

THE UNTRUSTED IOT

A Path to Securing Billions of Insecure Devices

Steve Hanna Senior Principal, Infineon Technologies Co-Chair, IoT Sub Group, Trusted Computing Group

Growing Trend of IoT Security Problems

NEWS

Home

√ideo V

US & Canada

Technology

Hack attack cause steel works

NEWSFEED BIZARRE

LED Light Bulbs Could Leak Your Wi-Fi Password

We've Been Here Before

Photo of Armagh Rail Disaster, June 12, 1889

Untrusted Systems

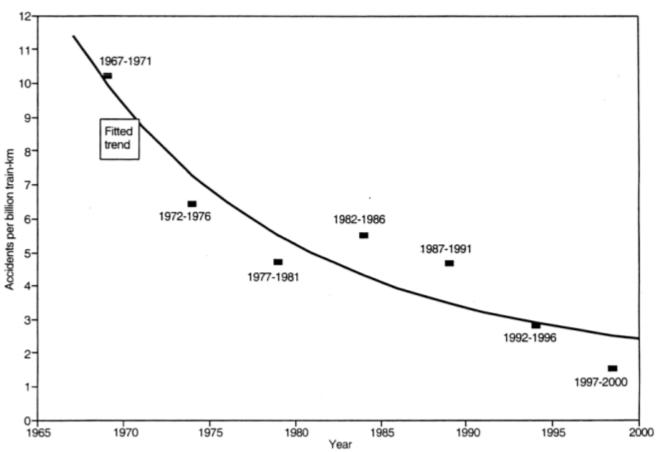
Source: S E C Railway Narrow Gauge Museum of Nagpur

Trusted Systems

Source: Bruce Fingerhood License: CC BY 2.0

Link: http://www.flickr.com/photos/springfieldhomer

What is a Trusted System?



A trusted system is...

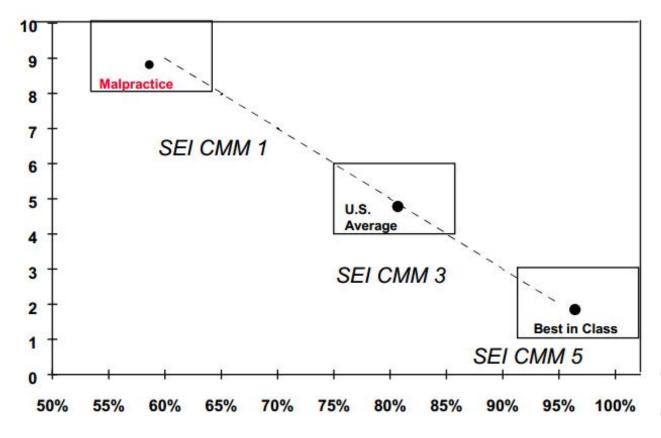
designed to be predictable, even under stress based on fundamental properties therefore trusted

Benefits of Trusted Systems

Source: Evans, A. W. (2003), Estimating Transport Fatality Risk from Past Accident Data, Accident Analysis and Prevention, Vol. 35, Issue 4.

Building Trusted IoT Systems

1. Build in a Hardware Root of Trust


What is a Root of Trust (RoT)?

- RoT = Minimized, strongly protected security function
- RoT used for highly security-sensitive functions
 - Generate random numbers
 - Store and use long-term keys
 - Verify system integrity
- Benefits
 - Reduce risk of compromise
 - Compromise of long-term keys
 - Undetected system compromise

Why Hardware?

Defects Software Security is Not Enough

Graph used with permission of Capers Jones.

