

TCG

TPM Main
Part 3 Commands

Specification Version 1.2
Level 2 Revision 103
9 July 2007
Published

Contact: tpmwg@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2003-2007

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 ii 9 July 2007
 TCG Published

Copyright © 2003-2005 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims all liability,
including liability for infringement of any proprietary rights, relating to use of information in
this specification and to the implementation of this specification, and TCG disclaims all
liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under
contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member
intellectual property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this
specification for internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information
on specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 iii 9 July 2007

 TCG Published

Acknowledgement

TCG wishes to thank all those who contributed to this specification. This version builds on
the work published in version 1.1 and those who helped on that version have helped on this
version.

A special thank you goes to the members of the TPM workgroup who had early access to
this version and made invaluable contributions, corrections and support.

David Grawrock

TPM Workgroup chair

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 iv 9 July 2007
 TCG Published

Change History

Version Date Description

Rev 50 Jul 2003 Started 01 Jul 2003 by David Grawrock

Breakup into parts and the merge of 1.1 commands

Rev 63 Oct 2003 Change history tied to part 1 and kept in part 1 (DP)

Rev 71 Mar 2004 Change in terms from authorization data to AuthData.

Rev 91 Sept 2005 The following modifications were made by Tasneem Brutch:

� Update to section 6.2 informative, for TPM_OwnerClear.

� Addtion of action item 15, to section 6.2, for TPM_OwnerClear.

� Addition of “MAY” to section 20.1, TPM_NV_DefineSpace, Action 1(a).

� Addition of a new Action (4) to Section 20.2, TPM_NV_WriteValue

� Addtion of a new Action (3) to Section 20.4, TPM_NV_ReadValue.

� Typo corrected in Section 21.1

� Moved TPM_GetCapabilityOwner from Section the Deleted Commands (section 28.1) to section 7.3. Added
information on operands, command description and actions from Rev. 67.

Rev 92

Sept 2005

Section 7.3 TPM_GetCapabilityOwner
Ordinal was added to the outgoing params, which is not returned but is typically included in outParamDigest.

Rev 92 Sept 2005 Corrected a copy and paste error:
Part 3 20.2 TPM_NV_WriteValue
Removed the Action
"3. If D1 -> TPM_NV_PER_AUTHREAD is TRUE return TPM_AUTH_CONFLICT"

Rev 93 Sept. 2005 Moved TPM_CertifySelfTest command to the deleted section.

Rev 100 May 2006 Added deferredPhysicalPresence and its use in TPM_FieldUpgrade, clarified CTR mode, added TPM_NV_INDEX_TRIAL and
use in TPM_NV_DefineSpace

Rev 101 Aug 2006 Changed “set to NULL” to “set to all zeros” in many places. TPM_OwnerClear must affect disableFullDALogicInfo. Clarified
that _INFO keys may be used where _SHA1 keys are used. Clarified that a global secret can be used for field upgrade
confidentiality. Added TPM_CMK_CreateBlob actions for the migrationType parameter. Added TPM_CertifyKey action to
check payload. Clarified that TPM_Delegate_LoadOwnerDelegation returns an error if there is no owner and owner
authorization is present. Clarified that TPM_NV_DefineSpace cannot define the DIR index. Clarified that the TPM does not
have to clean up the effects of a wrapped command upon failure of a transport response. Clarified that TPM_ReleaseCounter
does not ignore the continueAuthSession parameter.

Rev 102 Sept 2006 Reworked TPM_GetPubkey to always check authorization data if present and allow no-authorization for
TPM_AUTH_PRIV_USE_ONLY or TPM_AUTH_NEVER. Fixed TPM_LoadContext typo, Action 6.e. returns error if the
HMAC does NOT match.

Rev 103 Oct 2006 Added warning notes where excluding key handle from HMAC can allow an attack. Added warning that delegating
TPM_ChangeAuth allows elevation of privilege.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 v 9 July 2007

 TCG Published

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 vi 9 July 2007
 TCG Published

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 vii 9 July 2007

 TCG Published

Table of Contents

1. Scope and Audience... 2

1.1 Key words.. 2

1.2 Statement Type ... 2

2. Description and TODO ... 2

3. Admin Startup and State... 2

3.1 TPM_Init .. 2

3.2 TPM_Startup ... 2

3.3 TPM_SaveState .. 2

4. Admin Testing ... 2

4.1 TPM_SelfTestFull.. 2

4.2 TPM_ContinueSelfTest ... 2

4.3 TPM_GetTestResult.. 2

5. Admin Opt-in ... 2

5.1 TPM_SetOwnerInstall ... 2

5.2 TPM_OwnerSetDisable... 2

5.3 TPM_PhysicalEnable .. 2

5.4 TPM_PhysicalDisable ... 2

5.5 TPM_PhysicalSetDeactivated... 2

5.6 TPM_SetTempDeactivated ... 2

5.7 TPM_SetOperatorAuth.. 2

6. Admin Ownership.. 2

6.1 TPM_TakeOwnership ... 2

6.2 TPM_OwnerClear.. 2

6.3 TPM_ForceClear ... 2

6.4 TPM_DisableOwnerClear ... 2

6.5 TPM_DisableForceClear... 2

6.6 TSC_PhysicalPresence .. 2

6.7 TSC_ResetEstablishmentBit... 2

7. The Capability Commands ... 2

7.1 TPM_GetCapability ... 2

7.2 TPM_SetCapability.. 2

7.3 TPM_GetCapabilityOwner .. 2

8. Auditing ... 2

8.1 Audit Generation ... 2

8.2 Effect of audit failing.. 2

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 viii 9 July 2007
 TCG Published

8.3 TPM_GetAuditDigest .. 2

8.4 TPM_GetAuditDigestSigned ... 2

8.5 TPM_SetOrdinalAuditStatus ... 2

9. Administrative Functions - Management .. 2

9.1 TPM_FieldUpgrade ... 2

9.2 TPM_SetRedirection ... 2

9.3 TPM_ResetLockValue .. 2

10. Storage functions .. 2

10.1 TPM_Seal.. 2

10.2 TPM_Unseal.. 2

10.3 TPM_UnBind ... 2

10.4 TPM_CreateWrapKey ... 2

10.5 TPM_LoadKey2... 2

10.6 TPM_GetPubKey .. 2

10.7 TPM_Sealx.. 2

11. Migration ... 2

11.1 TPM_CreateMigrationBlob.. 2

11.2 TPM_ConvertMigrationBlob .. 2

11.3 TPM_AuthorizeMigrationKey .. 2

11.4 TPM_MigrateKey... 2

11.5 TPM_CMK_SetRestrictions .. 2

11.6 TPM_CMK_ApproveMA.. 2

11.7 TPM_CMK_CreateKey.. 2

11.8 TPM_CMK_CreateTicket .. 2

11.9 TPM_CMK_CreateBlob... 2

11.10 TPM_CMK_ConvertMigration ... 2

12. Maintenance Functions (optional)... 2

12.1 TPM_CreateMaintenanceArchive ... 2

12.2 TPM_LoadMaintenanceArchive .. 2

12.3 TPM_KillMaintenanceFeature... 2

12.4 TPM_LoadManuMaintPub .. 2

12.5 TPM_ReadManuMaintPub.. 2

13. Cryptographic Functions... 2

13.1 TPM_SHA1Start.. 2

13.2 TPM_SHA1Update.. 2

13.3 TPM_SHA1Complete.. 2

13.4 TPM_SHA1CompleteExtend... 2

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 ix 9 July 2007

 TCG Published

13.5 TPM_Sign.. 2

13.6 TPM_GetRandom ... 2

13.7 TPM_StirRandom.. 2

13.8 TPM_CertifyKey .. 2

13.9 TPM_CertifyKey2 .. 2

14. Endorsement Key Handling .. 2

14.1 TPM_CreateEndorsementKeyPair.. 2

14.2 TPM_CreateRevocableEK .. 2

14.3 TPM_RevokeTrust .. 2

14.4 TPM_ReadPubek .. 2

14.5 TPM_OwnerReadInternalPub ... 2

15. Identity Creation and Activation .. 2

15.1 TPM_MakeIdentity .. 2

15.2 TPM_ActivateIdentity .. 2

16. Integrity Collection and Reporting... 2

16.1 TPM_Extend.. 2

16.2 TPM_PCRRead... 2

16.3 TPM_Quote ... 2

16.4 TPM_PCR_Reset.. 2

16.5 TPM_Quote2 ... 2

17. Changing AuthData... 2

17.1 TPM_ChangeAuth... 2

17.2 TPM_ChangeAuthOwner .. 2

18. Authorization Sessions ... 2

18.1 TPM_OIAP .. 2

18.1.1 Actions to validate an OIAP session.. 2

18.2 TPM_OSAP... 2

18.2.1 Actions to validate an OSAP session... 2

18.3 TPM_DSAP... 2

18.4 TPM_SetOwnerPointer ... 2

19. Delegation Commands ... 2

19.1 TPM_Delegate_Manage ... 2

19.2 TPM_Delegate_CreateKeyDelegation .. 2

19.3 TPM_Delegate_CreateOwnerDelegation ... 2

19.4 TPM_Delegate_LoadOwnerDelegation .. 2

19.5 TPM_Delegate_ReadTable... 2

19.6 TPM_Delegate_UpdateVerification... 2

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 x 9 July 2007
 TCG Published

19.7 TPM_Delegate_VerifyDelegation.. 2

20. Non-volatile Storage ... 2

20.1 TPM_NV_DefineSpace ... 2

20.2 TPM_NV_WriteValue .. 2

20.3 TPM_NV_WriteValueAuth... 2

20.4 TPM_NV_ReadValue.. 2

20.5 TPM_NV_ReadValueAuth .. 2

21. Session Management ... 2

21.1 TPM_KeyControlOwner .. 2

21.2 TPM_SaveContext .. 2

21.3 TPM_LoadContext .. 2

22. Eviction ... 2

22.1 TPM_FlushSpecific ... 2

23. Timing Ticks.. 2

23.1 TPM_GetTicks... 2

23.2 TPM_TickStampBlob .. 2

24. Transport Sessions ... 2

24.1 TPM_EstablishTransport... 2

24.2 TPM_ExecuteTransport .. 2

24.3 TPM_ReleaseTransportSigned... 2

25. Monotonic Counter.. 2

25.1 TPM_CreateCounter ... 2

25.2 TPM_IncrementCounter.. 2

25.3 TPM_ReadCounter ... 2

25.4 TPM_ReleaseCounter... 2

25.5 TPM_ReleaseCounterOwner .. 2

26. DAA commands.. 2

26.1 TPM_DAA_Join... 2

26.2 TPM_DAA_Sign .. 2

27. Deprecated commands... 2

27.1 Key commands.. 2

27.1.1 TPM_EvictKey.. 2

27.1.2 TPM_Terminate_Handle.. 2

27.2 Context management.. 2

27.2.1 TPM_SaveKeyContext... 2

27.2.2 TPM_LoadKeyContext... 2

27.2.3 TPM_SaveAuthContext ... 2

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 xi 9 July 2007

 TCG Published

27.2.4 TPM_LoadAuthContext.. 2

27.3 DIR commands.. 2

27.3.1 TPM_DirWriteAuth ... 2

27.3.2 TPM_DirRead .. 2

27.4 Change Auth ... 2

27.4.1 TPM_ChangeAuthAsymStart... 2

27.4.2 TPM_ChangeAuthAsymFinish... 2

27.5 TPM_Reset ... 2

27.6 TPM_OwnerReadPubek ... 2

27.7 TPM_DisablePubekRead.. 2

27.8 TPM_LoadKey... 2

28. Deleted Commands .. 2

28.1 TPM_GetCapabilitySigned.. 2

28.2 TPM_GetOrdinalAuditStatus... 2

28.3 TPM_CertifySelfTest ... 2

End of Introduction do not delete

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 1 9 July 2007

 TCG Published

1. Scope and Audience 1

The TPCA main specification is an industry specification that enables trust in computing 2
platforms in general. The main specification is broken into parts to make the role of each 3
document clear. A version of the specification (like 1.2) requires all parts to be a complete 4
specification. 5

This is Part 3 the structures that the TPM will use. 6

This document is an industry specification that enables trust in computing platforms in 7
general. 8

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 2 9 July 2007
 TCG Published

1.1 Key words 9

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 10
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10 11
normative statements are to be interpreted as described in [RFC-2119]. 12

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 3 9 July 2007

 TCG Published

1.2 Statement Type 13

Please note a very important distinction between different sections of text throughout this 14
document. You will encounter two distinctive kinds of text: informative comment and 15
normative statements. Because most of the text in this specification will be of the kind 16
normative statements, the authors have informally defined it as the default and, as such, 17
have specifically called out text of the kind informative comment. They have done this by 18
flagging the beginning and end of each informative comment and highlighting its text in 19
gray. This means that unless text is specifically marked as of the kind informative 20
comment, you can consider it of the kind normative statements. 21

For example: 22

Start of informative comment: 23

This is the first paragraph of 1–n paragraphs containing text of the kind informative 24
comment ... 25

This is the second paragraph of text of the kind informative comment ... 26

This is the nth paragraph of text of the kind informative comment ... 27

To understand the TPM specification the user must read the specification. (This use of 28
MUST does not require any action). 29

