TCG Software Stack Feature API

Family “2.0”
Level 00 Revision .12
November 7, 2014

Committee Draft

Contact: admin@trustedcomputinggroup.org
Please provide public review comments by Tuesday, January 6, 2015.

Work In Progress:
This document is an intermediate draft for comment only and is subject to change without
notice. Readers should not design products based on this document.

TCG Public Review
TCG Copyright © TCG 2014

TCG Software Stack Feature API Copyright © TCG 2014

Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS 1S" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and TCG
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of
data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or
implied, is granted herein other than as follows: You may not copy or reproduce the document
or distribute it to others without written permission from TCG, except that you may freely do so
for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing,
or promoting information technology standards and best practices, so long as you distribute the
document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Page ii TCG Confidential Family “2.0", Revision .12
November 7, 2014

TCG Software Stack Feature API Copyright © 2014 TCG
Contents

N 1 i o o U1 1o o PSSP 4
1 (1[0 (01 =TT PP PP PP PPPPPRPI 6
2.1 TSS2 CONTEXT iitiiteiiitiieeeittie e e sttt e e sttt e e et e e e s sttt e e e ssbe e e e e sabaeeeeanbaeeeeanbeeeeeasbeeeesasbeeeeeanbeeeessrneeenas 6
2.2 TSS2_SIZED_BUFFER.......c ittt ittt ettt e et e e e sttt e e e s bt e e e s ssbeeeessnbeeeessnraeeans 6
2.3 KBY SHIUCTUIE ..o e ns 6

R B 1< 10140 1S PSP PURTT 7
TN O o] o T S TSR UTPPPUPPRRTT 7
3.11 Standard Policies and Authorizations (for values, see header file)ccocceeiiiiiiiininnnnns 7

I O = 3 SRR SPPRPRUPRR 7
R T 1V 1/ 01 PP P PP PPPPPPPPRPPR 7
3.3.1 Named types of keys: (for values, see header fil€)cccccceeviiiciiiiiiiii e, 7
3.3.2 I AV Y 1= 8

3.4 Standard Default ProfileS..........ooi ittt 8
3.4.1 P_RSASHAL ...t e e e nbe e e nree e e 8
3.4.2 P U RSASHAZ ...t et r e e e nrar e e e nrae et 8
3.4.3 o (O @1 = 2 SRS STR 8
3.4.4 P ECCP38A ... eeeie ettt ettt e e b e e et e e e r e e e anbee e e e nraeennnes 8
3.4.5 L (O @ = L PSSR 8
3.4.6 Profile FEAtUIES ..o 8

3.5 Example Algorithm ProfileS in XIMLueeiiiiiiiee ettt e neneee e 9
3.5.1 Algorithm profile for RSASHAL: P_RSASHALooveiiiiii e e e reee e e 9
3.5.2 Algorithm profile for RSASHAZ2: P_RSASHAZ ...ttt 10
3.5.3 Algorithm profile for ECCP256: P_ECCP256.........cccuueiiieeeie et e e siiraane e 11

O = (1 A LYol]) (o (=SSR 12
o R o (= o (0] 1[0 (=1 AT 12
4.2 HIBIAICHY TEIMIS. ...ttt e e oottt e e e e e e s abbbe e e e e e e e e aanbbbeeeeaaeeesannnbeees 12
4.3 Defined ODJECE ANCESIONSuiiiiiiieei ittt ettt e e e e e e s bbb e e e e e e e e e s e nbbbr e e e e e e e e e anreeeeeas 12
4.3.1 [ST TN PRSPPI 12
4.3.2 [ST ST I SRR 13
4.3.3 HSTUNK L.ttt ettt e ettt e e s ekt e e e eb bt e e s sbbe e e e e sabe e e e s aabaeeesanbeeeeeanbeeeeanes 13
43.4 [15710 1 TR PRRPPRN 13
4.3.5 HETEK .ttt ettt ettt e sttt e e ekt e e e st bt e e e e b e e e e e abbe e e e e arbe e e e e nreeeeeane 13
4.3.6 N LR UPPRPPPPPPN 13
4.3.7 POLICY ettt e e e e b e e e bt e e e e e bbe e e e e bbeeeeannbeeennrreeeeane 13

4.4 Example eXpliCit PAtNSuuiiiiiiei e e e e a e e raaae s 14
S o] o =TT UURT TP 16
45.1 EXAMPIES ...ttt oottt e e e e e e e e e e e e e e e e a et e e e e e e e raaea s 16

4.6 Example IMPlCIt PAtNS ... e e e s 16
A 0 11 1 - | P 16
4.7.1) TSP PP PP TRPPRPTPP 16
4.7.2 N LT ROPPRTPPPPR 17
Page 1 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API

4.7.3 Permanent Handles...........cccccoviiiiiin e
4.8 Datakeptatthe pathccccoveeiieiiiiiii e,
4.8.1 KBY S i
4.8.2 NV INAEXES ..ottt
4.8.3 HIErarChiesccuvveiiiiiie i
48.4 POHCYFOIMS ...
4.8.5 POICYINSLANCESciiiiiiiiiiiee e

5 COMMANAS ...t
5.1 ContexXt COMMAaNdS..........ueevreeeeriiiiiiiieieeeeeeeiiiereeee e e
511 Tss2_Context_Initializeocceeeeviiiiiiiiiieiee,
5.1.2 Tss2_Context Finalize...........cccovveeveeeeiiicciiiieeeee,
52 TPM COMMANAS.....ccoiiiiiiiiiiiiiiee it
5.2.1 Tss2_TPM_GetRandom.........cccccvveeveeeeeiiiciiieeeeeenn,
5.3 TSS COMMANGS.....ccoeiiiiiiieiiiiieeeiiiiee st siiee e siaeee e
5.3.1 TSS2_GEtVEISION......cviiiiieeecii it
5.3.2 TSS2_GetConfig ..o
B4 ENLY coiiiiiiee e
54.1 Tss2_Entity_ ChangeAuth..........cccccceeiiiiiiiiiiiieenen,
54.2 TSS2_ENtities_LiStcooviiiiiiiiiiiiiiriieee e
54.3 Tss2_Entity_Deleteoocveveiiiiiiiiiiiieieeee,
5.5 Policy COMMAaNAS........ccccvvivirieee e ee e e e
55.1 Tss2_Policy_Createlnstance..........occcceeevvveeeeininnenn.
5.5.2 TSS2_POlICY_EXPOrt...cccoiviiiiiiiiiiieiiieeee e
55.3 Tss2_Policy_PcrRestriction.........ccoocvvvveviiveeeininnnnn.
55.4 Tss2_Policy_AuthorizeNewPolicy..........cccccvevvvneenn.
5.6 KeYS .o
5.6.1 TSS2_Key Create......ccccoceeeeeie s
5.6.2 TSS2_KeY _SigN oo
5.6.3 TSS2_Key Verify ..o
5.6.4 Tss2_Key VerifyQUOLEcocuveveiiiieieiiieee e,
5.6.5 TsS2_Key EXPOrTree....ccccoeieieieieieieeeee e
5.6.6 Tss2_Key IMPOortTree. ...
5.6.7 Tss2_Key SetCertificate........ccccveeeeeeeiiiiiciiiieneeenn,
5.6.8 Tss2_Key GetCertificateccocvveeeeeeiiiicciiieeneeenn,
5.7 DaAta .ccoooeiiiiiiiie
571 Tss2_Data ENCrypt......cccccooeeeiiiieiiiieeeeeeeeeeeeeenn
5.7.2 Tss2_Data DecCrypt.....ccccoeeeeieeeiiieeeee e
5.8 PCRS. ..ottt
5.8.1 Tss2_PCR_ReadWithLOgcccvvveveeeeiiiiiiieeeeee,
5.8.2 TSS2_PCR_QUOLEovviiiiieiiiiiieeeeee e
5.8.3 TsS2 PCR_EXtENd.....cccvvveeeiiiiiiieeeee e
5.84 TSS2 _PCR_RESEL...ccciiiiiiiieeceiecece e

Page 2

November 7, 2014

Copyright ©2014 TCG

... 17

Family “2.0”

Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG

ST T N LY PR P PRP 51
5.9.1 TsS2 NV _CreateWithTemMPIAte......cci o e e er e e e e 51
5.9.2 LIS Y2 N AL 1= SRS 52
5.9.3 BLIESTSYZ N LY = 1= o RS 53
5.9.4 TSS2 NV _QUOTE ...ttt e e e et e e bbbt e e e e e e e e et r e e e e e s ee s bbb reeeeees 54
5.9.5 LSS N AV 2101 €= 0= o | PPN 55
5.9.6 LIS YA N VS T=1 121 £ PP TPRR 56
5.9.7 LIS N LY L= Lo RSP RR 57
5.9.8 Tss2_NV_MakeNVUnreadableThiSBOOISEQUENCEcccvvviiiiieeeiiiiiiieiie e e 58

T O - 11 o o T 3= o £ S PRRR 59
5.10.1 Tss2_Path_SetShortNameANdDESCIPONviviei i 59
5.10.2 Tss2_Path_GetShortNameANdDESCHPON.iiicii i et e e 60

6 SatiSTYING AN EA POICY ...ttt e e e e e e e e e e e e e s e e e e e e e e s n e e e aeeeannnne 61

6.1 PolicyCallBack COMMANGS.........cccuriiiieiee e i iiiiie e e e e e e s sece e e e e e e s s st b e e e e e e e s s sansbnreeeeeeeessnsrnreeeeeeans 61
6.1.1 Tss2_PolicyBranchSelectionCallbDackK...........coooiiiiiiiiice e 61
6.1.2 TSS2_POlICYAUtNCAIIDACK.......eeeiiiiieee e 63
6.1.3 TsS2_PolicyHMACCAIIDACK........cooiiiee e 65
6.1.4 Tss2_PolicySignatureCallDaCK..........oooeeiiiiiiiee e 68
6.1.5 Tss2_SetPolicyBranchSelectionCallback ... 69
6.1.6 Tss2_Path_SetPolicyAUtNCAIIDACK............cooiiiiiiiiii e 70
6.1.7 Tss2_Path_SetPolicyHmacCallback...........ouveeiiiiiiiiiiie e 70
6.1.8 Tss2_Path_SetPolicySignatureCallDacK............cocccuiiieiiiee i 72

7 ApPendiX: LiSt Of EITOr COUESccoiiuiiiieiiiiiee ittt sttt ettt e et e e st e e e s stbe e e e s sebeeeesabeeeesanes 73
Toc396743511
Page 3 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
1 Introduction:

The TSS 2.0 Feature API is meant to be a very high level API, aimed at having commands in it that will allow 80% of the
programmers who write a program using the TPM to find everything they want in the specification. The remaining 20% of
programmers will have to supplement this set of APIs with the Extended System API (ESAPI) or System API (SAPI).

This specification is meant to making programming with the TPM as simple as possible — but no simpler. The cognitive
load for a new programmer using this APl is meant to be kept as low as possible. Because of this, a number of decisions
have been made including:

Page 4

A Profile is used by a programmer that makes many of the complicated decisions for the programmer. It decides
such things as the default algorithm sets that are used when creating keys, where they are stored and found.

Key template names have been created for the dozen or so keys that are expected to be used by most programmers
Key names will be based on path descriptors, much as files are today.

All entities used by the feature API will be authenticated by use of a policy. (The policy may point to an authorization
done using the authorization data, however.) This means that no entity will be created with a NULL policy. It
probably also means that bits will be set to disable use of the authorization data in objects.

All authorizations done using authorization data will use salted HMAC sessions. Decrypt and encrypt sessions will
also be used.

Policy instances and forms are described in an XML representation which may be found in the Policy XML format
document.

PCR log files will be in the format described by the PC Client Specification
Commands syntax looks like Tss2_<EntityName>_ <Command> :

0 Tss2_Key_ Sign

0 Tss2_Nv_Write

0 Tss2_Entity ChangeAuth

0 Tss2 TPM_GetRandom

The Feature APl doesn't include two other things which are necessary to get it to work, which are expected to be
needed, namely

0 A utility used to create a policy in the correct XML format
For example:

<PolicyAce type="PolicySigned">
<Name>Company SmartCard</Name>
<Driver>MySmartCard</Driver>
<DriverInfo>DN=CompandSmartcard.com</Driverinfo>
<etc>...</etc>

</PolicyAce>

0 A device driver and library which instantiates the appropriate callback function
In this case Tss2_PolicySignatureCallback
0 A means to register the driver and library itself, so that it is available for use

0 Callback functions will be used to obtain decisions from the user and interfaces related to policy commands
that require input. The FAPI will read the policy associated with an entity when it is used, create a Policy
session to satisfy it, and walk through the command necessary to satisfy the command. It will use the
callback functions to determine

= Which branches of an OR (or PolicyAuthorize) policy to follow
= How to obtain passwords or signatures necessary to satisfy the policies.
Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
o The default TPM this will work with is assumed to be the local one, but another one can be specified when a context
is created.

e As much as possible, functions and parameters will be kept to a minimum. Sometimes these mandates are in
conflict. When in conflict, the solution believed to be easiest for the programmer is chosen.