Defect Removal Efficiency

Trusted Platform Module: The Standard Hardware Root of Trust

Hardware Security

Trusted Platform Module (TPM)

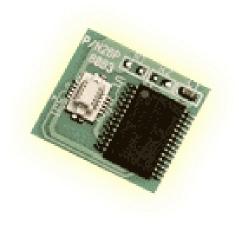
Benefits

- Foundation for Secure Software
- Impervious to attacks/hacks
- Built-in virtual smart card

Features

Authentication
 Encryption
 Attestation
 Identity
 Integrity

Building Trusted IoT Systems


1. Build in a Hardware Root of Trust

2. Employ Hardware Storage Encryption

Hardware Storage Encryption

Hardware Security

Self-Encrypting Drive (SED)

Benefits

- Always on encryption
- No performance impact
- Protection against Physical Attacks, loss and theft
- Cryptographic instant erase/Wipe

Features

Encryption

Building Trusted IoT Systems

1. Build in a Hardware Root of Trust

2. Employ Hardware Storage Encryption

3. Add Security Automation

Security Automation

Security Automation Standards

- IEEE 802.1AR, TNC, TAXII
- Manage IoT Devices
- Control Network Access
- Connect Security Systems

Benefits

- Automation for All Phases of Cyber
 - Preparation
 - Detection
 - Analysis
 - Response

Building Trusted IoT Systems

1. Build in a Hardware Root of Trust

2. Employ Hardware Storage Encryption

3. Add Security Automation

4. Protect Legacy Systems

Protect Legacy Systems

Legacy Systems

- ICS/SCADA or Old Systems
- Vulnerable to Disruption or Infection
- Need Protection

Protection

- Place into Enclaves
- Overlay Secure Communications
- Restrict to Authorized Parties

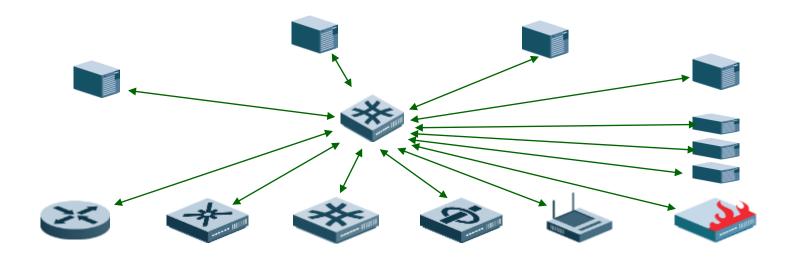
Building Trusted IoT Systems

1. Build a Hardware Root of Trust

2. Employ Hardware Storage Encryption

3. Add Security Automation

4. Protect Legacy Systems



TCG = Open Standards for Trusted Computing

- TCG is the <u>only</u> group focused on trusted computing standards
- TPM specification implemented in more than a <u>billion</u> devices
 - Chips integrated into PCs, servers, printers, kiosks, industrial systems, and many embedded systems
- Trusted Computing is more than TPM
 - Secure storage
 - Security automation
 - Secure mobile devices
 - Secure legacy devices

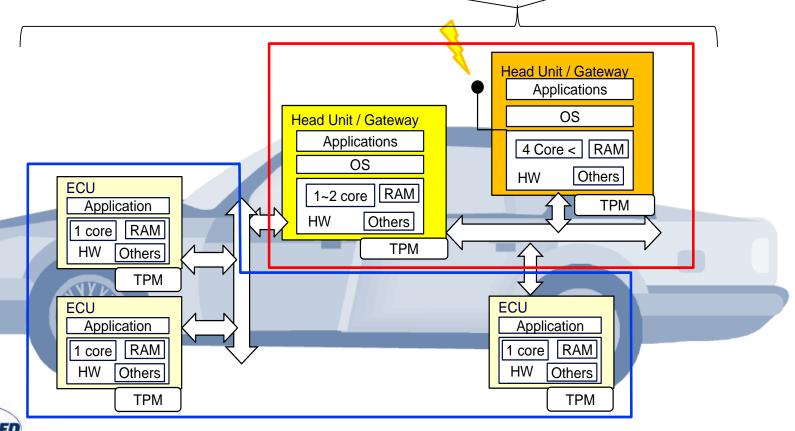
Why Open Standards?