End of informative comment. 30

This is the first paragraph of one or more paragraphs (and/or sections) containing the text 31
of the kind normative statements ... 32

To understand the TPM specification the user MUST read the specification. (This use of 33
MUST indicates a keyword usage and requires an action). 34

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 4 9 July 2007
 TCG Published

2. Description and TODO 35

This document is to show the changes necessary to create the 1.2 version of the TCG 36
specification. Some of the sections are brand new text; some are rewritten sections of the 37
1.1 version. Upon approval of the 1.2 changes, there will be a merging of the 1.1 and 1.2 38
versions to create a single 1.2 document. 39

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 5 9 July 2007

 TCG Published

3. Admin Startup and State 40

Start of informative comment: 41

This section is the commands that start a TPM. 42

End of informative comment. 43

3.1 TPM_Init 44

Start of informative comment: 45

TPM_Init is a physical method of initializing a TPM. There is no TPM_Init ordinal as this is a 46
platform message sent on the platform internals to the TPM. On a PC this command arrives 47
at the TPM via the LPC bus and informs the TPM that the platform is performing a boot 48
process. 49

TPM_Init puts the TPM into a state where it waits for the command TPM_Startup (which 50
specifies the type of initialization that is required. 51

End of informative comment. 52

Definition 53

TPM_Init(); 54

 55

Operation of the TPM. This is not a command that any software can execute. It is inherent 56
in the design of the TPM and the platform that the TPM resides on. 57

Parameters 58

None 59

Description 60

1. The TPM_Init signal indicates to the TPM that platform initialization is taking place. The 61
TPM SHALL set the TPM into a state such that the only legal command to receive after 62
the TPM_Init is the TPM_Startup command. The TPM_Startup will further indicate to the 63
TPM how to handle and initialize the TPM resources. 64

2. The platform design MUST be that the TPM is not the only component undergoing 65
initialization. If the TPM_Init signal forces the TPM to perform initialization then the 66
platform MUST ensure that ALL components of the platform receive an initialization 67
signal. This is to prevent an attacker from causing the TPM to initialize to a state where 68
various masquerades are allowable. For instance, on a PC causing the TPM to initialize 69
and expect measurements in PCR0 but the remainder of the platform does not initialize. 70

3. The design of the TPM MUST be such that the ONLY mechanism that signals TPM_Init 71
also signals initialization to the other platform components. 72

Actions 73

1. The TPM sets TPM_STANY_FLAGS -> postInitialise to TRUE. 74

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 6 9 July 2007
 TCG Published

3.2 TPM_Startup 75

Start of informative comment: 76

TPM_Startup is always preceded by TPM_Init, which is the physical indication (a system-77
wide reset) that TPM initialization is necessary. 78

There are many events on a platform that can cause a reset and the response to these 79
events can require different operations to occur on the TPM. The mere reset indication does 80
not contain sufficient information to inform the TPM as to what type of reset is occurring. 81
Additional information known by the platform initialization code needs transmitting to the 82
TPM. The TPM_Startup command provides the mechanism to transmit the information. 83

The TPM can startup in three different modes: 84

A “clear” start where all variables go back to their default or non-volatile set state 85

A “save” start where the TPM recovers appropriate information and restores various values 86
based on a prior TPM_SaveState. This recovery requires an invocation of TPM_Init to be 87
successful. 88

A failing "save" start must shut down the TPM. The CRTM cannot leave the TPM in a state 89
where an untrusted upper software layer could issue a "clear" and then extend PCR's and 90
thus mimic the CRTM. 91

A “deactivated” start where the TPM turns itself off and requires another TPM_Init before 92
the TPM will execute in a fully operational state. 93

End of informative comment. 94

Incoming Parameters and Sizes 95

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_Startup

4 2 2S 2 TPM_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Parameters and Sizes 96

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Startup

Description 97

TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example). 98

1. If the TPM is in failure mode 99

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 7 9 July 2007

 TCG Published

a. TPM_STANY_FLAGS -> postInitialize is still set to FALSE 100

b. The TPM returns TPM_FAILEDSELFTEST 101

Actions 102

1. If TPM_STANY_FLAGS -> postInitialise is FALSE, 103

a. Then the TPM MUST return TPM_INVALID_POSTINIT, and exit this capability 104

2. If stType = TPM_ST_CLEAR 105

a. Ensure that sessions associated with resources TPM_RT_CONTEXT, TPM_RT_AUTH, 106
TPM_RT_DAA_TPM, and TPM_RT_TRANS are invalidated 107

b. Reset TPM_STCLEAR_DATA -> PCR[] values to each correct default value 108

i. pcrReset is FALSE, set to 0x00..00 109

ii. pcrReset is TRUE, set to 0xFF..FF 110

c. Set the following TPM_STCLEAR_FLAGS to their default state 111

i. PhysicalPresence 112

ii. PhysicalPresenceLock 113

iii. disableForceClear 114

d. The TPM MAY initialize auditDigest to all zeros 115

i. If not initialized to all zeros, the TPM SHALL ensure that auditDigest contains a 116
valid value. 117

ii. If initialization fails, the TPM SHALL set auditDigest to all zeros and SHALL set 118
the internal TPM state so that the TPM returns TPM_FAILEDSELFTEST to all 119
subsequent commands. 120

e. The TPM SHALL set TPM_STCLEAR_FLAGS -> deactivated to the same state as 121
TPM_PERMANENT_FLAGS -> deactivated 122

f. The TPM MUST set the TPM_STANY_DATA fields to: 123

i. TPM_STANY_DATA->contextNonceSession is set to all zeros 124

ii. TPM_STANY_DATA->contextCount is set to 0 125

iii. TPM_STANY_DATA->contextList is set to 0 126

g. The TPM MUST set TPM_STCLEAR_DATA fields to: 127

i. Invalidate contextNonceKey 128

ii. countID to zero 129

iii. ownerReference to TPM_KH_OWNER 130

h. The TPM MUST set the following TPM_STCLEAR_FLAGS to 131

i. bGlobalLock to FALSE 132

i. Determine which keys should remain in the TPM 133

i. For each key that has a valid preserved value in the TPM 134

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 8 9 July 2007
 TCG Published

(1) if parentPCRStatus is TRUE then call TPM_FlushSpecific(keyHandle) 135

(2) if isVolatile is TRUE then call TPM_FlushSpecific(keyHandle) 136

ii. Keys under control of the OwnerEvict flag MUST stay resident in the TPM 137

3. If stType = TPM_ST_STATE 138

a. If the TPM has no state to restore, the TPM MUST set the internal state such that it 139
returns TPM_FAILEDSELFTEST to all subsequent commands. 140

b. The TPM MAY determine for each session type (authorization, transport, DAA, …) to 141
release or maintain the session information. The TPM reports how it manages sessions 142
in the TPM_GetCapability command. 143

c. The TPM SHALL take all necessary actions to ensure that all PCRs contain valid 144
preserved values. If the TPM is unable to successfully complete these actions, it SHALL 145
enter the TPM failure mode. 146

i. For resettable PCR the TPM MUST set the value of TPM_STCLEAR_DATA -> 147
PCR[]to the resettable PCR default value. The TPM MUST NOT restore a resettable 148
PCR to a preserved value 149

d. The TPM MAY initialize auditDigest to all zeros. 150

i. Otherwise, the TPM SHALL take all actions necessary to ensure that auditDigest 151
contains a valid value. If the TPM is unable to successfully complete these 152
actions, the TPM SHALL initialize auditDigest to all zeros and SHALL set the 153
internal state such that the TPM returns TPM_FAILEDSELFTEST to all 154
subsequent commands. 155

e. The TPM MUST restore the following flags to their preserved states: 156

i. All values in TPM_STCLEAR_FLAGS 157

ii. All values in TPM_STCLEAR_DATA 158

f. The TPM MUST restore all keys that have a valid preserved value. 159

g. The TPM resumes normal operation. If the TPM is unable to resume normal 160
operation, it SHALL enter the TPM failure mode. 161

4. If stType = TPM_ST_DEACTIVATED 162

a. Invalidate sessions 163

i. Ensure that all resources associated with saved and active sessions are 164
invalidated 165

b. Set the TPM_STCLEAR_FLAGS to their default state. 166

c. Set TPM_STCLEAR_FLAGS -> deactivated to TRUE 167

5. The TPM MUST ensure that state associated with TPM_SaveState is invalidated 168

6. The TPM MUST set TPM_STANY_FLAGS -> postInitialise to FALSE 169

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 9 9 July 2007

 TCG Published

3.3 TPM_SaveState 170

Start of informative comment: 171

This warns a TPM to save some state information. 172

If the relevant shielded storage is non-volatile, this command need have no effect. 173

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of 174
external power in time to move data to non-volatile memory, this command should be 175
presented before the TPM enters a low or no power state. 176

End of informative comment. 177

Incoming Parameters and Sizes 178

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Outgoing Parameters and Sizes 179

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveState.

Description 180

1. Preserved values MUST be non-volatile. 181

2. If data is never stored in a volatile medium, that data MAY be used as preserved data. In 182
such cases, no explicit action may be required to preserve that data. 183

3. If an explicit action is required to preserve data, it MUST be possible for the TPM to 184
determine whether preserved data is valid. 185

4. If a parameter mirrored by any preserved value is altered, all preserved values MUST be 186
declared invalid. 187

5. The TPM MAY declare all preserved values invalid in response to any command other 188
than TPM_Init. 189

Actions 190

1. Store TPM_STCLEAR_DATA -> PCR contents except for 191

a. If the PCR attribute pcrReset is TRUE 192

b. Any platform identified debug PCR 193

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 10 9 July 2007
 TCG Published

2. The auditDigest MUST be handled according to the audit requirements as reported by 194
TPM_GetCapability. 195

a. If the ordinalAuditStatus is TRUE for the TPM_SaveState ordinal and the auditDigest 196
is being stored in the saved state, the saved auditDigest MUST include the 197
TPM_SaveState input parameters and MUST NOT include the output parameters. 198

3. All values in TPM_STCLEAR_DATA MUST be preserved. 199

4. All values in TPM_STCLEAR_FLAGS MUST be preserved. 200

5. The contents of any key that is currently loaded SHOULD be preserved if the key's 201
parentPCRStatus indicator is FALSE and its isVolatile indicator is FALSE. 202

6. The contents of any key that has TPM_KEY_CONTROL_OWNER_EVICT set MUST be 203
preserved 204

7. The contents of any key that is currently loaded MAY be preserved. 205

8. The contents of sessions (authorization, transport, DAA, etc.) MAY be preserved as 206
reported by TPM_GetCapability. 207

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 11 9 July 2007

 TCG Published

4. Admin Testing 208

4.1 TPM_SelfTestFull 209

Start of informative comment: 210

TPM_SelfTestFull tests all of the TPM capabilities. 211

Unlike TPM_ContinueSelfTest, which may optionally return immediately and then perform 212
the tests, TPM_SelfTestFull always performs the tests and then returns success or failure. 213

End of informative comment. 214

Incoming Operands and Sizes 215

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Outgoing Operands and Sizes 216

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SelfTestFull

Actions 217

1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function. 218

a. If the self-test succeeds, return TPM_SUCCESS. 219

b. If the self-test fails, return TPM_FAILEDSELFTEST. 220

2. Failure of any test results in overall failure, and the TPM goes into failure mode. 221

3. If the TPM has not executed the action of TPM_ContinueSelfTest, the TPM 222

a. MAY perform the full self-test. 223

b. MAY return TPM_NEEDS_SELFTEST. 224

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 12 9 July 2007
 TCG Published

4.2 TPM_ContinueSelfTest 225

Start of informative comment: 226

TPM_ContinueSelfTest informs the TPM that it should complete the self-test of all TPM 227
functions. 228

The TPM may return success immediately and then perform the self-test, or it may perform 229
the self-test and then return success or failure. 230

End of informative comment. 231

Incoming Operands and Sizes 232

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Outgoing Operands and Sizes 233

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ContinueSelfTest

Description 234

1. Prior to executing the actions of TPM_ContinueSelfTest, if the TPM receives a command 235
C1 that uses an untested TPM function, the TPM MUST take one of these actions: 236

a. The TPM MAY return TPM_NEEDS_SELFTEST 237

i. This indicates that the TPM has not tested the internal resources required to 238
execute C1. 239

ii. The TPM does not execute C1. 240

iii. The caller MUST issue TPM_ContinueSelfTest before re-issuing the command C1. 241

(1) If the TPM permits TPM_SelfTestFull prior to completing the actions of 242
TPM_ContinueSelfTest, the caller MAY issue TPM_SelfTestFull rather than 243
TPM_ContinueSelfTest. 244

b. The TPM MAY return TPM_DOING_SELFTEST 245

i. This indicates that the TPM is doing the actions of TPM_ContinueSelfTest 246
implicitly, as if the TPM_ContinueSelfTest command had been issued. 247

ii. The TPM does not execute C1. 248

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 13 9 July 2007

 TCG Published

iii. The caller MUST wait for the actions of TPM_ContinueSelfTest to complete before 249
reissuing the command C1. 250

c. The TPM MAY return TPM_SUCCESS or an error code associated with C1. 251

i. This indicates that the TPM has completed the actions of TPM_ContinueSelfTest 252
and has completed the command C1. 253

ii. The error code MAY be TPM_FAILEDSELFTEST. 254

Actions 255

1. If TPM_PERMANENT_FLAGS -> FIPS is TRUE or TPM_PERMANENT_FLAGS -> TPMpost 256
is TRUE 257

a. The TPM MUST run all self-tests 258

2. Else 259

a. The TPM MUST complete all self-tests that are outstanding 260

i. Instead of completing all outstanding self-tests the TPM MAY run all self-tests 261