Thanks are given to the kind members of the group who gave of their time in order to make this specification come together.
In alphabetical order, they are: Will Arthur, David Challener, Michael Cox, Paul England, Andreas Fuchs, Ken Goldman,
James Nguyen, Lee Wilson.

Page 5 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
2 Structures

To reduce the cognitive load on users, we are trying to restrict ourselves in the number of new structures a programmer will
have to learn. There are a few that will make things easier rather than harder, though, both for the FAPI creator and for the
programmer.

2.1 TSS2_CONTEXT

This data type describes an opaque structure that can be used by implementations to store state information. It is allocated
during Tss2_Context_Initialize() and freed during Tss2_Context_Finalize(). Note: An application must ensure that there is
only one FAPI call that uses a context at any given time. If an application desires to make concurrent function calls to the
Feature-API, it needs to initialize multiple contexts. Even though most functions are globally atomic and therefore stateless,
a few functions do store state information inside the context object, e.g. the policy callback setters.

2.2 TSS2_SIZED_BUFFER

One fundamental type of structure arising often in functions is a sized buffer. In order to reduce the number of parameters
we have to write for a command, we have decided to call such a buffer a TSS2_SIZED_BUFFER

typedef struct { size_t size;
uint8_t *buffer;
} TSS2_SIZED BUFFER,;

NOTE: This is different from the TPM TPM_ 2B structure in that the buffer is a pointer, not a fixed size array.

2.3 Key Structure

Example of what the implementation might put in the key structure. This is never used in the specification, but is rather
a help for the implementer.

typedef struct {
char *keyPath; /* key path */
TSS2_SIZED_BUFFER *private; /* the private portion of the object */
TSS2_SIZED_BUFFER *public; /* the wrapped public portion of the created object */
TSS2_SIZED_BUFFER *name; /* TPM library Name */
char *policylnstance; /* Key’s policy */
TSS2_SIZED_BUFFER *certificate; /* Key's certificate (if any) */
TSS2_SIZED_BUFFER *description; /* Human readable description of key */
} TSS2_KEY;
Page 6 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
3 Definitions

3.1 Policies

3.1.1 Standard Policies and Authorizations (for values, see header file)

These policies don't have a path associated with them. They are represented by a fixed set of bytes, which only depends
on the hash algorithm. As such, they have a fixed name which can be used when creating an entity, without first creating
a policy instance. One authorization, TSS2_AUTHNULL, is defined to provide an easy way to refer to the trivial
authorization, usually used (e.g.) by root keys.

TSS2_ AUTHNULL refers to the NULL password, in a TSS2_SIZED_BUFFER which can be trivially satisfied.
TSS2 POLICY_NULL refers to the NULL policy (empty buffer) which can never be satisfied

TSS2 POLICY_AUTHVALUE refers to a policy that merely points to the object’s authorization data

TSS2 _POLICY_SECRET_EH refers to a policy that points to the endorsement hierarchy’s authorization data

TSS2 POLICY_SECRET_SH refers to a policy that points to the storage hierarchy’s authorization data
TSS2_POLICY_SECRET_DA refers to a policy that points to the dictionary attack handle’s authorization data
TSS2_POLICY_TRIVIAL refers to a policy with length equal to the hash algorithm output size, filled with zeros

3.2 PCRs

When PCRs are called, if the TPM only has one bank of hash algorithms, that one is chosen (This is likely to be the case
100% of the time.) If more than one hash algorithm is available, and one corresponds to the default hash algorithm, that
one is chosen. Otherwise an error is returned.

PCRs are passed in as a monotonic array terminated with a -1.

Example 1:

Selecting PCRs 1,3 and 5: {1,3,5,-1}

Selecting PCRs 0,1,2,3,4,5: {0,1,2,3,4,5,-1}

Selecting PCRs 0-23: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,-1}

3.3 Key Types

3.3.1 Named types of keys: (for values, see header file)

e TSS2_ASYM_STORAGE_KEY
This is an asymmetric key used to store other keys/data

e TSS2_SRK
This is a primary key at the top of a tree. It is never directly referenced by a path. The default SRK will
correspond to the default Profile algorithm profile and be persistent. If any other algorithm profile is chosen,
the FAPI will have to generate the appropriate primary SRK, which need not be primary.

e TSS2 EK
This is an endorsement key which has a certificate used to prove that it and other keys belong to a genuine
TPM. It resides in the endorsement hierarchy, and is described by a template pointed to in the Profile.

e TSS2_ASYM_RESTRICTED_SIGNING_KEY
This is like the AIK of 1.2, but has further capabilities of being able to sign any data that does not claim to
come from the TPM.

e TSS2_HMAC_KEY

This is is for an HMAC key. Itis NOT a restricted key and cannot be used to attest to data.

Page 7 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
3.3.2 NV types

Hybrid NV is not supported in this revision of the FAPI specification.

e TSS2 NV_MEMORY (normal NV memory)

e TSS2_NV_BITFIELD (a 64 bit bitfield)

e TSS2 NV_COUNTER (a 64bit counter)

e TSS2_NV_PCR (a NV_PCR using template hash algorithm)

e TSS2_NV_TEMP_READ_DISABLE (This memory object can be made not readable for a boot cycle)

3.4 Standard Default Profiles
These profiles are referenced by the FAPI and used to determine the algorithms and settings used when creating entities.
One of these is selected by the user for the FAPI to use as default. If the programmer doesn’t want to use the default, he

can specify a different one of these when creating or using entities.The programmer can create a Profile file different from
the specified ones and import it into the FAPI library by placing it at the root of the path described in Section 4.

Profile Names (used in paths, see Section 4)
3.4.1 P_RSASHA1

This Profile uses RSA-2048, SHA-1, and AES128 for its algorithms.

3.4.2 P_RSASHA2

This Profile uses RSA-2048, SHA-256, and AES128 for its algorithms.

3.4.3 P_ECCP256

This Profile uses ECC P256, SHA-256, and AES128 for its algorithms.

3.4.4 P_ECCP384

This Profile uses ECC P384, SHA-384, and AES256for its algorithms.

3.45 P_ECCP521

This Profile uses ECC P521, SHA-512, and AES256 for its algorithms.

3.4.6 Profile Features

When defining or querying a FAPI (see Section 5.3.2) to determine characteristics of its default profile, the following are the
vocabulary terms used.

e TSS2_ASYM_ALG

e TSS2_SYM_ALG

e TSS2_HASH_ALG

e TSS2_ASYM_ALG_SIZE number of bits in the asymmetric algorithm
e TSS2_SYM_ALG_SIZE = number of bits in the symmetric algorithm
e TSS2_HASH_ALG_SIZE number of bits in the hash algorithm

Page 8 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API
3.5 Example Algorithm Profiles in XML

The algorithm profile includes a number of things for use as defaults when creating entities in the TPM. The main thing it
includes is a list of algorithms that are used for creation of all the key types, and where their default storage is. There will
be algorithm profiles of various sorts shipped with a Feature APl which represent platform specifications of supported
algorithms, however these three will always be included. Programs can ship with their own custom algorithm profiles as

Copyright © 2014 TCG

well, with the suggestion that end users make use of them. Spaces after > or before < are ignored.

3.5.1 Algorithm profile for RSASHA1: P_ RSASHA1

<TSS2_Defaults>
<Title> RSA2048 SHA1 AES128</Title>
< ASYM_ALG> RSA</ASYM_ALG>
<ASYM_ALG_SIZE> 2048</ASYM_ALG_SIZE>
<ASYM_ALG_SIGNING_SCHEME> RSASSA </ASYM_ALG_SIGNING_SCHEME>
<HASH_ALG> SHA1</HASH_ALG>
<HASH_ALG_SIZE> 20 </HASH_ALG_SIZE>
<SYM_ALG> AES </SYM_ALG>
<SYM_ALG_SIZE> 128 </SYM_ALG_SIZE>
<SYM_ALG_ENCRYPTION_SCHEME> CFB </SYM_ALG_ENCRYPTION_SCHEME>
<SRK>
<Description> SRK </Description>
<Persistent> YES </Persistent>
<Handle>0x400000001</Handle>
<Standard_template>SRK/templateO</Standard_template>
</SRK>
<EK>
<Description> EK </Description>
<Persistent> No </Persistent>
<Standard_template> EK/template0 </Standard_template>
<CertIndex> 0x01c00000</Certindex>
</EK>
</TSS2_Defaults>

Page 9
November 7, 2014

Family “2.0”
Level 00 Revision .12

TCG Software Stack Feature API
3.5.2 Algorithm profile for RSASHA2: P_ RSASHA2

<TSS2_Defaults>
<Title> RSA2048 SHA256 AES128</Title>
<ASYM_ALG> RSA</ASYM_ALG>
<ASYM_ALG_SIZE> 2048</ASYM_ALG_SIZE>
<ASYM_ALG_SIGNING_SCHEME> ECDHA </ASYM_ALG_SIGNING_SCHEME>
<HASH_ALG> SHA256</HASH_ALG>
<HASH_ALG_SIZE> 32 </HASH_ALG_SIZE>
<SYM_ALG> AES </SYM_ALG>
<SYM_ALG_SIZE> 128 </SYM_ALG_SIZE>
<SYM_ALG_ENCRYPTION_SCHEME> CFB </SYM_ALG_ENCRYPTION_SCHEME>
<SRK>
<Description> SRK </Description>
<Persistent> YES </Persistent>
<Handle>400000001</Handle>
<Standard_template>SRK/templateO</Standard_template>
</SRK>
<EK>
<Description> EK </Description>
<Persistent> No </Persistent>
<Standard_template> EK/template0 </Standard_template>
<CertIindex> 0x01c00010</Certindex>
</EK>
</TSS2_Defaults>

Page 10
November 7, 2014

Copyright ©2014 TCG

Family “2.0”
Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG

3.5.3 Algorithm profile for ECCP256: P_ECCP256

<TSS2_Defaults>
<Title> ECC using P256, SHA256, and AES128 </Title>
<ASYM_ALG> ECC</ASYM_ALG>
<ASYM_ALG_SIZE> 256</ASYM_ALG_SIZE>
<ASYM_ALG_SIGNING_SCHEME> ECDHA </ASYM_ALG_SIGNING_SCHEME>
<HASH_ALG> SHA256</HASH_ALG>
<HASH_ALG_SIZE> 32 </HASH_ALG_SIZE>
<SYM_ALG> AES </SYM_ALG>
<SYM_ALG_SIZE> 128 </SYM_ALG_SIZE>
<SYM_ALG_ENCRYPTION_SCHEME> CFB </SYM_ALG_ENCRYPTION_SCHEME>
<SRK>
<Description> SRK </Description>
<Persistent> YES </Persistent>
<Handle>400000001</Handle>
<Standard_template>SRK/templateO</Standard_template>
</SRK>
<EK>
<Description> EK </Description>
<Persistent> No </Persistent>
<Standard_template> EK/template0 </Standard_template>
<Certindex> 0x01c00020 </Certindex>
</EK>
</TSS2_Defaults>

Page 11

Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
4 Path Descriptors

Path descriptor are used to point to keys, NV, policy, etc. A policy looks like this:

JHS/SNK/Enterprise/PettyCashKey

The second term, called the hierarchy, tells which hierarchy the items is stored under
The third term called a Defined Object ancestor defines the type of key
The last term references the specific key.

Path descriptors tell the FAPI where to find and store information about entities, including those which are stored as blobs
(keys), NV indexes, hierarchies, and policy forms and policies. Path descriptors are NOT case sensitive.

4.1 The Profile term:

The Profile (e.g. P_RSA2048SHAL/) is the first term in a path, but may be implied. They always start with P_. If a Profile is
not specified in a path, then the default Profile will be assumed (see 4.6 Implicit Paths). All keys under a particular profile
will have the same algorithm set, as determined by the Profile.

There are some standard Profile names (referenced in part 3.4) which can be assumed by the programmer to exist.
However the programmer can create new Profiles and install them as a root of a path addressed by the FAPI. Once
installed, they can be referenced like any other Profile name.

For the first version of the specification, it is assumed that all keys below primary keys are stored in the Storage hierarchy.

4.2 Hierarchy terms

There are 4 possible hierarchy terms: HS (the storage hierarchy), HE (the endorsement hierarchy), HP (the platform
hierarchy) and HN (the Null hierarchy). If the hierarchy term is not listed, then the storage hierarchy is assumed (See 4.6
Implicit Profiles).