Interoperability	Vendor Neutrality
Security	Certification
Lower Costs	Ubiquity

Trusted Computing for IoT

- TCG standards have been used in many IoT devices
 - Slot machines, cash registers, network routers, multi-function devices, enterprise printers/copiers, industrial control systems, kiosks, etc.
- Based on this experience, TCG has developed
 - TCG Guidance for Securing IoT
 - TCG Architect's Guide for Securing IoT
 - Demonstrations of Trusted Computing in IoT

TCG and Auto Security Initiative


- Initial focus on two key areas
 - Electronic Control Unit (ECU) integrity
 - Secure data communications
 - to manufacturer
 - to third parties
 - to other vehicles

Secure Automotive Architecture

Vehicle

- · Works as a heterogeneous cluster with ECUs
- Internal communication: on-chip bus, system bus, Controller Area Network (CAN), Media Oriented Systems Transport (MOST), FlexRay.
- External communication directly or via Gateway

Which TCG Technologies for Auto?

TPM and TNC

- Create, store, and manage cryptographic keys in the ECU
- Measure and report on the integrity of firmware and software used in the ECU
- Provide attestation and assurance of identity of the ECU
- Support secure firmware and software updates in the ECU
- Provide anti-rollback protection and secure configuration memory for the ECU

TCG TPM 2.0 Automotive Thin Profile

- Addresses unique automotive requirements
 - temperature, vibration, acceleration, reliability
 - limited processing, power, and memory
 - long lifecycle (20 years+)

Secure Update Process

- 1. Securely verify software configuration
- 2. Initiate, verify, and perform software updates
- 3. Gather and securely store audit logs

TCG IoT Demos

- Industrial control systems (SCADA) network with a TNC interface and TPM (Artec IT Solutions)
- Securing IoT sensors and actuators managed by a cloud application over the public network with TCG TNC standards and the TPM: Cisco, HSR, Infineon, Intel
- Near real-time network security with an IF-MAP-based SIEM to enable various components to monitor, evaluate and visualize the network state: Decoit and the University of Hannover
- Establishing trust in embedded systems in the IoT with a TPM 2.0 and TPM Software Stack 2.0 to determine firmware and software state: Fraunhofer SIT

More TCG IoT Demos

- A remote firmware update with integrity enabled by the TPM for automotive electronic control units: Fujitsu
- Trusted computing in a network device using the TPM for measured boot for detection of tampering of software: Huawei
- Managed IoT security from silicon to cloud with separation of hardware, software and data security capability from operational applications: Intel
- Trusted device lifecycle management for IoT devices, using enterprise key management structures for industrial controllers and vehicles: Integrated Security Services
- A secure overlay network for M2M connectivity and communications, including process control networks: Tempered Networks and PulseSecure

Product Availability

- TPMs available from four chip manufacturers
 - SPI, LPC, and I²C interfaces
 - Support in Microsoft Windows and Linux
- SEDs available from every drive maker
 - HDD, SSD, enterprise, and USBs
 - No need for OS support
 - Extensive ISV support for management
- TNC supported by most network vendors
 - Switches, routers, wireless access points
 - Support in Microsoft Windows and Linux

TCG Collaborating with IoT Industry

- Formal liaison relationship with ETSI, international telecoms standards body, for work on secure networking protocols
- Formal liaison relationship with Mobey Forum to help enable trusted mobile transactions, etc.
- Working with SAE Vehicle Electrical Hardware Security Task Force, a sub-committee of the SAE Vehicle Electrical System Security Committee re auto security requirements and solutions
- Regular input to NIST, NHTSA and other agencies and government groups
- Relationships with information assurance agencies worldwide

IoT Resources

- TCG IoT Architect's Guide: http://bit.ly/1RzLRa6
- TCG Guidance for Securing IoT: http://bit.ly/1J0SBZ2
- IoT Demos: http://bit.ly/1GmmNrk
- Secure auto update prototype: http://bit.ly/1Hv8On3
- Auto Thin TPM profile: http://bit.ly/1J0SWL9
- 6 ways to Boost IoT Security article: <u>http://ubm.io/1LahjI4</u>
- IoT Security Groundswell article: http://ubm.io/1K7MOPW
- Practical Tips to Securing the IoT article: http://bit.ly/1K7WUTH

Questions?