3. The TPM either 262

a. MAY immediately return TPM_SUCCESS 263

i. When TPM_ContinueSelfTest finishes execution, it MUST NOT respond to the 264
caller with a return code. 265

b. MAY complete the self-test and then return TPM_SUCCESS or 266
TPM_FAILEDSELFTEST. 267

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 14 9 July 2007
 TCG Published

4.3 TPM_GetTestResult 268

Start of informative comment: 269

TPM_GetTestResult provides manufacturer specific information regarding the results of the 270
self-test. This command will work when the TPM is in self-test failure mode. The reason for 271
allowing this command to operate in the failure mode is to allow TPM manufacturers to 272
obtain diagnostic information. 273

End of informative comment. 274

Incoming Operands and Sizes 275

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

Outgoing Operands and Sizes 276

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetTestResult

4 4 3S 4 UINT32 outDataSize The size of the outData area

5 <> 4S <> BYTE[] outData The outData this is manufacturer specific

Description 277

This command will work when the TPM is in self test failure mode or limited operation 278
mode. 279

Actions 280

1. The TPM SHALL respond to this command with a manufacturer specific block of 281
information that describes the result of the latest self-test 282

2. The information MUST NOT contain any data that uniquely identifies an individual TPM. 283

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 15 9 July 2007

 TCG Published

5. Admin Opt-in 284

5.1 TPM_SetOwnerInstall 285

Start of informative comment: 286

When enabled but without an owner this command sets the PERMANENT flag that allows or 287
disallows the ability to insert an owner. 288

End of informative comment. 289

Incoming Operands and Sizes 290

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

4 1 2S 1 BOOL state State to which ownership flag is to be set.

Outgoing Operands and Sizes 291

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

Action 292

1. If the TPM has a current owner, this command immediately returns with 293
TPM_SUCCESS. 294

2. The TPM validates the assertion of physical presence. The TPM then sets the value of 295
TPM_PERMANENT_FLAGS -> ownership to the value in state. 296

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 16 9 July 2007
 TCG Published

5.2 TPM_OwnerSetDisable 297

Start of informative comment: 298

The TPM owner sets the PERMANENT disable flag 299

End of informative comment. 300

Incoming Operands and Sizes 301

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 1 2S 1 BOOL disableState Value for disable state – enable if TRUE

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 302

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Action 303

1. The TPM SHALL authenticate the command as coming from the TPM Owner. If 304
unsuccessful, the TPM SHALL return TPM_AUTHFAIL. 305

2. The TPM SHALL set the TPM_PERMANENT_FLAGS -> disable flag to the value in the 306
disableState parameter. 307

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 17 9 July 2007

 TCG Published

5.3 TPM_PhysicalEnable 308

Start of informative comment: 309

Sets the PERMANENT disable flag to FALSE using physical presence as authorization. 310

End of informative comment. 311

Incoming Operands and Sizes 312

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Outgoing Operands and Sizes 313

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnable

Action 314

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE 315

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to FALSE. 316

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 18 9 July 2007
 TCG Published

5.4 TPM_PhysicalDisable 317

Start of informative comment: 318

Sets the PERMANENT disable flag to TRUE using physical presence as authorization 319

End of informative comment. 320

Incoming Operands and Sizes 321

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Outgoing Operands and Sizes 322

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Action 323

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE 324

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to TRUE. 325

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 19 9 July 2007

 TCG Published

5.5 TPM_PhysicalSetDeactivated 326

Start of informative comment: 327

Enables the TPM using physical presence as authorization. 328

This command is not available when the TPM is disabled. 329

End of informative comment. 330

Incoming Operands and Sizes 331

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

4 1 2S 1 BOOL state State to which deactivated flag is to be set.

Outgoing Operands and Sizes 332

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

Action 333

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE 334

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.deactivated flag to the value in the 335
state parameter. 336

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 20 9 July 2007
 TCG Published

5.6 TPM_SetTempDeactivated 337

Start of informative comment: 338

This command allows the operator of the platform to deactivate the TPM until the next boot 339
of the platform. 340

This command requires operator authentication. The operator can provide the 341
authentication by either the assertion of physical presence or presenting the operator 342
AuthData value. 343

End of informative comment. 344

Incoming Operands and Sizes 345

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 4 4 TPM_AUTHHANDLE authHandle Auth handle for operation validation. Session type MUST be OIAP

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA operatorAuth HMAC key: operatorAuth

Outgoing Operands and Sizes 346

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
operatorAuth.

Action 347

1. If tag = TPM_TAG_REQ_AUTH1_COMMAND 348

a. If TPM_PERMANENT_FLAGS -> operator is FALSE return TPM_NOOPERATOR 349

b. Validate command and parameters using operatorAuth, on error return 350
TPM_AUTHFAIL 351

2. Else 352

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 21 9 July 2007

 TCG Published

a. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE 353

3. The TPM SHALL set the TPM_STCLEAR_FLAGS.deactivated flag to the value TRUE. 354

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 22 9 July 2007
 TCG Published

5.7 TPM_SetOperatorAuth 355

Start of informative comment: 356

This command allows the setting of the operator AuthData value. 357

There is no confidentiality applied to the operator authentication as the value is sent under 358
the assumption of being local to the platform. If there is a concern regarding the path 359
between the TPM and the keyboard then unless the keyboard is using encryption and a 360
secure channel an attacker can read the values. 361

End of informative comment. 362

Incoming Operands and Sizes 363

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

4 20 2S 20 TPM_SECRET operatorAuth The operator AuthData

Outgoing Operands and Sizes 364

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

Action 365

1. If physical presence is not asserted the TPM MUST return TPM_BAD_PRESENCE 366

2. The TPM SHALL set the TPM_PERMANENT_DATA -> operatorAuth 367

3. The TPM SHALL set TPM_PERMANENT_FLAGS -> operator to TRUE 368

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 23 9 July 2007

 TCG Published

6. Admin Ownership 369

6.1 TPM_TakeOwnership 370

Start of informative comment: 371

This command inserts the TPM Ownership value into the TPM. 372

End of informative comment. 373

Incoming Operands and Sizes 374

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2S 2 TPM_PROTOCOL_ID protocolID The ownership protocol in use.

5 4 3S 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4S <> BYTE[] encOwnerAuth The owner AuthData encrypted with PUBEK

7 4 5S 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 <> 6S <> BYTE[] encSrkAuth The SRK AuthData encrypted with PUBEK

9 <> 7S <> TPM_KEY srkParams
Structure containing all parameters of new SRK. pubKey.keyLength &
encSize are both 0. This structure MAY be TPM_KEY12.

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for this command

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA ownerAuth
Authorization session digest for input params. HMAC key: the new
ownerAuth value. See actions for validation operations

 375

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 24 9 July 2007
 TCG Published

Outgoing Operands and Sizes 376

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 <> 3S <> TPM_KEY srkPub
Structure containing all parameters of new SRK. srkPub.encData is set to
0. This structure MAY be TPM_KEY12.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
the new ownerAuth value

Description 377

The type of the output srkPub MUST be the same as the type of the input srkParams, either 378
both TPM_KEY or both TPM_KEY12. 379

Actions 380

1. If TPM_PERMANENT_DATA -> ownerAuth is valid return TPM_OWNER_SET 381

2. If TPM_PERMANENT_FLAGS -> ownership is FALSE return TPM_INSTALL_DISABLED 382

3. If TPM_PERMANENT_DATA -> endorsementKey is invalid return 383
TPM_NO_ENDORSEMENT 384

4. Verify that authHandle is of type OIAP on error return TPM_AUTHFAIL 385

5. If protocolID is not TPM_PID_OWNER, the TPM MAY return TPM_BAD_PARAMETER 386

6. Create A1 a TPM_SECRET by decrypting encOwnerAuth using PRIVEK as the key 387

a. This requires that A1 was encrypted using the PUBEK 388

b. Validate that A1 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY 389

7. Validate the command and parameters using A1 and ownerAuth, on error return 390
TPM_AUTHFAIL 391

8. Validate srkParams 392

a. If srkParams -> keyUsage is not TPM_KEY_STORAGE return 393
TPM_INVALID_KEYUSAGE 394

b. If srkParams -> migratable is TRUE return TPM_INVALID_KEYUSAGE 395

c. If srkParams -> algorithmParms -> algorithmID is NOT TPM_ALG_RSA return 396
TPM_BAD_KEY_PROPERTY 397

d. If srkParams -> algorithmParms -> encScheme is NOT 398
TPM_ES_RSAESOAEP_SHA1_MGF1 return TPM_BAD_KEY_PROPERTY 399

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 25 9 July 2007

 TCG Published

e. If srkParams -> algorithmParms -> sigScheme is NOT TPM_SS_NONE return 400
TPM_BAD_KEY_PROPERTY 401

f. If srkParams -> algorithmParms -> parms -> keyLength MUST be greater than or 402
equal to 2048, on error return TPM_BAD_KEY_PROPERTY 403

g. If TPM_PERMANENT_FLAGS -> FIPS is TRUE 404

i. If srkParams -> authDataUsage specifies TPM_AUTH_NEVER return 405
TPM_NOTFIPS 406

9. Generate K1 according to the srkParams, on error return TPM_BAD_KEY_PROPERTY 407

a. This includes copying PCRInfo from srkParams to K1 408

10. Create A2 a TPM_SECRET by decrypting encSrkAuth using the PRIVEK 409

a. This requires A2 to be encrypted using the PUBEK 410

b. Validate that A2 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY 411

c. Store A2 in K1 -> usageAuth 412

11. Store K1 in TPM_PERMANENT_DATA -> srk 413

12. Store A1 in TPM_PERMANENT_DATA -> ownerAuth 414

13. Create TPM_PERMANENT_DATA -> contextKey according to the rules for the algorithm 415
in use by the TPM to save context blobs 416

14. Create TPM_PERMANENT_DATA -> delegateKey according to the rules for the algorithm 417
in use by the TPM to save delegate blobs 418

15. Create TPM_PERMANENT_DATA -> tpmProof by using the TPM RNG 419

16. Export TPM_PERMANENT_DATA -> srk as srkPub 420

17. Set TPM_PERMANENT_FLAGS -> readPubek to FALSE 421

18. Calculate resAuth using the newly established TPM_PERMANENT_DATA -> ownerAuth 422

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 26 9 July 2007
 TCG Published

6.2 TPM_OwnerClear 423

Start of informative comment: 424

The TPM_OwnerClear command performs the clear operation under Owner authentication. 425
This command is available until the Owner executes the TPM_DisableOwnerClear, at which 426
time any further invocation of this command returns TPM_CLEAR_DISABLED. 427

End of informative comment. 428

Incoming Operands and Sizes 429

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Ignored

7 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 430

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Fixed value FALSE

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
old ownerAuth.

