

The restriction to have the TPM generate the EK does not remove the manufacturing option 
to  “squirt”  the EK.  During  manufacturing,  the  TPM does not  enforce  all  protections or 
requirements; hence, the restriction on only TPM generation of the EK is also not in force.

End of informative comment.
1. A  TPM  SHALL  NOT  install  an  EK  unless  generated  on  the  TPM  by  execution  of 

TPM_CreateEndorsementKeyPair or TPM_CreateRevocableEK
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14.1 TPM_CreateEndorsementKeyPair
Start of informative comment:
This  command  creates  the  TPM  endorsement  key.  It  returns  a  failure  code  if  an 
endorsement key already exists. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Actions
1. If an EK already exists, return TPM_DISABLED_CMD

2. Validate the keyInfo parameters for the key description

a. If  the  algorithm type  is  RSA the  key  length  MUST be  a  minimum of  2048.  For 
interoperability the key length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be 
comparable to RSA 2048

c. The other parameters of keyInfo (encScheme, sigScheme, etc.) are ignored.

3. Create a key pair called the “endorsement key pair” using a TPM-protected capability. 
The  type  and  size  of  key  are  that  indicated  by  keyInfo.   Set  encScheme  to 
TPM_ES_RSAESOAEP_SHA1_MGF1.

4. Create checksum by performing SHA-1 on the concatenation of (PUBEK || antiReplay)

5. Store the PRIVEK

6. Create TPM_PERMANENT_DATA -> tpmDAASeed from the TPM RNG
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7. Create TPM_PERMANENT_DATA -> daaProof from the TPM RNG

8. Create TPM_PERMANENT_DATA -> daaBlobKey from the TPM RNG

9. Set TPM_PERMANENT_FLAGS -> CEKPUsed to TRUE

10.Set TPM_PERMANENT_FLAGS -> enableRevokeEK to FALSE
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14.2 TPM_CreateRevocableEK
Start of informative comment:
This  command  creates  the  TPM  endorsement  key.  It  returns  a  failure  code  if  an 
endorsement key already exists. The TPM vendor may have a separate mechanism to create 
the EK and “squirt” the value into the TPM.

The  input  parameters  specify  whether  the  EK  is  capable  of  being  reset,  whether  the 
AuthData value to reset the EK will be generated by the TPM, and the new AuthData value 
itself if it is not to be generated by the TPM. The output parameter is the new AuthData 
value that must be used when resetting the EK (if it is capable of being reset). 

The command TPM_RevokeTrust must be used to reset an EK (if  it  is capable of being 
reset).

Owner  authorisation  is  unsuitable  for  authorizing  resetting  of  an  EK:  someone  with 
Physical Presence can remove a genuine Owner, install a new Owner, and revoke the EK. 
The genuine Owner can reinstall, but the platform will have lost its original attestation and 
may not be trusted by challengers. Therefore if a password is to be used to revoke an EK, it  
must be a separate password, given to the genuine Owner.

In v1.2 an OEM has extra choices when creating EKs.

a) An OEM could manufacture all of its TPMs with enableRevokeEK==TRUE.

If  the OEM has tracked the EKreset passwords for these TPMs,  the OEM can give  the 
passwords to customers. The customers can use the passwords as supplied, change the 
passwords, or clear the EKs and create new EKs with new passwords.

If EKreset passwords are random values, the OEM can discard those values and not give 
them to customers. There is then a low probability (statistically zero) chance of a local DOS 
attack to reset the EK by guessing the password. The chance of a remote DOS attack is zero 
because Physical Presence must also be asserted to use TPM_RevokeTrust.

b) An OEM could manufacture some of its TPMs with enableRevokeEK==FALSE. Then the 
EK  can  never  be  revoked,  and  the  chance  of  even  a  local  DOS  attack  on  the  EK  is 
eliminated.

End of informative comment.
This is an optional command
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

6 1 4S 1 BOOL generateReset If TRUE use TPM RNG to generate EKreset. If FALSE use the passed 
value inputEKreset

7 20 5S 20 TPM_NONCE inputEKreset The authorization value to be used with TPM_RevokeTrust if 
generateReset==FALSE, else the parameter is present but ignored

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

6 20 5S 20 TPM_NONCE outputEKreset The AuthData value to use TPM_RevokeTrust

Actions
1. If an EK already exists, return TPM_DISABLED_CMD

2. Perform the actions of TPM_CreateEndorsementKeyPair, if any errors return with error

3. Set TPM_PERMANENT_FLAGS -> enableRevokeEK to TRUE

a. If generateReset is TRUE then 

i. Set TPM_PERMANENT_DATA -> EKreset to the next value from the TPM RNG

b. Else

i. Set TPM_PERMANENT_DATA -> EKreset to inputEKreset

4. Return PUBEK, checksum and Ekreset

5. The outputEKreset AuthData is sent in the clear. There is no uniqueness on the TPM 
available to actually perform encryption or use an encrypted channel. The assumption is 
that this operation is occurring in a controlled environment and sending the value in the 
clear is acceptable.
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14.3 TPM_RevokeTrust
Start of informative comment:
This command clears the EK and sets the TPM back to a pure default state. The generation 
of the AuthData value occurs during the generation of the EK. It is the responsibility of the 
EK generator to properly protect and disseminate the RevokeTrust AuthData.

End of informative comment.
This is an optional command

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

4 20 2S 20 TPM_NONCE EKReset The value that will be matched to EK Reset

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

Actions
1. The TPM MUST validate that TPM_PERMANENT_FLAGS -> enableRevokeEK is TRUE, 

return TPM_PERMANENTEK on error

2. The TPM MUST validate that the EKReset matches TPM_PERMANENT_DATA -> EKReset 
return TPM_AUTHFAIL on error.

3. Ensure that physical presence is being asserted

4. Perform the actions of TPM_OwnerClear (excepting the command authentication)

a. NV items with the pubInfo -> nvIndex D value set MUST be deleted. This changes the 
TPM_OwnerClear handling of the same NV areas

b. Set TPM_PERMANENT_FLAGS -> nvLocked to FALSE

5. Invalidate TPM_PERMANENT_DATA -> tpmDAASeed

6. Invalidate TPM_PERMANENT_DATA -> daaProof

7. Invalidate TPM_PERMANENT_DATA -> daaBlobKey

8. Invalidate the EK and any internal state associated with the EK
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14.4 TPM_ReadPubek
Start of informative comment:
Return the endorsement key public portion. This value should have controls placed upon 
access, as it is a privacy sensitive value.

The  readPubek  flag  is  set  to  FALSE  by  TPM_TakeOwnership  and  set  to  TRUE  by 
TPM_OwnerClear, thus mirroring if a TPM Owner is present. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description
This command returns the PUBEK. 

Actions
The TPM_ReadPubek command SHALL 

1. If TPM_PERMANENT_FLAGS -> readPubek is FALSE return TPM_DISABLED_CMD

2. If no EK is present the TPM MUST return TPM_NO_ENDORSEMENT

3. Create checksum by performing SHA-1 on the concatenation of (pubEndorsementKey || 
antiReplay).

4. Export the PUBEK and checksum. 
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14.5 TPM_OwnerReadInternalPub
Start of informative comment:
A TPM Owner authorized command that returns the public portion of the EK or SRK.

The keyHandle  parameter  is  included in  the  incoming session authorization to  prevent 
alteration of the value, causing a different key to be read. Unlike most key handles, which 
can be mapped by higher layer software, this key handle has only two fixed values.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 4 2S 4 TPM_KEY_HANDLE keyHandle Handle for either PUBEK or SRK

5 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 <> 3S <> TPM_PUBKEY publicPortion The public portion of the requested key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Validate the parameters and TPM Owner AuthData for this command

2. If keyHandle is TPM_KH_EK

a. Set publicPortion to PUBEK
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3. Else If keyHandle is TPM_KH_SRK

a. Set publicPortion to the TPM_PUBKEY of the SRK

4. Else return TPM_BAD_PARAMETER

5. Export the public key of the referenced key
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15. Identity Creation and Activation

15.1 TPM_MakeIdentity
Start of informative comment:
Generate a new Attestation Identity Key (AIK).

labelPrivCADigest identifies the privacy CA that the owner expects to be the target CA for 
the AIK.  The selection is not enforced by the TPM.  It is advisory only.  It is included 
because the TSS cannot be trusted to send the AIK to the correct privacy CA.  The privacy 
CA can use this parameter to validate that it is the target privacy CA and label intended by  
the TPM owner at the time the key was created.  The label can be used to indicate an 
application purpose.

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MakeIdentity.

4 20 2S 20 TPM_ENCAUTH identityAuth Encrypted usage AuthData for the new identity

5 20 3S 20 TPM_CHOSENID_HASH labelPrivCADigest The digest of the identity label and privacy CA chosen for the AIK

6 <> 4S <> TPM_KEY idKeyParams
Structure containing all parameters of new identity key. 
pubKey.keyLength & idKeyParams.encData are both 0 MAY be 
TPM_KEY12

7 4  TPM_AUTHHANDLE srkAuthHandle The authorization session handle used for SRK authorization. 

2H1 20 TPM_NONCE srkLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

9 1 4H1 1 BOOL continueSrkSession Ignored

10 20 TPM_AUTHDATA srkAuth The authorization session digest for the inputs and the SRK. HMAC 
key: srk.usageAuth.

11 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication. 
Session type MUST be OSAP.

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession Ignored

14 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_MakeIdentity.

4 <> 3S <> TPM_KEY idKey The newly created identity key. MAY be TPM_KEY12

5 4 4S 4 UINT32 identityBindingSize The used size of the output area for identityBinding

6 <> 5S <> BYTE[ ] identityBinding Signature of TPM_IDENTITY_CONTENTS using idKey.private.

7 20 2H2 20 TPM_NONCE srkNonceEven Even nonce newly generated by TPM.

3H2 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

8 1 4H2 1 BOOL continueSrkSession Continue use flag. Fixed value of FALSE

9 20 TPM_AUTHDATA srkAuth The authorization session digest used for the outputs and srkAuth 
session. HMAC key: srk.usageAuth.

10 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

12 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Description
The public key of the new TPM identity SHALL be identityPubKey. The private key of the 
new TPM identity SHALL be tpm_signature_key.

Properties of the new identity
Type Name Description

TPM_PUBKEY identityPubKey This SHALL be the public key of a previously unused asymmetric key pair.

TPM_STORE_ASYMKEY tpm_signature_key This SHALL be the private key that forms a pair with identityPubKey and SHALL be 
extant only in a TPM-shielded location.

This capability also generates a TPM_KEY containing the tpm_signature_key.

If identityPubKey is stored on a platform it SHALL exist only in storage to which access is 
controlled and is available to authorized entities.

The  signing  of  TPM_ID_CONTENTS  is  not  an  authorized  use  of  the  key.   The 
TPM_PCR_INFO_xxx  “…AtRelease” values are not validated.

Actions
A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the 
following:

1. Validate the idKeyParams parameters for the key description
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a. If the algorithm type is RSA, the key length MUST be a minimum of 2048 and MUST 
use the default exponent. For interoperability the key length SHOULD be 2048.

b. If the algorithm type is other than RSA the strength provided by the key MUST be 
comparable to RSA 2048

c. If the TPM is not designed to create a key of the requested type, return the error code  
TPM_BAD_KEY_PROPERTY

d. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS

2. Use  authHandle  to  verify  that  the  Owner  authorized  all  TPM_MakeIdentity  input 
parameters.

3. Use srkAuthHandle to verify that the SRK owner authorized all TPM_MakeIdentity input 
parameters.

4. Verify  that  idKeyParams  ->  keyUsage  is  TPM_KEY_IDENTITY.  If  it  is  not,  return 
TPM_INVALID_KEYUSAGE

5. Verify  that  idKeyParams  ->  keyFlags  ->  migratable  is  FALSE.  If  it  is  not,  return 
TPM_INVALID_KEYUSAGE

6. Create a1 by decrypting identityAuth according to the ADIP indicated by authHandle.

7. Set continueAuthSession and continueSRKSession to FALSE.

8. Determine the structure version

a. If idKeyParams -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Create idKey a TPM_KEY12 structure using idKeyParams as the default values 
for the structure

b. If idKeyParams -> ver is 1.1

i. Set V1 to 1

ii. Create idKey a TPM_KEY structure using idKeyParams as the default values 
for the structure

9. Set the digestAtCreation values for pcrInfo

a. For TPM_PCR_INFO_LONG include the locality of the current command

10.Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TPM-
protected capability, in accordance with the algorithm specified in idKeyParams

11.Ensure  that  the  AuthData  information  in  A1  is  properly  stored  in  the  idKey  as 
usageAuth.

12.Attach identityPubKey and tpm_signature_key to idKey

13.Set idKey -> migrationAuth to TPM_PERMANENT_DATA-> tpmProof

14.Ensure that all TPM_PAYLOAD_TYPE structures identify this key as TPM_PT_ASYM

15.Encrypt the private portion of idKey using the SRK as the parent key
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16.Create  a  TPM_IDENTITY_CONTENTS  structure  named  idContents  using 
labelPrivCADigest and the information from idKey

17.Sign idContents using tpm_signature_key and TPM_SS_RSASSAPKCS1v15_SHA1. Store 
the result in identityBinding. 
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15.2 TPM_ActivateIdentity
Start of informative comment:
The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance 
that the credential in the TPM_SYM_CA_ATTESTATION is for this TPM. The second purpose 
is to obtain the session key used to encrypt the TPM_IDENTITY_CREDENTIAL.

This is an extension to the 1.1 functionality of TPM_ActivateIdentity. The blob sent to from 
the CA can be in the 1.1 format or the 1.2 format. The TPM determines the type from the 
size or version information in the blob.

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity 
before releasing that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is 
required to  authorize  the TPM_ActivateIdentity command.  The owner may authorize  the 
command using either the TPM_OIAP or TPM_OSAP authorization protocols.

The creator of the ActivateIdentity package can specify if any PCR values are to be checked 
before releasing the session key.

End of informative comment. 

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ActivateIdentity

4 4 TPM_KEY_HANDLE idKeyHandle Identity key to be activated

5 4 2S 4 UINT32 blobSize Size of encrypted blob from CA

6 <> 3S <> BYTE [ ] blob The encrypted ASYM_CA_CONTENTS or TPM_EK_BLOB

7 4  TPM_AUTHHANDLE idKeyAuthHandle The authorization session handle used for ID key authorization. 

2H1 20 TPM_NONCE idKeyLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

9 1 4H1 1 BOOL continueIdKeySession Continue usage flag for idKeyAuthHandle.

10 20 TPM_AUTHDATA idKeyAuth The authorization session digest for the inputs and ID key. HMAC key: 
idKey.usageAuth.

11 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

14 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ActivateIdentity

4 <> 3S <> TPM_SYMMETRIC_KEY symmetricKey The decrypted symmetric key.

5 20 2H1 20 TPM_NONCE idKeyNonceEven Even nonce newly generated by TPM.

3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

6 1 4H1 1 BOOL continueIdKeySession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA idKeyAuth The authorization session digest used for the returned parameters and 
idKeyAuth session. HMAC key: idKey.usageAuth.

8 20 2H2 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H2 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC 
key: ownerAuth.

Description
1. The command TPM_ActivateIdentity activates a TPM identity created using the command 

TPM_MakeIdentity.

2. The command assumes the availability of the private key associated with the identity. 
The command will verify the association between the keys during the process.

3. The command will decrypt the input blob and extract the session key and verify the 
connection between the public and private keys. The input blob can be in 1.1 or 1.2 
format.

Actions
A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do 
the following:

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 
all of the incoming parameters.

2. Using the idKeyAuthHandle, validate the AuthData to execute command and all of the 
incoming parameters

3. Validate  that  the  idKey  is  the  public  key  of  a  valid  TPM identity  by  checking  that 
idKeyHandle  ->  keyUsage  is  TPM_KEY_IDENTITY.  Return TPM_BAD_PARAMETER on 
mismatch

4. Create H1 the digest of a TPM_PUBKEY derived from idKey

5. Decrypt blob creating B1 using PRIVEK as the decryption key

6. Determine the type and version of B1
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a. If B1 -> tag is TPM_TAG_EK_BLOB then 

i. B1 is a TPM_EK_BLOB

b. Else

i. B1 is a TPM_ASYM_CA_CONTENTS. As there is no tag for this structure it is 
possible for the TPM to make a mistake here but other sections of the structure 
undergo validation

7. If B1 is a version 1.1 TPM_ASYM_CA_CONTENTS then

a. Compare H1 to B1 -> idDigest on mismatch return TPM_BAD_PARAMETER

b. Set K1 to B1 -> sessionKey

8. If B1 is a TPM_EK_BLOB then

a. Validate that B1 -> ekType is TPM_EK_TYPE_ACTIVATE, return TPM_BAD_TYPE if 
not.

b. Assign A1 as a TPM_EK_BLOB_ACTIVATE structure from B1 -> blob

c. Compare H1 to A1 -> idDigest on mismatch return TPM_BAD_PARAMETER

d. If A1 -> pcrSelection is not NULL

i. Compute a composite hash C1 using the PCR selection A1 -> pcrSelection

ii. Compare  C1  to  A1  ->  pcrInfo->digestAtRelease  and  return 
TPM_WRONGPCRVAL on a mismatch

e. If A1 -> pcrInfo specifies a locality ensure that the appropriate locality has 
been asserted, return TPM_BAD_LOCALITY on error

f. Set K1 to A1 -> symmetricKey

9. Return K1
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16. Integrity Collection and Reporting
Start of informative comment:
This section deals with what commands have direct access to the PCR

End of informative comment. 
1. The  TPM  SHALL  only  allow  the  following  commands  to  alter  the  value  of 

TPM_STCLEAR_DATA -> PCR

a. TPM_Extend

b. TPM_SHA1CompleteExtend

c. TPM_Startup

d. TPM_PCR_Reset
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16.1 TPM_Extend
Start of informative comment:
This adds a new measurement to a PCR

End of informative comment. 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 4 2S 4 TPM_PCRINDEX pcrNum The PCR to be updated.

5 20 3S 20 TPM_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 20 3S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description
Add a measurement value to a PCR

Actions
1. Validate that pcrNum represents a legal PCR number. On error, return TPM_BADINDEX.

2. Map L1 to TPM_STANY_FLAGS -> localityModifier

3. Map P1 to TPM_PERMANENT_DATA -> pcrAttrib [pcrNum]. pcrExtendLocal

4. If,  for  the  value  of  L1,  the  corresponding  bit  is  not  set  in  the  bit  map  P1,  return 
TPM_BAD_LOCALITY

5. Create c1 by concatenating (TPM_STCLEAR_DATA -> PCR[pcrNum] || inDigest). This 
takes the current PCR value and concatenates the inDigest parameter.

6. Create h1 by performing a SHA-1 digest of c1.

7. Store h1 to TPM_STCLEAR_DATA -> PCR[pcrNum]

8. If TPM_PERMANENT_FLAGS -> disable is TRUE or TPM_STCLEAR_FLAGS -> deactivated 
is TRUE
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a. Set outDigest to 20 bytes of 0x00

9. Else

a. Set outDigest to h1
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16.2 TPM_PCRRead
Start of informative comment:
The TPM_PCRRead operation provides  non-cryptographic  reporting  of  the  contents  of  a 
named PCR. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 4 2S 4 TPM_PCRINDEX pcrIndex Index of the PCR to be read

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 20 3S 20 TPM_PCRVALUE outDigest The current contents of the named PCR

Description
The TPM_PCRRead operation returns the current contents of  the named register to the 
caller. 

Actions
1. Validate  that  pcrIndex  represents  a  legal  PCR  number.  On  error,  return 

TPM_BADINDEX.

2. Set outDigest to TPM_STCLEAR_DATA -> PCR[pcrIndex]

3. Return TPM_SUCCESS
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16.3 TPM_Quote
Start of informative comment:
The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is 
required for operation. TPM_Quote uses a key to sign a statement that names the current 
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 
Challenger). 

The term "ExternalData" is used because an important use of TPM_Quote is to provide a 
digital  signature on arbitrary data, where the signature includes the PCR values of the 
platform at time of signing. Hence the "ExternalData" is not just for anti-replay purposes, 
although it is (of course) used for that purpose in an integrity challenge.

TPM_Quote should not use a TPM_KEY_SIGNING, because there is no way for the remote 
party to tell whether TPM_Quote or TPM_Sign created the signature.  The exception is a 
TPM_KEY_SIGNING key with the _INFO signature  scheme,  because  the  metadata 
differentiates TPM_Sign from TPM_Quote.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData 160 bits of externally supplied data (typically a nonce provided by a 
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key -> usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 <> 3S <> TPM_PCR_COMPOSITE pcrData A structure containing the same indices as targetPCR, plus the 
corresponding current PCR values.

5 4 4S 4 UINT32 sigSize The used size of the output area for the signature

6 <> 5S <> BYTE[ ] sig The signed data blob.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
Key -> usageAuth.

Actions
1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle.

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  -> keyUsage  is  TPM_KEY_SIGNING, TPM_KEY_IDENTITY,  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

4. Validate targetPCR

a. targetPCR is a valid TPM_PCR_SELECTION structure

b. On errors return TPM_INVALID_PCR_INFO

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 
PCR indicated by targetPCR -> pcrSelect

6. Create Q1 a TPM_QUOTE_INFO structure

a. Set Q1 -> version to 1.1.0.0

b. Set Q1 -> fixed to “QUOT”

c. Set Q1 -> digestValue to H1

d. Set Q1 -> externalData to externalData

7. Sign SHA-1 hash of Q1 using keyHandle as the signature key

8. Return the signature in sig

164 Level 2 Revision 116 28 February 2011
TCG Published

783
784
785

3101

3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119

786
787



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

16.4 TPM_PCR_Reset
Start of informative comment:
For PCR with the pcrReset attribute set to TRUE, this command resets the PCR back to the 
default value, this mimics the actions of TPM_Init. The PCR may have restrictions as to 
which locality can perform the reset operation.

Sending a null pcrSelection results in an error is due to the requirement that the command 
actually do something. If pcrSelection is null there are no PCR to reset and the command 
would then do nothing.