4.3 Defined Object Ancestors

These keys are standard ancestors of various key hierarchies that should always be present in a system. By pointing to
one of these ancestors when creating a key, you implicitly select if the key is duplicable or not, and if the key is available to
the system, or only to the user. That is, a key ancestor tells whether a key is one of four possible kinds: A system key that
is non-duplicable , a system key that is duplicable, a user key that is non-duplicable or a user key that is duplicable. One
special key, the EK, has a symbol of its own. There may be many users on a system. If so, there will be many user object
ancestors, but they will all be referenced by the same name. It is up to the operating system to make certain that when a
user refers to UNK or UDK, the FAPI knows the correct tree for that user.

If the object is not a key, then the object ancestor will either by NV (for a non-volatile index) or Policy (for a policy instance).

4.3.1 HS/SNK

System NonDuplicatable Key: This refers to a non-duplicable key in the storage hierarchy. It will be stored under the SRK.
It is the parent storage key of all non-primary keys under a Profile, and is the direct parent of all system-wide non-primary
duplicable keys. If a key is created by the user under this key, it is automatically assumed to be non-duplicable.

Page 12 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
4.3.2 HS/SDK

System Duplicable Key: This refers to a duplicable storage key. (The TSS creates this key under the SNK, but the SNK is
not referenced in its path). It is the parent of all system-wide duplicable keys. In order to move all system-wide duplicable

keys to a new system, only this key needs to be duplicated. Its children and descendants can be merely copied to the new
system. If a key is created under this key, it is automatically assumed to be duplicable. Fixedparent is NOT set.

4.3.3 HS/UNK
The User Non-Duplicable Key This refers to a non-duplicable restricted decryption key under the SRK, which is assigned

to the user. The OS is responsible for only allowing the user to have access to these keys. All user non-duplicable keys
are placed under this key. If a key is created under this key, it is automatically assumed to be non-duplicable.

4.3.4 HS/UDK

The User Duplicable Key: This refers to a duplicable restricted decryption key under the HS/UNK, which is assigned to a
user. The OS is responsible for only allowing the user to have access to these keys. If a user moves to another system,
only this key will need to be duplicated to the new system. Its children and descendants need only be copied to the new
system. If a key is created under this key, it is automatically assumed to be duplicable. Fixedparent is not set.

4.3.5 HE/EK

This refers to a restricted decryption key under the endorsement hierarchy. It may also be refered to as just the EK.

4.3.6 NV

This means that the entity referred to is an Non Volatile memory location

4.3.7 Policy

This means that the entity referred to is a policy

Page 13 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
4.4 Example explicit paths

Explicit paths are used when referring to a key that was not created using the current Profile

Profile /[HS/SNK/keyname
Profile /[HS/SDK/keyname
Profile /IHS/UNK/keyname
Profile /[HS/UDK/keyname
Profile /[HE/EK
Profile/Policy/
Profile/HS/NV

Profile/HE

Profile/HS

Profile/HP

Profile/HN

P_RSASHA1 P- ECCP236

P_RSA_SHA1/HS/SDK/myKey4

P_ECCP256/HS/SDK/myKey8

 P_ECCP256/HS/SRK/myKey7

P_RSA_SHA1/HS/UK/myKey2

P_ECCP256/HS/UK/myKey6

P_RSA_SHA1/HS/UDK/myKeyl P_ECCP256/HS/UDK/myKey5

Page 14 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG

P_RSASHA1

Page 15 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG

4.5 Policies

Policies are stored under a Policy

4.5.1 Examples

e Implicit: Policy/myLittlePolicy
e Explicit: P_ECCP256/HS/Policy/myLittlePolicy

4.6 Example implicit paths

Implicit paths are used when referring to a key that was created using the current Profile. If a hierarchy is not defined, then
it is assumed to be HS except that EK is always assumed to be in the HE. (Here P_DefaultPolicy is whatever the user has
selected for his default policy, which the FAPI will know. Examples are P_RSASHA256 or P_ECC256.)

e SNK/keyname = HS/SNK/keyname = P_DefaultPolicy/HS/SNK/keyname
o UDK/keyname = HS/UDK/keyname = P_DefaultPolicy/HS/UDK/keyname
e UNK/keyname = HS/UNK/keyname = P_DefaultPolicy/HS/UNK/keyname
o UDK/keyname = HS/UDK/keyname = P_DefaultPolicy/HS/UDK/keyname
e EK = HE/EK = P_DefaultPolicy/HE/EK
e Policy/myPolicy = P_DefaultPolicy/Policy/myPolicy
e NV/myNV_forStoringHashes = P_DefaultPolicy/NV/myNV _forStoringHashes
e HP/NV/EK_Certificate = P_DefaultPolicy/HP/NV/EK_Certificate
4.7 Format
4.7.1 Keys

4.7.1.1 Systemwide non-duplicable keys
System-wide non-duplicable keys are referred to starting either with /SNK or Profile/SNK. An example might be a key used

by a network to both provide access to a network, but also to verify the devicelD. As such, it is locked to a particular
platform, so that the network knows what device is trying to connect.

4.7.1.1.1 Examples

e Implicit: SNK/VPN1/HomeNetwork
e Explicit: P_ECCP256/HS/SNK/VPN2/WorkNetwork

4.7.1.2 System-wide duplicable keys
Some keys may be tied to a physical location but not a particular system, and may potentially need to be moved to a new

system when the hardware is upgraded without disruption caused by needing to create a new key. As such, they would be
created and then later duplicated to a different system.

4.7.1.2.1 Examples

o Implicit: SDK/ServicelKey
e Explicit: P_RSASHA1/HS/SDK/ServicelKey

Page 16 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
4.7.1.3 User non-duplicable keys

Users may also have specific keys that they use to access a service that are not meant to be shared between different
users, and which are meant to be locked to a particular device.

4.7.1.3.1 Examples

All of these refer to the same key, if the default Profile file is P_ RSASHA256:

o Implicit: UNK/Finance/DepartmentPettyCashKey
e Partially implicit: HS/UNK/Finance/DepartmentPettyCashKey
e Explicit: P_RSASHA256/HS/UNK/Finance/DepartmentPettyCashKey

Note: here Finance refers to a storage key and DepartmentPettyCashKey is a key wrapped by the Finance key.

4.7.1.4 User duplicable keys

A user may wish to share a key between different systems he owns, without tying them to a particular machine as well

4.7.1.4.1 Examples

o Implicit: UDK/Finance/PayPalKey
e Explicit: ECC384/HS/UDK/Finance/PayPalKey

4.7.2 NV

NV indexes will be created under the NV label. Users will most likely create such indexes under the storage hierarchy.
Examples

e Implicit: NV/MyHashindex
o Explicit: HP/NV/EKcertificate

4.7.3 Permanent Handles
There are 4 permanent handles that have data associated with them that needs to be stored elsewhere. Although the

hierarchies may have Profiles which in turn are associated with a hash algorithm, there are not multiple copies of the policy,
so these permanent handles are not associated with a Profile:

4.7.3.1 HE is the endorsement hierarchy, which has a policy associated with it.

This hierarchy is controlled by a privacy administrator, but is unlikely to be used except by the EK.

4.7.3.2 HS is the storage hierarchy, which has a policy associated with it

This hierarchy is the one most used by the end user.

4.7.3.3 HP is the platform hierarchy, which may have a policy associated with it.

This hierarchy is unlikely to be ever usable by an end user.

Page 17 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
4.7.3.4 HEph is the ephemeral hierarchy, which disappears on each reboot, and always has NULL
password and NULL policy.

This hierarchy mostly likely will be used for loading in public keys for verification of signatures.
4.7.3.5 DA is the dictionary attack permanent handle which may have a policy associated with it.

4.8 Data kept at the path

When the FAPI creates entities or instantiates them, information about the entity is stored at a path location. The following
describes that data.

481 Keys

0 One of these three
= [f persistent, an index
= If primary, Configuration (used for creation of primary keys, as data for non-primary)
= |f a blob, the blob

= Hash
= Data used to create name
= Birth Certificate (if any)
0 The policy data
= Hash
= Full policy data
o Short name
0 The description of the key “My little key | used for my VPN”
o Certificate

4.8.2 NV indexes

o Index
o Name
= Hash

= Data used to create name
0 The policy data

= Hash

= Full policy data
0 Short name
o Description

4.8.3 Hierarchies

0 The policy data

= Hash

= Full policy data
0 ShortName “Storage”, “Hierarchy”, “Platform” or “NULL”"
o Description “Storage”, “Hierarchy”, “Platform” or “NULL”

Page 18 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
4.8.4 policyForms

0 XML description of the policy. This may include placeholders, such as “Use the current PCR value stored
in PCR 5", or “ask for the smartcard public key”, or “ask for what the biometric signs to be used as the
policyRef". It may be compound, PolicyOR, or anything and can be very complicated

0 PORT for callback if a PolicySigned

0 ShortName

0 Description of PolicyForm

4.8.5 policylnstances

0 Hash of policy when used as an object policy (this is used as a UUID)
o0 Data that is extended into a PolicyBuffer when this policy is satisfied
o0 Type: ACE, Compound (policyANDed of other policies), PolicyOR, or PolicyAuthorize
= ACE
e PolicyCommand
e PolicyParameters
o RegisteredCommand (if external hardware needed)
= Compound
o List of other Policylnstances in order
= PolicyOR
e List of other Policylnstances
= PolicyAuthorize
e List of authorized Policylnstances
e Ticket associated with those instances
e Parameters necessary to satisfy command (public key)
PORT for callback if PolicySigned
Date of Creation
Short Name
Description of Policylnstance

O O 0O

Page 19 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5 Commands

51 Context commands

5.1.1 Tss2_Context_Initialize

5.1.1.1 Description

Tss2_Context_Initialize() initializes a context and establishes a connection to a TSS stack which ultimately leads to a TPM.
The url parameter can be used to define which TSS to connect to. If url == NULL, then the local TPM is used. The memory
necessary for the context object is allocated by the FAPI and freed during Tss2_Finalize(). If there are multiple local TPMs,
NULL should not be used.

5.1.1.2 Command

TSS2_RC Tss2_Context_Initialize(TSS2_CONTEXT **context, const char *url);

5.1.1.3 Returns

TSS2_SUCCESS
TSS2_OUT_OF_MEMORY

5.1.1.4 Example

TSS2_CONTEXT *context;

ret = Tss2_Context_Initialize(&context, NULL);

assert(ret == TSS2_SUCCESYS);

ret = Tss2_Encrypt(context, "path/to/key", data_in, &data_out);
assert(ret == TSS2_SUCCESYS);

Tss2_Context_Finalize(context);

Page 20 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.1.2 Tss2 Context_Finalize

5.1.2.1 Description

Tss2_Context_Finalize() finalizes a context by closing IPC/RPC connections and freeing its consumed memory.

5.1.2.2 Command

void Tss2_Context_Finalize(TSS2_CONTEXT *context);

5.1.2.3 Returns

No Return value

5.1.2.4 Example

See 5.1.1.4

Page 21 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.2 TPM commands

5.2.1 Tss2 TPM_GetRandom

5.2.1.1 Description

This command is given the number of random bytes to return and Returns them in the array “data”.
Note: The memory for data is allocated by the caller.

5.2.1.2 Command

TSS2_RC Tss2_TPM_GetRandom(TSS2_CONTEXT *context, /*input*/

size t numBytes, /*input*/
uint8_t *data) [*output*/

5.2.1.3 Returns

TSS2_SUCCESS Command Successful

TSS2 TOO _BIG The number of bytes requests is larger than the default in the Profile
TSS2_OUT_OF_MEMORY

TSS2_FAIL Cannot provide the request number of bytes

5.2.1.4 Example

uint8_t randomData[25];

ret = Tss2_TPM_GetRandom(context, 25,randomData);

Page 22 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.3 TSS Commands

5.3.1 Tss2_GetVersion

5.3.1.1 Description

This command RETURNS the major, minor, and revision version of the specification that this TSS was written to.
e If version 2.00, rev .13 it will return major=2, minor=0, revision 13

e |Ifversion 2.01, rev .22, it will return major=2, minor=1, revision 22

5.3.1.2 Command

TSS2 RC Tss2_GetVersion(TSS2_CONTEXT *context, [*input */
uintl6 t *major, [*output*/
uintl6 t *minor, [*output*/
uintl6 t *revision) [*output*/

5.3.1.3 Returns

TSS2 _SUCCESS Command Successful
TSS2 FAILURE Command failed

5.3.1.4 Example

TSS2_CONTEXT *context;

Tss2_Context_Intialize(context);

uintl6_t major, minor, revision;

ret = Tss2_GetVersion(context, &major, &minor, &revision);
assert(ret == TSS2_SUCCESS);

printf(*“TSS version %d.%d Revision %d\n”,major, minor, revision);
Tss2_Context_Finalize(context);

Page 23 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.3.2 Tss2 GetConfig

5.3.2.1 Description

This command Returns to the program information about the default Profile file. This is useful to determine the size of
the hash, for example. The command Returns both a numeric value for what is returned and a string identifier.