Actions 431

1. Verify that the TPM Owner authorizes the command and all of the input, on error return 432
TPM_AUTHFAIL. 433

2. If TPM_PERMANENT_FLAGS -> disableOwnerClear is TRUE then return 434
TPM_CLEAR_DISABLED. 435

3. Unload all loaded keys. 436

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 27 9 July 2007

 TCG Published

a. If TPM_PERMANENT_FLAGS -> FIPS is TRUE, the memory locations containing 437
secret or private keys MUST be set to all zeros. 438

4. The TPM MUST NOT modify the following TPM_PERMANENT_DATA items 439

a. endorsementKey 440

b. revMajor 441

c. revMinor 442

d. manuMaintPub 443

e. auditMonotonicCounter 444

f. monotonicCounter 445

g. pcrAttrib 446

h. rngState 447

i. EKReset 448

j. maxNVBufSize 449

k. lastFamilyID 450

l. tpmDAASeed 451

m. authDIR[0] 452

n. daaProof 453

o. daaBlobKey 454

5. The TPM MUST invalidate the following TPM_PERMANENT_DATA items and any internal 455
resources associated with these items 456

a. ownerAuth 457

b. srk 458

c. delegateKey 459

d. delegateTable 460

e. contextKey 461

f. tpmProof 462

g. operatorAuth 463

6. The TPM MUST reset to manufacturing defaults the following TPM_PERMANENT_DATA 464
items 465

a. noOwnerNVWrite MUST be set to 0 466

b. ordinalAuditStatus 467

c. restrictDelegate 468

7. The TPM MUST invalidate or reset all fields of TPM_STANY_DATA 469

a. Nonces SHALL be reset 470

b. Lists (e.g. contextList) SHALL be invalidated 471

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 28 9 July 2007
 TCG Published

8. The TPM MUST invalidate or reset all fields of TPM_STCLEAR_DATA except the PCR’s 472

a. Nonces SHALL be reset 473

b. Lists (e.g. contextList) SHALL be invalidated 474

c. deferredPhysicalPresence MUST be set to 0 475

9. The TPM MUST set the following TPM_PERMANENT_FLAGS to their default values 476

a. disable 477

b. deactivated 478

c. readPubek 479

d. disableOwnerClear 480

e. disableFullDALogicInfo 481

10. The TPM MUST set the following TPM_PERMANENT_FLAGS 482

a. ownership to TRUE 483

b. operator to FALSE 484

c. maintenanceDone to FALSE 485

d. allowMaintenance to TRUE 486

11. The TPM releases all TPM_PERMANENT_DATA -> monotonicCounter settings 487

a. This includes invalidating all currently allocated counters. The result will be no 488
currently allocated counters and the new owner will need to allocate counters. The 489
actual count value will continue to increase. 490

12. The TPM MUST deallocate all defined NV storage areas where 491

a. TPM_NV_PER_OWNERWRITE is TRUE if nvIndex does not have the “D” bit set 492

b. TPM_NV_PER_OWNERREAD is TRUE if nvIndex does not have the “D” bit set 493

c. The TPM MUST NOT deallocate any other currently defined NV storage areas. 494

13. The TPM MUST invalidate all familyTable entries 495

14. The TPM MUST terminate all sessions, active or saved. 496

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 29 9 July 2007

 TCG Published

6.3 TPM_ForceClear 497

Start of informative comment: 498

The TPM_ForceClear command performs the Clear operation under physical access. This 499
command is available until the execution of the TPM_DisableForceClear, at which time any 500
further invocation of this command returns TPM_CLEAR_DISABLED. 501

End of informative comment. 502

Incoming Operands and Sizes 503

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Outgoing Operands and Sizes 504

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ForceClear

Actions 505

1. The TPM SHALL check for the assertion of physical presence, if not present return 506
TPM_BAD_PRESENCE 507

2. If TPM_STCLEAR_FLAGS -> disableForceClear is TRUE return TPM_CLEAR_DISABLED 508

3. The TPM SHALL execute the actions of TPM_OwnerClear (except for the TPM Owner 509
authentication check) 510

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 30 9 July 2007
 TCG Published

6.4 TPM_DisableOwnerClear 511

Start of informative comment: 512

The TPM_DisableOwnerClear command disables the ability to execute the TPM_OwnerClear 513
command permanently. Once invoked the only method of clearing the TPM will require 514
physical access to the TPM. 515

After the execution of TPM_ForceClear, ownerClear is re-enabled and must be explicitly 516
disabled again by the new TPM Owner. 517

End of informative comment. 518

Incoming Operands and Sizes 519

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 520

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 521

1. The TPM verifies that the authHandle properly authorizes the owner. 522

2. The TPM sets the TPM_PERMANENT_FLAGS -> disableOwnerClear flag to TRUE. 523

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 31 9 July 2007

 TCG Published

3. When this flag is TRUE the only mechanism that can clear the TPM is the 524
TPM_ForceClear command. The TPM_ForceClear command requires physical access to 525
the TPM to execute. 526

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 32 9 July 2007
 TCG Published

6.5 TPM_DisableForceClear 527

Start of informative comment: 528

The TPM_DisableForceClear command disables the execution of the TPM_ForceClear 529
command until the next startup cycle. Once this command is executed, the TPM_ForceClear 530
is disabled until another startup cycle is run. 531

End of informative comment. 532

Incoming Operands and Sizes 533

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Outgoing Operands and Sizes 534

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableForceClear

Actions 535

1. The TPM sets the TPM_STCLEAR_FLAGS.disableForceClear flag in the TPM that disables 536
the execution of the TPM_ForceClear command. 537

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 33 9 July 2007

 TCG Published

6.6 TSC_PhysicalPresence 538

Start of informative comment: 539

Some TPM operations require the indication of a human’s physical presence at the platform. 540
The presence of the human either provides another indication of platform ownership or a 541
mechanism to ensure that the execution of the command is not the result of a remote 542
software process. 543

This command allows a process on the platform to indicate the assertion of physical 544
presence. As this command is executable by software there must be protections against the 545
improper invocation of this command. 546

The physicalPresenceHWEnable and physicalPresenceCMDEnable indicate the ability for 547
either SW or HW to indicate physical presence. These flags can be reset until the 548
physicalPresenceLifetimeLock is set. The platform manufacturer should set these flags to 549
indicate the capabilities of the platform the TPM is bound to. 550

The command provides two sets of functionality. The first is to enable, permanently, either 551
the HW or the SW ability to assert physical presence. The second is to allow SW, if enabled, 552
to assert physical presence. 553

End of informative comment. 554

Incoming Operands and Sizes 555

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

4 2 2S 2 TPM_PHYSICAL_PRESENCE physicalPresence The state to set the TPM’s Physical Presence flags.

Outgoing Operands and Sizes 556

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_PhysicalPresence.

Actions 557

1. For documentation ease, the bits break into two categories. The first is the lifetime 558
settings and the second is the assertion settings. 559

a. Define A1 to be the lifetime settings: TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK, 560
TPM_PHYSICAL_PRESENCE_HW_ENABLE, TPM_PHYSICAL_PRESENCE_CMD_ENABLE, 561
TPM_PHYSICAL_PRESENCE_HW_DISABLE, and 562
TPM_PHYSICAL_PRESENCE_CMD_DISABLE 563

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 34 9 July 2007
 TCG Published

b. Define A2 to be the assertion settings: TPM_PHYSICAL_PRESENCE_LOCK, 564
TPM_PHYSICAL_PRESENCE_PRESENT, and TPM_PHYSICAL_PRESENCE_NOTPRESENT 565

Lifetime lock settings 566

2. If any A1 setting is present 567

a. If TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock is TRUE, return 568
TPM_BAD_PARAMETER 569

b. If any A2 setting is present return TPM_BAD_PARAMETER 570

c. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_HW_ENABLE and 571
physicalPresence -> TPM_PHYSICAL_PRESENCE_HW_DISABLE are TRUE, return 572
TPM_BAD_PARAMETER. 573

d. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_CMD_ENABLE and 574
physicalPresence -> TPM_PHYSICAL_PRESENCE_CMD_DISABLE are TRUE, return 575
TPM_BAD_PARAMETER. 576

e. If physicalPresence -> TPM_PHYSICAL_PRESENCE_HW_ENABLE is TRUE Set 577
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to TRUE 578

f. If physicalPresence -> TPM_PHYSICAL_PRESENCE_HW_DISABLE is TRUE Set 579
TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to FALSE 580

g. If physicalPresence -> TPM_PHYSICAL_PRESENCE_CMD_ENABLE is TRUE, Set 581
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to TRUE. 582

h. If physicalPresence -> TPM_PHYSICAL_PRESENCE_CMD_DISABLE is TRUE, Set 583
TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to FALSE. 584

i. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK is TRUE 585

i. Set TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock to TRUE 586

j. Return TPM_SUCCESS 587

SW physical presence assertion 588

3. If any A2 setting is present 589

a. If any A1 setting is present return TPM_BAD_PARAMETER 590

i. This check here just for consistency, the prior checks would have already ensured 591
that this was ok 592

b. If TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable is FALSE, return 593
TPM_BAD_PARAMETER 594

c. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK and physicalPresence 595
-> TPM_PHYSICAL_PRESENCE_PRESENT are TRUE, return TPM_BAD_PARAMETER 596

d. If both physicalPresence -> TPM_PHYSICAL_PRESENCE_PRESENT and 597
physicalPresence -> TPM_PHYSICAL_PRESENCE_NOTPRESENT are TRUE, return 598
TPM_BAD_PARAMETER 599

e. If TPM_STCLEAR_FLAGS -> physicalPresenceLock is TRUE, return 600
TPM_BAD_PARAMETER 601

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 35 9 July 2007

 TCG Published

f. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK is TRUE 602

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE 603

ii. Set TPM_STCLEAR_FLAGS -> physicalPresenceLock to TRUE 604

iii. Return TPM_SUCCESS 605

g. If physicalPresence -> TPM_PHYSICAL_PRESENCE_PRESENT is TRUE 606

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to TRUE 607

h. If physicalPresence -> TPM_PHYSICAL_PRESENCE_NOTPRESENT is TRUE 608

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE 609

i. Return TPM_SUCCESS 610

4. Else // There were no A1 or A2 parameters set 611

a. Return TPM_BAD_PARAMETER 612

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 36 9 July 2007
 TCG Published

6.7 TSC_ResetEstablishmentBit 613

Start of informative comment: 614

The PC TPM Interface Specification (TIS) specifies setting tpmEstablished to TRUE upon 615
execution of the HASH_START sequence. The setting implies the creation of a Trusted 616
Operating System on the platform. Platforms will use the value of tpmEstablished to 617
determine if operations necessary to maintain the security perimeter are necessary. 618

The tpmEstablished bit provides a non-volatile, secure reporting that a HASH_START was 619
previously run on the platform. When a platform makes use of the tpmEstablished bit, the 620
platform can reset tpmEstablished as the operation is no longer necessary. 621

For example, a platform could use tpmEstablished to ensure that, if HASH_START had ever 622
been, executed the platform could use the value to invoke special processing. Once the 623
processing is complete the platform will wish to reset tpmEstablished to avoid invoking the 624
special process again. 625

The TPM_PERMANENT_FLAGS -> tpmEstablished bit described in the TPM specifications 626
uses positive logic. The TPM_ACCESS register uses negative logic, so that TRUE is reflected 627
as a 0. 628

End of informative comment. 629

Incoming Operands and Sizes 630

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Outgoing Operands and Sizes 631

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TSC_ORD_ResetEstablishmentBit

Actions 632

1. Validate the assertion of locality 3 or locality 4 633

2. Set TPM_PERMANENT_FLAGS -> tpmEstablished to FALSE 634

3. Return TPM_SUCCESS 635

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 37 9 July 2007

 TCG Published

7. The Capability Commands 636

Start of informative comment: 637

The TPM has numerous capabilities that a remote entity may wish to know about. These 638
items include support of algorithms, key sizes, protocols and vendor-specific additions. The 639
TPM_GetCapability command allows the TPM to report back to the requestor what type of 640
TPM it is dealing with. 641

The request for information requires the requestor to specify which piece of information that 642
is required. The request does not allow the “merging” of multiple requests and returns only 643
a single piece of information. 644

In failure mode, the TPM returns a limited set of information that includes the TPM 645
manufacturer and version. 646

In version 1.2 with the deletion of TPM_GetCapabilitySigned the way to obtain a signed 647
listing of the capabilities is to create a transport session, perform TPM_GetCapability 648
commands to list the information and then close the transport session using 649
TPM_ReleaseTransportSigned. 650

End of informative comment. 651

1. The standard information provided in TPM_GetCapability MUST NOT provide unique 652
information 653

a. The TPM has no control of information placed into areas on the TPM like the NV store 654
that is reported by the TPM. Configuration information for these areas could conceivably 655
be unique 656

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 38 9 July 2007
 TCG Published

7.1 TPM_GetCapability 657

Start of informative comment: 658

This command returns current information regarding the TPM. 659

The limitation on what can be returned in failure mode restricts the information a 660
manufacturer may return when capArea indicates TPM_CAP_MFR. 661

End of informative comment. 662

Incoming Parameters and Sizes 663

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

Outgoing Parameters and Sizes 664

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 3S 4 UINT32 respSize The length of the returned capability response

5 <> 4S <> BYTE[] resp The capability response

 665

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 39 9 July 2007

 TCG Published

Actions 666

1. The TPM validates the capArea and subCap indicators. If the information is available, 667
the TPM creates the response field and fills in the actual information. 668

2. The structure document contains the list of caparea and subCap values 669

3. If the TPM is in failure mode or limited operation mode, the TPM MUST return 670

a. TPM_CAP_VERSION 671

b. TPM_CAP_VERSION_VAL 672

c. TPM_CAP_MFR 673

d. TPM_CAP_PROPERTY -> TPM_CAP_PROP_MANUFACTURER 674

e. TPM_CAP_PROPERTY -> TPM_CAP_PROP_DURATION 675

f. TPM_CAP_PROPERTY -> TPM_CAP_PROP_TIS_TIMEOUT 676

g. The TPM MAY return any other capability. 677

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 40 9 July 2007
 TCG Published

7.2 TPM_SetCapability 678

Start of informative comment: 679

This command sets values in the TPM. 680

A setValue that is inconsistent with the capArea and subCap is considered a bad 681
parameter. 682

End of informative comment. 683

Incoming Parameters and Sizes 684

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 4 2S 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be set

5 4 3S 4 UINT32 subCapSize Size of subCap parameter

6 <> 4S <> BYTE[] subCap Further definition of information

7 4 5S 4 UINT32 setValueSize The size of the value to set

8 <> 6S <> BYTE[] setValue The value to set

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA ownerAuth Authorization. HMAC key: owner.usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 41 9 July 2007

 TCG Published

Outgoing Parameters and Sizes 685

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_SetCapability

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key:owner.usageAuth.