For PCR that are resettable, the presence of a Trusted Operating System (TOS) can change 
the  behavior  of  TPM_PCR_Reset.  The  following  pseudo  code  shows  how  the  behavior 
changes

At TPM_Startup 

If TPM_PCR_ATTRIBUTES->pcrReset is FALSE

Set PCR to 0x00…00

Else

Set PCR to 0xFF…FF

At TPM_PCR_Reset

If TPM_PCR_ATTRIBUTES->pcrReset is TRUE

If TOSPresent

Set PCR to 0x00…00

Else

Set PCR to 0xFF…FF

Else

Return error

The above pseudocode is for example only, for the details of a specific platform, the reader 
must review the platform specific specification. The purpose of the above pseudocode is to 
show that both pcrReset and the TOSPresent bit control the value in use to when the PCR 
resets.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

4 <> 2S <> TPM_PCR_SELECTION pcrSelection The PCR’s to reset
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

Description
This command resets PCR values back to the default value. The command MUST validate 
that all PCR registers that are selected are available to be reset before resetting any PCR. 
This command MUST either reset all selected PCR registers or none of the PCR registers.

Actions
1. Validate that pcrSelection is valid

a. is a valid TPM_PCR_SELECTION structure

b. pcrSelection -> pcrSelect is non-zero

c. On errors return TPM_INVALID_PCR_INFO

2. Map L1 to TPM_STANY_FLAGS -> localityModifier

3. For each PCR selected perform the following

a. If  TPM_PERMANENT_DATA  ->  pcrAttrib[pcrIndex].pcrReset  is  FALSE,  return 
TPM_NOTRESETABLE

b. If,  for  the  value  L1,  the  corresponding  bit  is  clear  in  the  bit  map 
TPM_PERMANENT_DATA -> pcrAttrib[pcrIndex].pcrResetLocal, return TPM_NOTLOCAL

4. For each PCR selected perform the following

a. The PCR MAY only reset to 0x00…00 or 0xFF…FF

b. The logic to determine which value to use MUST be described by a platform specific 
specification
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16.5 TPM_Quote2
Start of informative comment:
The TPM_Quote2 operation provides cryptographic reporting of PCR values. A loaded key is 
required for operation. TPM_Quote2 uses a key to sign a statement that names the current 
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 
Challenger). 

The term "externalData" is used because an important use of TPM_Quote2 is to provide a 
digital  signature on arbitrary data, where the signature includes the PCR values of the 
platform at time of signing. Hence the "externalData" is not just for anti-replay purposes, 
although it is (of course) used for that purpose in an integrity challenge.

TPM_Quote2 differs from TPM_Quote in that TPM_Quote2 uses TPM_PCR_INFO_SHORT to 
hold  information relative  to  the  PCR registers.  TPM_PCR_INFO_SHORT includes locality 
information  to  provide  the  requestor  a  more  complete  view  of  the  current  platform 
configuration.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData 160 bits of externally supplied data (typically a nonce provided by a 
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 1 4S 1 BOOL addVersion When TRUE add TPM_CAP_VERSION_INFO to the output

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and keyHandle. HMAC key: 
key -> usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 <> 3S <> TPM_PCR_INFO_SHORT pcrData The value created and signed for the quote

5 4 4S 4 UINT32 versionInfoSize Size of the version info

6 <> 5S <> TPM_CAP_VERSION_INFO versionInfo The version info

7 4 6S 4 UINT32 sigSize The used size of the output area for the signature

8 <> 7S <> BYTE[ ] sig The signed data blob.

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
Key -> usageAuth.

Actions
1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle.

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  -> keyUsage  is  TPM_KEY_SIGNING, TPM_KEY_IDENTITY,  or 
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE

4. Validate  targetPCR  is  a  valid  TPM_PCR_SELECTION  structure,  on  errors  return 
TPM_INVALID_PCR_INFO

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 
PCR[] indicated by targetPCR -> pcrSelect

6. Create S1 a TPM_PCR_INFO_SHORT

a. Set S1->pcrSelection to targetPCR

b. Set S1->localityAtRelease to TPM_STANY_DATA -> localityModifier

c. Set S1->digestAtRelease to H1

7. Create Q1 a TPM_QUOTE_INFO2 structure

a. Set Q1 -> fixed to “QUT2”

b. Set Q1 -> infoShort to S1

c. Set Q1 -> externalData to externalData

8. If addVersion is TRUE

a. Concatenate to Q1 a TPM_CAP_VERSION_INFO structure
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b. Set the output parameters for versionInfo

9. Else

a. Set versionInfoSize to 0

b. Return no bytes in versionInfo

10.Sign a SHA-1 hash of Q1 using keyHandle as the signature key

11.Return the signature in sig
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17. Changing AuthData

17.1 TPM_ChangeAuth
Start of informative comment:
The TPM_ChangeAuth command allows the owner of an entity to change the AuthData for 
the entity.

This command cannot invalidate the old entity.  Therefore, the authorization change is only 
effective if the application can guarantee that the old entity can be securely destroyed.  If 
not, two valid entities will exist, one with the old and one with the new authorization secret.

If this command is delegated, the delegated party can expand its key use privileges.  That 
party can create a copy of the key with known authorization, and it can then use the key 
without any ordinal restrictions.

TPM_ChangeAuth requires the encryption of one parameter (“NewAuth”). For the sake of 
uniformity with other commands that require the encryption of more than one parameter, 
the  parameters  used  for  used  encryption  are  generated  from  the  authLastNonceEven 
(created during the OSAP session), nonceOdd, and the session shared secret.

The  parameter  list  to  this  command  must  always  include  two  authorization  sessions, 
regardless of the state of authDataUsage for the respective keys.

End of informative comment.
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PARAM HMAC
Type Name Description

# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key to the entity.

5 2 2 S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

6 20 3 S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

7 2 4 S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

8 4 5 S 4 UINT32 encDataSize The size of the encData parameter

9 <> 6 S <> BYTE[ ] encData The encrypted entity that is to be modified.

10 4  TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key. 

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.

13 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC 
key: parentKey.usageAuth.

14 4  TPM_AUTHHANDLE entityAuthHandle The authorization session handle used for the encrypted entity. The 
session type MUST be OIAP 

2 H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

15 20 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

16 1 4 H2 1 BOOL continueEntitySession Ignored, entityAuthHandle is always terminated.

17 20 TPM_AUTHDATA entityAuth The authorization session digest for the inputs and encrypted entity. 
HMAC key: entity.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The modified, encrypted entity.

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters and 
parentHandle. HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

10 1 4 H2 1 BOOL continueEntitySession Continue use flag, fixed value of FALSE

11 20 TPM_AUTHDATA entityAuth The authorization session digest for the returned parameters and entity. 
HMAC key: entity.usageAuth, the original and not the new auth value

Description
1. The parentAuthHandle session type MUST be TPM_PID_OSAP.

2. In this capability, the SRK cannot be accessed as entityType TPM_ET_KEY, since the 
SRK is not wrapped by a parent key.

Actions
1. Verify  that  entityType  is  one  of  TPM_ET_DATA,  TPM_ET_KEY  and  return  the  error 

TPM_WRONG_ENTITYTYPE if not. 

2. Verify that parentAuthHandle session type is TPM_PID_OSAP return TPM_BAD_MODE 
on error

3. Verify that entityAuthHandle session type is TPM_PID_OIAP return TPM_BAD_MODE on 
error

4. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER.

5. The encData parameter MUST be the encData field from either the TPM_STORED_DATA 
or TPM_KEY structures.

6. Create  decryptAuth  by  decrypting  newAuth  according  to  the  ADIP  indicated  by 
parentHandle.

7. The TPM MUST validate the command using the AuthData in the parentAuth parameter

8. Validate  that  parentHandle  ->  keyUsage  is  TPM_KEY_STORAGE,  if  not  return 
TPM_INVALID_KEYUSAGE
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9. After parameter validation, the TPM creates b1 by decrypting encData using the key 
pointed to by parentHandle.

10.The  TPM  MUST  validate  that  b1  is  a  valid  TPM  structure,  either  a 
TPM_STORE_ASYMKEY or a TPM_SEALED_DATA

a. Check the length and payload, return TPM_INVALID_STRUCTURE on any mismatch

b. The  TPM  must  validate  the  command  using  the  authorization  data  entityAuth 
parameter.   The  HMAC  key  is  TPM_STORE_ASYMKEY  ->  usageAuth  or 
TPM_SEALED_DATA -> authData.

11.The TPM replaces the AuthData for b1 with decryptAuth created above.

12.The  TPM  encrypts  b1  using  the  appropriate  mechanism  for  the  type  using  the 
parentKeyHandle to provide the key information.

13.The  TPM  MUST  enforce  the  destruction  of  both  the  parentAuthHandle  and 
entityAuthHandle sessions.
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17.2 TPM_ChangeAuthOwner
Start of informative comment:
The  TPM_ChangeAuthOwner  command  allows  the  owner  of  an  entity  to  change  the 
AuthData for the TPM Owner or the SRK.

This command requires authorization from the current TPM Owner to execute.

TPM's  targeted for an environment (e.g.  a server)  with long lasting sessions should not 
invalidate all sessions.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

5 20 3S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

6 2 4S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 4 TPM_AUTHHANDLE ownerAuthHandle The authorization session handle used for the TPM Owner. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag the TPM ignores this value

10 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and ownerHandle. HMAC key: 
ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters and 
ownerHandle. HMAC key: ownerAuth, the original value and not the new 
auth value
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Actions
1. The TPM MUST validate the command using the AuthData in the ownerAuth parameter

2. The ownerAuthHandle session type MUST be TPM_PID_OSAP

3. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER.

4. Verify that entityType is either TPM_ET_OWNER or TPM_ET_SRK, and return the error 
TPM_WRONG_ENTITYTYPE if not. 

5. Create  decryptAuth  by  decrypting  newAuth  according  to  the  ADIP  indicated  by 
ownerAuthHandle. 

6. The  TPM  MUST  enforce  the  destruction  of  the  ownerAuthHandle  session  upon 
completion  of  this  command  (successful  or  unsuccessful).  This  includes  setting 
continueAuthSession to FALSE

7. Set the AuthData for the indicated entity to decryptAuth

8. The TPM MUST invalidate  all  owner authorized OSAP and DSAP sessions,  active  or 
saved.

9. The TPM MAY invalidate all sessions, active or saved
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18. Authorization Sessions

18.1 TPM_OIAP

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

Actions
1. The TPM_OIAP command allows the creation of an authorization session handle and the 

tracking of the handle by the TPM. The TPM generates the handle and nonce.

2. The TPM has an internal limit as to the number of handles that may be open at one 
time, so the request for a new handle may fail if there is insufficient space available.

3. Internally the TPM will do the following:

a. TPM allocates space to save handle, protocol identification, both nonces and any 
other information the TPM needs to manage the session.

b. TPM generates authHandle and nonceEven, returns these to caller

4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven 
value.

5. When TPM_OIAP is  wrapped in  an encrypted transport  session,  no  input  or  output 
parameters are encrypted.
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18.1.1 Actions to validate an OIAP session
Start of informative comment:
This  section  describes  the  authorization-related  actions  of  a  TPM  when  it  receives  a 
command that has been authorized with the OIAP protocol.

Many commands use OIAP authorization. The following description is therefore necessarily 
abstract.

End of informative comment.

Actions
The TPM MUST perform the following operations:

1. The TPM MUST verify that the authorization session handle (H, say) referenced in the 
command points  to  a  valid  session.  If  it  does not,  the  TPM returns  the  error  code 
TPM_INVALID_AUTHHANDLE

2. The  TPM  SHALL  retrieve  the  latest  version  of  the  caller’s  nonce  (nonceOdd)  and 
continueAuthSession flag from the input parameter list, and store it in internal TPM 
memory with the authSession ‘H’.

3. The  TPM  SHALL  retrieve  the  latest  version  of  the  TPM’s  nonce  stored  with  the 
authorization session H (authLastNonceEven) computed during the previously executed 
command.

4. The TPM MUST retrieve the secret AuthData (SecretE, say) of the target entity. The entity 
and its secret must have been previously loaded into the TPM.

a. If the command using the OIAP session requires owner authorization

i. If  TPM_STCLEAR_DATA  ->  ownerReference  is  TPM_KH_OWNER,  the  secret 
AuthData is TPM_PERMANENT_DATA -> ownerAuth

ii. If TPM_STCLEAR_DATA -> ownerReference is pointing to a delegate row

(1) Set R1 a row index to TPM_STCLEAR_DATA -> ownerReference

(2) Set  D1  a  TPM_DELEGATE_TABLE_ROW  to  TPM_PERMANENT_DATA  -> 
delegateTable -> delRow[R1]

(3) Set the secret AuthData to D1 -> authValue

(4) Validate the TPM_DELEGATE_PUBLIC D1 -> pub 

(a) Validate D1 -> pub -> permissions based on the command ordinal

(b) Validate D1 -> pub -> pcrInfo based on the PCR values

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input 
command  parameters  and  authorization  parameters  per  Part  1  Object-Independent 
Authorization Protocol.

6. The TPM SHALL compare HM to the AuthData value received in the input parameters. If  
they are different, the TPM returns the error code TPM_AUTHFAIL if the authorization 
session  is  the  first  session  of  a  command,  or  TPM_AUTH2FAIL  if  the  authorization 
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session is the second session of a command. Otherwise, the TPM executes the command 
which (for this example) produces an output that requires authentication. 

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and 
authorization  parameters  to  the  same  entity  secret  per  Part  1  Object-Independent 
Authorization Protocol.

9. The TPM returns the return code, output parameters,  authorization parameters and 
authorization session digest.

10.If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. 
Future references to H will return an error.

11.Each time that access to an entity (e.g., key) is authorized using OIAP, the TPM MUST 
validate the TPM_PCR_INFO_xxx  “…AtRelease” values if specified for the entity

a. The TPM SHOULD validate the values before using the shared secret to validate the 
command parameters.  This prevents a dictionary attack on the shared secret when the 
values are invalid for the entity.
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18.2 TPM_OSAP
Start of informative comment:
The TPM_OSAP command creates the authorization session handle, the shared secret and 
generates nonceEven and nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 2 TPM_ENTITY_TYPE entityType The type of entity in use 

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 20 TPM_NONCE nonceOddOSAP The nonce generated by the caller associated with the shared secret.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenOSAP Nonce generated by TPM and associated with shared secret.

Description
1. The TPM_OSAP command allows the creation of an authorization session handle and the 

tracking of  the handle  by the TPM. The  TPM generates the handle,  nonceEven and 
nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, 
so the request for a new handle may fail if there is insufficient space available.

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows 
the caller to continue to send in AuthData for each command but not have to request 
the information or cache the actual AuthData.

4. When TPM_OSAP is wrapped in an encrypted transport  session, no input or output 
parameters are encrypted.

5. If the owner pointer is pointing to a delegate row, the TPM internally MUST treat the 
OSAP session as a DSAP session
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6. TPM_ET_SRK or TPM_ET_KEYHANDLE with a value of TPM_KH_SRK MUST specify the 
SRK.

7. If the entity is tied to PCR values, the PCR’s are not validated during the TPM_OSAP 
ordinal session creation.  The PCR’s are validated when the OSAP session is used.

Actions
1. The TPM creates S1 a storage area that keeps track of the information associated with 

the authorization. 

2. S1 MUST track the following information

a. Protocol identification (i.e. TPM_PID_OSAP)

b. nonceEven

i. Initialized to the next value from the TPM RNG

c. shared secret 

d. ADIP encryption scheme from TPM_ENTITY_TYPE entityType

e. Any other internal TPM state the TPM needs to manage the session

3. The TPM MUST create and MAY track the following information

a. nonceEvenOSAP

i. Initialized to the next value from the TPM RNG

4. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 
calculation is the secret AuthData assigned to the key handle identified by entityValue. 
The input to the HMAC calculation is the concatenation of nonces nonceEvenOSAP and 
nonceOddOSAP. The output of the HMAC calculation is the shared secret which is saved 
in the authorization area associated with authHandle

5. Check if the ADIP encryption scheme specified by entityType is supported, if not return 
TPM_INAPPROPRIATE_ENC.

6. If entityType = TPM_ET_KEYHANDLE

a. The entity to authorize is a key held in the TPM. entityValue contains the keyHandle 
that holds the key. 

b. If entityValue is TPM_KH_OPERATOR return TPM_BAD_HANDLE

7. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored

b. The HMAC key is the secret pointed to by ownerReference (owner secret or delegated 
secret)

8. else if entityType = TPM_ET_SRK

a. The entity to authorize is the SRK. entityValue is ignored.

9. else if entityType = TPM_ET_COUNTER

a. The entity is a monotonic counter, entityValue contains the counter handle

10.else if entityType = TPM_ET_NV
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a. The entity is a NV index, entityValue contains the NV index

11.else return TPM_BAD_PARAMETER 

12.On each subsequent use of the OSAP session the TPM MUST generate a new nonce 
value.

13.The TPM MUST ensure that OSAP shared secret is only available while the OSAP session 
is valid.

14.The session MUST terminate upon any of the following conditions:

a. The command that uses the session returns an error

b. The resource is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt 
an input parameter (TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner  is  executed  and  this  session  is  attached  to  the  owner 
authorization

f. The  session  explicitly  terminated  with  continueAuth,  TPM_Reset  or 
TPM_FlushSpecific

g. All OSAP sessions associated with the delegation table MUST be invalidated when 
any of the following commands execute:

i. TPM_Delegate_Manage

ii. TPM_Delegate_CreateOwnerDelegation with Increment==TRUE

iii. TPM_Delegate_LoadOwnerDelegation
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18.2.1 Actions to validate an OSAP session
Start of informative comment:
This  section  describes  the  authorization-related  actions  of  a  TPM  when  it  receives  a 
command that has been authorized with the OSAP protocol.

Many commands use OSAP authorization. The following description is therefore necessarily 
abstract.

End of informative comment

Actions
1. On reception of a command with ordinal C1 that uses an authorization session, the TPM 

SHALL perform the following actions:

2. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target 
entity when the authorization session was established with TPM_OSAP. The entity and 
its secret must have been previously loaded into the TPM.

3. The TPM MUST verify that the authorization session handle (H, say) referenced in the 
command points  to  a  valid  session.  If  it  does not,  the  TPM returns  the  error  code 
TPM_INVALID_AUTHHANDLE.

4. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according 
to Part 1 Object-Specific Authorization Protocol.

5. The TPM SHALL compare HM1 to the AuthData value received in the command. If they 
are different, the TPM returns the error code TPM_AUTHFAIL if the authorization session 
is the first session of a command, or TPM_AUTH2FAIL if the authorization session is the 
second session of  a  command.,  the TPM executes command C1 which produces an 
output (O, say) that requires authentication and uses a particular return code (RC, say).

6. The TPM SHALL generate the latest version of the even nonce (nonceEven).

7. The TPM MUST calculate the HMAC (HM2) of the return parameters according to section 
Part 1 Object-Specific Authorization Protocol.

8. The TPM returns HM2 in the parameter list.

9. The TPM SHALL retrieve the continue flag from the received command. If the flag is 
FALSE, the TPM SHALL terminate the session and destroy the thread associated with 
handle H.

10.If  the  shared  secret  was  used  to  provide  confidentiality  for  data  in  the  received 
command, the TPM SHALL terminate the session and destroy the thread associated with 
handle H.

11.Each time that access to an entity (e.g., key) is authorized using OSAP, the TPM MUST 

a. ensure that the OSAP shared secret is that derived from the entity using TPM_OSAP

b. validate the TPM_PCR_INFO_xxx  “…AtRelease” values if specified for the entity
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i. The  TPM  SHOULD  validate  the  values  before  using  the  shared  secret  to 
validate  the  command parameters.   This  prevents  a  dictionary  attack  on  the 
shared secret when the values are invalid for the entity.
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18.3 TPM_DSAP
Start of informative comment:
The  TPM_DSAP  command  creates  the  authorization  session  handle  using  a  delegated 
AuthData  value  passed  into  the  command  as  an  encrypted  blob  or  from  the  internal 
delegation table. It can be used to start an authorization session for a user key or the 
owner.

As  in  TPM_OSAP,  it  generates  a  shared  secret  and  generates  nonceEven  and 
nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 2 TPM_ENTITY_TYPE entityType The type of delegation information to use 

5 4 TPM_KEY_HANDLE keyHandle Key for which delegated authority corresponds, or 0 if delegated owner activity. 
Only relevant if entityValue equals TPM_DELEGATE_KEY_BLOB

6 20 TPM_NONCE nonceOddDSAP The nonce generated by the caller associated with the shared secret.

7 4 UINT32 entityValueSize The size of entityValue.

8 <> 2S <> BYTE [ ] entityValue

TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB or index 
MUST not be empty
If entityType is TPM_ET_DEL_ROW then entityValue is a 
TPM_DELEGATE_INDEX

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state. 

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenDSAP Nonce generated by TPM and associated with shared secret.

Description
1. The TPM_DSAP command allows the creation of an authorization session handle and the 

tracking of  the handle  by the TPM. The  TPM generates the handle,  nonceEven and 
nonceEvenOSAP.
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2. The TPM has an internal limit on the number of handles that may be open at one time, 
so the request for a new handle may fail if there is insufficient space available.

3. The TPM_DSAP allows the binding of a delegated authorization to a specific entity. This 
allows the caller to continue to send in AuthData for each command but not have to 
request the information or cache the actual AuthData. 

4. Each ordinal that uses the DSAP session MUST validate that TPM_PERMANENT_DATA 
-> restrictDelegate does not restrict delegation, based on keyHandle -> keyUsage and 
keyHandle -> keyFlags, return TPM_INVALID_KEYUSAGE on error.

5. On each subsequent use of the DSAP session the TPM MUST generate a new nonce 
value and check if the ordinal to be executed has delegation to execute. The TPM MUST 
ensure that the DSAP shared secret is only available while the DSAP session is valid.

