

Trusted Computing Group: Where Trust Begins

Conversion Group Today's Agenda

1:30 – 2:00	Welcome and Introduction to Trusted Computing Group	Steve Hanna Infineon Technologies
2:00 - 2:25	Trust in the Cloud	Michael Donovan Hewlett-Packard
2:25 - 2:55	Break: Demonstration Showcase	
2:55 – 3:20	Trusted Network Connect (TNC) and Security Automation	Lisa Lorenzin Juniper Networks
3:20 - 3:45	Industrial Control Systems Security	Ludwin Fuchs Asguard Networks
3:45 – 4:10	Trusted Platform Modules (TPMs) as Virtual Smart Cards	John Fitzgerald Wave Systems
4:10 - 4:30	Closing Remarks: Demonstration Showcase	

Today's Cybersecurity Train Wreck

Source: Historical photograph, Lagerlunda Railway Accident, 1875.

2014-09-24

Copyright 2014 Trusted Computing Group

Source: S E C Railway Narrow Gauge Museum of Nagpur

2014-09-24

Source: Bruce Fingerhood License: CC BY 2.0 Link: http://www.flickr.com/photos/springfieldhomer

2014-09-24

Copyright 2014 Trusted Computing Group

Benefits of Trusted Systems

Accident Analysis and Prevention, Vol. 35, Issue 4.

Source: pixabay.com License: CCO Public Domain Link: http://www.pixabay.com

Trust is...

the belief that a person or system will behave predictably, even under stress

based on experience and/or evidence

based on fundamental properties (identity, integrity)

easy to lose and hard to regain

A trusted system is...

predictable, even under stress trusted based on experience and/or evidence based on fundamental properties (identity, integrity)

1. Build a Hardware Root of Trust into each device

What is a Hardware Root of Trust?

• Hardware Security

Trusted Platform Module (TPM)

Provides

Foundation for Secure Software

Defects per FP

Software Security is Not Enough

Defect Removal Efficiency

1. Build a Hardware Root of Trust into each device

2. Employ Hardware Storage Encryption

Hardware Storage Encryption

• Hardware Security

• Self-Encrypting Drive (SED)

Provides

- Protection against Physical Attacks
- Protection against Loss and Theft
- Cryptographic Wipe

Features

Encryption

- 1. Build a Hardware Root of Trust into each device
- 2. Employ Hardware Storage Encryption

3. Add Security Automation

Security Coordination Standards

- Connect Existing Systems
- Enable New Capabilities

• Provide

- Automation for All Phases of Cyber
 - Preparation
 - Detection
 - Analysis
 - Response

COMPUTED GROUP- Building Trusted Systems

1. Build a Hardware Root of Trust into each device

- 2. Employ Hardware Storage Encryption
- 3. Add Security Automation

4. Protect Legacy Systems

BROUF Protect Legacy Systems

Legacy Systems

- ICS/SCADA or Old Systems
- Vulnerable to Disruption or Infection
- Need Protection

Protection

- Place into Enclaves
- Overlay Secure Communications
- Restrict to Authorized Parties

COMPUTED GROUP- Building Trusted Systems

1. Build a Hardware Root of Trust into each device

- 2. Employ Hardware Storage Encryption
- 3. Add Security Automation

4. Protect Legacy Systems

Interoperability	Vendor Neutrality	
Security	Certification	
Lower Costs	Ubiquity	

GROUP- TCG = Open Standards for Trusted Computing

- TCG is the <u>only</u> group focused on trusted computing standards
- TPM specification implemented in more than a <u>billion</u> devices
 - Chips, PCs, servers, printers, kiosks, industrial systems, and many embedded systems

• Trusted Computing is more than TPM

- Secure Storage
- Security Automation
- Secure Cloud
- Secure Mobile Devices
- Secure Legacy Devices

1. See What You Already Have

- Enterprise PCs and servers with TPMs
- Microsoft Windows with built-in TPM support
- Red Hat Enterprise Linux with built-in TPM support
- Self-Encrypting Drives widely available for little to no cost differential
- Network equipment supports TNC standards
- ICS/SCADA gateways support TCG's ICS standards

1. See What You Already Have

- 2. Deploy It
 - TPM as virtual smart card or for disk encryption
 - Huge cost savings, easier management, and better security
 - SEDs
 - Strong data protection, quick and secure drive re-use
 - Strict but easy compliance, "safe harbor" from data breach regulations
 - TNC
 - Secure wireless and wired networks
 - Ensure only healthy and approved devices are connecting
 - Also include security automation features

- 1. See What You Already Have
- 2. Deploy It
- 3. Demand More
 - Ask vendors for Trusted Computing support
 - Mention TCG standards in acquisition documents (RFPs, etc.)
 - Look for TCG certification

Questions?

CONFUTING GROUP- Today's Agenda

1:30 – 2:00	Welcome and Introduction to Trusted Computing Group	Steve Hanna, Infineon Technologies
2:00 - 2:25	Trust in the Cloud	Michael Donovan, Hewlett- Packard
2:25 - 2:55	Break: Demonstration Showcase	
2:55 - 3:20	Trusted Network Connect (TNC) and Security Automation	Lisa Lorenzin, Juniper Networks
3:20 - 3:45	Industrial Control Systems Security	Ludwin Fuchs, Asguard Networks
3:45 – 4:10	Trusted Platform Modules (TPMs) as Virtual Smart Cards	John Fitzgerald, Wave Systems
4:10 - 4:30	Closing Remarks: Demonstration Showcase	