In all cases the last two bytes of an algorithm are identical to the TPM specification. However to prevent ECC BN from
being confused with TPM_ALG_NULL, the BN functions return 0x10000010 and 0x10000011 for BN_P256 and BN_638
respectively instead of 0x00000010 and 0x00000011

Values that can be input for feature are:

e TSS2_ASYM_ALG 0x0000
0 Values returned:
= (0x00000001 RSA
= 0x00000018 ECC prime fields
= (0x10000010 BN256
= (0x10000011 BN638
e TSS2 ASYM_KEYSIZE 0x0001
0 Value returned is keysize
e TSS2_ASYM_SIGN_SCHEME 0x0002
0 Values returned
= (0x00000014 RSASSA
= (0x00000001 ECDHA
e TSS2 ASYM_ENCRYPT_SCHEME 0x0003
0 Values returned
= (0x00000000 CFB
e TSS2_HASHALG 0x0010
0 Values returned
= (0x00000004 SHA1
= 0x0000000B SHA256
= (0x0000000C SHA384
= (0x0000000D SHA512

e TSS2 HASHSIZE 000011
0 Values returned is keysize
e TSS2_SYM_ALG 0x0020

0 Values returned
= (0x00000006 AES

e TSS2_SYM_KEYSIZE 0x0021
0 Values returned is keysize
e TSS2_SYM_MODE 0x0022

O Values returned
= 0x00000041 CFB

Page 24 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
e TSS2_SRK_HANDLE 0x0031

0 Value returned:
= The value of the handle.
= Otherwise error
e TSS2_EK_HANDLE 0x0041
0 Value returned:
= The value of the handle.
= Otherwise error.
e TSS2 EK_CERT_INDEX 0x0042 // Do we already have a getter for cert.
0 Value returned:
= |[f persistent, the value of the index.
= Otherwise error
e TSS2 _MAX_RANDOM 0x0050

0 Value returned is the maximum number of random bytes to be asked for in one command (as a uint32_t)

5.3.2.2 Command

TSS2_RC Tss2_GetConfig(TSS2_CONTEXT *context, [*input */
uintl6_t feature, [Finput*/
uint32_t *value) [* output*/

5.3.2.3 Returns:

TSS2 SUCCESS Command Successful
TSS2 NO_PERSISTENT_HANDLE

5.3.2.4 Examples

uint32_t hashSize, asymSize, symSize, hashAlg, asymAlg, symAlg;

char *ToString(uint32_t value)
{
char *retString = NULL;
switch (value) {
/* Hash Algorithms */
case 0x00000004:
retString = "'SHAL";
break;
case 0x0000000B:
retString = "'SHA256";
case 0x0000000C:
retString = ""SHA384";
case 0x000000D:
retString = "'SHA256";
/* Assymmetric Key Algorithms */
case 0x00000001:

Page 25 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API
retString = "RSA";
break;
/* other cases */
/* Symmetric Key Algorithms */
case 0x000006:
retString = "AES";

default:
break;
}
return retString;
}
TSS2_RC rc;

rc = Tss2_GetConfig(context,
assert(rc == TSS2_SUCCESS);
rc = Tss2_GetConfig(context,
assert(rc == TSS2_SUCCESS);
printf('The hash’s algorithm

rc = Tss2_GetConfig(context,
assert(rc == TSS2_SUCCESS);
rc = Tss2_GetConfig(context,
assert(rc == TSS2_SUCCESS);

TSS2_HASHALG,

Copyright ©2014 TCG

&hashAlg);

TSS2 HASHSIZE, &hashSize);
is %s %d bits long\n", ToString(hashAlg), hashSize);
TSS2_ASYM_ALG, &asymAlQ);

TSS2_ASYM _KEYSIZE, &asymSize);

printf('The asymmetric algorithm %s %d bits long \n", ToString(asymAlQ),asymSize);

rc = Tss2_GetConfig(context, TSS2 SYM ALG,

assert(rc == TSS2_SUCCESS);

&symAlg);

rc = Tss2_GetConfig(context, TSS2 _SYM KEYSIZE, &symSize);

assert(rc == TSS2_SUCCESS);

printf('The symmetric algorithm algorithm is %s %d bits long\n", ToString(symAlg), symSize);

Page 26
November 7, 2014

Family “2.0”

Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.4 Entity

Some commands need to be available for all entities. As such, we have general commands described.

5.4.1 Tss2_ Entity_ChangeAuth

5.4.1.1 Description

Changes the Authorization data of an entity found at keyPath

5.4.1.2 Command

TSS2_RC Tss2_Entity_ChangeAuth(TSS2_CONTEXT *context, [*input*/
const char *entityPath, [Finput*/
const TSS2_SIZED BUFFER *AuthValue); /*input*/

5.4.1.3 Returns:

TSS2_SUCCESS Command Successful
TSS2 _PATH_NOT_FOUND Path was not found

5.4.1.4 Example Code

char password[]="horse”’;

TSS2_SIZED BUFFER myPassword;

myPassword.buffer = malloc(strlen(password) + 1);
assert(myPassword.buffer);
myPassword.size=strlen(password)

memcpy (myPassword.buffer, password, strlen(password));

ret = Tss2_Entity_ChangeAuth(context, “/NV/MyNVindex”, &myPassword);

Page 27 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.4.2 Tss2 Entities_List

5.4.2.1 Description

Given a search Path, the list of entities that reside under this path shall be enumerated and returned to the application.
This will return a list of complete paths, such that the return paths can be directly used for another query;

Note: The caller needs to call free() on each of the string entries as well as on the returned list of pointers to the entries.

5.4.2.2 Command

TSS2_RC Tss2_Entities_List(TSS2_CONTEXT *context, /¥ input */
const char *searchPath, /*input*/
char *F*pathlist, /*output*/
size_t *num_elements); /*output*/

5.4.2.3 Returns:

TSS2_SUCCESS Command Successful
TSS2 _PATH_NOT_FOUND Path was not found
TSS2 _ERROR_NOT_A_STORAGE_KEY Path to be searched does not point to a storage key

5.4.2.4 Example usage:

/* List the first two levels of user-keys */
ret = tss2_feat listKeys(''/USK", &l1 paths, &num_ 11 _paths);
for (11 = 0; 11 < num_I1_paths; 11++) {
if ((ret = Tss2_Entities_List(l1_paths[l11], &l2_paths, &um_I12 paths)) == ERROR_NOT_A STORAGE KEY) {
printf("'Found Leaf Key %s\n", 11 paths[I11]);
} else {
printf("'Found Key %s\n", 11 _paths[I11]);
for (12 = 0; 12 < num_I2_paths; 12++)
printf("'Found Key %s\n", 12_paths[12]);
¥
free_string_list(12_paths, num_I2_paths);

}
free_string_list(l1_paths, num_I1 paths);

Page 28 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.4.3 Tss2_ Entity Delete

5.4.3.1 Description
Tss2_Entity Delete() does different things according to the entity type
If Entity is:

e Regular key:
0 delete entry from path
0 flush from the TPM (including any resource managers)
e Primary key:
0 Evict from TPM
0 Delete entry from path
e NV
0 Delete index from TPM
0 Delete entry from path
e Policy
0 Delete entry from path
e Policy form
0 Delete entry from path
e Hierarchy
O Return error
e PCR
O Return error
e If the key is anObjecdt Ancestors (e.g. SNK, UNK, UDK, or SDK), the command Returns an error.

5.4.3.2 Command

TSS2 _RC Tss2_Entity Delete(TSS2 _CONTEXT *context, /*input*/

const char *Path); [Finput*/
5.4.3.3 Returns
TSS2_SUCCESS Command Successful
TSS2_PATH_NOT_FOUND Path was not found

TSS2_ENTITY_NOT_DELETABLE The entity is not deletable (e.g. a PCR or hierarchy)

5.4.3.4 Example usage

ret = Tss2_Entity Delete(context, “USK/myVISAkey’);

Page 29 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.5 Policy commands

5.5.1 Tss2 Policy_ Createlnstance

5.5.1.1 Description

Allows the creation of a Policy instance from Policy forms.

5.5.1.2 Command

TSS2_RC Tss2_Policy_Createlnstance(TSS2_CONTEXT *context, /* input */
const char *PolicyForm, /*input*/
const char *policyPathInstance); /*input*/

Note: if the policyPath does not start with "policy/" then this will be prefixed automatically.

5.5.1.3 Returns

TSS2_SUCCESS Command successful
TSS2_POLICY_FORM_NOT_FOUND One of the Policy Forms was not found

5.5.1.4 Example usage:

policyDefinitionl = “insert XML description here';
policyDefinition2 = "{ \"policy" = {.._.}}\";

Tss2_Policy Createlnstance (context, policyDefinitionl, "/policy/examplelnc/genericServiceKeyPolicy™);
/* New Policy */

Tss2_PathSetDescription(context, '/policy/examplelnc/genericServiceKeyPolicy', "mylittlePolicy');
Tss2_Key Create(...,"/policy/examplelnc/genericServiceKkeyPolicy”, .);

Page 30 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG

5.5.2 Tss2 Policy Export

5.5.2.1 Description
PathExport simply takes a particular path and copies the contents into a buffer in the correct format to be used by the

Policy_Createlnstance command. It differs from Key ExportTree, in that no encryption or decryption is done, and that a
Key_ ExportTree will combine all the keys beneath the selected parent key.

5.5.2.2 Command

TSS2 RC Tss2_ PathExport(TSS2 CONTEXT *context, /[*input*/
const char *path, [Finput*/
TSS2_SIZED BUFFER *buffer [*input*/

);
5.5.2.3 Returns
TSS2_SUCCESS Command Successful
TSS2 PATH_NOT_FOUND Can’t find the path
5.5.2.4 Example

TSS2_SIZED BUFFER *myUserPolicy;
Tss2_PathExport(context, “policy/myFingerprint”,myUserPolicy);

Page 31 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.5.3 Tss2 Policy PcrRestriction

5.5.3.1 Description

Tss2_Policy PcrRestriction takes *PCRs as values
Creates and registers a policy for those PCRs at the current values of those PCRs

Note that it is possible to do this same operation with a Tss2_Policy_Createlnstance command, but it would require too
many potential PolicyForms in order for it to be practical. Hence this feature, which allows a programmer not to have to rely
on forms being available.

5.5.3.2 Command

TSS RC Tss2_Policy PcrRestriction(TSS2_CONTEXT *context, [Yinput*/
uint64_t *PCRs, [Finput*/
const char *policyPath); /*input*/

5.5.3.3 Returns
TSS2_SUCCESS Command Successful
TSS2_PATH_NOT_FOUND Path was not found
5.5.3.4 Example Usage
Tss2_Policy PcrRestriction({0,1,2,3,4,5,-1}, “/policy/pcr0_5);

Tss2_PatHSetDescription(*“/POLICY/pcr0_5”,”Policy set to current values of PCRs 0,1,2,3,4 and 57);
Tss2_Create(SEALED_DATA, data,32,”/Policy/pcrO_57);

Page 32 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.5.4 Tss2 Policy AuthorizeNewPolicy

If a current policy happens to be a PolicyAuthorize, then for it to be used, the user must first satisfy a policy authorized by
a having been signed (and made into a ticket) by an authorized party. In this case, the Policylnstance will point to one or
more other policylnstances along with a ticket that can be used with them. The key used for authorization is pointed to in
the policyPathToUpdate.

5.5.4.1 Description

policyPathToUpdate: A current PolicyAuthorize policy, to which authorized policies are to be added
policyPathToAddOrDelete: A policy to be auhorized (added) or removed from the list of authorized policies
Aninteger ADD_DELETE to indicate if policyPathToAddOrDelete is being added or deleted (1=Add, 0=Delete)

If the integer is delete, it checks if the current policy is one registered with a ticket for the updatable policy. If it is, it
deletes it. Otherwise it returns an error code.

If the flag is add, it looks up the correct key to use in the current PolicyAuthorize policy, and creates a ticket using the
private portion of that signing key, and then registers the policyPathToAddOrDelete, with its ticket in the
policyPathToUpdate.

5.5.4.2 Command

Tss2_Policy_AuthorizeNewPolicy(TSS2 _CONTEXT *context, [Yinput*/
constant char *policyPathToUpdate, [Finput*/
constant char *policyPathToAddOrDelete, /*input*/
int ADD_DELETE); [*input*/

5.5.4.3 Returns
TSS2_SUCCESS command successful

TSS2_KEY_NOT_FOUND can't find the key necessary to quote
TSS2 _PATH_NOT_FOUND path to delete not found

5.5.4.4 Example Usage

Tss2_Policy AuthorizeNewPolicy(context, “Path/MyExtendablePolicy’, “Path/BillsSmartCard’,ADD);

Page 33 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.6 Keys

Most programs using a TPM will be using TPM keys of some sort, be they asymmetric or symmetric, for signing, encryption
or HMACing.