6. When TPM_DSAP is wrapped in an encrypted transport session

a. For input the only parameter encrypted is entityValue

b. For output no parameters are encrypted

7. The DSAP session MUST terminate under any of the following conditions

a. The command that uses the session returns an error

b. If attached to a key, when the key is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt 
an input parameter (TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner  is  executed  and  this  session  is  attached  to  the  owner 
authorization

f. The  session  explicitly  terminated  with  continueAuth,  TPM_Reset  or 
TPM_FlushSpecific

g.  All  DSAP  sessions  MUST  be  invalidated  when  any  of  the  following  commands 
execute:

i. TPM_Delegate_CreateOwnerDelegation 

ii. When Increment is TRUE

iii. TPM_Delegate_LoadOwnerDelegation

iv. TPM_Delegate_Manage

entityType = TPM_ET_DEL_OWNER_BLOB

The entityValue parameter contains an owner delegation blob structure.

entityType = TPM_ET_DEL_ROW

The entityValue parameter contains a row number in the nv Delegation table  which 
should be used for the AuthData value.

entityType = TPM_DEL_KEY_BLOB

The entityValue parameter contains a key delegation blob structure.
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Actions
1. If entityType == TPM_ET_DEL_OWNER_BLOB

a. Map entityValue to B1 a TPM_DELEGATE_OWNER_BLOB

b. Validate  that  B1  is  a  valid  TPM_DELEGATE_OWNER_BLOB,  return 
TPM_WRONG_ENTITYTYPE on error

c. Locate  B1  ->  pub  ->  familyID in  the  TPM_FAMILY_TABLE and set  familyRow to 
indicate row, return TPM_BADINDEX if not found

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that B1->verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy B1 -> integrityDigest to H2

ii. Set B1 -> integrityDigest to all zeros

iii. Create H3 the HMAC of B1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

h. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting B1 -> sensitiveArea using 
TPM_DELEGATE_KEY

i. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

ii. Return TPM_BAD_DELEGATE on error

j. Set A1 to S1 -> authValue

2. Else if entityType == TPM_ET_DEL_ROW

a. Verify that entityValue points to a valid row in the delegation table.

b. Set D1 to the delegation information in the row.

c. Set A1 to D1->authValue.

d. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 
row, return TPM_BADINDEX if not found

e. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

f. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

g. Verify that D1->verificationCount equals FR -> verificationCount.

3. Else if entityType == TPM_ET_DEL_KEY_BLOB

a. Map entityValue to K1 a TPM_DELEGATE_KEY_BLOB

b. Validate  that  K1  is  a  valid  TPM_DELEGATE_KEY_BLOB,  return 
TPM_WRONG_ENTITYTYPE on error

c. Locate  K1  ->  pub  ->  familyID in  the  TPM_FAMILY_TABLE and set  familyRow to 
indicate that row, return TPM_BADINDEX if not found
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d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that K1 -> pub -> verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy K1 -> integrityDigest to H2

ii. Set K1 -> integrityDigest to all zeros

iii. Create H3 the HMAC of K1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

h. Validate that K1 -> pubKeyDigest identifies keyHandle, return TPM_KEYNOTFOUND 
on error

i. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting K1 -> sensitiveArea using 
TPM_DELEGATE_KEY

j. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

ii. Return TPM_BAD_DELEGATE on error

k. Set A1 to S1 -> authValue

4. Else return TPM_BAD_PARAMETER

5. Generate  a  new  authorization  session  handle  and  reserve  space  to  save  protocol 
identification, shared secret, pcrInfo, both nonces, ADIP encryption scheme, delegated 
permission bits and any other information the TPM needs to manage the session.

6. Read two new values from the RNG to generate nonceEven and nonceEvenOSAP.

7. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 
calculation is A1. The input to the HMAC calculation is the concatenation of nonces 
nonceEvenOSAP and nonceOddOSAP. The output of the HMAC calculation is the shared 
secret which is saved in the authorization area associated with authHandle.
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18.4 TPM_SetOwnerPointer
Start of informative comment:
This command will set a reference to which secret the TPM will use when executing an 
owner secret related OIAP or OSAP session. 

This command should only be used to provide an owner delegation function for legacy code 
that does not itself  support delegation.  Normally,  TPM_STCLEAR_DATA->ownerReference 
points to TPM_KH_OWNER, indicating that OIAP and OSAP sessions should use the owner 
authorization. This command allows ownerReference to point to an index in the delegation 
table, indicating that OIAP and OSAP sessions should use the delegation authorization.

In use, a TSS supporting delegation would create and load the owner delegation and set the 
owner pointer to that delegation. From then on, a legacy TSS application would use its OIAP 
and OSAP sessions with the delegated owner authorization.

Since  this  command  is  not  authorized,  the  ownerReference  is  open  to  DoS  attacks. 
Applications  can  attempt  to  recover  from  a  failing  owner  authorization  by  resetting 
ownerReference to an appropriate value.

This command intentionally does not clear OSAP sessions.  A TPM 1.1 application gets the 
benefit of owner delegation, while the original owner can use a pre-existing OSAP session 
with the actual owner authorization.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_ COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

4 2 2S 2 TPM_ENTITY_TYPE entityType The type of entity in use 

5 4 3S 4 UINT32 entityValue The selection value based on entityType

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_ COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

Actions
1. Map TPM_STCLEAR_DATA to V1

2. If entityType = TPM_ET_DEL_ROW
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a. This value indicates that the entity is a delegate row. entityValue is a delegate index 
in the delegation table. 

b. Validate that entityValue points to a legal row within the delegate table stored within 
the TPM. If not return TPM_BADINDEX

i. Set D1 to the delegation information in the row.

c. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 
row, return TPM_BADINDEX if not found.

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that B1->verificationCount equals FR -> verificationCount.

g. The TPM sets V1-> ownerReference to entityValue

h. Return TPM_SUCCESS

3. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored. 

b. The TPM sets V1-> ownerReference to TPM_KH_OWNER

c. Return TPM_SUCCESS

4. Return TPM_BAD_PARAMETER
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19. Delegation Commands

19.1 TPM_Delegate_Manage
Start of informative comment:
TPM_Delegate_Manage  is  the  fundamental  process  for  managing  the  Family  tables, 
including  enabling/disabling  Delegation  for  a  selected  Family.  Normally 
TPM_Delegate_Manage  must  be  executed  at  least  once  (to  create  Family  tables  for  a 
particular family) before any other type of Delegation command in that family can succeed.

TPM_Delegate_Manage is authorized by the TPM Owner if an Owner is installed, because 
changing  a  table  is  a  privileged  Owner  operation.  If  no  Owner  is  installed, 
TPM_Delegate_Manage requires no privilege to  execute. This does not disenfranchise an 
Owner,  since  there  is  no  Owner,  and  simplifies  loading  of  tables  during  platform 
manufacture or on first-boot. Burn-out of TPM non-volatile storage by inappropriate use is 
mitigated by the TPM’s normal limits on NV-writes in the absence of an Owner. Tables can 
be locked after loading, to prevent subsequent tampering, and only unlocked by the Owner, 
his delegate, or the act of removing the Owner (even if there is no Owner).

TPM_Delegate_Manage command is customized by opCode:

(1) TPM_FAMILY_ENABLE enables/disables use of a family and all the rows of the delegate 
table belonging to that family, 

(2) TPM_FAMILY_ADMIN can be used to prevent further management of the Tables until an 
Owner is installed, or until the Owner is removed from the TPM. (Note that the Physical  
Presence  command  TPM_ForceClear  always  enables  further  management,  even  if 
TPM_ForceClear is used when no Owner is installed.)

 (3) TPM_FAMILY_CREATE creates a new family. Sessions are invalidated even in this case 
because the lastFamilyID could wrap.

(4) TPM_FAMILY_INVALIDATE invalidates an existing family.  The TPM_SELFTEST_FAILED 
error code is returned because the familyRow has already been validated earlier.  Failure 
here indicates a malfunction of the TPM.

The  rationale  for  Action  19.1 is  that  invalidating  the  family  ID  prevents  the  use  of 
associated delegate rows, whether or not those delegate rows are themselves invalidated. 
Omitting the delegate row invalidation avoids an NV write.

End of informative comment.
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Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 2S 4 TPM_FAMILY_ID familyID The familyID that is to be managed

5 4 3s 4 TPM_FAMILY_OPERATION opCode Operation to be performed by this command.

6 4 4s 4 UINT32 opDataSize Size in bytes of opData

7 <> 5s <> BYTE [ ] opData Data necessary to implement opCode

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 3S 4 UINT32 retDataSize Size in bytes of retData

5 <> 4S <> BYTE [ ] retData Returned data

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Action
1. If opCode != TPM_FAMILY_CREATE

a. Locate  familyID  in  the  TPM_FAMILY_TABLE  and  set  familyRow  to  indicate  row, 
return TPM_BADINDEX if not found

b. Set  FR,  a  TPM_FAMILY_TABLE_ENTRY,  to  TPM_FAMILY_TABLE.  famTableRow 
[familyRow]

2. If tag = TPM_TAG_RQU_AUTH1_COMMAND

a. Validate the command and parameters using ownerAuth, return TPM_AUTHFAIL on 
error
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b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 
ownerReference delegation)

i. If opCode = TPM_FAMILY_CREATE

(1) The TPM MUST ignore familyID

ii. Else

(1) Verify  that  the  familyID  associated  with  authHandle  matches  the 
familyID parameter, return TPM_DELEGATE_FAMILY on error

3. Else

a. If TPM_PERMANENT_DATA -> ownerAuth is valid, return TPM_AUTHFAIL

b. If  opCode  !=  TPM_FAMILY_CREATE  and  FR  ->  flags  -> 
TPM_DELEGATE_ADMIN_LOCK is TRUE, return TPM_DELEGATE_LOCK

c. Validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

4. The TPM invalidates sessions

a. MUST invalidate all DSAP sessions

b. MUST invalidate all OSAP sessions associated with the delegation table

c. MUST set TPM_STCLEAR_DATA -> ownerReference to TPM_KH_OWNER

d. MAY invalidate any other session

5. If opCode == TPM_FAMILY_CREATE 

a. Validate that sufficient space exists within the TPM to store an additional family and 
map F2 to the newly allocated space.

b. Validate that opData is a TPM_FAMILY_LABEL

i. If opDataSize != sizeof(TPM_FAMILY_LABEL) return TPM_BAD_PARAM_SIZE

c. Map F2 to a TPM_FAMILY_TABLE_ENTRY

i. Set F2 -> tag to TPM_TAG_FAMILY_TABLE_ENTRY

ii. Set F2 -> familyLabel to opData

d. Increment TPM_PERMANENT_DATA -> lastFamilyID by 1

e. Set F2 -> familyID = TPM_PERMANENT_DATA -> lastFamilyID 

f. Set F2 -> verificationCount = 1

g. Set F2 -> flags -> TPM_FAMFLAG_ENABLED to FALSE

h. Set F2 -> flags -> TPM_DELEGATE_ADMIN_LOCK to FALSE

i. Set retDataSize = 4
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j. Set retData = F2 -> familyID

k. Return TPM_SUCCESS

6. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

7. If opCode == TPM_FAMILY_ADMIN

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set (FR -> flags -> TPM_DELEGATE_ADMIN_LOCK) = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

8. else If opCode == TPM_FAMILY_ENABLE

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set FR -> flags-> TPM_FAMFLAG_ENABLED = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

9. else If opCode == TPM_FAMILY_INVALIDATE

a. Invalidate all data associated with familyRow

i. All data is all information pointed to by FR 

ii. return TPM_SELFTEST_FAILED on failure

b. The TPM MAY invalidate delegate rows that contain the same familyID.

c. Set retDataSize = 0

d. Return TPM_SUCCESS

10.Else return TPM_BAD_PARAMETER
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19.2 TPM_Delegate_CreateKeyDelegation
Start of informative comment:
This command delegates privilege to use a key by creating a blob that can be used by 
TPM_DSAP. 

There is no check for appropriateness of the key’s key usage against the key permission 
settings. If the key usage is incorrect, this command succeeds, but the delegated command 
will fail.

These blobs CANNOT be used as input data for TPM_LoadOwnerDelegation because the 
internal TPM delegate table can store owner delegations only. 

(TPM_Delegate_CreateOwnerDelegation must be used to delegate Owner privilege.)

The publicInfo -> familyID can specify a disabled family row.  The family row is checked 
when the key delegation is used in a DSAP session, not when it is created.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key.

5 <> 2S <> TPM_DELEGATE_PUBLIC publicInfo The public information necessary to fill in the blob

6 20 3S 20 TPM_ENCAUTH delAuth The encrypted new AuthData for the blob. The encryption key is the 
shared secret from the authorization session protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth

194 Level 2 Revision 116 28 February 2011
TCG Published

918
919
920

3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742

3743

3744

921
922



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_KEY_BLOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Description
1. The use restrictions that may be present on the key pointed to by keyHandle are not 

enforced for this command. Stated another way, TPM_CreateKeyDelegation is not a use 
of the key.

Action
1. Verify AuthData for the command and parameters using privAuth

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

3. If  the  key  authentication  is  in  fact  a  delegation,  then the  TPM SHALL validate  the 
command and parameters using Delegation authorisation, then

a. Validate  that  authHandle  ->  familyID  equals  publicInfo  ->  familyID  return 
TPM_DELEGATE_FAMILY on error

b. If  TPM_FAMILY_TABLE.famTableRow[  authHandle  ->  familyID]  ->  flags  -> 
TPM_FAMFLAG_ENABLED is FALSE, return error TPM_DISABLED_CMD.

c. Verify  that  the delegation bits  in publicInfo do  not  grant  more permissions then 
currently delegated. Otherwise return error TPM_AUTHFAIL 

4. Check that publicInfo -> delegateType is TPM_DEL_KEY_BITS

5. Verify  that  authHandle  indicates  an  OSAP  or  DSAP  session  return 
TPM_INVALID_AUTHHANDLE on error

6. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle.

7. Create  h1  the  SHA-1  of  TPM_STORE_PUBKEY  structure  of  the  key  pointed  to  by 
keyHandle

8. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE
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b. Set M1 -> authValue to a1

c. The  TPM  MAY  add  additional  information  of  a  sensitive  nature  relative  to  the 
delegation

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

10.Create P1 a TPM_DELEGATE_KEY_BLOB

a. Set P1 -> tag to TPM_TAG_DELG_KEY_BLOB

b. Set P1 -> pubKeyDigest to H1

c. Set P1 -> pub to PublicInfo

d. Set P1 -> pub -> verificationCount to familyRow -> verificationCount

e. Set P1 -> integrityDigest to all zeros

f. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The 
information MAY include symmetric IV, symmetric mode of encryption and other data 
that allows the TPM to process the blob in the future.

g. Set P1 -> sensitiveSize to the size of M2

h. Set P1 -> sensitiveArea to M2

11.Calculate H2 the HMAC of P1 using tpmProof as the secret

12.Set P1 -> integrityDigest to H2

13.Ignore continueAuthSession on input set continueAuthSession to FALSE on output

14.Return P1 as blob
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19.3 TPM_Delegate_CreateOwnerDelegation
Start of informative comment:
TPM_Delegate_CreateOwnerDelegation  delegates  the  Owner’s  privilege  to  use  a  set  of 
command ordinals, by creating a blob. Such blobs can be used as input data for TPM_DSAP 
or TPM_Delegate_LoadOwnerDelegation.

TPM_Delegate_CreateOwnerDelegation includes the ability to void all existing delegations 
(by incrementing the verification count) before creating the new delegation. This ensures 
that the new delegation will be the only delegation that can operate at Owner privilege in 
this family. This new delegation could be used to enable a security monitor (a local separate  
entity, or remote separate entity, or local host entity) to reinitialize a family and perhaps 
perform external verification of delegation settings. Normally the ordinals for a delegated 
security monitor would include TPM_Delegate_CreateOwnerDelegation (this command) in 
order  to  permit  the  monitor  to  create  further  delegations,  and 
TPM_Delegate_UpdateVerification to reactivate some previously voided delegations.

If  the  verification  count  is  incremented  and  the  new delegation  does  not  delegate  any 
privileges (to any ordinals) at all, or uses an authorisation value that is then discarded, this  
family’s  delegations  are  all  void  and  delegation  must  be  managed  using  actual  Owner 
authorisation.

(TPM_Delegate_CreateKeyDelegation must be used to delegate privilege to use a key.)

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation.

4 1 2S 1 BOOL increment Flag dictates whether verificationCount will be incremented

5 <> 3S <> TPM_DELEGATE_PUBLIC publicInfo The public parameters for the blob

6 20 4S 20 TPM_ENCAUTH delAuth The encrypted new AuthData for the blob. The encryption key is the 
shared secret from the OSAP protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_OWNER_B
LOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth

Action
1. The TPM SHALL authenticate the command using TPM Owner authentication. Return 

TPM_AUTHFAIL on failure.

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
the row return TPM_BADINDEX if not found

a. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

3. If the TPM Owner authentication is in fact a delegation

a. Validate  that  authHandle  ->  familyID  equals  publicInfo  ->  familyID  return 
TPM_DELEGATE_FAMILY on error

b. If  FR  ->  flags  ->  TPM_FAMFLAG_ENABLED  is  FALSE,  return  error 
TPM_DISABLED_CMD.

c. Verify  that  the delegation bits  in publicInfo do  not  grant  more permissions then 
currently delegated. Otherwise, return error TPM_AUTHFAIL. 

4. Check that publicInfo -> delegateType is TPM_DEL_OWNER_BITS

5. Verify  that  authHandle  indicates  an  OSAP  or  DSAP  session  return 
TPM_INVALID_AUTHHANDLE on error

6. If increment == TRUE

a. Increment FR -> verificationCount

b. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER

c. The TPM invalidates sessions

i. MUST invalidate all DSAP sessions

ii. MUST invalidate all OSAP sessions associated with the delegation table

iii. MAY invalidate any other session
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7. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle.

8. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE

b. Set M1 -> authValue to a1

c. Set other M1 fields as determined by the TPM vendor

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

10.Create B1 a TPM_DELEGATE_OWNER_BLOB

a. Set B1 -> tag to TPM_TAG_DELG_OWNER_BLOB

b. Set B1 -> pub to publicInfo

c. Set B1 -> sensitiveSize to the size of M2

d. Set B1 -> sensitiveArea to M2

e. Set B1 -> integrityDigest to all zeros

f. Set B1 -> pub -> verificationCount to FR -> verificationCount

11.The  TPM  sets  additionalArea  and  additionalAreaSize  appropriate  for  this  TPM.  The 
information MAY include symmetric IV, symmetric mode of encryption and other data 
that allows the TPM to process the blob in the future.

12.Create H1 the HMAC of B1 using tpmProof as the secret

13.Set B1 -> integrityDigest to H1

14.Ignore continueAuthSession on input set continueAuthSession to FALSE on output

15.Return B1 as blob
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19.4 TPM_Delegate_LoadOwnerDelegation
Start of informative comment:
This  command  loads  a  delegate  table  row  blob  into  a  non-volatile  delegate  table  row. 
TPM_Delegate_LoadOwnerDelegation can be used during manufacturing or on first  boot 
(when no Owner is  installed),  or  after  an Owner is  installed.  If  an  Owner is  installed, 
TPM_Delegate_LoadOwnerDelegation  requires  Owner  authorisation,  and  sensitive 
information must be encrypted.

Burn-out of TPM non-volatile storage by inappropriate use is mitigated by the TPM’s normal 
limits on NV-writes in the absence of an Owner. Tables can be locked after loading using 
TPM_Delegate_Manage, to prevent subsequent tampering.

A management system outside the TPM is  expected to  manage  the delegate  table  rows 
stored on the TPM, and can overwrite any previously stored data.   There is  no way to 
explicitly delete a delegation entry.  A new entry can overwrite an invalid entry.

This command cannot be used to load key delegation blobs into the TPM

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_Delegate_LoadOwnerDelegation
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4 3S 4 TPM_DELEGATE_INDEX index The index of the delegate row to be written
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5 4 4S 4 UINT32 blobSize The size of the delegate blob

6 <> 5S <> TPM_DELEGATE_OWNER
_BLOB blob Delegation information, including encrypted portions as appropriate

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes 

3 4 1S  4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_LoadOwnerDelegation

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions
1. Map blob to D1 a TPM_DELEGATE_OWNER_BLOB.

a. Validate that D1 -> tag == TPM_TAG_DELEGATE_OWNER_BLOB

2. Locate D1 -> pub -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

3. Set FR to TPM_FAMILY_TABLE -> famTableRow[familyRow]

4. If TPM Owner is installed

a. Validate  the  command and  parameters  using  TPM Owner  authentication,  return 
TPM_AUTHFAIL on error

b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 
ownerReference delegation), verify that D1 -> pub -> familyID matches authHandle -> 
familyID, on error return TPM_DELEGATE_FAMILY

5. Else

a. If tag is not TPM_TAG_RQU_COMMAND, return TPM_AUTHFAIL

b. If  FR  ->  flags  ->  TPM_DELEGATE_ADMIN_LOCK  is  TRUE  return 
TPM_DELEGATE_LOCK

c. Validate max NV writes without an owner

i. Set NV1 to PD -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set PD -> noOwnerNVWrite to NV1

6. If FR -> flags -> TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

7. If TPM Owner is installed, validate the integrity of the blob

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to all zeros
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c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3, return TPM_AUTHFAIL on mismatch

8. If TPM Owner is installed, create S1 a TPM_DELEGATE_SENSITIVE area by decrypting 
D1 -> sensitiveArea using TPM_DELEGATE_KEY. Otherwise set S1 = D1 -> sensitiveArea

9. Validate S1

a. Validate  that  S1  ->  tag  ==  TPM_TAG_DELEGATE_SENSITIVE,  return 
TPM_INVALID_STRUCTURE on error

10.Validate that index is a valid value for delegateTable, return TPM_BADINDEX on error

11.The TPM invalidates sessions

a. MUST invalidate all DSAP sessions

b. MUST invalidate all OSAP sessions associated with the delegation table

c. MAY invalidate any other session

12.Copy data to the delegate table row

a. Copy the TPM_DELEGATE_PUBLIC from D1 -> pub to TPM_DELEGATE_TABLE -> 
delRow[index] -> pub.

b. Copy  the  TPM_SECRET  from  S1  ->  authValue  to  TPM_DELEGATE_TABLE  -> 
delRow[index] -> authValue.

c. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER

d. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

13.Return TPM_SUCCESS
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19.5 TPM_Delegate_ReadTable
Start of informative comment:
This command reads from the TPM the public contents of the family and delegate tables 
that are stored on the TPM. Such data is required during external verification of tables.

There  are  no  restrictions  on  the  execution  of  this  command;  anyone  can  read  this 
information  regardless  of  the  state  of  the  PCRs,  regardless  of  whether  they  know any 
specific AuthData value and regardless of whether or not the enable and admin bits are set 
one way or the other.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

4 4 3S 4 UINT32 familyTableSize Size in bytes of familyTable

5 <> 4S <> BYTE [ ] familyTable Array of TPM_FAMILY_TABLE_ENTRY elements

6 4 5S 4 UINT32 delegateTableSize Size in bytes of delegateTable

7 <> 6S <> BYTE[] delegateTable Array of TPM_DELEGATE_INDEX and TPM_DELEGATE_PUBLIC 
elements

Actions
1. Set  familyTableSize  to  the  number  of  valid  families  on  the  TPM  times 

sizeof(TPM_FAMILY_TABLE_ELEMENT).