Actions 686

1. If tag = TPM_TAG_RQU_AUTH1_COMMAND, validate the command and parameters 687
using ownerAuth, return TPM_AUTHFAIL on error 688

2. The TPM validates the capArea and subCap indicators, including the ability to set value 689
based on any set restrictions 690

3. If the capArea and subCap indicators conform with one of the entries in the structure 691
TPM_CAPABILITY_AREA (Values for TPM_SetCapability) 692

a. The TPM sets the relevant flag/data to the value of setValue parameter. 693

4. Else 694

a. Return the error code TPM_BAD_PARAMETER. 695

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 42 9 July 2007
 TCG Published

7.3 TPM_GetCapabilityOwner 696

Start of informative comment: 697

TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and 698
the volatile flags in a single operation. 699

The flags summarize many operational aspects of the TPM. The information represented by 700
some flags is private to the TPM Owner. So, for simplicity, proof of ownership of the TPM 701
must be presented to retrieve the set of flags. When necessary, the flags that are not private 702
to the Owner can be deduced by Users via other (more specific) means. 703

The normal TPM authentication mechanisms are sufficient to prove the integrity of the 704
response. No additional integrity check is required. 705

End of informative comment. 706

Incoming Operands and Sizes 707

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapbilityOwner

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for Owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth
The authorization digest for inputs and owner authorization. HMAC key:
OwnerAuth.

 708

Outgoing Operands and Sizes 709

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetCapabilityOwner

4 4 3S 4 TPM_VERSION version A properly filled out version structure.

5 4 4S 4 UINT32 non_volatile_flags The current state of the non-volatile flags.

6 4 5S 4 UINT32 volatile_flags The current state of the volatile flags.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: OwnerAuth.

 710

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 43 9 July 2007

 TCG Published

Description 711

For 31>=N>=0 712

1. Bit-N of the TPM_PERMANENT_FLAGS structure is the Nth bit after the opening bracket 713
in the definition of TPM_PERMANENT_FLAGS in the version of the specification 714
indicated by the parameter “version”. The bit immediately after the opening bracket is 715
the 0th bit. 716

2. Bit-N of the TPM_STCLEAR_FLAGS structure is the Nth bit after the opening bracket in 717
the definition of TPM_STCLEAR_FLAGS in the version of the specification indicated by 718
the parameter “version”. The bit immediately after the opening bracket is the 0th bit. 719

3. Bit-N of non_volatile_flags corresponds to the Nth bit in TPM_PERMANENT_FLAGS, and 720
the lsb of non_volatile_flags corresponds to bit0 of TPM_PERMANENT_FLAGS 721

4. Bit-N of volatile_flags corresponds to the Nth bit in TPM_STCLEAR_FLAGS, and the lsb 722
of volatile_flags corresponds to bit0 of TPM_STCLEAR_FLAGS 723

Actions 724

1. The TPM validates that the TPM Owner authorizes the command. 725

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state 726
as the corresponding bit in TPM_PERMANENT_FLAGS. Bits in non_volatile_flags for 727
which there is no corresponding bit in TPM_PERMANENT_FLAGS are set to zero. 728

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the 729
corresponding bit in TPM_STCLEAR_FLAGS. Bits in volatile_flags for which there is no 730
corresponding bit in TPM_STCLEAR_FLAGS are set to zero. 731

4. The TPM generates the parameter “version”. 732

5. The TPM returns non_volatile_flags, volatile_flags and version to the caller. 733

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 44 9 July 2007
 TCG Published

8. Auditing 734

8.1 Audit Generation 735

Start of informative comment: 736

The TPM generates an audit event in response to the TPM executing a function that has the 737
audit flag set to TRUE for that function. 738

The TPM maintains an extended value for all audited operations. 739

Input audit generation occurs before the listed actions and output audit generation occurs 740
after the listed actions. 741

End of informative comment. 742

Description 743

1. The TPM extends the audit digest whenever the ordinalAuditStatus is TRUE for the 744
ordinal about to be executed. The only exception is if the ordinal about to be executed is 745
TPM_SetOrdinalAuditStatus. In that case, output parameter auditing is performed if the 746
ordinalAuditStatus resulting from command execution is TRUE. 747

2. If the command is malformed 748

a. If the ordinal is unknown, unimplemented, or cannot be determined, no auditing is 749
performed. 750

b. If the ordinal is known and audited, but the “above the line” parameters are 751
malformed and the input parameter digest cannot be determined, use an input digest of 752
all zeros. 753

i. Use an output digest of the return code and ordinal. 754

c. If the ordinal is known and audited, the “above the line” parameters are determined, 755
but the “below the line” parameters are malformed, use an input digest of the “above the 756
line” parameters. 757

i. Use an output digest of the return code and ordinal. 758

d. Malformed in this context means that, when breaking up a command into its 759
parameters, there are too few or too many bytes in the command stream. 760

e. Breaking up a command in this context means only the parsing required to extract 761
the parameters. 762

i. E.g., for parameter set comprising a UINT32 size and a BYTE[] array, the BYTE[] 763
array should not be further parsed. 764

f. If the ordinal is returns an error because the TPM is deactivated, disabled, or has no 765
owner, auditing is performed. 766

g. If the ordinal returns an error because the input tag is invalid for the command, 767
auditing is performed. 768

Actions 769

The TPM will execute the ordinal and perform auditing in the following manner 770

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 45 9 July 2007

 TCG Published

1. Map V1 to TPM_STANY_DATA 771

2. Map P1 to TPM_PERMANENT_DATA 772

3. If V1 -> auditDigest is all zeros 773

a. Increment P1 -> auditMonotonicCounter by 1 774

4. Create A1 a TPM_AUDIT_EVENT_IN structure 775

a. Set A1 -> inputParms to the digest of the input parameters from the command 776

i. Digest value according to the HMAC digest rules of the "above the line" 777
parameters (i.e. the first HMAC digest calculation). 778

b. Set A1 -> auditCount to P1 -> auditMonotonicCounter 779

c. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A1) 780

5. Execute command 781

a. Execution implies the performance of the listed actions for the ordinal. 782

6. Create A2 a TPM_AUDIT_EVENT_OUT structure 783

a. Set A2 -> outputParms to the digest of the output parameters from the command 784

i. Digest value according to the HMAC digest rules of the "above the line" 785
parameters (i.e. the first HMAC digest calculation). 786

b. Set A2 -> auditCount to P1 -> auditMonotonicCounter 787

c. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A2) 788

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 46 9 July 2007
 TCG Published

8.2 Effect of audit failing 789

Start of informative comment: 790

The TPM audit process could have an internal error when attempting to audit a command. 791

With one return parameter, The TPM is unable to return both the audit failure and the 792
command success or failure results. To indicate the audit failure, the TPM will return one of 793
two error codes: TPM_AUDITFAIL_SUCCESSFUL (if the command completed successfully) 794
or TPM_AUDITFAIL_UNSUCCESSFUL (if the command completed unsuccessfully). 795

This new functionality changes the 1.1 TPM functionality when this condition occurs. 796

End of informative comment. 797

1. When, in performing the audit process, the TPM has an internal failure (unable to write, 798
SHA-1 failure etc.) the TPM MUST set the internal TPM state such that the TPM returns 799
the TPM_FAILEDSELFTEST error on subsequent attempts to execute a command 800

2. The return code for the command uses the following rules 801

a. Command result success, Audit success -> return TPM_SUCCESS 802

b. Command result failure, Audit success -> return command result failure 803

c. Command result success, Audit failure -> return TPM_AUDITFAIL_SUCCESSFUL 804

d. Command result failure, Audit failure -> return TPM_AUDITFAIL_UNSUCCESSFUL 805

3. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST 806
always return TPM_FAILEDSELFTEST for every command other than 807
TPM_GetTestResult. This state must persist regardless of power cycling, the execution of 808
TPM_Init or any other actions. 809

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 47 9 July 2007

 TCG Published

8.3 TPM_GetAuditDigest 810

Start of informative comment: 811

This returns the current audit digest. The external audit log has the responsibility to track 812
the parameters that constitute the audit digest. 813

This value may be unique to an individual TPM. The value however will be changing at a 814
rate set by the TPM Owner. Those attempting to use this value may find it changing without 815
their knowledge. This value represents a very poor source of tracking uniqueness. 816

End of informative comment. 817

Incoming Parameters and Sizes 818

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigest

4 4 UINT32 startOrdinal The starting ordinal for the list of audited ordinals

Outgoing Parameters and Sizes 819

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

5 10 TPM_COUNTER_VALUE counterValue The current value of the audit monotonic counter

4 20 TPM_DIGEST auditDigest Log of all audited events

5 1 BOOL more TRUE if the output does not contain a full list of audited ordinals

5 4 UINT32 ordSize Size of the ordinal list in bytes

6 <> UINT32[] ordList List of ordinals that are audited.

Description 820

1. This command is never audited. 821

Actions 822

1. The TPM sets auditDigest to TPM_STANY_DATA -> auditDigest 823

2. The TPM sets counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter 824

3. The TPM creates an ordered list of audited ordinals. The list starts at startOrdinal listing 825
each ordinal that is audited. 826

a. If startOrdinal is 0 then the first ordinal that could be audited would be TPM_OIAP 827
(ordinal 0x0000000A) 828

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 48 9 July 2007
 TCG Published

b. The next ordinal would be TPM_OSAP (ordinal 0x0000000B) 829

4. If the ordered list does not fit in the output buffer the TPM sets more to TRUE 830

5. Return TPM_STANY_DATA -> auditDigest as auditDigest 831

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 49 9 July 2007

 TCG Published

8.4 TPM_GetAuditDigestSigned 832

Start of informative comment: 833

The signing of the audit log returns the entire digest value and the list of currently audited 834
commands. 835

The inclusion of the list of audited commands as an atomic operation is to tie the current 836
digest value with the list of commands that are being audited. 837

Note to future architects 838

When auditing functionality is active in a TPM, it may seem logical to remove this ordinal 839
from the active set of ordinals as the signing functionality of this command could be 840
handled in a signed transport session. While true, this command has a secondary affect 841
also, resetting the audit log digest. As the reset requires TPM Owner authentication, there 842
must be some way in this command to reflect the TPM Owner wishes. By requiring that a 843
TPM Identity key be the only key that can sign and reset, the TPM Owner’s authentication is 844
implicit in the execution of the command (TPM Identity Keys are created and controlled by 845
the TPM Owner only). Hence, while one might want to remove an ordinal this is not one that 846
can be removed if auditing is functional. 847

End of informative comment. 848

Incoming Parameters and Sizes 849

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 1 2S 1 BOOL closeAudit Indication if audit session should be closed

6 20 3S 20 TPM_NONCE antiReplay A nonce to prevent replay attacks

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for key authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: key.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 50 9 July 2007
 TCG Published

Outgoing Parameters and Sizes 850

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetAuditDigestSigned

4 10 3S 10 TPM_COUNTER_VALUE counterValue The value of the audit monotonic counter

5 20 4S 20 TPM_DIGEST auditDigest Log of all audited events

6 20 5S 20 TPM_DIGEST ordinalDigest Digest of all audited ordinals

 7 4 6S 4 UINT32 sigSize The size of the sig parameter

8 <> 7S <> BYTE[] sig The signature of the area

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth Authorization HMAC key: key.usageAuth.

Actions 851

1. Validate the AuthData and parameters using keyAuth, return TPM_AUTHFAIL on error 852

2. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_IDENTITY or 853
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE 854

3. The TPM validates that the key pointed to by keyHandle has a signature scheme of 855
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO, return 856
TPM_INVALID_KEYUSAGE on error 857

4. Create D1 a TPM_SIGN_INFO structure and set the structure defaults 858

a. Set D1 -> fixed to “ADIG” 859

b. Set D1 -> replay to antiReplay 860

c. Create D3 a list of all audited ordinals as defined in the TPM_GetAuditDigest 861
UINT32[] ordList outgoing parameter 862

d. Create D4 the SHA-1 of D3 863

e. Set auditDigest to TPM_STANY_DATA -> auditDigest 864

f. Set counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter 865

g. Create D2 the concatenation of auditDigest || counterValue || D4 866

h. Set D1 -> data to D2 867

i. Create a digital signature of the SHA-1 of D1 by using the signature scheme for 868
keyHandle 869

j. Set ordinalDigest to D4 870

5. If closeAudit == TRUE 871

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 51 9 July 2007

 TCG Published

a. If keyHandle->keyUsage is TPM_KEY_IDENTITY 872

i. TPM_STANY_DATA -> auditDigest MUST be set to all zeros. 873

b. Else 874

i. Return TPM_INVALID_KEYUSAGE 875

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 52 9 July 2007
 TCG Published

8.5 TPM_SetOrdinalAuditStatus 876

Start of informative comment: 877

Set the audit flag for a given ordinal. Requires the authentication of the TPM Owner. 878

End of informative comment. 879

Incoming Parameters and Sizes 880

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TPM_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set

5 1 3S 1 BOOL auditState Value for audit flag

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Parameters and Sizes 881

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 882

1. Validate the AuthData to execute the command and the parameters 883

2. Validate that the ordinal points to a valid TPM ordinal, return TPM_BADINDEX on error 884

a. Valid TPM ordinal means an ordinal that the TPM implementation supports 885

3. Set the non-volatile flag associated with ordinalToAudit to the value in auditState 886

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 53 9 July 2007

 TCG Published

9. Administrative Functions - Management 887

9.1 TPM_FieldUpgrade 888

Start of informative comment: 889

The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is 890
in the field. Given the varied nature of TPM implementations there will be numerous 891
methods of performing an upgrade of the protected capabilities. This command, when 892
implemented, provides a manufacturer specific method of performing the upgrade. 893