5.6.1 Tss2_Key_ Create

5.6.1.1 Description

Creates a key based on the Key type, using the supplied policy and authvalue.

Stores the key based on the path, possibly caches the key.

Returns an error if the implementation doesn't know about the parent.

When FAPI is installed it will automatically create an SRK using the template. If it is not persistent, then when it will
create the SRK on demand. Users must create their own SNK, SDK, UNK and UDK keys.

5.6.1.2 Command

TSS2_RC Tss2_Key_Create(TSS2_CONTEXT *context, [*input*/
const char *keyPath, [*input*/
const char *KeyType, [*input*/
const char *policy, [*input*/

TSS2_SIZED_BUFFER *authvalue); input*/

5.6.1.3 Returns

TSS2 SUCCESS Command Successful
TSS2_KEY_NOT_FOUND Can't find the key necessary to quote
TSS2 POLICY_NOT_FOUND Path to policy not found

5.6.1.4 Example Usage

5.6.1.4.1 Create an AlK-like key

/* The following assigns a password of 12345 to myAlKPassword, then creates a restricted signing key under
the SNK (which makes it system-wide and non-duplicable). It further assigns it a policy which requires
entering the password to use the AIK. */

TSS2_SIZED_BUFFER myAlKPassword ;
myAlKPassword.size=5;
myAlKPassword.buffer=calloc(5,1);
memcpy (myAlKPassword. buffer,”12345,5) ;

Tss2_Key Create(context,

“SNK/MyAIK™, /* The SNK root makes this non-duplicable */
ASYM_RESTRICTED_SIGNING_KEY,

POLICY_PASSWORD, /* This uses a preset policy pointing to the password */
&myAlKPassword); /* This is where you enter the password */

Free(myAlKPassword.buffer);
/* Note that if using P_RSASHALl as a default, this key would be an RSA2048 bit key using SHA1. If using
the T_ECCP256, it woulld be an ECC key using a 256 bit prime field and SHA256. */

Page 34 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG

5.6.1.4.2 Create a duplicable HMAC key only usable for signing

Tss2 _Key Create(context,

“*HS/UDK/MyHmac™, /* The SDK root makes this duplicable */
SYM_RESTRICTED_SIGNING_KEY,
POLICY_SECRET_EH, /* This policy points to the EH password */
NULL_AUTH); /* This password is largely irrelevant */

Page 35 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.6.2 Tss2_Key_ Sign

5.6.2.1 Description

Uses a key, identified by its path, to sign a digest, and puts the result in a TPM2B byte stream

Note that the FAPI is responsible for allocating memory for the signature, publicKey and certificate buffers, but it is the
responsibility of the programmer to free them.

The format for the public key is a PEM1 data format

If certificate is not available, it Returns an empty buffer.

5.6.2.2 Command

TSS2 RC Tss2_Key_Sign(TSS2_CONTEXT *context, [Finput*/
const char *keyPath, [Finput*/
const TSS2_SIZED_BUFFER *digest, [Finput*/
TSS2_SIZED BUFFER *signature, [*output*/
TSS2_SIZED BUFFER *publicKey, [*output*/
TSS2_SIZED BUFFER *certificate [*output*/

);
5.6.2.3 Returns

TSS2_SUCCESS command successful
TSS2 _KEY_NOT_FOUND Can't find the key necessary to sign
TSS2_POLICY_NOT_FOUND Path to policy not found

5.6.2.4 Example

TSS2_SIZED BUFFER myDigest;
/* code inserted here to set the myDigest to equal the thing you want signed */
TSS2_SIZED BUFFER signature, publicKey, certificate;
Tss2_Key_Sign(context,

“/SNK/MyAi K

&myDigest,

&signatureOut

&publicKey,

&certificate);
free(signatureOut.buffer);
free(publicKey.buffer);
free(certificate.buffer);

1 Defined in RFC's 1421 through 1424
Page 36 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.6.3 Tss2_Key Verify

5.6.3.1 Description

Verifies a signature using a public key found in a keyPath. The publicKey is a PEM data format

5.6.3.2 Command

TSS2 RC Tss2_Key Verify(TSS2_CONTEXT *context, [*input*/
const TSS2_SIZED_BUFFER *signature, [Finput*/
const TSS2_SIZED BUFFER *publicKey [Finput*/

const TSS2_SIZED BUFFER *digest); [Finput*/
5.6.3.3 Returns
TSS2 SUCCESS command successful
TSS2 SIGNATURE_FAIL Signature did not match

TSS2_KEY_NOT_FOUND The key was not found at the path
TSS2_BAD_PARAMETER

5.6.3.4 Example

TSS2_SIZED BUFFER myDigest;
TSS2 SIZED BUFFER publicKey;
TSS2_ SIZED BUFFER signatureln;

/* code inserted here to set the myDigest to equal the thing supposedly signed, publickey an signature */
/* code inserted here to read in the public key used to verify signature */
Tss2 Key Verify(context, &signatureln, &publickey, &myDigest);

Page 37 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.6.4 Tss2 Key VerifyQuote

5.6.4.1 Description

Verifies that the data returned by a quote is valid. It does this by reproducing the hash from the data given.
If the hashSigned buffer is not NULL, it is compared against that value. If there is a mismatch, an error is returned.
Next the signature is checked using the public key. If there is a mismatch, an error is returned.
Next the hash in the signature is checked against a hash of the message. If there is a mismatch, an error is returned
If everything is correct, return TSS2_SUCCESS.

5.6.4.2 Command format

TSS2 RC Tss2_Key_ VerifyQuote(TSS2_CONTEXT *context, [Finput*/
TSS2 PCRSELECTION PCRsChosen, [Finput*/
const uint8_t* PCRvalues, [Yinput*/
const TSS2_SIZED BUFFER *PCRIog, [Finput*/
const char *keyPath, [Finput*/
TSS2_SIZED BUFFER *nonce, [Finput*/
TSS2_SIZED BUFFER *quote, [¥input*/
TSS2_SIZED BUFFER *hashSigned, [Finput*/
uintl6 t hashAlg, [¥input*/
TSS2_SIZED BUFFER *TPMdataSigned, /*input*/
const TSS2_SIZED BUFFER *publicKey) [Finput*/

5.6.4.3 Returns

TSS2_SUCCESS Command successful
TSS2_KEY_NOT_FOUND Can'’t find the key necessary to quote
TSS2_SIGNATURE_FAIL Signature did not match
TSS2_HASHMISMATCH Hash did not match

5.6.4.4 Example Usage

Tss2_Key VerifyQuote(context,
{2,3,-1},
“SNK/Zaik™,
&nonce,
"e,
&hashSigned,
SHA256,
PCRvalues,
&TPMdataSigned
&publicKey);

Page 38 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.6.5 Tss2_Key_ ExportTree

5.6.5.1 Description

Given a key it will (if the key is a storage key) duplicate the key and package up the duplicated key and all keys below it into
file ready to move to a new TPM. If it is not a storage key, it will only duplicate the key itself. The data that it exports will
be a TSS2_SIZED_BUFFER.

The buffer will be a ExportTree structure:
Exported data is a sized buffer. Inside the buffer a set of TSS2_KEY's serialized and concatenated.
And the first of the keys contains the public data of the target parent, and its path on the target machine.

The buffer of the exported data will contain first the re-wrapped key pointed to by the pathOfKeyToDuplicate and then the
serialized concatenated set of all keys underneath that storage key (if any).

Note that the FAPI is responsible for allocating memory for the exportedData buffer, but it is the responsibility of the
programmer to free them.

5.6.5.2 Command

TSS2 RC Tss2_KeyExportTree(TSS2 _CONTEXT *context, [Yinput*/
const char *pathOfKeyToDuplicate, [Finput*/
TSS2_SIZED BUFFER *publicKeyofNewParent, [Finput*/
TSS2 SIZED BUFFER *exportedData); [*output*/

5.6.5.3 Returns

TSS2_SUCCESS Command Successful
TSS2_PATH_NOT_FOUND Path was not found
TSS2_KEY_NOT_FOUND Path to new parent not found

TSS2_PATH_NOT_DUPLICABLE The key is not a duplicable key

5.6.5.4 Example

/* In order to export a user’s duplicable keys, he picks HS/UDK as his path to move. In order to move, he
needs to have a public key to which he must move. It will be loaded into the Ephemeral Hierarchy, and then
duplicated. Rather than have the user have to load a public key in a separate step, this just uses a
TSS2_SIZED BUFFER structure for the public key.*/

FILE *inFile, *outFile;

inFile=fopen(“myPublicKey.bin”,”rb);

outFile=fopen(“myExportedTree._bin”,”wb’);

TSS2_SIZED _BUFFER myPublicKey, outTree;
myPublicKey.size=2048;

myPubl icKey.buffer=cal loc(2048,1);
fread(myPublicKey.buffer,2048,1,inFile);

Tss2_KeyExportTree(context, “HEph/UDK™,&myPublicKey, &outTree);
fwrite(outTree._buffer,outTree.size,1,outFile);

free myPublicKey.buffer;
fclose(inFile);
fclose(outFile);

Page 39 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG

Page 40 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.6.6 Tss2_Key ImportTree

5.6.6.1 Description

Given afile created by a Tss2_Key_ ExportTree command it will import the key and appropriately place the rest of the keys
underneath it.

5.6.6.2 Command

TSS2 RC Tss2_KeylmportTree(TSS2_CONTEXT *context, [Yinput*/
TSS2_SIZED BUFFER *importedTree, [Finput*/
char *newPathName); /*input*/

5.6.6.3 Returns

TSS2_SUCCESS Command successful
TSS2_PATH_NOT_FOUND Path to parent key was not found
TSS2_PATHALREADY_EXISTS Name of imported path key already exists.

5.6.6.4 Example

FILE *inFile;
inFile=fopen(“myExportedTree.bin”,”’rb);

TSS2_SI1ZED _BUFFER myTree;
myPublicKey.size=2048;

myPubl icKey.buffer=cal loc(2048,1);
fread(myTree._buffer,2048,1,inFile);

Tss2_KeylmportTree(context, &myTree,”’HS/UDK/01dUDK’) ;

/* Internal to the myTree structure, the first key listed contains the public data of the key being
duplicated. This includes its path name. The second key is imported under this key using TPM2_Import
command, to the appropriate path. The keys under it are then copied into the tree under this newly named
key”

Page 41 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.6.7 Tss2_Key_ SetCertificate

5.6.7.1 Definition

Sets an x509 cert into the path of a key.

5.6.7.2 Command

TSS2 RC Tss2_Key_SetCertificate(const char * path, [Finput*/
TSS2_SIZED BUFFER *x509cert); [*output*/

5.6.7.3 Returns

TSS2_SUCCESS Command successful
TSS2 PATH_NOT_FOUND Path not found
Page 42 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.6.8 Tss2 Key_ GetCertificate

5.6.8.1 Definition

Gets an x.509 cert from the path of a key.

5.6.8.2 Command

TSS2 RC Tss2_Key_GetCertificate(const char * path, [Yinput*/
TSS2_SIZED BUFFER *x509cert); /*output*/

5.6.8.3 Returns

TSS2_SUCCESS Command successful
TSS2 PATH_NOT_FOUND Path not found
Page 43 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API

57 Data

Copyright ©2014 TCG

5.7.1 Tss2_Data_Encrypt

5.7.1.1 Description

Input pointer to data be encrypted via a key found in keyPath requiring a policy found in policyPath for the decryption, and
a place to put the cipherText. This command does as follows:

Encrypts plaintext using a key found in keyPath and produces cipherText. It does this by

1) Checking if the key in keyPath is symmetric. Ifitis, it gets the symmetric key and uses it to encrypt the data. If not:
2) Checking if the plaintext is too big to be encrypted with the asymmetric key pointed to in keypath in one encryption.

a. Ifso:

Metadata format:

uint32_t

TSS2_SIZED_DATA
TSS2_SIZED_DATA
TSS2_SIZED_DATA

It creates a new (ephemeral) symmetric key on the host using the algorithm parameters in the Profile
file using the TPM RNG

It encrypts the data using this symmetric key on the host, using the crypto mode in the Profile file.
This is done in software.

It wraps the ephemeral key using the key found in keyPath (this key must currently be asymmetric)
and sealed to the policy given in policyPath. (This is done with TPM2_Create)

It adds metadata in front of the encrypted data, which contains the full policy, the key’s parent’ name
and the ephemeral key blob.

It encrypts the data using the key found in keyPath (this key must currently be asymmetric) and
sealed to the policy given in policyPath (This is done with TPM2_Create).