2. Copy the valid entries in the internal family table to the output array familyTable

3. Set delegateTableSize to the number of valid delegate table entries on the TPM times 
(sizeof(TPM_DELEGATE_PUBLIC) + 4).

4. For each valid entry 

a. Write the TPM_DELEGATE_INDEX to delegateTable

b. Copy the TPM_DELEGATE_PUBLIC to delegateTable 
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5. Return TPM_SUCCESS
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19.6 TPM_Delegate_UpdateVerification
Start of informative comment:
TPM_UpdateVerification sets the verificationCount in an entity (a blob or a delegation row) 
to the current family value, in order that the delegations represented by that entity will 
continue to be accepted by the TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 2S 4 UINT32 inputSize The size of inputData

5 <> 3S <> BYTE inputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB 
or TPM_DELEGATE_INDEX

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth Authorization HMAC key: ownerAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 3S 4 UINT32 outputSize The size of the output

5 <> 4S <> BYTE outputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB 

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. Verify the TPM Owner, directly or indirectly through delegation, authorizes the command 

and parameters, on error return TPM_AUTHFAIL

2. Determine  the  type  of  inputData  (TPM_DELEGATE_TABLE_ROW  or 
TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB) and map D1 to that 
structure

a. Mapping to TPM_DELEGATE_TABLE_ROW requires taking inputData as a tableIndex 
and locating the appropriate row in the table

3. If D1 is a TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB, validate the 
integrity of D1

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to all zeros

c. Create H3 the HMAC of D1 using tpmProof as the secret 

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

4. Locate (D1 -> pub -> familyID) in the TPM_FAMILY_TABLE and set familyRow to indicate 
row, return TPM_BADINDEX if not found

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

6. If  delegated,  verify  that  family  of  the  delegated  Owner-auth  is  the  same  as  D1: 
(authHandle  ->  familyID)  ==  (D1  ->  pub  ->  familyID);  otherwise  return  error 
TPM_DELEGATE_FAMILY

7. If delegated, verify that the family of the delegated Owner-auth is enabled: if (authHandle 
-> familyID -> flags TPM_FAMFLAG_ENABLED) is FALSE, return TPM_DISABLED_CMD

8. Set D1 -> verificationCount to FR -> verificationCount
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9. If  D1  is  a  TPM_DELEGATE_OWNER_BLOB  or  TPM_DELEGATE_KEY_BLOB  set  the 
integrity of D1

a. Set D1 -> integrityDigest to all zeros

b. Create H1 the HMAC of D1 using tpmProof as the secret

c. Set D1 -> integrityDigest to H1

10.If D1 is a blob recreate the blob and return it
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19.7 TPM_Delegate_VerifyDelegation
Start of informative comment:
TPM_VerifyDelegation interprets a delegate blob and returns success or failure, depending 
on whether the blob is currently valid. The delegate blob is NOT loaded into the TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

4 4 2S 4 UINT32 delegationSize The length of the delegated information blob

5 <> 3S <> BYTE[ ] delegation TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

Actions
1. Determine  the  type  of  blob,  If  delegation  ->  tag  is  equal  to 

TPM_TAG_DELGATE_OWNER_BLOB then

a. Map D1 a TPM_DELEGATE_OWNER_BLOB to delegation

2. Else if delegation -> tag = TPM_TAG_DELG_KEY_BLOB

a. Map D1 a TPM_DELEGATE_KEY_BLOB to delegation

3. Else return TPM_BAD_PARAMETER

4. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, 
return TPM_BADINDEX if not found

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow]

6. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

7. Validate  that  D1  ->  pub  ->  verificationCount  matches  FR  ->  verificationCount,  on 
mismatch return TPM_FAMILYCOUNT

8. Validate the integrity of D1

a. Copy D1 -> integrityDigest to H2
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b. Set D1 -> integrityDigest to all zeros

c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

9. Create S1 a TPM_DELEGATE_SENSITIVE area by decrypting D1 -> sensitiveArea using 
TPM_DELEGATE_KEY

10.Validate S1 values

a. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

b. Return TPM_BAD_PARAMETER on error

11.Return TPM_SUCCESS
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20. Non-volatile Storage
Start of informative comment:
This section handles the allocation and use of the TPM non-volatile storage.

End of informative comment.
If nvIndex refers to the DIR, the TPM ignores actions containing access control checks that  
have no meaning for the DIR. The TPM only checks the owner authorization.
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20.1 TPM_NV_DefineSpace
Start of informative comment:
This establishes the space necessary for the indicated index. The definition will include the 
access requirements for writing and reading the area.  

Previously defined space at the index and new size is non-zero (and space is available, 
etc.) –> redefine the index

No previous space at the index and new size is non-zero (and space is available, 
etc.)-> define the index

Previously defined space at the index and new size is 0 -> delete the index

No previous space at the index and new size is 0 -> error

The space definition size does not include the area needed to manage the space.

Setting TPM_PERMANENT_FLAGS -> nvLocked TRUE when it is already TRUE is not an 
error.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_DefineSpace

4 <> 2S <> TPM_NV_DATA_PUBLIC pubInfo The public parameters of the NV area

5 20 3S 20 TPM_ENCAUTH encAuth The encrypted AuthData, only valid if the attributes require subsequent 
authorization

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for ownerAuth

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_DefineSpace

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
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3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed to FALSE

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Description
For  the  case  where  pubInfo  ->  dataSize  is  0,  pubInfo  ->  pcrInfoRead  and  pubInfo  -> 
pcrInfoWrite are not used.  However, since the general principle is to validate parameters 
before changing state, the TPM SHOULD parse pubInfo completely before invalidating the 
data area.

Actions
1. If pubInfo -> nvIndex == TPM_NV_INDEX_LOCK and tag = TPM_TAG_RQU_COMMAND

a. If  pubInfo -> dataSize is not 0, the command MAY return TPM_BADINDEX.

b. Set TPM_PERMANENT_FLAGS -> nvLocked to TRUE

c. Return TPM_SUCCESS

2. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 
for the Max NV writes are ignored

a. Ignored  checks  include  physical  presence,  owner  authorization,  'D'  bit  check, 
bGlobalLock, no authorization with a TPM owner present, bWriteSTClear, the check that 
pubInfo  ->  dataSize  is  0  in  Action  5.c.  (the  no-authorization  case)  ,  disabled  and 
deactivated.

i. The  check  that  pubInfo  ->  dataSize  is  0  is  still  enforced  in  Action  6.f. 
(returning after deleting a previously defined storage area) and Action 9.f.  (not 
allowing a space of size 0 to be defined).

ii. If ownerAuth is present, the TPM MAY check the authorization HMAC.

b. The check for pubInfo -> nvIndex == TPM_NV_INDEX0 in Action 3. is not ignored.

3. If  pubInfo  ->  nvIndex  has  the  D  bit  (bit  28)  set  to  a  1  or  pubInfo  ->  nvIndex  == 
TPM_NV_INDEX0 then 

a. Return TPM_BADINDEX

b. The D bit specifies an index value that is set in manufacturing and can never be 
deleted or added to the TPM

c. Index value TPM_NV_INDEX0 is reserved and cannot be defined

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. The  TPM  MUST  validate  the  command  and  parameters  using  the  TPM  Owner 
authentication and ownerAuth, on error return TPM_AUTHFAIL

b. authHandle session type MUST be OSAP

c. Create A1 by decrypting encAuth according to the ADIP indicated by authHandle.

5. else

a. Validate the assertion of physical presence. Return TPM_BAD_PRESENCE on error.
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b. If TPM Owner is present then return TPM_OWNER_SET.

c. If pubInfo -> dataSize is 0 then return TPM_BAD_DATASIZE. Setting the size to 0 
represents an attempt to delete the value without TPM Owner authentication.

d. Validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv. Set NV1_INCREMENTED to TRUE

e. Set A1 to encAuth. There is no nonce or authorization to create the encryption string, 
hence the AuthData value is passed in the clear

6. If pubInfo -> nvIndex points to a valid previously defined storage area then

a. Map D1 a TPM_NV_DATA_SENSITIVE to the storage area

b. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK then

i. If  TPM_STCLEAR_FLAGS  ->  bGlobalLock  is  TRUE  then  return 
TPM_AREA_LOCKED

c. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

i. If D1 -> pubInfo -> bWriteSTClear is TRUE then return TPM_AREA_LOCKED

d. Invalidate the data area currently pointed to by D1 and ensure that if the area is 
reallocated no residual information is left

e. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

f. The TPM invalidates authorization sessions

i. MUST invalidate all authorization sessions associated with D1

ii. MAY invalidate any other authorization session

g. If pubInfo -> dataSize is 0 then return TPM_SUCCESS

7. Parse pubInfo -> pcrInfoRead

a. Validate pcrInfoRead structure on error return TPM_INVALID_STRUCTURE

i. Validation includes proper PCR selections and locality selections

8. Parse pubInfo -> pcrInfoWrite

a. Validate pcrInfoWrite structure on error return TPM_INVALID_STRUCTURE

i. Validation includes proper PCR selections and locality selections

b. If pcrInfoWrite -> localityAtRelease disallows some localities

i. Set writeLocalities to TRUE

c. Else

i. Set writeLocalities to FALSE
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9. Validate that the attributes are consistent

a. The  TPM  SHALL  ignore  the  bReadSTClear,  bWriteSTClear  and  bWriteDefine 
attributes during the execution of this command

b. If  TPM_NV_PER_OWNERWRITE is  TRUE and TPM_NV_PER_AUTHWRITE is  TRUE 
return TPM_AUTH_CONFLICT

c. If  TPM_NV_PER_OWNERREAD  is  TRUE  and  TPM_NV_PER_AUTHREAD  is  TRUE 
return TPM_AUTH_CONFLICT

d. If  TPM_NV_PER_OWNERWRITE  and  TPM_NV_PER_AUTHWRITE  and 
TPM_NV_PER_WRITEDEFINE  and  TPM_NV_PER_PPWRITE  and  writeLocalities  are  all 
FALSE

i. Return TPM_PER_NOWRITE

e. Validate pubInfo -> nvIndex

i. Make sure that the index is applicable for this TPM. Return TPM_BADINDEX 
on error. A valid index is platform and context sensitive. That is, attempting to 
validate an index may be successful in one configuration and invalid in another 
configuration.  The  individual  index  values  MUST  indicate  if  there  are  any 
restrictions on the use of the index.

ii. TPM_NV_INDEX_DIR is always an invalid defined index.

f. If dataSize is 0 return TPM_BAD_PARAM_SIZE

10.Create D1 a TPM_NV_DATA_SENSITIVE structure

a. Set D1 -> pubInfo to pubInfo

b. Set D1 -> authValue to A1

c. Set D1 -> pubInfo -> bReadSTClear to FALSE

d. Set D1 -> pubInfo -> bWriteSTClear to FALSE

e. Set D1 -> pubInfo -> bWriteDefine to FALSE

11.Validate that sufficient NV is available to store D1 and pubInfo -> dataSize bytes of data

a. Return TPM_NOSPACE if pubInfo -> dataSize is not available in the TPM

12.If pubInfo -> nvIndex is not TPM_NV_INDEX_TRIAL 

a. Reserve NV space for pubInfo -> dataSize 

b. Set all bytes in the newly defined area to 0xFF

c. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

13.Ignore continueAuthSession on input and set to FALSE on output

14.Return TPM_SUCCESS
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20.2 TPM_NV_WriteValue
Start of informative comment:
This command writes the value to a defined area. The write can be TPM Owner authorized 
or unauthorized and protected by other attributes and will work when no TPM Owner is 
present.

The action setting bGlobalLock to  TRUE is intentionally  before  the action checking the 
owner authorization.  This allows code (e.g., a BIOS) to lock NVRAM without knowing the 
owner authorization.

The  DIR  (TPM_NV_INDEX_DIR)  has  the  attributes  TPM_NV_PER_OWNERWRITE  and 
TPM_NV_WRITEALL.

Certain platform manufacturers or software might require specific error handling in Action 
20.2.

Owner authorization is not required when nvLocked is FALSE.  If the host does send owner 
authorization,  Action  20.2 indicates  that  it  should  be  correct,  since  some  TPM 
implementations may validate it.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the NV Area

6 4 4S 4 UINT32 dataSize The size of the data parameter

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValue
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4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Description
For TPM_NV_INDEX_DIR, the ordinal MUST NOT set an error code for the “if dataSize = 0” 
action.  However, the flags set in this case are not applicable to the DIR.

Actions
1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 

for the max NV writes are ignored

a. Ignored  checks  include  physical  presence,  owner  authorization, 
TPM_NV_PER_OWNERWRITE, PCR, bWriteDefine, bGlobalLock, bWriteSTClear, locality, 
disabled and deactivated.

b. TPM_NV_PER_AUTHWRITE is not ignored.

c. If ownerAuth is present, the TPM MAY check the authorization HMAC.

2. Locate  and set D1 to the TPM_NV_DATA_AREA that  corresponds to  nvIndex,  return 
TPM_BADINDEX on error

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0]

3. If TPM_PERMANENT_FLAGS -> nvLocked is TRUE

a. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is TRUE

i. If TPM_PERMANENT_FLAGS -> disable is TRUE, return TPM_DISABLED

ii. If TPM_STCLEAR_FLAGS -> deactivated is TRUE, return TPM_DEACTIVATED

b. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is FALSE

i. If  TPM_PERMANENT_FLAGS  ->  disable  is  TRUE,  the  TPM  MAY  return 
TPM_DISABLED

ii. If  TPM_STCLEAR_FLAGS  ->  deactivated  is  TRUE,  the  TPM  MAY  return 
TPM_DEACTIVATED

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If  D1  ->  permission  ->  TPM_NV_PER_OWNERWRITE  is  FALSE  return 
TPM_AUTH_CONFLICT

i. This check is ignored if nvIndex is TPM_NV_INDEX0.

b. Validate  command  and  parameters  using  ownerAuth  HMAC  with  TPM  Owner 
authentication as the secret, return TPM_AUTHFAIL on error

5. Else

a. If  D1  ->  permission  ->  TPM_NV_PER_OWNERWRITE  is  TRUE  return 
TPM_AUTH_CONFLICT

i. This check is ignored if nvIndex is TPM_NV_INDEX0.
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b. If no TPM Owner validate max NV writes without an owner

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES

iv.  Set NV1_INCREMENTED to TRUE

6. If nvIndex is TPM_NV_INDEX0 then 

a. If dataSize is not 0, the TPM MAY return TPM_BADINDEX.

b. Set TPM_STCLEAR_FLAGS -> bGlobalLock to TRUE

c. Return TPM_SUCCESS

7. If  D1  ->  permission  ->  TPM_NV_PER_AUTHWRITE  is  TRUE  return 
TPM_AUTH_CONFLICT

8. Check  that  D1  ->  pcrInfoWrite  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

9. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

10.If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED

11.If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED

12.If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 ->bWriteSTClear is TRUE return TPM_AREA_LOCKED

13.If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of TPM_STCLEAR_DATA -> 
PCR[]

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoWrite

b. Compare P1 to D1 -> pcrInfoWrite -> digestAtRelease return TPM_WRONGPCRVAL 
on mismatch

14.If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

15.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE
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c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

e. If NV1_INCREMENTED is TRUE

i. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1

16.Set D1 -> bReadSTClear to FALSE

17.Return TPM_SUCCESS
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20.3 TPM_NV_WriteValueAuth
Start of informative comment:
This command writes to a previously defined area. The area must require authorization to 
write. Use this command when authorization other than the owner authorization is to be 
used. Otherwise, use TPM_NV_WriteValue.

The Part 2 ordinal table indicates that TPM_NV_WriteValueAuth requires an owner present. 
This is normative, although it was a mistake.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the chunk

6 4 4S 4 UINT32 dataSize The size of the data area

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for NV element authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValueAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE NonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Actions
1. Locate  and set D1 to the TPM_NV_DATA_AREA that  corresponds to  nvIndex,  return 

TPM_BADINDEX on error
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2. If  D1  ->  attributes  does  not  specify  TPM_NV_PER_AUTHWRITE  then  return 
TPM_AUTH_CONFLICT

3. Validate authValue using D1 -> authValue, return TPM_AUTHFAIL on error

4. Check  that  D1  ->  pcrInfoWrite  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

5. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

6. If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoWrite

b. Compare P1 to digestAtRelease return TPM_WRONGPCRVAL on mismatch

7. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED 

8. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED

9. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 -> bWriteSTClear is TRUE return TPM_AREA_LOCKED

10.If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

11.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

12.Set D1 -> bReadSTClear to FALSE

13.Return TPM_SUCCESS
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20.4 TPM_NV_ReadValue
Start of informative comment:
Read a value from the NV store. This command uses optional owner authentication.

Action 1 indicates that if the NV area is not locked then reading of the NV area continues 
without ANY authorization. This is intentional, and allows a platform manufacturer to set 
the NV areas, read them back, and then lock them all without having to install a TPM 
owner.

Certain platform manufacturers or software might require specific error handling in Action 
20.4.

Owner authorization is not required when nvLocked is FALSE.  If the host does send owner 
authorization,  Action  20.4 indicates  that  it  should  be  correct,  since  some  TPM 
implementations may validate it.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the area

6 4 4S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_NV_ReadValue

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data to set the area to

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs
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3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Actions
1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks are 

ignored.

a. Ignored checks include physical presence, owner authorization, PCR, bReadSTClear, 
locality, TPM_NV_PER_OWNERREAD, disabled and deactivated.

b. TPM_NV_PER_AUTHREAD is not ignored.

c. If ownerAuth is present, the TPM MAY check the authorization HMAC.

2. Set D1 a TPM_NV_DATA_AREA structure to the area pointed to by nvIndex, if not found 
return TPM_BADINDEX

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0]

3. If TPM_PERMANENT_FLAGS -> nvLocked is TRUE

a. If D1 -> permission -> TPM_NV_PER_OWNERREAD is TRUE

i. If TPM_PERMANENT_FLAGS -> disable is TRUE, return TPM_DISABLED

ii. If TPM_STCLEAR_FLAGS -> deactivated is TRUE, return TPM_DEACTIVATED

b. If D1 -> permission -> TPM_NV_PER_OWNERREAD is FALSE

i. If  TPM_PERMANENT_FLAGS  ->  disable  is  TRUE,  the  TPM  MAY  return 
TPM_DISABLED

ii. If  TPM_STCLEAR_FLAGS  ->  deactivated  is  TRUE,  the  TPM  MAY  return 
TPM_DEACTIVATED

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If D1 -> TPM_NV_PER_OWNERREAD is FALSE return TPM_AUTH_CONFLICT

b. Validate command and parameters using TPM Owners authentication on error return 
TPM_AUTHFAIL

5. Else

a. If D1 -> TPM_NV_PER_AUTHREAD is TRUE return TPM_AUTH_CONFLICT

b. If D1 -> TPM_NV_PER_OWNERREAD is TRUE return TPM_AUTH_CONFLICT

6. Check  that  D1  ->  pcrInfoRead  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

7. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

8. If D1 -> TPM_NV_PER_READ_STCLEAR then
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a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

9. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoRead

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 
mismatch

10.If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to NULL (output parameter dataSize to 0)

11.Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

i. This includes partial reads of TPM_NV_INDEX_DIR.

12.Return TPM_SUCCESS
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20.5 TPM_NV_ReadValueAuth
Start of informative comment:
This command requires that the read be authorized by a value set with the blob.

The Part 2 ordinal table indicates that TPM_NV_ReadValueAuth requires an owner present. 
This is normative, although it was a mistake.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UNIT32 offset The offset from the data area

6 4 5S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle authThe auth handle for the NV element authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL authContinueSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA authHmac HMAC key: nv element authorization

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_ReadValueAuth

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data

6 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE authLastNonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL authContinueSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA authHmacOut HMAC key: nv element authorization

Actions
1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, on error 

return TPM_BADINDEX 
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2. If D1 -> TPM_NV_PER_AUTHREAD is FALSE return TPM_AUTH_CONFLICT

3. Validate authHmac using D1 -> authValue on error return TPM_AUTHFAIL

4. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 
asserted if not return TPM_BAD_PRESENCE

5. Check  that  D1  ->  pcrInfoRead  ->  localityAtRelease  for  TPM_STANY_DATA  -> 
localityModifier is TRUE

a. For example if  TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

6. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 
pcrInfoRead

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 
mismatch

7. If D1 specifies TPM_NV_PER_READ_STCLEAR then

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

8. If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to all zeros

9. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

10.Return TPM_SUCCESS
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21. Session Management
Start of informative comment:
Three TPM_RT_CONTEXT session resources located in TPM_STANY_DATA work together to 
control session save and load: contextNonceSession, contextCount, and contextList[].

All three MUST initialized at TPM_Startup(ST_CLEAR) and TPM_Startup(ST_DEACTIVATED) 
and  MAY  be  initialized  at  TPM_Startup(ST_STATE).   Initializing  invalidates  all  saved 
sessions.  They MAY be restored by TPM_Startup(ST_STATE).  This case would allow saved 
sessions  to  be  loaded.   The  actual  ST_STATE  operation  is  reported  by  the 
TPM_RT_CONTEXT startup effect.

TPM_SaveContext creates a contextBlob containing an encrypted contextNonceSession.  The 
nonce is checked by TPM_LoadContext.  So initializing contextNonceSession invalidates all 
saved contexts.  The nonce is large and protected, making a replay infeasible.

The contextBlob also contains a public but protected contextCount.  The count increments 
for each saved contextBlob.  The TPM also saves contextCount in contextList[].  The TPM 
validates  contextBlob  against  the  contextList[]  during  TPM_LoadContext.  Since  the 
contextList[] is finite, it limits the number of valid saved sessions.  Since the contextCount 
cannot be allowed to wrap, it limits the total number of saved sessions.

After a contextBlob is loaded, its contextCount entry is removed from contextList[].  This 
releases space in the context list for future entries.  It also invalidates the contextBlob.  So a 
saved contextBlob can be loaded only once.

TPM_FlushSpecific can also specify a contextCount to be removed from the contextList[], 
allowing invalidation of an individual contextBlob.  This is different from TPM_FlushSpecific 
specifying a session handle, which invalidates a loaded session, not a saved contextBlob.

End of informative comment.

21.1 TPM_KeyControlOwner
Start of informative comment:
This command controls some attributes of keys that are stored within the TPM key cache.

OwnerEvict:  If  this bit  is  set to true, this  key remains in the TPM non-volatile  storage 
through all TPM_Startup events. The only way to evict this key is for the TPM Owner to 
execute this command again,  setting the owner control  bit  to  false  and then executing 
TPM_FlushSpecific.