The manufacturer can determine, within the listed requirements, how to implement this 894
command. The command may be more than one command and actually a series of 895
commands. 896

The IDL definition is to create an ordinal for the command. However, the remaining 897
parameters are manufacturer specific. 898

The policy to determine when it is necessary to perform the actions of TPM_RevokeTrust is 899
outside the TPM spec and determined by other TCG workgroups. 900

TPM_FieldUpgrade is gated by either owner authorization or deferred assertion of Physical 901
Presence (via the TPM_STCLEAR_DATA -> deferredPhysicalPresence -> 902
unownedFieldUpgrade flag). This gating is acknowledgement that the entity that sets the 903
security policy for a platform must approve field upgrade for that platform. This gating can 904
block a global attack on TPMs when the TPME’s privilege information (private key) has been 905
compromised. For blocking to be effective in an unowned TPM, the TPM’s ownership flag 906
must be FALSE. (This prevents software from taking ownership and executing 907
TPM_FieldUpgrade with owner authorization.) 908

If an owner is present, field upgrade MUST be owner authorized, as the actions indicate. 909
This prevents an attacker from using physical presence to upgrade a TPM without detection 910
by the owner. 911

The advantages of deferred assertion of Physical Presence are that it: 912

• permits a TPM to be upgraded if taking ownership is undesirable or impractical. 913

• permits a TPM to be upgraded in the OS environment (where Physical Presence 914
typically cannot be asserted), when the TPM has no owner. 915

If it is acceptable to take ownership of a TPM temporarily, an alternative to deferred 916
assertion of Physical Presence is the process: (1) take ownership; (2) perform an owner 917
authorized field upgrade; (3) clear the owner from the TPM. 918

There is no requirement for patch confidentiality. Confidentiality may be implemented 919
using a manufacturer specific mechanism, and may use a global secret such as a 920
symmetric encryption key. 921

End of informative comment. 922

IDL Definition 923

TPM_RESULT TPM_FieldUpgrade(924
 [in, out] TPM_AUTH* ownerAuth, 925
 …); 926

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 54 9 July 2007
 TCG Published

Type 927

This is an optional command and a TPM is not required to implement this command in any 928
form. 929

Parameters 930

Type Name Description

TPM_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Descriptions 931

The patch integrity and authenticity verification mechanisms in the TPM MUST not require 932
the TPM to hold a global secret. The definition of global secret is a secret value shared by 933
more than one TPM. 934

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of 935
field upgrade. The TPM MUST NOT use the endorsement key for identification or encryption 936
in the upgrade process. The upgrade process MAY use a TPM Identity to deliver upgrade 937
information to specific TPM’s. 938

The upgrade process can only change protected capabilities. 939

The upgrade process can only access data in shielded locations where this data is necessary 940
to validate the TPM Owner, validate the TPME and manipulate the blob 941

The TPM MUST be conformant to the TPM specification, protection profiles and security 942
targets after the upgrade. The upgrade MAY NOT decrease the security values from the 943
original security target. 944

The security target used to evaluate this TPM MUST include this command in the TOE. 945

When a field upgrade occurs, it is always sufficient to put the TPM into the same state as a 946
successfully executed TPM_RevokeTrust. 947

Actions 948

The TPM SHALL perform the following when executing the command: 949

1. If TPM Owner is installed 950

a. Validate the command and parameters using TPM owner authentication, return 951
TPM_AUTHFAIL on error 952

2. Else 953

a. If TPM_STCLEAR_DATA -> deferredPhysicalPresence -> unownedFieldUpgrade is 954
FALSE return TPM_BAD_PRESENCE. 955

3. Validate that the upgrade information was sent by the TPME. The validation mechanism 956
MUST use a strength of function that is at least the same strength of function as a 957
digital signature performed using a 2048 bit RSA key. 958

4. Validate that the upgrade target is the appropriate TPM model and version. 959

5. Process the upgrade information and update the protected capabilities 960

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 55 9 July 2007

 TCG Published

6. Set the TPM_PERMANENT_DATA -> revMajor and TPM_PERMANENT_DATA -> revMinor 961
to the values indicated in the upgrade. The selection of the value is a manufacturer 962
option. 963

a. The TPM MAY validate that the upgrade major and minor revision are monotonically 964
increasing. 965

b. The TPM MAY allow upgrade with a major and minor revision that is less than 966
currently installed in the TPM. 967

7. Set the TPM_STCLEAR_FLAGS.deactivated to TRUE 968

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 56 9 July 2007
 TCG Published

9.2 TPM_SetRedirection 969

Informative comment 970

The redirection command attaches a key to a redirection receiver. 971

When making the connection to a GPIO channel the authorization restrictions are set at 972
connection time and not for each invocation that uses the channel. 973

End of informative comments 974

Incoming Operands and Sizes 975

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can implement redirection.

5 4 2S 4 TPM_REDIR_COMMAND redirCmd The command to execute

6 4 3S 4 UINT32 inputDataSize The size of the input data

7 <> 4S <> BYTE inputData Manufacturer parameter

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key ownerAuth

Outgoing Operands and Sizes 976

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth

 977

Action 978

1. If tag == TPM_TAG_REQ_AUTH1_COMMAND 979

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 57 9 July 2007

 TCG Published

a. Validate the command and parameters using TPM Owner authentication, on error 980
return TPM_AUTHFAIL 981

2. if redirCmd == TPM_REDIR_GPIO 982

a. Validate that keyHandle points to a loaded key, return TPM_INVALID_KEYHANDLE 983
on error 984

b. Validate the key attributes specify redirection, return TPM_BAD_TYPE on error 985

c. Validate that inputDataSize is 4, return TPM_BAD_PARAM_SIZE on error 986

d. Validate that inputData points to a valid GPIO channel, return 987
TPM_BAD_PARAMETER on error 988

e. Map C1 to the TPM_GPIO_CONFIG_CHANNEL structure indicated by inputData 989

f. If C1 -> attr specifies TPM_GPIO_ATTR_OWNER 990

i. If tag != TPM_TAG_REQ_AUTH1_COMMAND return TPM_AUTHFAIL 991

g. If C1 -> attr specifies TPM_GPIO_ATTR_PP 992

i. If TPM_STCLEAR_FLAGS -> physicalPresence == FALSE, then return 993
TPM_BAD_PRESENCE 994

h. Return TPM_SUCCESS 995

3. The TPM MAY support other redirection types. These types may be specified by TCG or 996
provided by the manufacturer. 997

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 58 9 July 2007
 TCG Published

9.3 TPM_ResetLockValue 998

Informative comment 999

Command that resets the TPM dictionary attack mitigation values 1000

This allows the TPM owner to cancel the effect of a number of successive authorization 1001
failures. Dictionary attack mitigation is vendor specific, and the actions here are one 1002
possible implementation. The TPM may treat an authorization failure outside the mitigation 1003
time as a normal failure and not disable the command. 1004

If this command itself has an authorization failure, it is blocked for the remainder of the 1005
lock out period. This prevents a dictionary attack on the owner authorization using this 1006
command. 1007

It is understood that this command allows the TPM owner to perform a dictionary attack on 1008
other authorization values by alternating a trial and this command. Similarly, delegating 1009
this command allows the owner’s delegate to perform a dictionary attack. 1010

End of informative comments 1011

Incoming Operands and Sizes 1012

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key TPM Owner auth

Outgoing Operands and Sizes 1013

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ResetLockValue

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: TPM Owner auth

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 59 9 July 2007

 TCG Published

Action 1014

1. If TPM_STCLEAR_DATA -> disableResetLock is TRUE return TPM_AUTHFAIL 1015

a. The internal dictionary attack mechanism will set TPM_STCLEAR_DATA -> 1016
disableResetLock to FALSE when the timeout period expires 1017

2. If the command and parameters validation using ownerAuth fails 1018

a. Set TPM_STCLEAR_DATA -> disableResetLock to TRUE 1019

b. Restart the TPM dictionary attack lock out period 1020

c. Return TPM_AUTHFAIL 1021

3. Reset the internal TPM dictionary attack mitigation mechanism 1022

a. The mechanism is vendor specific and can include time outs, reboots, and other 1023
mitigation strategies 1024

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 60 9 July 2007
 TCG Published

10. Storage functions 1025

10.1 TPM_Seal 1026

Start of informative comment: 1027

The SEAL operation allows software to explicitly state the future “trusted” configuration that 1028
the platform must be in for the secret to be revealed. The SEAL operation also implicitly 1029
includes the relevant platform configuration (PCR-values) when the SEAL operation was 1030
performed. The SEAL operation uses the tpmProof value to BIND the blob to an individual 1031
TPM. 1032

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect 1033
when the SEAL operation was performed is returned to the caller, as well as the secret data. 1034
This proof may, or may not, be of interest. If the SEALed secret is used to authenticate the 1035
platform to a third party, a caller is normally unconcerned about the state of the platform 1036
when the secret was SEALed, and the proof may be of no interest. On the other hand, if the 1037
SEALed secret is used to authenticate a third party to the platform, a caller is normally 1038
concerned about the state of the platform when the secret was SEALed. Then the proof is of 1039
interest. 1040

For example, if SEAL is used to store a secret key for a future configuration (probably to 1041
prove that the platform is a particular platform that is in a particular configuration), the 1042
only requirement is that that key can be used only when the platform is in that future 1043
configuration. Then there is no interest in the platform configuration when the secret key 1044
was SEALed. An example of this case is when SEAL is used to store a network 1045
authentication key. 1046

On the other hand, suppose an OS contains an encrypted database of users allowed to log 1047
on to the platform. The OS uses a SEALED blob to store the encryption key for the user-1048
database. However, the nature of SEAL is that any SW stack can SEAL a blob for any other 1049
software stack. Hence, the OS can be attacked by a second OS replacing both the SEALED-1050
blob encryption key, and the user database itself, allowing untrusted parties access to the 1051
services of the OS. To thwart such attacks, SEALED blobs include the past SW 1052
configuration. Hence, if the OS is concerned about such attacks, it may check to see 1053
whether the past configuration is one that is known to be trusted. 1054

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity 1055
with other commands that require the encryption of more than one parameter, the string 1056
used for XOR encryption is generated by concatenating a nonce (created during the OSAP 1057
session) with the session shared secret and then hashing the result. 1058

End of informative comment. 1059

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 61 9 July 2007

 TCG Published

Incoming Operands and Sizes 1060

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo
The PCR selection information. The caller MAY use
TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle
The authorization session handle used for keyHandle authorization.
Must be an OSAP session for this command.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth
The authorization session digest for inputs and keyHandle. HMAC key:
key.usageAuth.

Outgoing Operands and Sizes 1061

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Seal.

4 <> 3S <> TPM_STORED_DATA sealedData
Encrypted, integrity-protected data object that is the result of the
TPM_Seal operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth.

Descriptions 1062

TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal. 1063

Actions 1064

1. Validate the authorization to use the key pointed to by keyHandle 1065

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER 1066

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 62 9 July 2007
 TCG Published

3. If the keyUsage field of the key indicated by keyHandle does not have the value 1067
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE. 1068

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 1069
TPM_INVALID_KEY_USAGE. 1070

5. Determine the version of pcrInfo 1071

a. If pcrInfoSize is 0 1072

i. set V1 to 1 1073

b. Else 1074

i. Point X1 as TPM_PCR_INFO_LONG structure to pcrInfo 1075

ii. If X1 -> tag is TPM_TAG_PCR_INFO_LONG 1076

(1) Set V1 to 2 1077

iii. Else 1078

(1) Set V1 to 1 1079

6. If V1 is 1 then 1080

a. Create S1 a TPM_STORED_DATA structure 1081

7. else 1082

a. Create S1 a TPM_STORED_DATA12 structure 1083

b. Set S1 -> et to 0 1084

8. Set s1 -> encDataSize to 0 1085

9. Set s1 -> encData to all zeros 1086

10. Set s1 -> sealInfoSize to pcrInfoSize 1087

11. If pcrInfoSize is not 0 then 1088

a. if V1 is 1 then 1089

i. Validate pcrInfo as a valid TPM_PCR_INFO structure, return TPM_BADINDEX on 1090
error 1091

ii. Set s1 -> sealInfo -> pcrSelection to pcrInfo -> pcrSelection 1092

iii. Create h1 the composite hash of the PCR selected by pcrInfo -> pcrSelection 1093

iv. Set s1 -> sealInfo -> digestAtCreation to h1 1094

v. Set s1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease 1095

b. else 1096

i. Validate pcrInfo as a valid TPM_PCR_INFO_LONG structure, return 1097
TPM_BADINDEX on error 1098

ii. Set s1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection 1099

iii. Set s1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection 1100

iv. Set s1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease 1101

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 63 9 July 2007

 TCG Published

v. Set s1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease 1102

vi. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 1103
pcrInfo -> creationPCRSelection 1104

vii. Set s1 -> sealInfo -> digestAtCreation to h2 1105

viii. Set s1 -> sealInfo -> localityAtCreation to TPM_STANY_FLAGS -> 1106
localityModifier 1107