It attaches metadata to the encrypted data, which contains the full policy, and the key’s parent’s
name.

sizeOfMetadata

policy

sizeOfPublicParent (if absent, persistent SNK is assumed)
encryptedEphemeralkey (may be absent, in case b)

Endianess will be little-endian

Note that the FAPI is responsible for allocating memory for the cipherText buffer, but it is the responsibility of the programmer

to free them.

5.7.1.2 Command

TSS2_RC Tss2_Data_Encrypt (TSS2_CONTEXT

5.7.1.3 Returns

TSS2_SUCCESS
TSS2_PATH_NOT_FOUND

*context, [*input*/
const TSS2_SIZED BUFFER *plaintext, [Finput*/
const char *keyPath, [Finput*/
const char *policyPath, [Finput*/
TSS2_SIZED BUFFER *CipherText); [*output*/

Command Successful
Path was not found

TSS2_POLICY_PATH_NOT_FOUND Path to policy not found

Page 44
November 7, 2014

Family “2.0”

Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.7.1.4 Example

TSS2_SIZED_BUFFER myData;

char myClearText[24]="My data to be encrypted”;
myData.size=strlen(myClearText) + 1;
myData.buffer=myClearText;

TSS2_SIZED BUFFER myCipherText;

Tss2_Data_Encrypt(context, &myData, “SNK”, “policy/PCR_0_5", &myCipherText);

Page 45 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.7.2 Tss2_Data_Decrypt

5.7.2.1 Description

Input pointer to data to be decrypted, and a place to put the decrypted data

Note that the FAPI is responsible for allocating memory for the plaintext buffer, but it is the responsibility of the programmer
to free it. Since the key used to decrypt it may be at a different location than the key used for encryption (and on a different
machine), it is located by its name, which is stored with the data.

5.7.2.2 Command

TSS2 RC Tss2_ Data_Decrypt(TSS2_CONTEXT *context, [Finput*/
const TSS2_SIZED BUFFER *cipherText, [Finput*/
TSS2_SIZED BUFFER *plainText); [*output*/

5.7.2.3 Returns

TSS2_SUCCESS Command successful

TSS2_KEY_MISSING Can't find the key necessary to decrypt the file
TSS2_BAD_FILENAME Can’t find the encrypted file
TSS2_PCR_MISMATCH The PCRs are in the wrong state

5.7.2.4 Example Usage:

TSS2_SIZED BUFFER myPlainText;

TSS2_SIZED BUFFER myCipherText;

FILE* myFile;

myFi le=fopen(“myEncryptedFile_bin”,”rb);

fseek(myFile, OL, SEEK END);
myCipherText.size = ftell(nyFile);
fseek(fp, OL, SEEK SET);

myCipherText._buffer=calloc(myCipherText.size,1);
fread(myCipherText._buffer, myCipherText.size,myFile);

Tss2_Data_Decrypt(context, &myCipherText, &myPlainText);

free(myPlainText.buffer);

Page 46 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.8 PCRs

5.8.1 Tss2 PCR_ReadWithLog

5.8.1.1 Description

Given a set of PCRs, it will fill in an array of the appropriate size with the contents of the PCRs. If you ask for 5 PCRs and
the hash algorithm is of size 32 bytes it will return a 5 by 32 array of bytes. It will return a TPM2B with the PCRIlog values
that correspond to those PCRs. The eallee-FAPI must allocate continuous memory in which to place the PCR values
consecutively.

Note that the FAPI is responsible for allocating memory for the PCRIog buffer, but it is the responsibility of the programmer
to free them.

The format of the buffer in the PCRIog output is defined by the PC Client specification.

5.8.1.2 Command format

TSS2_RC Tss2_PCR_ReadWithLog(TSS2_CONTEXT *context, [*input*/
uint32_t hashAlg, [*input*/
TSS2_PCRSELECTION PCRsChosen, /*input*/
uint8_t*** PCRvalues, [*output*/
TSS2_SIZED BUFFER *PCRIog) [*output*/

5.8.1.3 Returns

TSS2_SUCCESS command successful

5.8.1.4 Example Usage

Assuming the PCRs are using SHA-1, which is 20 bytes, the following command:

char PCRvalueArray[4][20];
TSS2_SIZED_BUFFER *PCRlog;
Tss2 PCR_ReadWithLog(context, SHA1, {0,2,3,-1}, &PCRvalueArray,PCRlIoQg);

This would return:

A 4 by 20 array of bytes such that PCRvalueArray[0] would contain the values of PCRO, PCRvalueArr[1] would contain
those of PCR2, PCRvalueArray[2] would contain the values of PCR3.

Page 47 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.8.2 Tss2_PCR_Quote

5.8.2.1 Description

Given a set of PCRs and a restricted signing key, it will sign those PCRs, and return

e The signature
0 The digest signed (The digest is computed as the hash of the concatenation of all of the digest values of
the selected PCR.)
e The data that went into creating the hash that was signed in two parts
0 The PCR values that went into the hash
0 The other TPM values (which include the boot counter, etc.)
e Note that the FAPI is responsible for allocating memory for the publicKey and certificate buffers, but it is the
responsibility of the programmer to free them.

The FAPI must allocate continuous memory in which to place the PCR values consecutively.
e The TPMdataSigned’s buffer structure contains TPMS_ATTEST data.

5.8.2.2 Command format

TSS2 RC TSS2_PCR_Quote(TSS2 CONTEXT *context, [*input*/
TSS2_PCRSELECTION PCRsChosen, [*input*/
const char *keyPath [*input*/
TSS2_SIZED_BUFFER *nonce [*input*/
TSS2_SIZED_BUFFER *signature [*output*/
TSS2_SIZED_BUFFER *hashSigned [*output*/
uint8_t *PCRvalues]][], [*output*/
TSS2_SIZED_BUFFER *PCRIog, *output*/
TSS2_SIZED_BUFFER *TPMdataSigned, [*output*/
TSS2_SIZED_BUFFER *publicKey, [*output*/
TSS2_SIZED_BUFFER *publicKeycertificate) [*output*/

5.8.2.3 Returns

TSS2_SUCCESS command successful
TSS2_KEY_NOT_FOUND can't find the key necessary to quote

5.8.2.4 Example Usage

TPM2B signature;
TPM2B hashSigned;
char PCRvalues[3][32];

TPM2_ATTEST TPMdataSigned

TSS2_SIZED BUFFER publicKey, certificate;

Tss2 PCR Quote(context, {2,3,-1},“SNK/aik™,
&chal lengeNonce, &signature,&hashSigned,
&PCRvalues, &TPMdataSigned, &publicKey,
&certificate);

Page 48 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.8.3 Tss2 PCR_Extend

5.8.3.1 Description
The command extends the data in the data parameter into the single PCR listed. The parameter logData, which must be in

the format designated by the PC Client event structure, will be extended into the PCR log. If the logData is NULL, only the
extend takes place.

5.8.3.2 Command

TSS2 RC Tss2 PCR_Extend(TSS2 CONTEXT *context, [Finput*/
uint32_t hashAlg, [Finput*/
int PCR, [Yinput*/
TSS2_SIZED_BUFFER &data, [*input*/

TSS2_SIZED BUFFER &logData); [Finput*/

5.8.3.3 Returns

TSS2_SUCCESS Command Successful
TSS2_NO_SUCHPCR No such PCR exists on this TPM
TSS2_OPERATION_NOT_ALLOWED

5.8.3.4 Example

TSS2_ SIZED BUFFER dataToExtend;

int8_t mydata[22]="Four score and seventy’;
dataToExtend.size=22;

dataToExtend.buffer=mydata;
Tss2_PCR_Extend(context,SHA256, 15, &dataToExtend, NULL);

Page 49 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.8.4 Tss2 PCR_Reset

5.8.4.1 Description

Resets a given PCR (currently 0-15 are not resettable under any circumstances).

5.8.4.2 Command

TSS2 RC Tss2 PCR_Reset(TSS2 CONTEXT *context, [Finput*/

uint32_t PCR); [Finput*/
5.8.4.3 Returns
TSS2_SUCCESS Command Successful
TSS2 NO_SUCHPCR No such PCR exists on this TPM

TSS2_ PCR_NOT_RESETTABLE This is not a resettable PCR

5.8.4.4 Example

Tss2 PCR_Reset(context, 16);

Page 50 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
59 NV

0 Administrate
= Create an NV index, with read/write settings
= Create PCR
= Create Counter

= Store the data in the index,
= Read data from an index.

5.9.1 Tss2 NV_CreateWithTemplate

5.9.1.1 Description

This command takes a path(name), a template for an NV index (see 3.3.2), a size, password and policy, and instantiates it
in the TPM. The TSS picks the index, which it stores, along with the resultant name in the path.

5.9.1.2 Command

TSS2 RC Tss2__ NV_CreateWithTemplate(TSS2_CONTEXT *context, [Finput*/
const char *NvPath, [*input*/
uint8_t NVTemplate, /*input*/
uint32_t size, [Finput*/

[*size ignored if template not TSS2_NV_MEMORY
TSS2_NV_TEMP_READ_DISABLE */

TSS2_SignedBuffer *password, [*input*/

char *PolicyPath) /*input*/

5.9.1.3 Returns

TSS2 SUCCESS Command Successful

TSS2_PATH_ALREADY_EXISTS The path name already is populated
TSS2_TEMPLATE_NOT_FOUND The NV template name is probably mispelled
TSS2_NOT_ENOUGH_MEMORY The TPM doesn’t have sufficient NV memory to make this index
TSS2_POLICY_NOT_FOUND The policy is not found at this path

5.9.1.4 Example code

uint8 password[7]="banana’;

TSS2_SIZED BUFFER myPassword;

myPassword.size=6;

memcpy (myPassword. buffer,password,6) ;

Tss2 NV _CreateWithTemplate(context, “NV/myHash’,TSS2 NV_MEMORY,32,&myPassword,POLICY_PASSWORD) ;

Tss2 NV _CreateWithTemplate(context, “NV/departmentMembers™,TSS2 NV _BITMAP,8,NULL PASSWORD,POLICY_SH);

Tss2 NV _CreateWithTemplate(context, “NV/myCounter”,TSS2 NV_COUNTER,8, NULL PASSWORD,POLICY EH);

Tss2 NV _CreateWithTemplate(context, “NV/myAuditPCR”,TSS2 NV_PCR,32, NULL PASSWORD,POLICY SH);

Tss2 NV _CreateWithTempalte(context, “NV/myEncryptionKey,TSS2 NV_MEMORY_ FRAGILE, 32,
NULL_PASSWORD,’Policy/PCRO_thru_5");

Page 51 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.9.2 Tss2_NV_Write

5.9.2.1 Description

If the NV is a standard TSS2_NV_MEMORY, then it can be written with this command.

5.9.2.2 Command

TSS2 RC Tss2_NV_Write(TSS2_CONTEXT *context, /[*input*/

const char *NvPath, /*input*/ sized_buffer not data nad size.....
const uint8_t *data, [Finput*/
size t size); [*input*/ /* Offset always assumed to be zero */
5.9.2.3 Returns
TSS2_SUCCESS Command Successful

TSS2 PATH_NOT_FOUND Can't find the path
TSS2 _NV_NOT_BIG_ENOUGH The data to be written is bigger than the NV at that index
TSS2 _NV_NOT_WRITEABLE The NV referred to in the path is not a writeable index

5.9.2.4 Example

char data[32];
/* code omitted that populates this with the hash of a public key*/
Tss2_NV_Write(context, “NV/myHash”, data,32);

Page 52 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.9.3 Tss2_NV_Extend

5.9.3.1 Description

Extends the data in data into the single NV_PCR listed.

5.9.3.2 Command

TSS2 RC Tss2 NV_Extend(TSS2 CONTEXT *context, [Finput*/
const char *NvPath, [Finput*/
TSS2_SIZED BUFFER *DataToExtend); /input*/

5.9.3.3 Returns

TSS2_SUCCESS COMMAND SUCCESSFUL

TSS2 PATH_NOT_FOUND Can'tfind the path

TSS2 NV_WRONG_TYPE The NV referred to in the path is not a NV_PCR index
TSS2_OPERATION_NOT_ALLOWED

5.9.3.4 Example

TSS2_SIZED BUFFER myDataToExtend;

char data[9]="hi there”

myDataToExtend.size=9;

myDataToExtend.buffer=data;

Tss2_NV_Extend(context, “NV/myAuditPCR’,&myDataToExtend);

Page 53 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.9.4 Tss2_ NV_Quote

5.9.4.1 Description:

This command is used to provide a quote over the data stored in an NV location. Normally this NV location contains a
NV_PCR, but it need not. Because the command TPM2_NV_ Certify may not be an available TPM command, this command
uses the session audit command to provide a quote over the data.