The key handle does not reference an authorized entity and is not validated.

The check for two remaining key slots ensures that users can load the two keys required to 
execute many commands.  Since only the owner can flush owner evict keys, non-owner 
commands could be blocked if this test was not performed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC Type Name Description
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# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KeyControlOwner

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key.

5 <> 2S <> TPM_PUBKEY pubKey The public key associated with the loaded key

6 4 3S 4 TPM_KEY_CONTROL bitName The name of the bit to be modified

7 1 4S 1 BOOL bitValue The value to set the bit to

8 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

9 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 20 TPM_AUTHDATA ownerAuth HMAC authorization: key ownerAuth

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_KeyControlOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM.

3H1 20 TPM_NONCE nonceOdd Nonce generated by system 

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC authorization: key ownerAuth

Description
1. Set an internal bit within the key cache that controls some attribute of a loaded key.

Actions
1. Validate  the  AuthData  using  the  owner  authentication  value,  on  error  return 

TPM_AUTHFAIL

2. Validate that keyHandle refers to a loaded key, return TPM_INVALID_KEYHANDLE on 
error.

3. Validate that pubKey matches the key held by the TPM pointed to by keyHandle, return 
TPM_BAD_PARAMETER on mismatch

a. This check is added so that virtualization of the keyHandle does not result in attacks, 
as the keyHandle is not associated with an authorization value

4. Validate that bitName is valid, return TPM_BAD_MODE on error.

5. If bitName == TPM_KEY_CONTROL_OWNER_EVICT
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a. If bitValue == TRUE

i. Verify that after this operation at least two key slots will be present within the 
TPM that can store any type of key both of which do NOT have the OwnerEvict bit 
set, on error return TPM_NOSPACE

ii. Verify that for this key handle, parentPCRStatus is FALSE and isVolatile is 
FALSE.  Return TPM_BAD_PARAMETER on error.

iii. Set ownerEvict within the internal key storage structure to TRUE.

b. Else if bitValue == FALSE

i. Set ownerEvict within the internal key storage structure to FALSE.

6. Return TPM_SUCCESS
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21.2 TPM_SaveContext
Start of informative comment:
TPM_SaveContext saves a loaded resource outside the TPM. After successful execution of 
the command, the TPM automatically releases the internal memory for sessions but leaves 
keys in place.

There is no assumption that a saved context blob is stored in a safe, protected area. Since 
the context blob can be loaded at any time, do not rely on TPM_SaveContext to restrict  
access to an entity such as a key. If use of the entity should be restricted, means such as 
authorization secrets or PCR’s should be used.

In general, TPM_SaveContext can save a transport session.  However, it cannot save an 
exclusive  transport  session,  because  any  ordinal  other  than  TPM_ExecuteTransport 
terminates the exclusive transport session.  This action prevents the exclusive transport 
session from being saved and reloaded while intervening commands are hidden from the 
transport log.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 TPM_HANDLE handle Handle of the resource being saved. 

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being saved

6 16 3S 16 BYTE[16] label Label for identification purposes

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 3S 4 UINT32 contextSize The actual size of the outgoing context blob

5 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Description
1. The caller of the function uses the label field to add additional sequencing, anti-replay or 

other items to the blob. The information does not need to be confidential but needs to be 
part of the blob integrity.
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Actions
1. Map V1 to TPM_STANY_DATA

2. Validate  that  handle  points  to  resource  that  matches  resourceType,  return 
TPM_INVALID_RESOURCE on error

3. Validate  that  resourceType  is  a  resource  from  the  following  list  if  not  return 
TPM_INVALID_RESOURCE

a. TPM_RT_KEY

b. TPM_RT_AUTH

c. TPM_RT_TRANS

d. TPM_RT_DAA_TPM

4. Locate the correct nonce

a. If resourceType is TPM_RT_KEY

i. If TPM_STCLEAR_DATA -> contextNonceKey is all zeros 

(1) Set TPM_STCLEAR_DATA -> contextNonceKey to the next value from 
the TPM RNG 

ii. Map N1 to TPM_STCLEAR_DATA -> contextNonceKey

iii. If  the  key  has  TPM_KEY_CONTROL_OWNER_EVICT  set  then  return 
TPM_OWNER_CONTROL

b. Else

i. If V1 -> contextNonceSession is all zeros

(1) Set V1 -> contextNonceSession to the next value from the TPM RNG

ii. Map N1 to V1 -> contextNonceSession

5. Set K1 to TPM_PERMANENT_DATA -> contextKey

6. Create R1 by putting the sensitive  part  of  the resource pointed to by handle into a 
structure. The structure is a TPM manufacturer option. The TPM MUST ensure that ALL 
sensitive information of the resource is included in R1.

7. Create C1 a TPM_CONTEXT_SENSITIVE structure

a. C1 forms the inner encrypted wrapper for the blob. All saved context blobs MUST 
include  a  TPM_CONTEXT_SENSITIVE  structure  and  the  TPM_CONTEXT_SENSITIVE 
structure MUST be encrypted.

b. Set C1 -> contextNonce to N1

c. Set C1 -> internalData to R1

8. Create B1 a TPM_CONTEXT_BLOB

a. Set B1 -> tag to TPM_TAG_CONTEXTBLOB

b. Set B1 -> resourceType to resourceType

c. Set B1 -> handle to handle

d. Set B1 -> integrityDigest to all zeros
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e. Set B1 -> label to label

f. Set B1 -> additionalData to information determined by the TPM manufacturer. This 
data will help the TPM to reload and reset context. This area MUST NOT hold any data 
that is sensitive (symmetric IV are fine, prime factors of an RSA key are not). 

i. For OSAP sessions and for DSAP sessions attached to keys, the hash of the 
entity MUST be included in additionalData

g. Set B1 -> additionalSize to the size of additionalData

h. Set B1 -> sensitiveSize to the size of C1

i. Set B1 -> sensitiveData to C1

9. If resourceType is TPM_RT_KEY

a. Set B1 -> contextCount to 0

10.Else

a. If V1 -> contextCount > 232-2 then

i. Return with TPM_TOOMANYCONTEXTS

b. Else

i. Validate that the TPM can still manage the new count value

(1) If the distance between the oldest saved context and the contextCount 
is too large return TPM_CONTEXT_GAP

ii. Find contextIndex such that V1 -> contextList[contextIndex] equals 0. If not 
found exit with TPM_NOCONTEXTSPACE

iii. Increment V1 -> contextCount by 1

iv. Set V1-> contextList[contextIndex] to V1 -> contextCount

v. Set B1 -> contextCount to V1 -> contextCount

c. The  TPM  MUST  invalidate  all  information  regarding  the  resource  except  for 
information needed for reloading

11.Calculate  B1  ->  integrityDigest  the  HMAC  of  B1  using  TPM_PERMANENT_DATA  -> 
tpmProof as the secret

12.Create E1 by encrypting C1 using K1 as the key

a. Set B1 -> sensitiveSize to the size of E1

b. Set B1 -> sensitiveData to E1

13.Set contextSize to the size of B1

14.Return B1 in contextBlob
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21.3 TPM_LoadContext
Start of informative comment:
TPM_LoadContext loads into the TPM a previously saved context. The command returns a 
handle. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE entityHandle The handle the TPM MUST use to locate the entity tied to the OSAP/DSAP 
session

5 1 2S 1 BOOL keepHandle Indication if the handle MUST be preserved

6 4 3S 4 UINT32 contextSize The size of the following context blob.

7 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE handle The handle assigned to the resource after it has been successfully loaded.

Actions
1. Map contextBlob to B1, a TPM_CONTEXT_BLOB structure

2. Map V1 to TPM_STANY_DATA

3. Create  M1  by  decrypting  B1  ->  sensitiveData  using  TPM_PERMANENT_DATA  -> 
contextKey

4. Create  C1 and  R1  by  splitting  M1 into  a  TPM_CONTEXT_SENSITIVE structure  and 
internal resource data

5. Check contextNonce

a. If B1 -> resourceType is NOT TPM_RT_KEY

i. If  C1  ->  contextNonce  does  not  equal  V1  ->  contextNonceSession  return 
TPM_BADCONTEXT
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ii. Validate that the resource pointed to by the context is loaded (i.e. for OSAP the 
key  referenced  is  loaded  and  DSAP  connected  to  the  key)  return 
TPM_RESOURCEMISSING

(1) For OSAP sessions and for DSAP sessions attached to keys, the TPM 
MUST validate that the hash of the entity matches the entity held by the TPM 

(2) For OSAP and DSAP sessions referring to a key, verify that entityHandle 
identifies  the  key  linked  to  this  OSAP/DSAP  session,  if  not  return 
TPM_BAD_HANDLE.

b. Else

i. If C1 -> internalData -> parentPCRStatus is FALSE and C1 -> internalData -> 
isVolatile is FALSE

(1) Ignore C1 -> contextNonce

ii. else

(1) If  C1  ->  contextNonce  does  not  equal  TPM_STCLEAR_DATA  -> 
contextNonceKey return TPM_BADCONTEXT

6. Validate the structure

a. Set H1 to B1 -> integrityDigest

b. Set B1 -> integrityDigest to all zeros

c. Copy M1 to B1 -> sensitiveData

d. Create H2 the HMAC of B1 using TPM_PERMANENT_DATA -> tpmProof as the HMAC 
key

e. If H2 does not equal H1 return TPM_BADCONTEXT

7. If keepHandle is TRUE

a. Set handle to B1 -> handle 

b. If the TPM is unable to restore the handle the TPM MUST return TPM_BAD_HANDLE

8. Else

a. The TPM SHOULD attempt to restore the handle but if not possible it MAY set the 
handle to any valid for B1 -> resourceType

9. If B1 -> resourceType is NOT TPM_RT_KEY

a. Find  contextIndex  such  that  V1  ->  contextList[contextIndex]  equals  B1  -> 
TPM_CONTEXT_BLOB -> contextCount

b. If not found then return TPM_BADCONTEXT

c. Set V1 -> contextList[contextIndex] to 0

10.Process B1 to return the resource back into TPM use
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22. Eviction
Start of informative comment:
The TPM has numerous resources held inside of the TPM that may need eviction. The need 
for eviction occurs when the number or resources in use by the TPM exceed the available 
space. For resources that are hard to reload (i.e. keys tied to PCR values) the outside entity 
should first perform a context save before evicting items.

In version 1.1 there were separate commands to evict separate resource types. This new 
command set uses the resource  types defined for  context saving and creates a generic 
command that will evict all resource types.

End of informative comment.
The TPM MUST NOT flush the EK or SRK using this command.

Version 1.2 deprecates the following commands:

● TPM_Terminate_Handle

● TPM_EvictKey

● TPM_Reset
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22.1 TPM_FlushSpecific
Start of informative comment:
TPM_FlushSpecific flushes from the TPM a specific handle.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

4 4 TPM_HANDLE handle The handle of the item to flush

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being flushed

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

Description
TPM_FlushSpecific releases the resources associated with the given handle. 

Actions
1. If resourceType is TPM_RT_CONTEXT

a. The handle for a context is not a handle but the "context count" value. The TPM uses 
the  "context  count"  value  to  locate  the proper  contextList  entry  and sets R1 to the 
contextList entry

2. Else if resourceType is TPM_RT_KEY

a. Set R1 to the key pointed to by handle

b. If R1 -> ownerEvict is TRUE return TPM_KEY_OWNER_CONTROL

3. Else if resourceType is TPM_RT_AUTH

a. Set R1 to the authorization session pointed to by handle

4. Else if resourceType is TPM_RT_TRANS

a. Set R1 to the transport session pointed to by handle

5. Else if resourceType is TPM_RT_DAA_TPM
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a. Set R1 to the DAA session pointed to by handle

6. Else return TPM_INVALID_RESOURCE

7. Validate  that  R1 determined by resourceType and handle points to a valid allocated 
resource.  Return TPM_BAD_PARAMETER on error.

8. Invalidate R1 and all internal resources allocated to R1

a. Resources include authorization sessions
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23. Timing Ticks
Start of informative comment:
The TPM timing ticks are always available for use. The association of timing ticks to actual 
time is a protocol that occurs outside of the TPM. See the design document for details.

The setting of the clock type variable is a one time operation that allows the TPM to be 
configured to the type of platform that is installed on. 

The ability for the TPM to continue to increment the timer ticks across power cycles of the 
platform is a TPM and platform manufacturer decision.

End of informative comment.

23.1 TPM_GetTicks
Start of informative comment:
This command returns the current tick count of the TPM.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

4 32 3S 32 TPM_CURRENT_TICKS currentTime The current time held in the TPM

Description
This command returns the current time held in the TPM. It is the responsibility of the  
external system to maintain any relation between this time and a UTC value or local real 
time value.

Actions
1. Set T1 to the internal TPM_CURRENT_TICKS structure

2. Return T1 as currentTime.
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23.2 TPM_TickStampBlob
Start of informative comment:
This command applies a time stamp to the passed blob. The TPM makes no representation 
regarding the blob merely that the blob was present at the TPM at the time indicated.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti replay value added to signature

6 20 3S 20 TPM_DIGEST digestToStamp The digest to perform the tick stamp on

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the use of keyHandle. 
HMAC key: key.usageAuth
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 32 3S 32 TPM_CURRENT_TICKS currentTicks The current time according to the TPM

5 4 4S 4 UINT32 sigSize The length of the returned digital signature

6 <> 5S <> BYTE[ ] sig The resulting digital signature.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth

Description
The function performs a digital signature on the hash of digestToStamp and the current tick 
count.

It is the responsibility of the external system to maintain any relation between tick count 
and a UTC value or local real time value.

Actions
1. The TPM validates the AuthData to use the key pointed to by keyHandle. 

2. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  TPM_KEY_IDENTITY  or 
TPM_KEY_LEGACY, if not return the error code TPM_INVALID_KEYUSAGE.

3. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

4. If TPM_STCLEAR_DATA -> currentTicks is not properly initialized

a. Initialize the TPM_STCLEAR_DATA -> currentTicks

5. Create T1, a TPM_CURRENT_TICKS structure.

6. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set H1 -> fixed to “TSTP”

b. Set H1 -> replay to antiReplay

c. Create H2 the concatenation of digestToStamp || T1

d. Set H1 -> dataLen to the length of H2

e. Set H1 -> data to H2
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7. The TPM computes the signature, sig,  using the key referenced by keyHandle, using 
SHA-1 of H1 as the information to be signed

8. The TPM returns T1 as currentTicks parameter
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24. Transport Sessions

See Part 1 for rationale and security issues.

24.1 TPM_EstablishTransport
Start of informative comment:
This establishes the transport session. Depending on the attributes specified for the session 
this may establish shared secrets, encryption keys, and session logs. The session will be in 
use for by the TPM_ExecuteTransport command.

The only restriction on what can happen inside of a transport session is that there is no 
“nesting” of sessions. It is permissible to perform operations that delete internal state and 
make the TPM inoperable. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_KEY_HANDLE encHandle The handle to the key that encrypted the blob

5 <> 2S <> TPM_TRANSPORT_PUBLIC transPublic The public information describing the transport session

6 4 3S 4 UINT32 secretSize The size of the secret Area

7 <> 4S <> BYTE[] secret The encrypted secret area

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: encKey.usageAuth
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_TRANSHANDLE transHandle The handle for the transport session

5 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 32 4S 32 TPM_CURRENT_TICKS currentTicks The current tick count 

7 20 5S 20 TPM_NONCE transNonceEven The even nonce in use for subsequent execute transport 

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth

Description
This  command establishes the  transport  sessions  shared secret.  The  encryption  of  the 
shared secret uses the public key of the key loaded in encKey.

Actions
1. If encHandle is TPM_KH_TRANSPORT then

a. If tag is NOT TPM_TAG_RQU_COMMAND return TPM_BADTAG

b. If  transPublic  ->  transAttributes  specifies  TPM_TRANSPORT_ENCRYPT  return 
TPM_BAD_SCHEME

c. If secretSize is not 20 return TPM_BAD_PARAM_SIZE

d. Set A1 to secret

2. Else

a. encHandle -> keyUsage MUST be TPM_KEY_STORAGE or TPM_KEY_LEGACY return 
TPM_INVALID_KEYUSAGE on error

b. If encHandle -> authDataUsage does not equal TPM_AUTH_NEVER and tag is NOT 
TPM_TAG_RQU_AUTH1_COMMAND return TPM_AUTHFAIL

c. Using  encHandle  ->  usageAuth  validate  the  AuthData  to  use  the  key  and  the 
parameters to the command

d. Create K1 a TPM_TRANSPORT_AUTH structure by decrypting secret using the key 
pointed to by encHandle

e. Validate K1 for tag

f. Set A1 to K1 -> authData
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3. If transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT

a. If  TPM_PERMANENT_FLAGS -> FIPS is true  and transPublic  -> algId is  equal  to 
TPM_ALG_MGF1 return TPM_INAPPROPRIATE_ENC

b. Check  if  the  transPublic  ->  algId  is  supported,  if  not  return 
TPM_BAD_KEY_PROPERTY

c. If transPublic -> algid is TPM_ALG_AESXXX, check that transPublic -> encScheme is 
supported, if not return TPM_INAPPROPRIATE_ENC

d. Perform any initializations necessary for the algorithm

4. Generate transNonceEven from the TPM RNG

5. Create T1 a TPM_TRANSPORT_INTERNAL structure

a. Ensure that the TPM has sufficient internal space to allocate the transport session, 
return TPM_RESOURCES on error

b. Assign a T1 -> transHandle value. This value is assigned by the TPM

c. Set T1 -> transDigest to all zeros

d. Set T1 -> transPublic to transPublic

e. Set T1-> transNonceEven to transNonceEven

f. Set T1 -> authData to A1

6. If TPM_STANY_DATA -> currentTicks is not properly initialized

a. Initialize the TPM_STANY_DATA -> currentTicks

7. Set currentTicks to TPM_STANY_DATA -> currentTicks 

8. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L1 a TPM_TRANSPORT_LOG_IN structure

i. Set L1 -> parameters to SHA-1 (ordinal || transPublic || secretSize || secret)

ii. Set L1 -> pubKeyHash to all zeros

iii. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L1)

b. Create L2 a TPM_TRANSPORT_LOG_OUT structure

i. Set  L2  ->  parameters  to  SHA-1  (returnCode  ||  ordinal  ||  locality  || 
currentTicks || transNonceEven)

ii. Set L2 -> locality to the locality of this command

iii. Set L2 -> currentTicks to currentTicks, this MUST be the same value that is 
returned in the currentTicks parameter

iv. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L2)

9. If  T1  ->  transPublic  ->  transAttributes  has  TPM_TRANSPORT_EXCLUSIVE  then  set 
TPM_STANY_FLAGS -> transportExclusive to TRUE

a. Execution  of  any  command  other  than  TPM_ExecuteTransport  or 
TPM_ReleaseTransportSigned targeting this transport session will cause the abnormal 
invalidation of this transport session transHandle
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b. The TPM gives no indication, other than invalidation of transHandle, that the session 
is terminated

10.Return T1 -> transHandle as transHandle
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24.2 TPM_ExecuteTransport
Start of informative comment:
Delivers a wrapped TPM command to the TPM where the TPM unwraps the command and 
then executes the command. 

TPM_ExecuteTransport  uses the same rolling nonce paradigm as other  authorized TPM 
commands.  The  even  nonces  start  in  TPM_EstablishTransport  and  change  on  each 
invocation of TPM_ExecuteTransport.

The only restriction on what can happen inside of a transport session is that there is no 
“nesting” of sessions. It is permissible to perform operations that delete internal state and 
make the TPM inoperable. 

Because, in general, key handles are not logged, a digest of the corresponding public key is 
logged.  In cases where  the  key  handle  is  logged (e.g.  TPM_OwnerReadInternalPub),  the 
public key is also logged.

The  wrapped  command  is  audited  twice  –  once  according  to  the  actions  of 
TPM_ExecuteTransport  and  once  within  the  wrapped  command  itself  according  to  the 
special rules for auditing a command wrapped in an encrypted transport session.

The method of incrementing the symmetric key counter value is different from that used by 
some standard crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter 
value.  TPM users should be aware of this to avoid errors when the counter wraps.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 4 2S 4 UINT32 wrappedCmdSize Size of the wrapped command

5 <> 3S <> BYTE[] wrappedCmd The wrapped command

6 4 TPM_TRANSHANDLE transHandle The transport session handle

2H1 20 TPM_NONCE transLastNonceEven Even nonce previously generated by TPM

7 20 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueTransSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the ExecuteTransport command. This does not reflect 
the status of wrapped command.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 8 3S 8 UINT64 currentTicks The current ticks when the command was executed 

5 4 4S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 4 5S 4 UINT32 wrappedRspSize Size of the wrapped response

7 <> 6S <> BYTE[] wrappedRsp The wrapped response

8 20 2H1 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM 

3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueTransSession The continue use flag for the session

10 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

Description
1. This command executes a TPM command using the transport session.

2. Prior to execution of the wrapped command (action 11 below) failure of the transport 
session MUST have no effect on the resources referenced by the wrapped command. The 
exception is when the TPM goes into failure mode and return FAILED_SELFTEST for all 
subsequent commands.

3. After execution of the wrapped command, failure  of  the transport session MAY NOT 
affect wrapped command resources. That is, the TPM is not required to clean up the 
effects  of  the  wrapped  command.   Sessions  and  keys  MAY  remain  loaded.   It  is 
understood that the transport session will be returning an error code and not reporting 
any session nonces. Therefore, wrapped sessions are no longer useful to the caller.  It is 
the responsibility of the caller to clean up the result of the wrapped command. 