12. Create a1 by decrypting encAuth according to the ADIP indicated by authHandle. 1108

13. The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 1109
possible. 1110

14. Create s2 a TPM_SEALED_DATA structure 1111

a. Set s2 -> payload to TPM_PT_SEAL 1112

b. Set s2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof 1113

c. Create h3 the SHA-1 of s1 1114

d. Set s2 -> storedDigest to h3 1115

e. Set s2 -> authData to a1 1116

f. Set s2 -> dataSize to inDataSize 1117

g. Set s2 -> data to inData 1118

15. Validate that the size of s2 can be encrypted by the key pointed to by keyHandle, return 1119
TPM_BAD_DATASIZE on error 1120

16. Create s3 the encryption of s2 using the key pointed to by keyHandle 1121

17. Set continueAuthSession to FALSE 1122

18. Set s1 -> encDataSize to the size of s3 1123

19. Set s1 -> encData to s3 1124

20. Return s1 as sealedData 1125

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 64 9 July 2007
 TCG Published

10.2 TPM_Unseal 1126

Start of informative comment: 1127

The TPM_Unseal operation will reveal TPM_Seal’ed data only if it was encrypted on this 1128
platform and the current configuration (as defined by the named PCR contents) is the one 1129
named as qualified to decrypt it. Internally, TPM_Unseal accepts a data blob generated by a 1130
TPM_Seal operation. TPM_Unseal decrypts the structure internally, checks the integrity of 1131
the resulting data, and checks that the PCR named has the value named during TPM_Seal. 1132
Additionally, the caller must supply appropriate AuthData for blob and for the key that was 1133
used to seal that data. 1134

If the integrity, platform configuration and authorization checks succeed, the sealed data is 1135
returned to the caller; otherwise, an error is generated. 1136

End of informative comment. 1137

Incoming Operands and Sizes 1138

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 <> 2S <> TPM_STORED_DATA inData The encrypted data generated by TPM_Seal.

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth
The authorization session digest for inputs and parentHandle. HMAC
key: parentKey.usageAuth.

10 4 TPM_AUTHHANDLE dataAuthHandle The authorization session handle used to authorize inData.

 2H2 20 TPM_NONCE dataLastNonceEven Even nonce previously generated by TPM

11 20 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with entityAuthHandle

12 1 4H2 1 BOOL continueDataSession Continue usage flag for dataAuthHandle.

13 20 TPM_AUTHDATA dataAuth
The authorization session digest for the encrypted entity. HMAC key:
entity.usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 65 9 July 2007

 TCG Published

Outgoing Operands and Sizes 1139

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Unseal.

4 4 3S 4 UINT32 secretSize The used size of the output area for secret

5 <> 4S <> BYTE[] secret Decrypted data that had been sealed

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC
key: parentKey.usageAuth.

9 20 2H2 20 TPM_NONCE dataNonceEven Even nonce newly generated by TPM.

 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with dataAuthHandle

10 1 4H2 1 BOOL continueDataSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA dataAuth
The authorization session digest used for the dataAuth session. HMAC
key: entity.usageAuth.

Actions 1140

1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle, 1141
on error return TPM_AUTHFAIL 1142

2. If the keyUsage field of the key indicated by parentHandle does not have the value 1143
TPM_KEY_STORAGE, the TPM MUST return the error code TPM_INVALID_KEYUSAGE. 1144

3. The TPM MUST check that the TPM_KEY_FLAGS -> Migratable flag has the value FALSE 1145
in the key indicated by parentHandle. If not, the TPM MUST return the error code 1146
TPM_INVALID_KEYUSAGE 1147

4. Determine the version of inData 1148

a. If inData -> tag = TPM_TAG_STORED_DATA12 1149

i. Set V1 to 2 1150

ii. Map S2 a TPM_STORED_DATA12 structure to inData 1151

b. Else If inData -> ver = 1.1 1152

i. Set V1 to 1 1153

ii. Map S2 a TPM_STORED_DATA structure to inData 1154

c. Else 1155

i. Return TPM_BAD_VERSION 1156

5. Create d1 by decrypting S2 -> encData using the key pointed to by parentHandle 1157

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 66 9 July 2007
 TCG Published

6. Validate d1 1158

a. d1 MUST be a TPM_SEALED_DATA structure 1159

b. d1 -> tpmProof MUST match TPM_PERMANENT_DATA -> tpmProof 1160

c. Set S2 -> encDataSize to 0 1161

d. Set S2 -> encData to all zeros 1162

e. Create h1 the SHA-1 of inData 1163

f. d1 -> storedDigest MUST match h1 1164

g. d1 -> payload MUST be TPM_PT_SEAL 1165

h. Any failure MUST return TPM_NOTSEALED_BLOB 1166

7. If S2 -> sealInfoSize is not 0 then 1167

a. If V1 is 1 then 1168

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO structure 1169

ii. Create h2 the composite hash of the PCR selected by S2 -> pcrInfo -> pcrSelection 1170

b. If V1 is 2 then 1171

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO_LONG structure 1172

ii. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by S2 1173
-> pcrInfo -> releasePCRSelection 1174

iii. Check that S2 -> pcrInfo -> localityAtRelease for TPM_STANY_DATA -> 1175
localityModifier is TRUE 1176

(1) For example if TPM_STANY_DATA -> localityModifier was 2 then S2 -> pcrInfo 1177
-> localityAtRelease -> TPM_LOC_TWO would have to be TRUE 1178

c. Compare h2 with S2 -> pcrInfo -> digestAtRelease, on mismatch return 1179
TPM_WRONGPCRVAL 1180

8. The TPM MUST validate authorization to use d1 by checking that the HMAC calculation 1181
using d1 -> authData as the shared secret matches the dataAuth. Return 1182
TPM_AUTHFAIL on mismatch. 1183

9. If V1 is 2 and S2 -> et specifies encryption (i.e. is not all zeros) then 1184

a. If tag is not TPM_TAG_RQU_AUTH2_COMMAND, return TPM_AUTHFAIL 1185

b. Verify that the authHandle session type is TPM_PID_OSAP, return TPM_BAD_MODE 1186
on error. 1187

c. If the MSB of S2 -> et is TPM_ET_XOR 1188

i. Use MGF1 to create string X1 of length sealedDataSize. The inputs to MGF1 are; 1189
authLastnonceEven, nonceOdd, “XOR”, and authHandle -> sharedSecret. The 1190
four concatenated values form the Z value that is the seed for MFG1. 1191

ii. Create o1 by XOR of d1 -> data and X1 1192

d. Else 1193

i. Create o1 by encrypting d1 -> data using the algorithm indicated by inData -> et 1194

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 67 9 July 2007

 TCG Published

ii. Key is from authHandle -> sharedSecret 1195

iii. IV is SHA-1 of (authLastNonceEven || nonceOdd) 1196

e. Set continueAuthSession to FALSE 1197

10. else 1198

a. Set o1 to d1 -> data 1199

11. Set the return secret as o1 1200

12. Return TPM_SUCCESS 1201

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 68 9 July 2007
 TCG Published

10.3 TPM_UnBind 1202

Start of informative comment: 1203

TPM_UnBind takes the data blob that is the result of a Tspi_Data_Bind command and 1204
decrypts it for export to the User. The caller must authorize the use of the key that will 1205
decrypt the incoming blob. 1206

TPM_UnBind operates on a block-by-block basis, and has no notion of any relation between 1207
one block and another. 1208

End of informative comment. 1209

Incoming Operands and Sizes 1210

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind.

4 4 TPM_KEY_HANDLE keyHandle
The keyHandle identifier of a loaded key that can perform UnBind
operations.

5 4 2S 4 UINT32 inDataSize The size of the input blob

6 <> 3S <> BYTE[] inData Encrypted blob to be decrypted

7 4 TPM_AUTHHANDLE authHandle The handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth
The authorization session digest that authorizes the inputs and use of
keyHandle. HMAC key: key.usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 69 9 July 2007

 TCG Published

Outgoing Operands and Sizes 1211

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_UnBind

4 4 3S 4 UINT32 outDataSize The length of the returned decrypted data

5 <> 4S <> BYTE[] outData The resulting decrypted data.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth.

Description 1212

TPM_UnBind SHALL operate on a single block only. 1213

Actions 1214

The TPM SHALL perform the following: 1215

1. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER 1216

2. Validate the AuthData to use the key pointed to by keyHandle 1217

3. If the keyUsage field of the key referenced by keyHandle does not have the value 1218
TPM_KEY_BIND or TPM_KEY_LEGACY, the TPM must return the error code 1219
TPM_INVALID_KEYUSAGE 1220

4. Decrypt the inData using the key pointed to by keyHandle 1221

5. if (keyHandle -> encScheme does not equal TPM_ES_RSAESOAEP_SHA1_MGF1) and 1222
(keyHandle -> keyUsage equals TPM_KEY_LEGACY), 1223

a. The payload does not have TPM specific markers to validate, so no consistency check 1224
can be performed. 1225

b. Set the output parameter outData to the value of the decrypted value of inData. 1226
(Padding associated with the encryption wrapping of inData SHALL NOT be returned.) 1227

c. Set the output parameter outDataSize to the size of outData, as deduced from the 1228
decryption process. 1229

6. else 1230

a. Interpret the decrypted data under the assumption that it is a TPM_BOUND_DATA 1231
structure, and validate that the payload type is TPM_PT_BIND 1232

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 70 9 July 2007
 TCG Published

b. Set the output parameter outData to the value of TPM_BOUND_DATA -> 1233
payloadData. (Other parameters of TPM_BOUND_DATA SHALL NOT be returned. 1234
Padding associated with the encryption wrapping of inData SHALL NOT be returned.) 1235

c. Set the output parameter outDataSize to the size of outData, as deduced from the 1236
decryption process and the interpretation of TPM_BOUND_DATA. 1237

7. Return the output parameters. 1238

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 71 9 July 2007

 TCG Published

10.4 TPM_CreateWrapKey 1239

Start of informative comment: 1240

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for 1241
asymmetric keys. 1242

The newly created key can be locked to a specific PCR value by specifying a set of PCR 1243
registers. 1244

End of informative comment. 1245

Incoming Operands and Sizes 1246

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the sealed data.

6 20 3S 20 TPM_ENCAUTH dataMigrationAuth Encrypted migration AuthData for the sealed data.

7 <> 4S <> TPM_KEY keyInfo
Information about key to be created, pubkey.keyLength and
keyInfo.encData elements are 0. MAY be TPM_KEY12

8 4 TPM_AUTHHANDLE authHandle parent key authorization. Must be an OSAP session.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth Authorization HMAC key: parentKey.usageAuth.

Outgoing Operands and Sizes 1247

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 <> 4S <> TPM_KEY wrappedKey
The TPM_KEY structure which includes the public and encrypted private
key. MAY be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: parentKey.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 72 9 July 2007
 TCG Published

 Actions 1248

The TPM SHALL do the following: 1249

1. Validate the AuthData to use the key pointed to by parentHandle. Return 1250
TPM_AUTHFAIL on any error. 1251

2. Validate the session type for parentHandle is OSAP. 1252

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 1253
error code TPM_BAD_KEY_PROPERTY 1254

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE 1255

5. If parentHandle -> keyFlags -> migratable is TRUE and keyInfo -> keyFlags -> migratable 1256
is FALSE then return TPM_INVALID_KEYUSAGE 1257

6. Validate key parameters 1258

a. keyInfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or 1259
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE 1260

b. If keyInfo -> keyFlags -> migrateAuthority is TRUE then return 1261
TPM_INVALID_KEYUSAGE 1262

7. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then 1263

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS 1264

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS 1265

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS 1266

8. If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE 1267

i. algorithmID MUST be TPM_ALG_RSA 1268

ii. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1 1269

iii. sigScheme MUST be TPM_SS_NONE 1270

iv. key size MUST be 2048 1271

9. Determine the version of key 1272

a. If keyInfo -> ver is 1.1 1273

i. Set V1 to 1 1274

ii. Map wrappedKey to a TPM_KEY structure 1275

iii. Validate all remaining TPM_KEY structures 1276

b. Else if keyInfo -> tag is TPM_TAG_KEY12 1277

i. Set V1 to 2 1278

ii. Map wrappedKey to a TPM_KEY12 structure 1279

iii. Validate all remaining TPM_KEY12 structures 1280

10. Create DU1 by decrypting dataUsageAuth according to the ADIP indicated by 1281
authHandle 1282

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 73 9 July 2007

 TCG Published

11. Create DM1 by decrypting dataMigrationAuth according to the ADIP indicated by 1283
authHandle 1284

12. Set continueAuthSession to FALSE 1285

13. Generate asymmetric key according to algorithm information in keyInfo 1286

14. Fill in the wrappedKey structure with information from the newly generated key. 1287

a. Set wrappedKey -> encData -> usageAuth to DU1 1288

b. If the KeyFlags -> migratable bit is set to 1, the wrappedKey -> encData -> 1289
migrationAuth SHALL contain the decrypted value from dataMigrationAuth. 1290

c. If the KeyFlags -> migratable bit is set to 0, the wrappedKey -> encData -> 1291
migrationAuth SHALL be set to the value tpmProof 1292