Note that the FAPI is responsible for allocating memory for the signature, hashSigned,and PCRIog buffers, but it is the
responsibility of the programmer to free them.

5.9.4.2 Command

TSS2 RC Tss2_NV_Quote(TSS2_CONTEXT *context, [Finput*/
const char *NvPath, [Finput*/
const char *keyPath, [Finput*/
Tss2_SIZED BUFFER *nonce, [Finput*/
Tss2_SIZED_BUFFER *signature, [*output*/
Tss2_SIZED _BUFFER *hashSigned, [*ouput*/
Tss2_SIZED BUFFER *PCRIog, [*output*/

Tss2_SIZED BUFFER *TPMdataSigned) /*output*/ /* Format of data in buffer is that of
the TPMS_ATTEST */

5.9.4.3 Returns

TSS2 SUCCESS command successful
TSS2_KEY_MISSING can’t find the key necessary to quote
TSS2 _SIGNATURE_ INVALID sighature did not match
TSS2_HASHMISMATCH hash did not match

5.9.4.4 Example

Tss2_SIZED_BUFFER nonce,signature,hashSigned,PCRIog;
TPMS_ATTEST dataSigned;

Tss2_NV_Quote(context, “NV/myNVPCR”,"SNK/myAIK”,&nonce, &signature,&PCRvalue,&LogValue,&dataSigned);

Page 54 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.9.5 Tss2 _NV_Increment

5.9.5.1 Description

This increments a NV index that is a counter by 1.

5.9.5.2 Command

TSS2 RC Tss2_NV_Increment (TSS2_CONTEXT *context, [Finput*/
const char *NvPath) [*input*/

5.9.5.3 Returns
TSS2 SUCCESS Command Successful

TSS2 PATH_NOT_FOUND Can’t find the path
TSS2 NV_WRONG_TYPE The NV referred to in the path is not a NV_COUNTER index

5.9.5.4 Example

Tss2_NV_Increment(context, “NV/myAuditCounter™);

Page 55 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.9.6 Tss2 NV_SetBits

5.9.6.1 Description

This command is used to SET bits in an NV Index that was created as a bit field. Any number of bits from 0 to 64 may be
SET. The contents of data are ORed with the current contents of the NV Index starting at offset.

5.9.6.2 Command

TSS2_RC Tss2_NV_SetBits(TSS2_CONTEXT *context, /*input*/
char *path, /*input*/
uint64_t bitsToSet) /*input*/

5.9.6.3 Returns

TSS2_SUCCESS Command Successful
TSS2_PATH_NOT_FOUND Can'’t find the path
TSS2_NV_WRONG_TYPE The NV referred to in the path is not a NV_BITMAP index

5.9.6.4 Example

uint64 _t myBit7=0b1000000;
/*This sets bit number 7*

Tss2_NV_SetBits(context, “/NV/myDepartmentMembers”, myBit7)

Page 56 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.9.7 Tss2 NV_Read

5.9.7.1 Description

Any NV may be read with this command.

Note that the FAPI is responsible for allocating memory for the data buffer, but it is the responsibility of the programmer to
free them.

5.9.7.2 Command

TSS2 RC Tss2 _NV_Read(TSS2_CONTEXT *context, /[*input*/
const char *NvPath, /*input*/
TSS2_SIZED BUFFER *data); [*input*/ /* Offset always assumed to be zero */

5.9.7.3 RETURNS

TSS2_SUCCESS Command Successful
TSS2 PATH_NOT_FOUND Can'tfind the path
TSS2_NV_NOT_READABLE The NV referred to in the path is not a readable index

5.9.7.4 Example

TSS2_SIZED BUFFER data;
/* code omitted that populates this with the hash of a public key*/

Tss2_NV_Read(context, “NV/myHash”, &data);
printf(“Size of data read is %d”,data.size);

int i;

printf(“Data in Hex is:\n);

for(i=0;i<data.size;++i) printf(“%2x “,data.buffer[i]);

Page 57 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.9.8 Tss2 NV_MakeNVUnreadableThisBootSequence

5.9.8.1 Description

If an index is a TSS2_NV_TEMP_READ_DISABLE, then it can be made unreadable for the rest of a boot sequence. This
is usefull for passing data into an OS kernel during a boot sequence, and then making it unreadable afterwards.

5.9.8.2 Command

TSS2 RC Tss2_NV_MakeNVUnreadableThisBootSequence(TSS2 CONTEXT *context, /[*input*/
char *path); [Yinput*/

5.9.8.3 Returns
TSS2_SUCCESS Command Successful

TSS2_PATH_NOT_FOUND Can't find the path
TSS2_NV_WRONG_TYPE The NV referred to in the path is not a TSS2_NV_TEMP_READ_DISABLE

5.9.8.4 Example

Tss2_NV_MakeNVUnreadableThisBootSequence(context, “NV/myEncryptionKey’);

Page 58 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
5.10 Path Commands

5.10.1 Tss2 Path_SetShortNameAndDescription

5.10.1.1 Description

Every path addressable entity has a description field that can be set in order to store additional information in its path entry.
Short name shall be no more than 30 characters. Description can be as no longer than 1024 characters.

5.10.1.2 Command

TSS2_RC Tss2_Path_SetShortNameAndDescription(TSS2_CONTEXT *context, [Finput*/
const char *path, [Finput*/
const char *shortName [Finput*/
const char *description [Finput*/

)i

5.10.1.3 Returns

TSS2_SUCCESS Command Successful
TSS2 PATH_NOT_FOUND Can'tfind the path

5.10.1.4 Example:

Tss2_Key Create(context, "/HS/UNK/fraunhoferSIT/TNCClientKey",);
Tss2_Path_SetShortNameAndDescription(context, "'/HS/UNK/fraunhoferSIT/TNCClientKey', “VPN key”,"Key that is
used to authenticate on VPN-Establishment using the TNC-Client');

Page 59 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
5.10.2 Tss2 Path_GetShortNameAndDescription

5.10.2.1 Description
Every object has a description field that can be retrieved in order to obtain additional information in its “path” entry. Most

have a shortName as well. The command will be allocating memory for the buffer of the shortName and description, but it
is the responsibility of the programmer to free that memory.

5.10.2.2 Command

TSS2 RC Tss2_Path_GetShortNameAndDescription(TSS2_CONTEXT *context, [Finput*/
const char *path, [Finput*/
char **shortName, [*output*/
char **description [*output*/
)i

5.10.2.3 Returns

TSS2_SUCCESS Command Successful
TSS2 PATH_NOT_FOUND Can'tfind the path

5.10.2.4 Example:
Tss2_Path_GetShortNameAndDescription(context, "'/HS/UNK/fraunhoferSIT/TNCClientKey",&shortName”,
&description);

printf("'Key %s: %s"™, pathNameList[i], description);

/* what is printed is: Key that is used to authenticate on VPN-Establishment using the TNC-Client */

free(shortName) ;
free(description);

Page 60 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
6 Satisfying an EA Policy

When a TSS has to satisfy a policy, there are only three cases of Policy ACEs that may require interaction with either the
user or and external device. The policy may have branches (PolicyOR) or PolicyAuth with multiple approved policies, it
may require a password to be entered, or it may require that some data be signed. We handle these three cases with
callbacks. The application is responsible for registering functions to handle these callbacks.

In the case that a signature is to be handled by external hardware, the hardware may have a device driver that handles the
callback mechanism. This can be registered in a policy form as described elsewhere.

6.1 PolicyCallBack Commands
6.1.1 Tss2_PolicyBranchSelectionCallback

6.1.1.1 Description:
This can take place when the Policy contains a PolicyOR (with more than one branch), or a PolicyAuthorize(which has more
than one approved policy)
In this case, the TSS will execute a callback which will contain three things:
e An arbitrary pointer supplied by the application when the callback was registered
e The number of policies/branches to choose from
e The names associated with those policies/branches
e The description of the entity being authorized

Note the selectBranch returned will be the index of the selected branch so the range is 0 based.

6.1.1.2 Command

typedef TSS2_RC (*Tss2_PolicyBranchSelectionCallback)(

TSS2_CONTEXT context, /*input*/
char *description, /*input*/
void *userData, [*input*/
size_t numBranches /*input*/
char const **branchNames, /*input*/
size_t *selectedBranch); /*output*/
);
6.1.1.3 Returns
TSS2 SUCCESS Command Successful

TSS2 BRANCH_NOT_FOUND The selected Branch is not one of the choices

6.1.1.4 Example

TSS2 _RC myBranchSelectionCal Iback(

TSS2_CONTEXT context, /*input*/
void *userData, /*input*/
size_ t numBranches /*input*/
char const **pranchNames, /*input*/
size t *selectedBranch) /*output*/
{
Page 61 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
if (numBranches == 0)
return TSS2_BAD PARAMETER;
// This callback always chooses the first branch
*selectedBranch=0;
return TSS2_ SUCCESS;

Tss2_SetPolicyBranchSelectionCal lback(context, myBranchSelectionCallback, NULL);

Page 62 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
6.1.2 Tss2_PolicyAuthCallback

6.1.2.1 Description

In this case the TSS will execute a callback which will contain the description of the entity for which authorization is required.
Note that the FAPI is responsible for allocating memory for the auth buffer, but it is the responsibility of the programmer to
free it. This command Returns the authorization value back to the FAPI. The FAPI is responsible for creating the HMAC
value necessary to provide authentication to the TPM.

6.1.2.2 Command

typedef TSS2_RC (*Tss2_PolicyAuthCallback)(TSS2_CONTEXT context, [Finput*/
void *userData, [Finput*/
char const *description, [Finput*/
TSS2_SIZED BUFFER *auth); [*output*/

6.1.2.3 Returns

TSS2_SUCCESS Command successful

6.1.2.4 Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <unistd.h>
#include <termios.h>

/* A callback that will prompt the user for a password, read it in, and return it to the FAPI. Note this
uses malloc to allocate auth->buffer, the FAPI must call free to release the memory.
Also note that this implementation leaves the password in memory.
A proper implementation should zero out the memory in “password® before it goes out of scope.
*/

Tss2_RC passwordCal Iback(TSS2_CONTEXT context,
char *description,
void *userData,
char const *description,
TSS2_SIZED BUFFER *auth)
{
/* Sanity check inputs */
if (ldescription || 'auth)
return TSS2_E_BAD PARAMETER;
/* Disable echo of keyboard input. */
int fd = STDIN_FILENO; /* We"re controlling stdin. */
struct termios termios;
if (tcgetattr(fd, &termios) == -1)
return TSS2 E 10 ERROR;
/* Save the old setting */
tcflag_t savedFlags = termios.P_Iflag;
/* Turn off echo */
termios.P_Iflag &= ~(ECHO | ECHOE | ECHONL);
if (tcsetattr(fd, TCSADRAIN, &termios) == -1)
Page 63 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
return TSS2_E 10 _ERROR;

/* Prompt the user for the password. */
printfF(’Enter your password for %s: ', description);
FFlush(stdout);

/* Read the password */

std: :string password;

int ¢ = getchar();

while ((c = "\n") && (c = EOF))

{
if (c == Ox7F) /* DEL */
password.pop_back();
else
password. pusHback(c);
c = getchar(Q);
3

if (c == "\n")
printfC\n);

/* Restore the terminal state */

termios.P_Iflag = savedFlags;

ifT (tcsetattr(fd, TCSADRAIN, &termios) == -1)
return TSS2_E 10 _ERROR;

/* Copy the password to the output parameter and return success */
/* Don"t include the trailing "\O". */
uint8_t *returnPtr = (uint8_t*) malloc(password.size());
it (IreturnPtr)
return TSS2_E OUT_OF MEMORY;
auth->size = password.size();
auth->buffer = returnPtr;
memcpy (auth->buffer, password.P_str(), auth->size);

return TSS2_SUCCESS;
}

int main(int argc, char *argv[])

{

result = Tss2_Initialize(&context, NULL);
assert(result);

result = Tss2_SetPolicyAuthCallback(context, myAuthCallback, NULL);
assert(result);

result = Tss2_Do_Something_With_Authorization(context,);
/* Might call passwordCallback() */

Tss2_Finalize(context);

return 0O;

}

Page 64 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
6.1.3 Tss2 PolicyHmacCallback

6.1.3.1 Description

In this case the TSS will execute a callback which will contain the description of the entity for which authorization is required.
Note that the FAPI is responsible for allocating memory for the auth buffer, but it is the responsibility of the programmer to
free it. The program is responsible for returning an HMAC of the data for a PolicyAuthValue command, rather than returning
merely the authorization itself. This is likely to be used as a hardware callback, but if the program decides to to the HMAC
itself rather than let the FAPI do, it can use this command.