4. Execution of the wrapped command (action 11) SHOULD have no effect on the transport 
session. 

a. The  wrapped  command  SHALL  use  no  resources  of  the  transport  session,  this 
includes authorization sessions

b. If  the  wrapped command execution  returns  an  error  (action  11  below)  then the 
sessions for TPM_ExecuteTransport still operate properly.

c. The exception to  this is  when the wrapped command causes the TPM to go into 
failure mode and return TPM_FAILSELFTEST for all subsequent commands

5. Field layout

a. Notation

i. et indicates the outer TPM_ExecuteTransport command and response
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ii. w  indicates  the  inner  command  and  response  that  is  wrapped  by  the 
TPM_ExecuteTransport.

iii. (o)  indicates  optional  parameters  that  may  or  may  not  be  present  in  the  wrapped 
command.

b. Command representation

c. ******************************************************************************

d. TAGet | LENet | ORDet | wrappedCmdSize | wrappedCmd | AUTHet

e. ******************************************************************************

f. wrappedCmd looks like the following

g. ****************************************************************************************

h. TAGw | LENw | ORDw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o)

i. ****************************************************************************************

j.                                                                | LEN1   |

k.                                                                |   E1     | (encrypted)

l.                                                                |   C1     | (decrypted)

m. Response representation

n. *******************************************************************************

o. TAGet | LENet | RCet | … | wrappedRspSize | wrappedRsp | AUTHet

p. *******************************************************************************

q. wrappedRsp looks like the following

r. *************************************************************************************

s. TAGw | LENw | RCw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o)

t. *************************************************************************************

u.                                                            |  LEN2   |

v. |   -------------------------- C2  --------------------------------------------------  |

w.                                                            |   S2      | (decrypted)

x.                                                            |   E2      | (encrypted)

y. The only command and response parameter that is possibly encrypted is DATAw.

6. Additional DATAw comments

a. For TPM_FlushSpecific and TPM_SaveContext

i. The DATAw part of these commands does not include the handle.

(1) It is understood that encrypting the resourceType prevents a determination of 
the handle type.

ii. If the resourceType is TPM_RT_KEY, then the public key MUST be logged.

b. For TPM_DAA_Join and TPM_DAA_Sign
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i. The DATAw part of these commands does not include the input handle.  The 
output handle from stage 0 is included in DATAW.

c. For TPM_LoadKey2

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 
logged by the outgoing transport.

d. For TPM_LoadKey

i. The outgoing handle  is  part  of  the outgoing DATAw and is encrypted and 
logged.

e. For TPM_LoadContext

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 
logged by the outgoing transport.

(1) It is understood that encrypting the contextBlob prevents a determination of 
the handle type.

f. For TPM_OIAP and TPM_OSAP, no input or output parameters are encrypted 
or logged.

i. For  TPM_OSAP,  the  public  key  MUST  NOT  be  logged.   During  a  logged 
transport  session,  when  a  wrapped  command  uses  the  key,  the  public  key 
referenced by the key handle will be logged in the transport.  Thus, the audit trail  
is established for any key usage at that time.

g. For TPM_DSAP

i. For input, only entityValue is encrypted and logged.

ii. For output no parameters are encrypted or logged.

7. TPM_ExecuteTransport  returns  an  implementation  defined  result  when the  wrapped 
command would cause termination of the transport session.  Implementation defined 
possibilities  include  but  are  not  limited  to:  the  wrapped  command  may  execute, 
completely, partially, or not at all, the transport session may or may not be terminated, 
continueTransSession may not be processed or returned correctly, and an error may or 
may not be returned.  The wrapped commands include:

a. TPM_FlushSpecific, TPM_SaveContext targeting the transport session

b. TPM_OwnerClear, TPM_ForceClear, TPM_RevokeTrust

Actions
1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Parse wrappedCmd

a. Set TAGw, LENw, and ORDw to the parameters from wrappedCmd

b. Set E1 to DATAw

i. This  pointer  is  ordinal  dependent  and  requires  the  execute  transport 
command to parse wrappedCmd

c. Set LEN1 to the length of DATAw
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i. DATAw always ends at the start of AUTH1w if AUTH1w is present

3. If LEN1 is less than 0, or if ORDw is unknown, unimplemented, or cannot be determined

a. Return TPM_BAD_PARAMETER

4. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1

i. Using the MGF1 function, create string G1 of length LEN1. The inputs to the 
MGF1 are transLastNonceEven, transNonceOdd, “in”, and T1 -> authData. These 
four values concatenated together form the Z value that is the seed for the MGF1.

ii. Create C1 by performing an XOR of G1 and wrappedCmd starting at E1.

b. If the encryption algorithm requires an IV or CTR, calculate the IV or CTR value

i. Using the MGF1 function, create string IV1 or CTR1 with a length set by the 
block  size  of  the  encryption  algorithm.  The  inputs  to  the  MGF1  are 
transLastNonceEven, transNonceOdd, and “in”. These three values concatenated 
together  form  the  Z  value  that  is  the  seed  for  the  MGF1.  Note  that  any 
terminating characters within the string “in” are ignored, so a total of 42 bytes are 
hashed.

ii. The symmetric key is taken from the first bytes of T1 -> authData.

iii. Decrypt DATAw and replace the DATAw area of E1 creating C1

c. TPM_OSAP, TPM_OIAP have no parameters encrypted

d. TPM_DSAP has special rules for parameter encryption

5. Else

a. Set C1 to the DATAw area E1 of wrappedCmd

6. Create H1 the SHA-1 of (ORDw || C1). 

a. C1 MUST point at the decrypted DATAw area of E1

b. The  TPM  MAY  use  this  calculation  for  both  execute  transport  authorization, 
authorization of the wrapped command and transport log creation

7. Validate the incoming transport session authorization

a. Set inParamDigest to SHA-1 (ORDet || wrappedCmdSize || H1)

b. Calculate the HMAC of (inParamDigest || transLastNonceEven || transNonceOdd || 
continueTransSession) using T1 -> authData as the HMAC key

c. Validate transAuth, on errors return TPM_AUTHFAIL

8. If TPM_ExecuteTransport requires auditing

a. Create TPM_AUDIT_EVENT_IN using H1 as the input parameter digest and update 
auditDigest

b. On any error return TPM_AUDITFAIL_UNSUCCESSFUL

9. If ORDw is from the list of following commands return TPM_NO_WRAP_TRANSPORT

a. TPM_EstablishTransport
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b. TPM_ExecuteTransport

c. TPM_ReleaseTransportSigned

10.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L2 a TPM_TRANSPORT_LOG_IN structure

b. Set L2 -> parameters to H1

c. If ORDw is a command with no key handles

i. Set L2 -> pubKeyHash to all zeros

d. If ORDw is a command with one key handle

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the key handle.

ii. Set L2 -> pubKeyHash to SHA-1 (K2)

e. If ORDw is a command with two key handles

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the first key handle.

ii. Create K3 the hash of the TPM_STORE_PUBKEY structure of the key pointed 
to by the second key handle.

iii. Set L2 -> pubKeyHash to SHA-1 (K2 || K3)

f. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L2)

g. If  ORDw  is  a  command  with  key  handles,  and  the  key  is  not  loaded,  return 
TPM_INVALID_KEYHANDLE.

11.Send the wrapped command to the normal TPM command parser, the output is C2 and 
the return code is RCw

a. If ORDw is a command that is audited then the TPM MUST perform the input and 
output audit of the command as part of this action.

b. The TPM MAY use H1 as the data value in the authorization and audit calculations 
during the execution of C1

12.Set CT1 to TPM_STANY_DATA -> currentTicks -> currentTicks and return CT1 in the 
currentTicks output parameter

13.Calculate S2 the pointer to the DATAw area of C2

a. Calculate LEN2 the length of S2 according to the same rules that calculated LEN1

14.Create H2 the SHA-1 of (RCw || ORDw || S2)

a. The TPM MAY use this calculation for execute transport authorization and transport 
log out creation

15.Calculate the outgoing transport session authorization

a. Create the new transNonceEven for the output of the command

b. Set outParamDigest to SHA-1 (RCet || ORDet || TPM_STANY_DATA -> currentTicks 
-> currentTicks || locality || wrappedRspSize || H2)
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c. Calculate  transAuth,  the  HMAC  of  (outParamDigest  ||  transNonceEven  || 
transNonceOdd || continueTransSession) using T1 -> authData as the HMAC key

16.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L3 a TPM_TRANSPORT_LOG_OUT structure

b. Set L3 -> parameters to H2

c. Set L3 -> currentTicks to TPM_STANY_DATA -> currentTicks

d. Set L3 -> locality to TPM_STANY_DATA -> localityModifier

e. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L3)

17.If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1

i. Using the MGF1 function, create string G2 of length LEN2. The inputs to the 
MGF1 are transNonceEven, transNonceOdd, “out”,  and T1 -> authData. These 
four values concatenated together form the Z value that is the seed for the MGF1.

ii. Create E2 by performing an XOR of G2 and C2 starting at S2.

b. Else

i. Create IV2 or CTR2 using the same algorithm as IV1 or CTR1 with the input 
values transNonceEven,  transNonceOdd,  and “out”.  Note  that  any terminating 
characters within the string “out” are ignored, so a total of 43 bytes are hashed.

ii. The symmetric key is taken from the first bytes of T1 -> authData

iii. Create E2 by encrypting C2 starting at S2

18.Else

a. Set E2 to the DATAw area S2 of wrappedRsp

19.If continueTransSession is FALSE

a. Invalidate all session data related to transHandle

20.If TPM_ExecuteTranport requires auditing

a. Create  TPM_AUDIT_EVENT_OUT  using  H2  for  the  parameters  and  update  the 
auditDigest

b. On  any  errors  return  TPM_AUDITFAIL_SUCCESSFUL  or 
TPM_AUDITFAIL_UNSUCCESSFUL depending on RCw

21.Return C2 but with S2 replaced by E2 in the wrappedRsp parameter
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24.3 TPM_ReleaseTransportSigned
Start of informative comment:
This command completes the transport session. If logging for this session is turned on, then 
this command returns a digital signature of the hash of all operations performed during the 
session. 

This  command  serves  no  purpose  if  logging  is  turned  off,  and  results  in  an  error  if  
attempted.

This  command uses two authorization sessions,  the key that  will  sign the log  and the 
authorization from the session. Having the session authorization proves that the requestor 
that is signing the log is the owner of the session. If this restriction is not put in then an 
attacker can close the log and sign using their own key. 

The hash of the session log includes the information associated with the input phase of 
execution  of  the  TPM_ReleaseTransportSigned  command.  It  cannot  include  the  output 
phase information.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that will perform the signing

5 20 2S 20 TPM_NONCE antiReplay Value provided by caller for anti-replay protection

6 4 TPM_AUTHHANDLE authHandle The authorization session to use key

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA keyAuth The authorization session digest that authorizes the use of key. HMAC 
key: key -> usageAuth

10 4 TPM_TRANSHANDLE transHandle The transport session handle

2H2 20 TPM_NONCE transLastNonceEven Even nonce in use by execute Transport

11 20 3H2 20 TPM_NONCE transNonceOdd Nonce supplied by caller for transport session

12 1 4H2 1 BOOL continueTransSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA transAuth HMAC for transport session key: transHandle -> authData
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Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

5 32 4S 32 TPM_CURRENT_TICKS currentTicks The current ticks when the command executed

6 4 5S 4 UINT32 signSize The size of the signature area

7 <> 6S <> BYTE[] signature The signature of the digest

8 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM 

3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the session

10 20 TPM_AUTHDATA keyAuth HMAC: key -> usageAuth

11 20 2H2 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM 

3H2 20 TPM_NONCE transNonceOdd Nonce generated by caller

12 1 4H2 1 BOOL continueTransSession The continue use flag for the session

13 20 TPM_AUTHDATA transAuth HMAC: transHandle -> authData

Description
This command releases a transport session and signs the transport log

Actions
1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Validate  that  keyHandle  ->  sigScheme  is  TPM_SS_RSASSAPKCS1v15_SHA1  or 
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG.

3. Validate  that  keyHandle  ->  keyUsage  is  TPM_KEY_SIGNING,  if  not  return 
TPM_INVALID_KEYUSAGE

4. Using  key  ->  authData  validate  the  command  and  parameters,  on  error  return 
TPM_AUTHFAIL

5. Using transHandle -> authData validate the command and parameters, on error return 
TPM_AUTH2FAIL

6. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create A1 a TPM_TRANSPORT_LOG_OUT structure

b. Set A1 –> parameters to the SHA-1 (ordinal || antiReplay)

c. Set A1 -> currentTicks to TPM_STANY_DATA -> currentTicks 

d. Set A1 -> locality to the locality modifier for this command
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e. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || A1)

7. Else

a. Return TPM_BAD_MODE

8. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set H1 -> fixed to “TRAN”

b. Set H1 -> replay to antiReplay

c. Set H1 -> data to T1 -> transDigest

d. Sign SHA-1 hash of H1 using the key pointed to by keyHandle

9. Invalidate all session data related to T1

10.Set continueTransSession to FALSE

11.Return TPM_SUCCESS
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25. Monotonic Counter

25.1 TPM_CreateCounter
Start of informative comment:
This  command  creates  the  counter  but  does  not  select  the  counter.  Counter  creation 
assigns an AuthData value to the counter and sets the counters original start value. The 
original start value is the current internal base value plus one. Setting the new counter to 
the internal  base avoids attacks on the system that  are  attempting to  use old counter 
values.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 20 2S 20 TPM_ENCAUTH encAuth The encrypted auth data for the new counter

5 4 3s 4 BYTE label Label to associate with counter

7 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 20 TPM_AUTHDATA ownerAuth Authorization ownerAuth.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 4 3s 4 TPM_COUNT_ID countID The handle for the counter

5 10 4S 10 TPM_COUNTER_VALUE counterValue The starting counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Fixed value of FALSE

8 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: ownerAuth.

Description
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This command creates a new monotonic counter. The TPM MUST support a minimum of 4 
concurrent counters.

Actions
The TPM SHALL do the following:

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 
all of the incoming parameters. The authorization session MUST be OSAP or DSAP

2. Ignore continueAuthSession on input and set continueAuthSession to FALSE on output

3. Create a1 by decrypting encAuth according to the ADIP indicated by authHandle.

4. Validate that there is sufficient internal space in the TPM to create a new counter. If  
there is insufficient space, the command returns an error.

a. The TPM MUST provide storage for a1, TPM_COUNTER_VALUE, countID, and any 
other internal data the TPM needs to associate with the counter

5. Increment the max counter value

6. Set the counter to the max counter value

7. Set the counter label to label

8. Create a countID
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25.2 TPM_IncrementCounter
Start of informative comment:
This authorized command increments the indicated counter by one. Once a counter has 
been incremented then all subsequent increments must be for the same handle until  a 
successful TPM_Startup(ST_CLEAR) is executed.

The order for checking validation of the command parameters when no counter is active, 
keeps an attacker from creating a denial-of-service attack. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

4 4 2s 4 TPM_COUNT_ID countID The handle of a valid counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for counter authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth The authorization session digest that authorizes the use of countID. 
HMAC key: countID -> authData

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

5 10 3S 10 TPM_COUNTER_VALUE count The counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
countID -> authData

Description
This function increments the counter by 1.

The TPM MAY implement increment throttling to avoid burn problems

258 Level 2 Revision 116 28 February 2011
TCG Published

1206
1207
1208

5038
5039
5040
5041
5042
5043
5044
5045

5046

5047

5048
5049
5050

1209
1210



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Actions
1. If TPM_STCLEAR_DATA -> countID is 0

a. Validate that countID is a valid counter, return TPM_BAD_COUNTER on mismatch

b. Validate the command parameters using counterAuth

c. Set TPM_STCLEAR_DATA -> countID to countID

2. else

a. If TPM_STCLEAR_DATA -> countID does not equal countID

i. Return TPM_BAD_COUNTER

b. Validate the command parameters using counterAuth

3. Increments the counter by 1

4. Return new count value in count
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25.3 TPM_ReadCounter
Start of informative comment:
Reading the counter provides the caller with the current number in the sequence. 

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 4 2S 4 TPM_COUNT_ID countID ID value of the counter

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 10 3S 10 TPM_COUNTER_VALUE count The counter value

Description
This returns the current value for the counter indicated. The counter MAY be any valid 
counter.

Actions
1. Validate that countID points to a valid counter. Return TPM_BAD_COUNTER on error.

2. Return count
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25.4 TPM_ReleaseCounter
Start of informative comment:
This command releases a counter such that no reads or increments of the indicated counter 
will succeed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for countID authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce associated with countID

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth The authorization session digest that authorizes the use of countID. 
HMAC key: countID -> authData

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
countID -> authData

Actions
The TPM uses countID to locate a valid counter. 

1. Authenticate  the  command  and  the  parameters  using  the  AuthData  pointed  to  by 
countID. Return TPM_AUTHFAIL on error 

2. The  TPM  invalidates  all  internal  information  regarding  the  counter.  This  includes 
releasing countID such that any subsequent attempts to use countID will fail.

3. The TPM invalidates sessions
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a. MUST invalidate all OSAP sessions associated with the counter

b. MAY invalidate any other session

4. If TPM_STCLEAR_DATA -> countID equals countID, 

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value)
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25.5 TPM_ReleaseCounterOwner
Start of informative comment:
This command releases a counter such that no reads or increments of the indicated counter 
will succeed.

End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest that authorizes the inputs. HMAC key: 
ownerAuth

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth

Description
This invalidates all information regarding a counter.

Actions
1. Validate that ownerAuth properly authorizes the command and parameters

2. The TPM uses countID to locate a valid counter. Return TPM_BAD_COUNTER if  not 
found.
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3. The  TPM  invalidates  all  internal  information  regarding  the  counter.  This  includes 
releasing countID such that any subsequent attempts to use countID will fail.

4. The TPM invalidates sessions

a. MUST invalidate all OSAP sessions associated with the counter

b. MAY invalidate any other session

5. If TPM_STCLEAR_DATA -> countID equals countID, 

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value)
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26. DAA commands

26.1 TPM_DAA_Join
Start of informative comment:
TPM_DAA_Join is the process that establishes the DAA parameters in the TPM for a specific 
DAA issuing authority.

outputSize and outputData are always included in the outParamDigest.  This includes stage 
0, where the outputData contains the DAA session handle.

 End of informative comment.

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 TPM_HANDLE handle Session handle

5 1 2S 1 BYTE stage Processing stage of join

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of JOIN

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of JOIN

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 3S 4 UINT32 outputSize Size of outputData 

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.
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Description
This table summaries the input, output and saved data that is associated with each stage of 
processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad
0 DAA_count 

(used as # repetitions of stage 1)
NULL initialise Session Handle NULL

1 n0 signatureValue rekeying NULL n0

2 DAA_issuerSettings signatureValue issuer settings NULL NULL

3 DAA_count NULL DAA_join_uo,
DAA_join_u1

NULL NULL

4 DAA_generic_R0 DAA_generic_n P1=R0^f0 mod n NULL P1

5 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^f1) mod n NULL P2

6 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^u0) mod n NULL P3

7 DAA_generic_S1 DAA_generic_n U = P3*(S1^u1) mod n U NULL

8 NE NULL U2 U2 NULL

9 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

10 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

11 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

12 DAA_generic_S1 DAA_generic_n P4 = P3*(S1^r3) mod n P4 NULL

13 DAA_generic_gamma w w1 = w^q mod gamma NULL w

14 DAA_generic_gamma NULL E = w^f mod gamma E w

15 DAA_generic_gamma NULL r = r0 + (2^power0)*r1 mod q,
E1 = w^r mod gamma

E1 NULL

16 c1 NULL c = hash(c1 || NT) nt NULL

17 NULL NULL s0 = r0 + c*f0 s0 NULL

18 NULL NULL s1 = r1 + c*f1 s1 NULL

19 NULL NULL s2 = r2 + c*u0
 mod 2^power1

s2 NULL

20 NULL NULL s12 = r2 + c*u0
>> power1

c s12

21 NULL NULL s3 = r3 + c*u1 + s12 s3 NULL

22 u2 NULL v0 = u2 + u0 mod 2^power1
v10 = u2 + u0 >> power1

enc(v0) v10

23 u3 NULL V1 = u3 + u1 + v10 enc(v1) NULL

24 NULL NULL enc(DAA_tpmSpecific) enc(DAA_tpmSpecific) NULL
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Actions
A Trusted Platform Module that receives a valid TPM_DAA_Join command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Join input parameters.

2. Any error return results in the TPM invalidating all resources associated with the join

3. Constant values of 0 or 1 are 1 byte integers, stages affected are

a. 4(j), 5(j), 14(f), 17(e)

4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are

a. 9(i), 10(h), 11(h), 12(h), 15(f),15(g), 17(d), 18(d), 19(d), 20(d), 21(d)

Start of informative comment:
5. Variable DAA_Count

a. In stage 0, DAA_Count denotes the length of the RSA key chain,  which certifies the 
main DAA public key and which will be loaded in stage 1.  It also denotes the number of 
times stage 1 is executed.

b. In stage 3 the variable DAA_count denotes the actual DAA counter. It allows a DAA 
issuer to keep track of the number of times it has issued 'different' DAA credentials to 
the same platform. (The counter does not need to be equal to the actual number.)

End of informative comment.

Stages
0. If stage==0

c. Determine that sufficient resources are available to perform a TPM_DAA_Join.

i. The  TPM  MUST  support  sufficient  resources  to  perform  one  (1) 
TPM_DAA_Join/  TPM_DAA_Sign.  The  TPM  MAY  support  additional 
TPM_DAA_Join/ TPM_DAA_Sign sessions.

ii. The TPM may share internal resources between the DAA operations and other 
variable resource requirements:

iii. If there are insufficient resources within the stored key pool (and one or 
more keys need to be removed to permit the DAA operation to execute) return 
TPM_NOSPACE

iv. If there are insufficient resources within the stored session pool (and 
one or more authorization or transport sessions need to be removed to permit 
the DAA operation to execute), return TPM_RESOURCES.

d. Set all fields in DAA_issuerSettings = NULL

e. set all fields in DAA_tpmSpecific = NULL

f. set all fields in DAA_session = NULL

g. Set all fields in DAA_joinSession = NULL

h. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 
error TPM_DAA_INPUT_DATA0 on mismatch
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i. Verify that inputData0 > 0, and return error TPM_DAA_INPUT_DATA0 on mismatch

j. Set DAA_tpmSpecific -> DAA_count = inputData0

k. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

l. set DAA_session -> DAA_stage = 1

m. Assign session handle for TPM_DAA_Join

n. set outputData = new session handle

i. The handle in outputData is included the output HMAC.

o. return TPM_SUCCESS

6. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return TPM_DAA_TPM_SETTINGS on mismatch

c. Verify  that  sizeOf(inputData0)  ==  DAA_SIZE_issuerModulus  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

d. If DAA_session -> DAA_scratch == NULL:

i. Set DAA_session -> DAA_scratch = inputData0

ii. set DAA_joinSession -> DAA_digest_n0 = SHA-1(DAA_session -> DAA_scratch)

iii. set DAA_tpmSpecific -> DAA_rekey = SHA-1(tpmDAASeed || DAA_joinSession 
-> DAA_digest_n0) 

e. Else (If DAA_session -> DAA_scratch != NULL):

i. Set signedData = inputData0

ii. Verify that sizeOf(inputData1) ==  DAA_SIZE_issuerModulus  and return error 
TPM_DAA_INPUT_DATA1 on mismatch

iii. Set signatureValue = inputData1

iv. Use  the  RSA  key  ==  [DAA_session  ->  DAA_scratch]  to  verify  that 
signatureValue  is  a  signature  on  signedData  using 
TPM_SS_RSASSAPKCS1v15_SHA1 (RSA PKCS1.5 with SHA-1), and return error 
TPM_DAA_ISSUER_VALIDITY on mismatch

v. Set DAA_session -> DAA_scratch = signedData

f. Decrement DAA_tpmSpecific -> DAA_count by 1 (unity)

g. If DAA_tpmSpecific -> DAA_count == 0:

i. increment DAA_session -> DAA_stage by 1

h. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

i. set outputData = NULL
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j. return TPM_SUCCESS

7. If stage==2

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

c. Verify  that  sizeOf(inputData0)  ==  sizeOf(TPM_DAA_ISSUER)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

d. Set DAA_issuerSettings = inputData0. Verify that all fields in DAA_issuerSettings are 
present and return error TPM_DAA_INPUT_DATA0 if not.

e. Verify  that  sizeOf(inputData1)  ==  DAA_SIZE_issuerModulus  and  return  error 
TPM_DAA_INPUT_DATA1 on mismatch

f. Set signatureValue = inputData1

g. Set signedData = (DAA_joinSession -> DAA_digest_n0 ||DAA_issuerSettings)

h. Use the RSA key [DAA_session -> DAA_scratch] to verify that signatureValue is a 
signature on signedData using TPM_SS_RSASSAPKCS1v15_SHA1 (RSA PKCS1.5 with 
SHA-1),, and return error TPM_DAA_ISSUER_VALIDITY on mismatch

i. Set DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) 

j. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession)

k. Set DAA_session -> DAA_scratch = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS

8. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 
on mismatch 

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 
error TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_tpmSpecific -> DAA_count = inputData0

f. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u0

g. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u1

h. set outputData = NULL

i. increment DAA_session -> DAA_stage by 1
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j. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

k. return TPM_SUCCESS

9. If stage==4,

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_R0

i. Set n = DAA_generic_n

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q

k. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

l. Set DAA_session -> DAA_scratch = (X^f0) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

10.If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1
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g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_R1

i. Set n = DAA_generic_n

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

k. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

l. Set Z = DAA_session -> DAA_scratch

m. Set DAA_session -> DAA_scratch = Z*(X^f1) mod n

n. set outputData = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

11.If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_S0

i. Set n = DAA_generic_n

j. Set Z = DAA_session -> DAA_scratch

k. Set Y = DAA_joinSession -> DAA_join_u0

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

12.If stage==7
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a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Set X = DAA_generic_S1

i. Set n = DAA_generic_n

j. Set Y = DAA_joinSession -> DAA_join_u1

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. Set  DAA_session  ->  DAA_digest  to  the  SHA-1  (DAA_session  ->  DAA_scratch  || 
DAA_tpmSpecific -> DAA_count || DAA_joinSession -> DAA_digest_n0)

n. set outputData = DAA_session -> DAA_scratch

o. set DAA_session -> DAA_scratch = NULL

p. increment DAA_session -> DAA_stage by 1

q. return TPM_SUCCESS

13.If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_NE and return  error  TPM_DAA_INPUT_DATA0 on 
mismatch

e. Set NE = decrypt(inputData0, privEK) 

f. set outputData = SHA-1(DAA_session -> DAA_digest || NE) 

g. set DAA_session -> DAA_digest = NULL

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS
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14.If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label  them Y.   “r0”  || 
DAA_session -> DAA_contextSeed is the Z seed.

j. Set X = DAA_generic_R0

k. Set n = DAA_generic_n

l. Set DAA_session -> DAA_scratch = (X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

15.If stage==10

a. Verify  that  DAA_session  ->DAA_stage==10.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch h

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain  DAA_SIZE_r1  bytes  using  the  MGF1  function  and  label  them Y.  “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_R1
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j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

16.If stage==11

a. Verify  that  DAA_session  ->DAA_stage==11.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label  them Y.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

17.If stage==12

a. Verify  that  DAA_session  ->DAA_stage==12.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings ) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0
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e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label  them Y.   “r3”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. Set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

18.If stage==13

a. Verify  that  DAA_session->DAA_stage==13.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 
mismatch

g. Set w = inputData1

h. Set w1 = w^( DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

19.If stage==14

a. Verify  that  DAA_session  ->DAA_stage==14.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch
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b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings ) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

20.If stage==15

a. Verify  that  DAA_session  ->DAA_stage==15.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma).

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

21.If stage==16

a. Verify  that  DAA_session  ->DAA_stage==16.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch
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b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  that  inputSize0  ==  sizeOf(TPM_DIGEST)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 ( DAA_session -> DAA_digest || NT )

h. Set outputData = NT 

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

22.If stage==17

a. Verify  that  DAA_session  ->DAA_stage==17.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest) * f0 in Z. Compute over the integers.  The 
computation is not reduced with a modulus.

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

23.If stage==18

a. Verify  that  DAA_session  ->DAA_stage==18.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch
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d. Obtain  DAA_SIZE_r1 bytes  using the  MGF1 function and label  them r1.  “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)* f1 in Z. Compute over the integers.  The 
computation is not reduced with a modulus.

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

24.If stage==19

a. Verify  that  DAA_session  ->DAA_stage==19.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set s2 = r2 + (DAA_session -> DAA_digest)*( DAA_joinSession -> DAA_join_u0) mod 
2^DAA_power1 (Erase all but the lowest DAA_power1 bits of s2)

f. set outputData = s2

g. increment DAA_session -> DAA_stage by 1

h. return TPM_SUCCESS

25.If stage==20

a. Verify  that  DAA_session  ->DAA_stage==20.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set s12 = r2 + (DAA_session -> DAA_digest)*( DAA_joinSession -> DAA_join_u0) 

f. Shift s12 right by DAA_power1 bit (discard the lowest DAA_power1 bits).

g. Set DAA_session -> DAA_scratch = s12
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h. Set outputData = DAA_session -> DAA_digest

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

26.If stage==21

a. Verify  that  DAA_session  ->DAA_stage==21.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch 

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label them r3.  “r3” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set  s3  =  r3  +  (DAA_session ->  DAA_digest)*(  DAA_joinSession ->  DAA_join_u1)  + 
(DAA_session -> DAA_scratch).

f. Set DAA_session -> DAA_scratch = NULL

g. set outputData = s3

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

27.If stage==22

a. Verify  that  DAA_session  ->DAA_stage==22.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_v0  and  return  error  TPM_DAA_INPUT_DATA0  on 
mismatch

e. Set u2 = inputData0

f. Set v0 = u2 + (DAA_joinSession -> DAA_join_u0) mod 2^DAA_power1 (Erase all but 
the lowest DAA_power1 bits of v0).

g. Set DAA_tpmSpecific -> DAA_digest_v0 = SHA-1(v0)

h. Set v10 = u2 + (DAA_joinSession -> DAA_join_u0) in Z. Compute over the integers. 
The computation is not reduced with a modulus.

i. Shift v10 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

j. Set DAA_session ->DAA_scratch = v10

k. Set outputData

i. Fill  in TPM_DAA_BLOB with a type of TPM_RT_DAA_V0 and encrypt the v0 
parameters using TPM_PERMANENT_DATA -> daaBlobKey
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ii. set outputData to the encrypted TPM_DAA_BLOB

l. increment DAA_session -> DAA_stage by 1

m. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

n. return TPM_SUCCESS

28.If stage==23

a. Verify  that  DAA_session  ->DAA_stage==23.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  inputSize0  ==  DAA_SIZE_v1  and  return  error  TPM_DAA_INPUT_DATA0  on 
mismatch

e. Set u3 = inputData0

f. Set v1 = u3 + DAA_joinSession -> DAA_join_u1 + DAA_session ->DAA_scratch

g. Set DAA_tpmSpecific -> DAA_digest_v1 = SHA-1(v1)

h. Set outputData

i. Fill  in TPM_DAA_BLOB with a type of TPM_RT_DAA_V1 and encrypt the v1 
parameters using TPM_PERMANENT_DATA -> daaBlobKey

ii. set outputData to the encrypted TPM_DAA_BLOB

i. Set DAA_session ->DAA_scratch = NULL

j. increment DAA_session -> DAA_stage by 1

k. set  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) 

l. return TPM_SUCCESS

29.If stage==24

a. Verify  that  DAA_session  ->DAA_stage==24.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific  || 
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch

d. set  outputData  =  enc(DAA_tpmSpecific)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

e. Terminate the DAA session and all resources associated with the DAA join session 
handle.

f. return TPM_SUCCESS
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30.If stage > 24, return error: TPM_DAA_STAGE
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26.2 TPM_DAA_Sign
Start of informative comment:
outputSize and outputData are always included in the outParamDigest.  This includes stage 
0, where the outputData contains the DAA session handle.

 End of informative comment.
TPM protected capability; user must provide authorizations from the TPM Owner.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE Ordinal Command ordinal: TPM_ORD_DAA_Sign

4 4 TPM_HANDLE handle Handle to the sign session

5 1 2S 1 BYTE stage Stage of the sign process

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of DAA_Sign

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of DAA_Sign

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner. HMAC key: 
ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_DAA_Sign

4 4 3S 4 UINT32 outputSize Size of outputData 

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.
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Description
This table summaries the input, output and saved data that is associated with each stage of 
processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad
0 DAA_issuerSettings NULL initialise handle NULL

1 enc(DAA_tpmSpecific) NULL initialise NULL NULL

2 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

3 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

4 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

5 DAA_generic_S1 DAA_generic_n T = P3*(S1^r4) mod n T NULL

6 DAA_generic_gamma w w1 = w^q mod gamma NULL w

7 DAA_generic_gamma NULL E = w^f mod gamma E w

8 DAA_generic_gamma NULL r = r0 + (2^power0)*r1 
mod q,
E1 = w^r mod gamma

E1 NULL

9 c1 NULL c = hash(c1 || NT) NT NULL

10 b (selector) m or handle to AIK c = hash(c || 1 || m)
or 
c = hash(c || 0 || AIK-
modulus)

c NULL

11 NULL NULL s0 = r0 + c*f0 s0 NULL

12 NULL NULL s1 = r1 + c*f1 s1 NULL

13 enc(v0) NULL s2 = r2 + c*v0
 mod 2^power1

s2 NULL

14 enc(v0) NULL s12 = r2 + c*v0
>> power1

NULL s12

15 enc(v1) NULL s3 = r4 + c*v1 + s12 s3 NULL

When a TPM receives an Owner authorized command to input enc(DAA_tpmSpecific)  or 
enc(v0) or enc(v1), the TPM MUST verify that the TPM created the data and that neither the 
data nor the TPM's daaProof has been changed since the data was created. Loading one of 
these wrapped blobs does not require authorization, since correct blobs were created by the 
TPM under Owner authorization,  and unwrapped blobs cannot be  used without  Owner 
authorisation.  The  TPM MUST  NOT  restrict  the  number  of  times  that  the  contents  of 
enc(DAA_tpmSpecific) or enc(v0) or enc(v1) can be used by the same combination of TPM 
and daaProof that created them.

Actions
A Trusted Platform Module that receives a valid TPM_DAA_Sign command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Sign input parameters.

2. Any error results in the TPM invalidating all resources associated with the command

3. Constant values of 0 or 1 are 1 byte integers, stages affected are

a. 7(f), 11(e), 12(e)
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4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are

a. 2(h), 3(h), 4(h), 5(h), 12(d), 13(f), 14(f), 15(f)

Stages
0. If stage==0

b. Determine that sufficient resources are available to perform a TPM_DAA_Sign.

i. The  TPM  MUST  support  sufficient  resources  to  perform  one  (1) 
TPM_DAA_Join/ TPM_DAA_Sign. The TPM MAY support addition TPM_DAA_Join/ 
TPM_DAA_Sign sessions.

ii. The TPM may share internal resources between the DAA operations and other 
variable resource requirements:

iii. If there are insufficient resources within the stored key pool (and one or more 
keys  need  to  be  removed  to  permit  the  DAA  operation  to  execute)  return 
TPM_NOSPACE

iv. If there are insufficient resources within the stored session pool (and one or 
more authorization or transport sessions need to be removed to permit the DAA 
operation to execute), return TPM_RESOURCES.

c. Set DAA_issuerSettings = inputData0

d. Verify  that  all  fields  in  DAA_issuerSettings  are  present  and  return  error 
TPM_DAA_INPUT_DATA0 if not.

e. set all fields in DAA_session = NULL

f. Assign new handle for session

g. Set outputData to new handle

i. The handle in outputData is included the output HMAC.

h. set DAA_session -> DAA_stage = 1

i. return TPM_SUCCESS

5. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Set  DAA_tpmSpecific  =  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

c. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

d. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific) 

e. set outputData = NULL

f. set DAA_session -> DAA_stage =2

g. return TPM_SUCCESS

6. If stage==2
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a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify  that  SHA-1(DAA_generic_R0)  ==  DAA_issuerSettings  ->  DAA_digest_R0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label  them Y.   “r0”  || 
DAA_session -> DAA_contextSeed is the Z seed.

j. Set X = DAA_generic_R0

k. Set n = DAA_generic_n

l. Set DAA_session -> DAA_scratch = (X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

7. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify  that  SHA-1(DAA_generic_R1)  ==  DAA_issuerSettings  ->  DAA_digest_R1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label  them Y.   “r1”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_R1

j. Set n = DAA_generic_n
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k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

8. If stage==4

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  =  SHA-1(DAA_tpmSpecific)   and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify  that  SHA-1(DAA_generic_S0)  ==  DAA_issuerSettings  ->  DAA_digest_S0  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label  them Y.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

9. If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify  that  SHA-1(DAA_generic_S1)  ==  DAA_issuerSettings  ->  DAA_digest_S1  and 
return error TPM_DAA_INPUT_DATA0 on mismatch

Level 2 Revision 116 28 February 2011 287
TCG Published

1337
1338

5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784

1339
1340



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

f. Set DAA_generic_n = inputData1

g. Verify  that  SHA-1(DAA_generic_n)  ==  DAA_issuerSettings  ->  DAA_digest_n  and 
return error TPM_DAA_INPUT_DATA1 on mismatch

h. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label  them Y.   “r4”  || 
DAA_session -> DAA_contextSeed is the Z seed.

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

10.If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gammma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 
mismatch

g. Set w = inputData1

h. Set w1 = w^( DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

11.If stage==7

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch
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c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

12.If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify  that  SHA-1(DAA_generic_gamma)  ==  DAA_issuerSettings  -> 
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. Set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma)

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

13.If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 
on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch
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c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify  that  inputSize0  ==  sizeOf(TPM_DIGEST)  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 ( DAA_session -> DAA_digest || NT )

h. Set outputData = NT

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

14.If stage==10

a. Verify  that  DAA_session  ->DAA_stage==10.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that inputSize0 == sizeOf(BYTE), and return error TPM_DAA_INPUT_DATA0 on 
mismatch

e. Set  selector  =  inputData0,  verify  that  selector  ==  0  or  1,  and  return  error 
TPM_DAA_INPUT_DATA0 on mismatch

f. If  selector  == 1,  verify  that  inputSize1 ==  sizeOf(TPM_DIGEST),  and return  error 
TPM_DAA_INPUT_DATA1 on mismatch

g. Set  DAA_session  ->  DAA_digest  to  SHA-1  (DAA_session  ->  DAA_digest  ||  1  || 
inputData1)

h. If selector == 0, verify that inputData1 is a handle to a TPM identity key (AIK), and 
return error TPM_DAA_INPUT_DATA1 on mismatch

i. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 0 || n2) 
where n2 is the modulus of the AIK

j. Set outputData = DAA_session -> DAA_digest 

k. increment DAA_session -> DAA_stage by 1

l. return TPM_SUCCESS.

15.If stage==11

a. Verify  that  DAA_session  ->DAA_stage==11.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch
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c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0.  “r0” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest)*(f0) 

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

16.If stage==12

a. Verify  that  DAA_session  ->DAA_stage==12.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1.  “r1” || 
DAA_session -> DAA_contextSeed is the Z seed.

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 
0 ) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1 ) 
mod DAA_issuerSettings -> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 
result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)*(f1) 

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

17.If stage==13

a. Verify  that  DAA_session  ->DAA_stage==13.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v0=  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey
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e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r2 bytes from the MGF1 function and label  them r2.   “r2”  || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set s2 = r2 + (DAA_session -> DAA_digest)*(  DAA_private_v0) mod 2^DAA_power1 
(erase all but the lowest DAA_power1 bits of s2)

h. set outputData = s2

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

18.If stage==14

a. Verify  that  DAA_session  ->DAA_stage==14.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v0=  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2.  “r2” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0).

h. Shift s12 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

i. Set DAA_session -> DAA_scratch = s12

j. set outputData = NULL

k. increment DAA_session -> DAA_stage by 1

l. return TPM_SUCCESS

19.If stage==15

a. Verify  that  DAA_session  ->DAA_stage==15.  Return  TPM_DAA_STAGE  and  flush 
handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 
return error TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify  that  DAA_session  ->  DAA_digestContext  ==  SHA-1(DAA_tpmSpecific)  and 
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set  DAA_private_v1  =  unwrap(inputData0)  using  TPM_PERMANENT_DATA  -> 
daaBlobKey
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e. Verify that SHA-1(DAA_private_v1) == DAA_tpmSpecific -> DAA_digest_v1 and return 
error TPM_DAA_INPUT_DATA0 on mismatch

f. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label them r4.  “r4” || 
DAA_session -> DAA_contextSeed is the Z seed.

g. Set  s3  =  r4  +  (DAA_session  ->  DAA_digest)*(DAA_private_v1)  +  (DAA_session  -> 
DAA_scratch).

h. Set DAA_session -> DAA_scratch = NULL

i. set outputData = s3

j. Terminate the DAA session and all resources associated with the DAA sign session 
handle.

k. return TPM_SUCCESS

20.If stage > 15, return error: TPM_DAA_STAGE
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27. Deprecated commands
Start of informative comment:
This section covers the commands that were in version 1.1 but now have new functionality 
in other functions. The deprecated commands are still available in 1.2 but all new software  
should use the new functionality.

There is no requirement that the deprecated commands work with new structures.

End of informative comment.
1. Commands deprecated in version 1.2 MUST work with version 1.1 structures

2. Commands deprecated in version 1.2 MAY work with version 1.2 structures
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27.1 Key commands
Start of informative comment:
The key commands are deprecated as the new way to handle keys is to use the standard 
context  commands.  So  TPM_EvictKey  is  now  handled  by  TPM_FlushSpecific, 
TPM_Terminate_Handle by TPM_FlushSpecific.

End of informative comment.

27.1.1 TPM_EvictKey

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

4 4 TPM_KEY_HANDLE evictHandle The handle of the key to be evicted.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

Actions
The TPM will invalidate the key stored in the specified handle and return the space to the 
available  internal  pool  for  subsequent  query  by  TPM_GetCapability  and  usage  by 
TPM_LoadKey. If the specified key handle does not correspond to a valid key, an error will 
be returned.

New 1.2 functionality
The command must check the status of the ownerEvict flag for the key and if the flag is 
TRUE return TPM_KEY_CONTROL_OWNER
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27.1.2 TPM_Terminate_Handle
Start of informative comment:
This allows the TPM manager to clear out information in a session handle.

The TPM may maintain the authorization session even though a key attached to it has been 
unloaded or  the  authorization  session  itself  has  been unloaded in  some  way.  When a 
command is executed that  requires this  session,  it  is  the responsibility  of  the external 
software  to  load  both  the  entity  and  the  authorization  session  information  prior  to 
command execution. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

4 4 TPM_AUTHHANDLE handle The handle to terminate 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

Description
The TPM SHALL terminate the session and destroy all data associated with the session 
indicated.

Actions
A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of 
the following events:

1. Completion of a received command whose authorization “continueUse” flag is FALSE.

2. Completion of a received command when a shared secret derived from the authorization 
session  was  exclusive-or’ed  with  data  (to  provide  confidentiality  for  that  data).  This 
occurs during execution of a TPM_ChangeAuth command, for example.

3. When the associated entity is destroyed (in the case of TPM Owner or SRK, for example)

4. Upon execution of TPM_Init
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5. When the command returns an error. This is due to the fact that when returning an 
error the TPM does not send back nonceEven. There is no way to maintain the rolling 
nonces, hence the TPM MUST terminate the authorization session.

6. Failure of an authorization check belonging to that authorization session.
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27.2 Context management
Start of informative comment:
The 1.1 context commands were written for specific resource types. The 1.2 commands are 
generic for all resource types. So the Savexxx commands are replaced by TPM_SaveContext 
and the LoadXXX commands by TPM_LoadContext.

End of informative comment.

27.2.1 TPM_SaveKeyContext
Start of informative comment:
TPM_SaveKeyContext saves a loaded key outside the TPM. After creation of the key context 
blob the TPM automatically releases the internal memory used by that key. The format of 
the key context blob is specific to a TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 TPM_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 3S 4 UINT32 keyContextSize The actual size of the outgoing key context blob. If the command fails the value 
will be 0

5 <> 4S <> BYTE[] keyContextBlob The key context blob.

Description
1. This  command  allows  saving  a  loaded  key  outside  the  TPM.  After  creation  of  the 

keyContextBlob, the TPM automatically releases the internal memory used by that key. 
The format of the key context blob is specific to a TPM.

2. A TPM protected capability belonging to the TPM that created a key context blob MUST 
be  the  only  entity  that  can  interpret  the  contents  of  that  blob.  If  a  cryptographic 
technique is  used for  this  purpose,  the level  of  security  provided by that  technique 
SHALL be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) 
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used in such a cryptographic technique MUST be generated using the TPM’s random 
number  generator.  Any  symmetric  key  MUST  be  used  within  the  power-on  session 
during which it was created, only.

3. A key context blob SHALL enable verification of the integrity of the contents of the blob 
by a TPM protected capability.

4. A key context blob SHALL enable verification of the session validity of the contents of the 
blob by a TPM protected capability. The method SHALL ensure that all key context blobs 
are rendered invalid if power to the TPM is interrupted. 