In order to do the HMAC, a number of parameters need to be passed back to the program (or hardware)

HMACsessionag ((sessionKey || authValue),
(pHash [/ nonceNewer [/nonceOlder
{ //nonceTPMgecrypt } { //nonceTPMencrypt /

/] sessionAttributes))
6.1.3.2 Command
typedef TSS2_RC (*Tss2_PolicyHmacCallback)(TSS2_CONTEXT context, [*input*/
void *userData, [Finput*/
char const *description, [Finput*/
TSS2_SIZED_ BUFFER *priorToAuth, [*input*/
TSS2_SIZED_ BUFFER *afterAuth, [*input*/
TSS2_SIZED_BUFFER *hmac); [*output*/
6.1.3.3 Returns
TSS2_SUCCESS Command successful
6.1.3.4 Example
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <unistd.h>
#include <termios.h>
Tss2_RC hmacCal Iback(TSS2 CONTEXT context,
char *description,
void *userData,
char const *description,
int32 HASH ALG_SIZE;

TSS2_SIZED BUFFER *priorToAuth,
TSS2_SIZED BUFFER *afterAuth,
TSS2_SIZED BUFFER *auth)

/* Sanity check inputs */
if (description || 'auth)
return TSS2 E_BAD PARAMETER;

/* Disable echo of keyboard input. */
int fd = STDIN_FILENO; /* We"re controlling stdin. */
struct termios termios;
Page 65 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
if (tcgetattr(fd, &termios) == -1)
return TSS2_E 10 _ERROR;
/* Save the old setting */
tcflag t savedFlags = termios.P_Iflag;
/* Turn off echo */
termios.P_Iflag & ~(ECHO | ECHOE | ECHONL);
if (tcsetattr(fd, TCSADRAIN, &termios) == -1)
return TSS2_E 10 _ERROR;

/* Prompt the user for the password. */
printfF(’Enter your password for %s: ', description);
FFlush(stdout);

/* Read the password */

std: :string password;

int c = getchar();

while ((c = "\n") && (c = EOF))

{
if (c == Ox7F) /* DEL */
password.pop_back();
else
password. pusHback(c);
c = getchar(Q;
3

if (c == "\n")
printfC\n");

/* Restore the terminal state */

termios.P_Iflag = savedFlags;

ifT (tcsetattr(fd, TCSADRAIN, &termios) == -1)
return TSS2_E 10 _ERROR;

/* Copy the password to the output parameter and return success */
/* Don"t include the trailing "\O". */
uint8_t *returnPtr = (uint8_t*) malloc(password.size());
it (IreturnPtr)
return TSS2_E OUT_OF MEMORY;
auth->size = password.size();
auth->buffer = returnPtr;
memcpy (auth->buffer, password.P_str(), auth->size);
TSS2_SIZED_BUFFER hmac;
hmac->size= HASH ALG SIZE;
hmac->buffer=mal loc(HASH_ALG_SIZE);
hmac(priorToAuth, &auth, afterAuth, &hmac);

return TSS2_SUCCESS;

int main(int argc, char *argv[])

{

result = Tss2_Initialize(&context, NULL);
assert(result);

result = Tss2_SetPolicyHmacCal lback(context, myHmacCallback, NULL);
Page 66 Family “2.0”

November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
assert(result);

result = Tss2_Do_Something_With_Authorization(context,):
/* Might call passwordCallback() */

Tss2_Finalize(context);

return O;

}

Page 67 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
6.1.4 Tss2 PolicySignatureCallback

6.1.4.1 Description
In this case the TSS will execute a callback which contains five things:

e An arbitrary pointer supplied by the application when the callback was registered
e A description of the public key whose private portion must create the signature

e The policyRef

e The information necessary to create the hash which is to be signed.

e AnIP PORT (if any) registered by a device that is waiting to handle this signature. This value will be 0 if no device
is registered to handle the callback. If a port is available, it promises that the device has a daemon listening on the
port, running a service that when provided the parameters will return the signature.

(This is in case a device such as a biometric reader or smartcard read has registered to handle this signature. If this is the
case, the second, third, and fourth parts may be simply shipped off to that IP port.)

6.1.4.2 Command

typedef TSS2_RC (*Tss2_PolicySignatureCallback)(

TSS2_CONTEXT context, /*input*/

void *userData, [*input*/

char const *description, /*input*/
uint32_t hashAlg, [*input*/
TSS2_SIZED _BUFFER const *dataToSign, /*input/output*/
uintl6_t ipPort, [*input*/
TSS2_SIZED_BUFFER *signature [*output*/

);
Note: the “dataToSign” buffer should containe nonceTPM || expiration || cpHashA || policyRef. In most cases, expiration

will be a uint32 set equal to 0, so no ticket is created. However, the actual signing authority will decide what the expiration
and policyRef will be that are signed. Note that no policyRef may actually be needed by the Policy.

6.1.4.3 Returns
TSS2 SUCCESS Command successful

TSS2_CANT_PROVIDE_SIGNATURE Cannote provide signature
TSS2_SIGNATURE_INVALID The signature is not valid

6.1.4.4 Example

Page 68 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
6.1.5 Tss2 SetPolicyBranchSelectionCallback

6.1.5.1 Description

This function registers a callback that will be invoked whenever the TSS has to decide which branch of a Policy-OR policy
to use to authorize a particular TSS operation. Since the TSS does not know which branch is appropriate, the application-
defined callback is used to make the choice for the TSS. The callback and user data pointers are associated with the
context. The userData parameter is a pointer to application-defined data that will be passed to the callback each time it is
invoked. The userData is intended to hold application-specific state as needed, and may be NULL if no such state is
required. If the callback function pointer is NULL this clears the callback, and any attempt to use a policy that include an OR
branch will fail.

6.1.5.2 Command

Tss2_SetPolicyBranchSelectionCallback(TSS2_CONTEXT context, [Finput*/
Tss2_PolicyBranchSelectionCallback callback, /*input*/
void * userData [Yinput*/

);
6.1.5.3 Returns

TSS2_SUCCESS Command Successful
TSS2 BAD_PARAMETER The context is not valid

6.1.5.4 Example:

TSS2_RC myBranchSelectionCal Iback(

TSS2 CONTEXT context, /*input*/
void *userData, /*input*/
size_t numBranches /*input*/
char const **pranchNames, /*input*/
size_t *selectedBranch) /*output*/
{
if (numBranches == 0)
return TSS2 BAD PARAMETER;
// This callback always chooses the Ffirst branch
*selectedBranch=0;
return TSS2 SUCCESS;
}

Tss2_SetPolicyBranchSelectionCal Iback(context, myBranchSelectionCallback, NULL);

Page 69 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
6.1.6 Tss2 Path_SetPolicyAuthCallback

6.1.6.1 Description

This function registers an application-defined function as a callback to allow the TSS to get authorization values from the
application. The callback and user data pointers are saved within the context and the callback is invoked whenever an
authorization value is needed. The userData parameter is a pointer to application-defined data that will be passed to the
callback each time it is invoked. The userData is intended to hold application-specific state as needed, and may be NULL if
no such state is required. If the callback function pointer is NULL this clears the callback, and any attempt to use a policy
that requires user-supplied authorization will fail.

6.1.6.2 Command

Tss2_Path_SetPolicyAuthCallback(TSS2_CONTEXT context, [Finput*/
Tss2_PolicyAuthCallback callback, [Finput*/
void * userData [Finput*/

);
6.1.6.3 Returns
TSS2_SUCCESS Command Successful

TSS2 PATH_NOT_FOUND Can'tfind the path
TSS2 BAD_PARAMETER The context is not valid

6.1.6.4 Example:

/* This code sets the password to “horse” */

TSS2_RC myAuthCallback(TSS2_CONTEXT context, /*input*/
void *userData, /*input*/
char const *description, /*input*/
TSS2_SIZED_BUFFER *auth) /*output*/

{

if (auth == NULL)

return TSS2 BAD PARAMETER;
auth->size = 5;
auth->buffer = (uint8_t*) malloc(auth->size);
memset(auth->buffer, “horse”, auth->size);
return TSS2 SUCCESS;

Tss2_SetPolicyAuthCal Iback(context, myAuthCallback, NULL);

6.1.7 Tss2_ Path_SetPolicyHmacCallback

6.1.7.1 Description

This function registers an application-defined function as a callback to allow the TSS to get authorization values from the
application. The callback and user data pointers are saved within the context and the callback is invoked whenever an
authorization value is needed. The userData parameter is a pointer to application-defined data that will be passed to the
callback each time it is invoked. The userData is intended to hold application-specific state as needed, and may be NULL if

Page 70 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright © 2014 TCG
no such state is required. If the callback function pointer is NULL this clears the callback, and any attempt to use a policy
that requires user-supplied authorization will fail.

6.1.7.2 Command

Tss2_Path_SetPolicyHmacCallback(TSS2_CONTEXT context, [Finput*/
Tss2_PolicyHmacCallback callback, /*input*/
void * userData [Finput*/

);

6.1.7.3 Returns
TSS2 SUCCESS Command Successful

TSS2 PATH_NOT_FOUND Can't find the path
TSS2 BAD_PARAMETER The context is not valid

6.1.7.4 Example:

Page 71 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API Copyright ©2014 TCG
6.1.8 Tss2 Path_SetPolicySignatureCallback

6.1.8.1 Description

This function registers an application-defined function as a callback to allow the TSS to get signatures authorizing use of
TPM objects. The callback and user data pointers are saved within the context and the callback is invoked whenever a
signature-based policy is used to authorize a command. The userData parameter is a pointer to application-defined data
that will be passed to the callback each time it is invoked. The userData is intended to hold application-specific state as
needed, and may be NULL if no such state is required. If the callback function pointer is NULL this clears the callback, and
any attempt to use a policy that requires a signature-based authorization will fail.

6.1.8.2 Command

Tss2_Path_SetPolicySignatureCallback(TSS2_CONTEXT context, [Finput*/
Tss2_PolicySignatureCallback callback, [Finput*/
void * userData [Finput*/

);
6.1.8.3 Returns

TSS2_SUCCESS Command successful
TSS2 BAD_PARAMETER The context is not valid

6.1.8.4 Example:

TSS2_RC mySignatureCal Iback(

TSS2 CONTEXT context, /*input*/
void *userData, /*input*/
char const *description, /*input*/

TSS2_SIZED BUFFER const *policyRef, /*input*/
TSS2_SIZED BUFFER const *dataToSign, /*input*/
uintl6_t ipPort, /*input*/
TSS2_SIZED BUFFER *signature /*output*/

Tss2_SetPolicySignatureCal Iback(context, mySignatureCallback, NULL);

Page 72 Family “2.0”
November 7, 2014 Level 00 Revision .12

TCG Software Stack Feature API

Appendix: List of Error Codes

General

TSS2_SUCCESS
TSS2_OPERATION_NOT_ALLOWED
TSS2 BAD _PARAMETER

Authorization
TSS2_ AUTHORIZATION_FAILURE
TSS2 PCR_MISMATCH

Attestation
TSS2 HASH_MISMATCH
TSS2_SIGNATURE_INVALID

Mispelllings

TSS2 PATH_NOT_DUPLICATABLE
TSS2 PATH_ALREADY_EXISTS
TSS2 PATH_NOT_FOUND

TSS2 _KEY_NOT_FOUND

TSS2 POLICY_NOT_FOUND

TSS2 POLICY_FORM_NOT_FOUND
TSS2 BRANCH_NOT_FOUND
TSS2 BAD_FILENAME
TSS2_NO_SUCH_PCR

TSS2 TEMPLATE_NOT_FOUND

Wrong types
TSS2_NOT_A_STORAGE_KEY
TSS2_ENTITY_NOT_DELETABLE
TSS2_PCR_NOT_RESETTABLE
TSS2_NOT_ENOUGH_MEMORY
TSS2_NV_NOT_WRITEABLE
TSS2_NV_NOT_READABLE
TSS2_NV_WRONG_TYPE
TSS2_TOO_BIG
TSS2_WRONG_FORMAT

Page 73
November 7, 2014

Copyright © 2014 TCG

Command Successful

The authorization failed to work.

Sorry, the values currently in the PCRs don’'t match what is required

The hash doesn’t match that used by the signature
The signature is not valid

This path doesn’t point to a duplicable file
Can't create the path, because it already exists
No such path exists

Can't find a key at this path

Can't find a policy at this path

One of the Policy Forms was not found

The selected Branch is not one of the choices
Sorry, can't find that filename

Sorry, can't find that PCR

The template name is probably mispelled

The key pointed to isn't a storage key

The entity is not deletable (e.g. a PCR or hierarchy)

This PCR is not resettable

The TPM doesn’t have sufficient NV memory to make this index
The NV referred to in the path is not a writeable index

The NV referred to in the path is not a readable index

This is the wrong kind of NV for this command

Can’t produce a random number this big.

Profile file is not in correct format

Family “2.0”

Level 00 Revision .12