Level 2 Revision 116 28 February 2011 299
TCG Published

1391
1392

6059
6060
6061
6062
6063
6064
6065
6066

1393
1394



Copyright © TCG TPM Main Part 3 Commands
Specification Version 1.2

27.2.2 TPM_LoadKeyContext
Start of informative comment:
TPM_LoadKeyContext  loads  a  key  context  blob  into  the  TPM previously  retrieved  by  a 
TPM_SaveKeyContext  call.  After  successful  completion  the  handle  returned  by  this 
command can be used to access the key.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 2S 4 UINT32 keyContextSize The size of the following key context blob.

5 <> 3S <> BYTE[] keyContextBlob The key context blob.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 TPM_KEY_HANDLE keyHandle The handle assigned to the key after it has been successfully loaded.

Description
1. This command allows loading a key context blob into the TPM previously retrieved by a 

TPM_SaveKeyContext  call.  After  successful  completion  the  handle  returned  by  this 
command can be used to access the key.

2. The contents of a key context blob SHALL be discarded unless the contents have passed 
an integrity test. This test SHALL (statistically) prove that the contents of the blob are 
the same as when the blob was created.

3. The contents of a key context blob SHALL be discarded unless the contents have passed 
a session validity test. This test SHALL (statistically) prove that the blob was created by 
this TPM during this power-on session.
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27.2.3 TPM_SaveAuthContext
Start of informative comment:
TPM_SaveAuthContext saves a loaded authorization session outside the TPM. After creation 
of the authorization context blob, the TPM automatically releases the internal memory used 
by that session. The format of the authorization context blob is specific to a TPM.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 TPM_AUTHHANDLE authHandle Authorization session which will be kept outside the TPM 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 3S 4 UINT32 authContextSize The actual size of the outgoing authorization context blob. If the command fails 
the value will be 0.

5 <> 4S 4 BYTE[] authContextBlob The authorization context blob.

Description
This command allows saving a loaded authorization session outside the TPM. After creation 
of the authContextBlob, the TPM automatically releases the internal memory used by that 
session. The format of the authorization context blob is specific to a TPM.

A TPM protected capability belonging to the TPM that created an authorization context blob 
MUST be the only entity that can interpret the contents of that blob. If a cryptographic 
technique is used for this purpose, the level of security provided by that technique SHALL 
be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) used in such a 
cryptographic technique MUST be generated using the TPM’s random number generator. 
Any symmetric key MUST be used within the power-on session during which it was created, 
only.

An authorization context blob SHALL enable verification of the integrity of the contents of 
the blob by a TPM protected capability.
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An  authorization  context  blob  SHALL  enable  verification  of  the  session  validity  of  the 
contents of the blob by a TPM protected capability.  The method SHALL ensure that all 
authorization context blobs are rendered invalid if power to the TPM is interrupted. 

27.2.4 TPM_LoadAuthContext
Start of informative comment:
TPM_LoadAuthContext  loads  an  authorization  context  blob  into  the  TPM  previously 
retrieved by a TPM_SaveAuthContext call. After successful completion, the handle returned 
by this command can be used to access the authorization session.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 2S 4 UINT32 authContextSize The size of the following authorization context blob.

5 <> 3S <> BYTE[] authContextBlob The authorization context blob.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 TPM_KEY_HANDLE authHandle The handle assigned to the authorization session after it has been successfully 
loaded.

Description
This  command  allows  loading  an  authorization  context  blob  into  the  TPM  previously 
retrieved by a TPM_SaveAuthContext call. After successful completion, the handle returned 
by this command can be used to access the authorization session.

The contents of an authorization context blob SHALL be discarded unless the contents have 
passed an integrity test. This test SHALL (statistically) prove that the contents of the blob 
are the same as when the blob was created.

The contents of an authorization context blob SHALL be discarded unless the contents have 
passed a session validity test. This test SHALL (statistically) prove that the blob was created 
by this TPM during this power-on session.

For an OSAP authorization context blob referring to a key, verify that the key linked to this 
session is resident in the TPM.
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27.3 DIR commands
Start of informative comment:
The DIR commands are replaced by the NV storage commands. 

The DIR [0] in 1.1 is now TPM_PERMANENT_DATA -> authDIR[0] and is always available for 
the TPM to use. It is accessed by DIR commands using dirIndex 0 and by NV commands 
using nvIndex TPM_NV_INDEX_DIR.

If the TPM vendor supports additional DIR registers, the TPM vendor may return errors or 
provide vendor specific mappings for those DIR registers to NV storage locations.

End of informative comment.
1. A  dirIndex  value  of  0  MUST  corresponds  to  an  NV  storage  nvIndex  value 

TPM_NV_INDEX_DIR.

2. The TPM vendor MAY return errors or MAY provide vendor specific mappings for DIR 
dirIndex values greater than 0 to NV storage locations.
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27.3.1 TPM_DirWriteAuth
Start of informative comment:
The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs 
are non-volatile memory registers held in a TPM-shielded location. Owner authentication is 
required to authorize this action. 

Access  is  also  provided  through the  NV  commands  with  nvIndex TPM_NV_INDEX_DIR. 
Owner authorization is not required when nvLocked is FALSE.

Version 1.2 requires only one DIR. If the DIR named does not exist, the TPM_DirWriteAuth 
operation returns TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR

5 20 3S 20 TPM_DIRVALUE newContents New value to be stored in named DIR

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for command.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs. HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
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1. Validate  that  authHandle  contains  a  TPM  Owner  AuthData  to  execute  the 
TPM_DirWriteAuth command

2. Validate that dirIndex points to a valid DIR on this TPM

3. Write newContents into the DIR pointed to by dirIndex
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27.3.2 TPM_DirRead
Start of informative comment:
The TPM_DirRead operation provides read access to the DIRs. No authentication is required 
to perform this action because typically no cryptographically useful AuthData is available 
early in boot. TSS implementers may choose to provide other means of authorizing this 
action.  Version  1.2  requires  only  one  DIR.  If  the  DIR  named  does  not  exist,  the 
TPM_DirRead operation returns TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR to be read

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 20 3S 20 TPM_DIRVALUE dirContents The current contents of the named DIR

Actions
1. Validate that dirIndex points to a valid DIR on this TPM

2. Return the contents of the DIR in dirContents
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27.4 Change Auth
Start of informative comment:
The  change  auth  commands  can  be  duplicated  by  creating  a  transport  session  with 
confidentiality and issuing the changeAuth command.

End of informative comment.
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27.4.1 TPM_ChangeAuthAsymStart
Start of informative comment:
The TPM_ChangeAuthAsymStart starts the process of changing AuthData for an entity. It 
sets  up  an  OIAP  session  that  must  be  retained  for  use  by  its  twin 
TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart  creates  a  temporary  asymmetric  public  key  “tempkey”  to 
provide confidentiality for new AuthData to be sent to the TPM. TPM_ChangeAuthAsymStart 
certifies  that  tempkey  was  generated  by  a  genuine  TPM,  by  generating  a  certifyInfo 
structure that is signed by a TPM identity. The owner of that TPM identity must cooperate 
to produce this command, because TPM_ChangeAuthAsymStart requires authorization to 
use that identity.

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose 
authorization  is  to  be  changed.  That  owner  uses  certifyInfo  and  a 
TPM_IDENTITY_CREDENTIAL to verify that tempkey was generated by a genuine TPM. This 
is  done  by  verifying  the  TPM_IDENTITY_CREDENTIAL  using  the  public  key  of  a  CA, 
verifying the signature on the certifyInfo structure with the public key of the identity in 
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value 
inside certifyInfo. The owner uses tempkey to encrypt the desired new AuthData and inserts 
that encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that 
only a TPM with a specific identity can interpret the new AuthData.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.

4 4 TPM_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key

5 20 2s 20 TPM_NONCE antiReplay The nonce to be inserted into the certifyInfo structure 

6 <> 3S <> TPM_KEY_PARMS tempKey Structure contains all parameters of ephemeral key. 

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for idHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA idAuth Authorization. HMAC key: idKey.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart

7 95 3S 95 TPM_CERTIFY_INFO certifyInfo The certifyInfo structure that is to be signed.

8 4 4S 4 UINT32 sigSize The used size of the output area for the signature

9 <> 5S <> BYTE[ ] sig The signature of the certifyInfo parameter.

10 4 6s 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier to be used by ChangeAuthAsymFinish for the 
ephemeral key

11 <> 7S <> TPM_KEY tempKey Structure containing all parameters and public part of ephemeral key. 
TPM_KEY.encSize is set to 0.

12 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

14 20 TPM_AUTHDATA resAuth Authorization. HMAC key: idKey.usageAuth.

Actions
1. The TPM SHALL verify the AuthData to use the TPM identity key held in idHandle. The 

TPM MUST verify that the key is a TPM identity key.

2. The  TPM  SHALL  validate  the  algorithm  parameters  for  the  key  to  create  from  the 
tempKey parameter.

3. Recommended key type is RSA

4. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024

5. For other key types the minimum key size strength MUST be comparable to RSA 512

6. If the TPM is not designed to create a key of the requested type, return the error code 
TPM_BAD_KEY_PROPERTY

7. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The 
newly created key is pointed to by ephHandle.

8. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TPM_KEY 
-> encSize MUST be 0.

9. The TPM SHALL fill in certifyInfo using k1 for the information. The certifyInfo -> data 
field is supplied by the antiReplay.

10.The TPM then signs the certifyInfo parameter using the key pointed to by idHandle. The 
resulting signed blob is returned in sig parameter
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Field Descriptions for certifyInfo parameter
Type Name Description

TPM_VERSION Version TPM version structure; Part 2 TPM_VERSION

keyFlags Redirection This SHALL be set to FALSE

Migratable This SHALL be set to FALSE

Volatile This SHALL be set to TRUE

TPM_AUTH_DATA_USAGE authDataUsage This SHALL be set to TPM_AUTH_NEVER

TPM_KEY_USAGE KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRInfoSize This SHALL be set to 0

TPM_DIGEST pubDigest This SHALL be the hash of the public key being certified.

TPM_NONCE Data This SHALL be set to antiReplay

TPM_KEY_PARMS info This specifies the type of key and its parameters.

BOOL parentPCRStatus This SHALL be set to FALSE.
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27.4.2 TPM_ChangeAuthAsymFinish
Start of informative comment:
The TPM_ChangeAuthAsymFinish command allows the owner of an entity to change the 
AuthData for the entity.

The  command requires  the  cooperation of  the  owner of  the  parent  of  the  entity,  since 
AuthData must be provided to use that parent entity. The command requires knowledge of 
the  existing  AuthData  information  and  passes  the  new  AuthData  information.  The 
newAuthLink  parameter  proves  knowledge  of  existing  AuthData  information  and  new 
AuthData information. The new AuthData information “encNewAuth” is encrypted using the 
“tempKey” variable obtained via TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the AuthData of a child, but is prevented 
from knowing the new AuthData for that child.

The changeProof parameter provides a proof that the new AuthData value was properly 
inserted into the entity. The inclusion of a nonce from the TPM provides an entropy source 
in the case where the AuthData value may be in itself be a low entropy value (hash of a 
password etc). 

 End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 TPM_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data

5 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key

6 2 3S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 20 4s 20 TPM_HMAC newAuthLink HMAC calculation that links the old and new AuthData values together

8 4 5S 4 UINT32 newAuthSize Size of encNewAuth

9 <> 6S <> BYTE[ ] encNewAuth New AuthData encrypted with ephemeral key.

10 4 7S 4 UINT32 encDataSize The size of the inData parameter

11 <> 8S <> BYTE[ ] encData The encrypted entity that is to be modified.

12 4 TPM_AUTHHANDLE authHandle Authorization for parent key. 

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA privAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.
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Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[ ] outData The modified, encrypted entity.

6 20 5s 20 TPM_NONCE saltNonce A nonce value from the TPM RNG to add entropy to the changeProof 
value

7 <> 6S <> TPM_DIGEST changeProof Proof that AuthData has changed.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Description
If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM 
Owner authentication.

Actions
1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in 

parentHandle.

2. The encData field MUST be the encData field from TPM_STORED_DATA or TPM_KEY.

3. The TPM SHALL create e1 by decrypting the entity held in the encData parameter.

4. The  TPM  SHALL  create  a1  by  decrypting  encNewAuth  using  the  ephHandle  -> 
TPM_KEY_AUTHCHANGE  private  key.  a1  is  a  structure  of  type 
TPM_CHANGEAUTH_VALIDATE.

5. The TPM SHALL create b1 by performing the following HMAC calculation: b1 = HMAC 
(a1 -> newAuthSecret). The secret for this calculation is encData -> currentAuth. This 
means  that  b1  is  a  value  built  from  the  current  AuthData  value  (encData  -> 
currentAuth) and the new AuthData value (a1 -> newAuthSecret).

6. The TPM SHALL compare b1 with newAuthLink. The TPM SHALL indicate a failure if the 
values do not match.

7. The TPM SHALL replace e1 -> authData with a1 -> newAuthSecret

8. The TPM SHALL encrypt e1 using the appropriate functions for the entity type. The key 
to encrypt with is parentHandle.

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG.
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10.The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with a1 -> n1) 
using a1 -> newAuthSecret as the HMAC secret.

11.The  TPM  MUST  destroy  the  TPM_KEY_AUTHCHANGE  key  associated  with  the 
authorization session.
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27.5 TPM_Reset
Start of informative comment:
TPM_Reset releases all resources associated with existing authorization sessions. This is 
useful if a TSS driver has lost track of the state in the TPM. 

End of informative comment.
Deprecated Command in 1.2

Incoming Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Outgoing Parameters and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Description
This is a deprecated command in V1.2. This command in 1.1 only referenced authorization 
sessions and is not upgraded to affect any other TPM entity in 1.2

Actions
1. The TPM invalidates all resources allocated to authorization sessions as per version 1.1 

extant in the TPM

a. This includes structures created by TPM_SaveAuthContext and TPM_SaveKeyContext

b. The TPM MUST invalidate OSAP sessions

c. The TPM MAY invalidate DSAP sessions

d. The TPM MUST NOT invalidate structures created by TPM_SaveContext

2. The TPM does not reset any PCR or DIR values.

3. The TPM does not reset any flags in the TPM_STCLEAR_FLAGS structure.

4. The TPM does not reset or invalidate any keys
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27.6 TPM_OwnerReadPubek
Start of informative comment:
Return the endorsement key public portion. This is authorized by the TPM Owner.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authentication. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Description
This command returns the PUBEK. 

Actions
The TPM_OwnerReadPubek command SHALL 

1. Validate the TPM Owner AuthData to execute this command

2. Export the PUBEK
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27.7 TPM_DisablePubekRead
Start of informative comment:
The TPM Owner may wish to prevent any entity from reading the PUBEK. This command 
sets  the  non-volatile  flag  so  that  the  TPM_ReadPubek  command  always  returns 
TPM_DISABLED_CMD.

This command has in essence been deprecated as TPM_TakeOwnership now sets the value 
to false. The command remains at this time for backward compatibility.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 4  TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs and owner authorization. 
HMAC key: ownerAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
ownerAuth.

Actions
1. This capability sets the TPM_PERMANENT_FLAGS -> readPubek flag to FALSE.
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27.8 TPM_LoadKey
Start of informative comment:
Version 1.2 deprecates TPM_LoadKey due to the HMAC of the new key handle on return. 
The wrapping makes use of the handle difficult in an environment where the TSS, or other 
management entity, is changing the TPM handle to a virtual handle. 

Software using TPM_LoadKey on a 1.2 TPM can have a collision with the returned handle as 
the 1.2 TPM uses random values in the lower three bytes of the handle. All new software  
must use LoadKey2 to allow management software the ability to manage the key handle.

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or 
perform any other action, it needs to be present in the TPM. The TPM_LoadKey function 
loads the key into the TPM for further use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 
The assumption is that the handle may change due to key management operations. It is the 
responsibility of upper level software to maintain the mapping between handle and any 
label used by external software.

This  command has  the  responsibility  of  enforcing  restrictions  on  the  use  of  keys.  For 
example, when attempting to load a STORAGE key it will be checked for the restrictions on 
a storage key (2048 size etc.).

The  load  command  must  maintain  a  record  of  whether  any  previous  key  in  the  key 
hierarchy was bound to a PCR using parentPCRStatus.

The  flag  parentPCRStatus  enables  the  possibility  of  checking  that  a  platform  passed 
through some particular state or states before finishing in the current state. A grandparent 
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 
linked to state-3, for example. The use of the child key then indicates that the platform 
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 
has not  passed through the previous states.  Hence keys with  parentPCRStatus==TRUE 
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 
has passed AND the key is non-migratory, the key must have been created by the TPM. So 
there is every reason to believe that the key poses no security threat to the TPM. While there 
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 
migratory key is a real key,  arising from a general  sense of unease about execution of 
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 
cycle,  but  this  may  be  expensive.  For  RSA  keys,  it  is  therefore  suggested  that  the 
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 
and checking that there is no remainder.

End of informative comment.

318 Level 2 Revision 116 28 February 2011
TCG Published

1476
1477
1478

6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352

1479
1480



TPM Main Part 3 Commands TCG © Copyright
Specification Version 1.2 

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey Incoming key structure, both encrypted private and clear public portions. 
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth The authorization session digest for inputs and parentHandle. HMAC key: 
parentKey.usageAuth.

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey

4 4 3S 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
parentKey.usageAuth.

Actions
The TPM SHALL perform the following steps:

1. Validate  the  command  and  the  parameters  using  parentAuth  and  parentHandle  -> 
usageAuth

2. If  parentHandle  ->  keyUsage  is  NOT  TPM_KEY_STORAGE  return 
TPM_INVALID_KEYUSAGE

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 
error code TPM_BAD_KEY_PROPERTY

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 
in parentHandle
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6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY

a. Reproduce  inKey ->  TPM_STORE_ASYMKEY ->  pubDataDigest  using the  fields  of 
inKey, and check that the reproduced value is the same as pubDataDigest

7. Validate the consistency of the key and it’s key usage. 

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 
public  and private  components of  the  asymmetric  key  pair.  If  inKey ->  keyFlags  -> 
migratable  is  FALSE,  the  TPM  MAY  verify  consistency  of  the  public  and  private 
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 
there is no remainder.

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY 
-> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS

ii. If  keyInfo  ->  authDataUsage  specifies  TPM_AUTH_NEVER  return 
TPM_NOTFIPS

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. sigScheme MUST be TPM_SS_NONE

h. If inKey -> keyUsage is TPM_KEY_IDENTITY

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. exponentSize MUST be 0

iv. encScheme MUST be TPM_ES_NONE

i. If the decrypted inKey -> pcrInfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using 
any PCR registers.

j. Else

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 
composite hash whenever the key will be in use
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ii. The  TPM  MUST  handle  both  version  1.1  TPM_PCR_INFO  and  1.2 
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure

(1) The  TPM  MUST  validate  the  TPM_PCR_INFO  or  TPM_PCR_INFO_LONG 
structures  for  legal  values.   However,  the  digestAtRelease  and 
localityAtRelease are not validated for authorization until use time.

8. Perform any processing  necessary  to  make  TPM_STORE_ASYMKEY key available  for 
operations

9. Load key and key information into internal memory of the TPM. If insufficient memory 
exists, return error TPM_NOSPACE.

10.Assign inKeyHandle according to internal TPM rules.

11.Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

12.If  parentHandle  indicates  it  is  using  PCR  registers,  then  set  inKeyHandle  -> 
parentPCRStatus to TRUE. 
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28. Deleted Commands
Start of informative comment:
These commands are no longer active commands. Their removal is due to security concerns 
with their use. 

End of informative comment.
1. The TPM MUST return TPM_BAD_ORDINAL for any deleted command
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28.1 TPM_GetCapabilitySigned
Start of informative comment:
Along  with  TPM_GetCapabilityOwner  this  command  allowed  the  possible  signature  of 
improper values.

TPM_GetCapabilitySigned is  almost the same as TPM_GetCapability.  The differences are 
that the input includes a challenge (a nonce) and the response includes a digital signature 
to vouch for the source of the answer.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 
and the caller have AuthData.

If a caller requires proof for a third party, the signing key must be one whose signature is 
trusted by the third party. A TPM-identity key may be suitable.

End of informative comment.

Deleted Ordinal
TPM_GetCapabilitySigned
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28.2 TPM_GetOrdinalAuditStatus
Start of informative comment:
Get the status of the audit flag for the given ordinal. 

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus

4 4 TPM_COMMAND_CODE ordinalToQuery The ordinal whose audit flag is to be queried 

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. 

4 1 BOOL State Value of audit flag for ordinalToQuery

Actions
1. The TPM returns the Boolean value for the given ordinal.  The value is  TRUE if  the 

command is being audited.
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28.3 TPM_CertifySelfTest
Start of informative comment:
TPM_CertifySelfTest causes the TPM to perform a full self-test and return an authenticated 
value if the test passes.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 
and the caller have AuthData.

If a caller requires proof for a third party, the signing key must be one whose signature is 
trusted by the third party. A TPM-identity key may be suitable.

End of informative comment.

Incoming Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital 
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti Replay nonce to prevent replay of messages

6 4  TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA privAuth The authorization session digest that authorizes the inputs and use of 
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes
PARAM HMAC

Type Name Description
# SZ # SZ

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. 

2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[ ] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization session digest for the returned parameters. HMAC key: 
key.usageAuth
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Description
The  key  in  keyHandle  MUST  have  a  KEYUSAGE  value  of  type  TPM_KEY_SIGNING  or 
TPM_KEY_LEGACY or TPM_KEY_IDENTITY.

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual 
TPM.

Actions
1. The  TPM  SHALL  perform  TPM_SelfTestFull.  If  the  test  fails  the  TPM  returns  the 

appropriate error code.

2. After successful completion of the self-test the TPM then validates the authorization to 
use the key pointed to by keyHandle

a. If  the  key  pointed  to  by  keyHandle  has  a  signature  scheme  that  is  not 
TPM_SS_RSASSAPKCS1v15_SHA1, the TPM may either return TPM_BAD_SCHEME or 
may return TPM_SUCCESS and a vendor specific signature.

3. Create t1 the NOT null terminated string of "Test Passed", i.e. 11 bytes.

4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal.

5. The TPM signs the SHA-1 of m2 using the key identified by keyHandle, and returns the 
signature as sig.
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28.4 TPM_GetAuditEvent

Start of informative comment:
Deleted

End of informative comment.

Deleted Ordinal
TPM_GetAuditEvent
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28.5 TPM_GetAuditEventSigned

Start of informative comment:
Deleted

End of informative comment.

Deleted Ordinal
TPM_GetAuditEventSigned
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