15. If keyInfo->PCRInfoSize is non-zero 1293

a. If V1 is 1 1294

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO structure using the pcrSelection 1295
to indicate the PCR’s in use 1296

b. Else 1297

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure 1298

c. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo 1299

d. Set wrappedKey -> digestAtCreation to the TPM_COMPOSITE_HASH indicated by 1300
creationPCRSelection 1301

e. If V1 is 2 set wrappedKey -> localityAtCreation to TPM_STANY_DATA -> locality 1302

16. Encrypt the private portions of the wrappedKey structure using the key in parentHandle 1303

17. Return the newly generated key in the wrappedKey parameter 1304

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 74 9 July 2007
 TCG Published

10.5 TPM_LoadKey2 1305

Start of informative comment: 1306

Before the TPM can use a key to either wrap, unwrap, unbind, seal, unseal, sign or perform 1307
any other action, it needs to be present in the TPM. The TPM_LoadKey2 function loads the 1308
key into the TPM for further use. 1309

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 1310
The assumption is that the handle may change due to key management operations. It is the 1311
responsibility of upper level software to maintain the mapping between handle and any 1312
label used by external software. 1313

To permit this mapping between handle and upper software labels (called key handle 1314
virtualization), the key handle returned by TPM_LoadKey2 must not be included in the 1315
response HMAC. This may cause problems if several keys are authorized using the same 1316
authorization data. Care should be taken to assign different authorization data to each key. 1317

This command has the responsibility of enforcing restrictions on the use of keys. For 1318
example, when attempting to load a STORAGE key it will be checked for the restrictions on 1319
a storage key (2048 size etc.). 1320

The load command must maintain a record of whether any previous key in the key 1321
hierarchy was bound to a PCR using parentPCRStatus. 1322

The flag parentPCRStatus enables the possibility of checking that a platform passed 1323
through some particular state or states before finishing in the current state. A grandparent 1324
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 1325
linked to state-3, for example. The use of the child key then indicates that the platform 1326
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 1327
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 1328
has not passed through the previous states. Hence keys with parentPCRStatus==TRUE 1329
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 1330

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 1331
has passed AND the key is non-migratory, the key must have been created by the TPM. So 1332
there is every reason to believe that the key poses no security threat to the TPM. While there 1333
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 1334
migratory key is a real key, arising from a general sense of unease about execution of 1335
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 1336
cycle, but this may be expensive. For RSA keys, it is therefore suggested that the 1337
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 1338
and checking that there is no remainder. 1339

End of informative comment. 1340

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 75 9 July 2007

 TCG Published

Incoming Operands and Sizes 1341

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey
Incoming key structure, both encrypted private and clear public portions.
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth
The authorization session digest for inputs and parentHandle. HMAC
key: parentKey.usageAuth.

Outgoing Operands and Sizes 1342

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey2

4 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Actions 1343

The TPM SHALL perform the following steps: 1344

1. Validate the command and the parameters using parentAuth and parentHandle -> 1345
usageAuth 1346

2. If parentHandle -> keyUsage is NOT TPM_KEY_STORAGE return 1347
TPM_INVALID_KEYUSAGE 1348

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 1349
error code TPM_BAD_KEY_PROPERTY 1350

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures 1351

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 1352
in parentHandle 1353

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 76 9 July 2007
 TCG Published

6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY 1354

a. Reproduce inKey -> TPM_STORE_ASYMKEY -> pubDataDigest using the fields of 1355
inKey, and check that the reproduced value is the same as pubDataDigest 1356

7. Validate the consistency of the key and it’s key usage. 1357

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 1358
public and private components of the asymmetric key pair. If inKey -> keyFlags -> 1359
migratable is FALSE, the TPM MAY verify consistency of the public and private 1360
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 1361
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 1362
there is no remainder. 1363

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 1364
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE 1365

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE 1366

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY -1367
> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof 1368

e. Validate the mix of encryption and signature schemes 1369

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then 1370

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS 1371

ii. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS 1372

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS 1373

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE 1374

i. algorithmID MUST be TPM_ALG_RSA 1375

ii. Key size MUST be 2048 1376

iii. sigScheme MUST be TPM_SS_NONE 1377

h. If inKey -> keyUsage is TPM_KEY_IDENTITY 1378

i. algorithmID MUST be TPM_ALG_RSA 1379

ii. Key size MUST be 2048 1380

iii. encScheme MUST be TPM_ES_NONE 1381

i. If the decrypted inKey -> pcrInfo is NULL, 1382

i. The TPM MUST set the internal indicator to indicate that the key is not using any 1383
PCR registers. 1384

j. Else 1385

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 1386
composite hash whenever the key will be in use 1387

ii. The TPM MUST handle both version 1.1 TPM_PCR_INFO and 1.2 1388
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure 1389

(1) The TPM MUST validate the TPM_PCR_INFO or TPM_PCR_INFO_LONG 1390
structures 1391

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 77 9 July 2007

 TCG Published

8. Perform any processing necessary to make TPM_STORE_ASYMKEY key available for 1392
operations 1393

9. Load key and key information into internal memory of the TPM. If insufficient memory 1394
exists return error TPM_NOSPACE. 1395

10. Assign inKeyHandle according to internal TPM rules. 1396

11. Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus. 1397

12. If ParentHandle indicates that it is using PCR registers, then set inKeyHandle -> 1398
parentPCRStatus to TRUE. 1399

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 78 9 July 2007
 TCG Published

10.6 TPM_GetPubKey 1400

Start of informative comment: 1401

The owner of a key may wish to obtain the public key value from a loaded key. This 1402
information may have privacy concerns so the command must have authorization from the 1403
key owner. 1404

End of informative comment. 1405

Incoming Operands and Sizes 1406

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 4 TPM_KEY_HANDLE keyHandle TPM handle of key.

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA keyAuth Authorization HMAC key: key.usageAuth.

Outgoing Operands and Sizes 1407

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetPubKey.

4 <> 3S <> TPM_PUBKEY pubKey Public portion of key in keyHandle.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth.

Actions 1408

The TPM SHALL perform the following steps: 1409

1. If tag = TPM_TAG_RQU_AUTH1_COMMAND then 1410

a. Validate the command parameters using keyHandle -> usageAuth, on error return 1411
TPM_AUTHFAIL 1412

2. Else 1413

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 79 9 July 2007

 TCG Published

a. Verify that keyHandle -> authDataUsage is TPM_AUTH_PRIV_USE_ONLY or 1414
TPM_AUTH_NEVER, on error return TPM_AUTHFAIL 1415

3. If keyHandle == TPM_KH_SRK then 1416

a. If TPM_PERMANENT_FLAGS -> readSRKPub is FALSE then return 1417
TPM_INVALID_KEYHANDLE 1418

4. If keyHandle -> pcrInfoSize is not 0 1419

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE 1420

i. Create a digestAtRelease according to the specified PCR registers and compare to 1421
keyHandle -> digestAtRelease and if a mismatch return TPM_WRONGPCRVAL 1422

ii. If specified validate any locality requests 1423

5. Create a TPM_PUBKEY structure and return 1424

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 80 9 July 2007
 TCG Published

10.7 TPM_Sealx 1425

Start of informative comment: 1426

The SEALX command works exactly like the SEAL command with the additional 1427
requirement of encryption for the inData parameter. This command also places in the 1428
sealed blob the information that the unseal also requires encryption. 1429

SEALX requires the use of 1.2 data structures. The actions are the same as SEAL without 1430
the checks for 1.1 data structure usage. 1431

The method of incrementing the symmetric key counter value is different from that 1432
used by some standard crypto libraries (e.g. openSSL, Java JCE) that increment the 1433
entire counter value. TPM users should be aware of this to avoid errors when the 1434
counter wraps.End of informative comment. 1435

Incoming Operands and Sizes 1436

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted AuthData for the sealed data.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo MUST use TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle
The authorization session handle used for keyHandle authorization.
Must be an OSAP session for this command.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth
The authorization session digest for inputs and keyHandle. HMAC key:
key.usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 81 9 July 2007

 TCG Published

Outgoing Operands and Sizes 1437

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sealx

4 <> 3S 4 TPM_STORED_DATA sealedData
Encrypted, integrity-protected data object that is the result of the
TPM_Sealx operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth.

Actions 1438

1. Validate the authorization to use the key pointed to by keyHandle 1439

2. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER 1440

3. If the keyUsage field of the key indicated by keyHandle does not have the value 1441
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE. 1442

4. If the keyHandle points to a migratable key then the TPM MUST return the error code 1443
TPM_INVALID_KEY_USAGE. 1444

5. Create S1 a TPM_STORED_DATA12 structure 1445

6. Set s1 -> encDataSize to 0 1446

7. Set s1 -> encData to all zeros 1447

8. Set s1 -> sealInfoSize to pcrInfoSize 1448

9. If pcrInfoSize is not 0 then 1449

a. Validate pcrInfo as a valid TPM_PCR_INFO_LONG structure, return TPM_BADINDEX 1450
on error 1451

b. Set s1 -> sealInfo -> creationPCRSelection to pcrInfo -> creationPCRSelection 1452

c. Set s1 -> sealInfo -> releasePCRSelection to pcrInfo -> releasePCRSelection 1453

d. Set s1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease 1454

e. Set s1 -> sealInfo -> localityAtRelease to pcrInfo -> localityAtRelease 1455

f. Create h2 the composite hash of the TPM_STCLEAR_DATA -> PCR selected by 1456
pcrInfo -> creationPCRSelection 1457

g. Set s1 -> sealInfo -> digestAtCreation to h2 1458

h. Set s1 -> sealInfo -> localityAtCreation to TPM_STANY_DATA -> localityModifier 1459

10. Create s2 a TPM_SEALED_DATA structure 1460

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 82 9 July 2007
 TCG Published

11. Create a1 by decrypting encAuth according to the ADIP indicated by authHandle. 1461

a. If authHandle indicates XOR encryption for the AuthData secrets 1462

i. Set s1 -> et to TPM_ET_XOR || TPM_ET_KEY 1463

(1) TPM_ET_KEY is added because TPM_Unseal uses zero as a special value 1464
indicating no encryption. 1465

b. Else 1466

i. Set S1 -> et to the algorithm indicated by authHandle 1467

12. The TPM provides NO validation of a1. Well-known values (like all zeros) are valid and 1468
possible. 1469

13. If authHandle indicates XOR encryption 1470

a. Use MGF1 to create string X2 of length inDataSize. The inputs to MGF1 are; 1471
authLastNonceEven, nonceOdd, “XOR”, and authHandle -> sharedSecret. The four 1472
concatenated values form the Z value that is the seed for MFG1. 1473

b. Create o1 by XOR of inData and X2 1474

14. Else 1475

a. Create o1 by decrypting inData using the algorithm indicated by authHandle 1476

b. Key is from authHandle -> sharedSecret 1477

c. CTR is SHA-1 of (authLastNonceEven || nonceOdd) 1478

15. Create s2 a TPM_SEALED_DATA structure 1479

a. Set s2 -> payload to TPM_PT_SEAL 1480

b. Set s2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof 1481

c. Create h3 the SHA-1 of s1 1482

d. Set s2 -> storedDigest to h3 1483

e. Set s2 -> authData to a1 1484

f. Set s2 -> dataSize to inDataSize 1485

g. Set s2 -> data to o1 1486

16. Validate that the size of s2 can be encrypted by the key pointed to by keyHandle, return 1487
TPM_BAD_DATASIZE on error 1488

17. Create s3 the encryption of s2 using the key pointed to by keyHandle 1489

18. Set continueAuthSession to FALSE 1490

19. Set s1 -> encDataSize to the size of s3 1491

20. Set s1 -> encData to s3 1492

21. Return s1 as sealedData 1493

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 83 9 July 2007

 TCG Published

11. Migration 1494

Start of informative comment: 1495

The migration of a key from one TPM to another is a vital aspect to many use models of the 1496
TPM. The migration commands are the commands that allow this operation to occur. 1497

There are two types of migratable keys, the version 1.1 migratable keys and the version 1.2 1498
certifiable migratable keys. 1499

End of informative comment. 1500

11.1 TPM_CreateMigrationBlob 1501

Start of informative comment: 1502

The TPM_CreateMigrationBlob command implements the first step in the process of moving 1503
a migratable key to a new parent or platform. Execution of this command requires 1504
knowledge of the migrationAuth field of the key to be migrated. 1505

Migrate mode is generally used to migrate keys from one TPM to another for backup, 1506
upgrade or to clone a key on another platform. To do this, the TPM needs to create a data 1507
blob that another TPM can deal with. This is done by loading in a backup public key that 1508
will be used by the TPM to create a new data blob for a migratable key. 1509

The TPM Owner does the selection and authorization of migration public keys at any time 1510
prior to the execution of TPM_CreateMigrationBlob by performing the 1511
TPM_AuthorizeMigrationKey command. 1512

IReWrap mode is used directly to move the key to a new parent (on either this platform or 1513
another). The TPM simply re-encrypts the key using a new parent, and outputs a normal 1514
encrypted element that can be subsequently used by a TPM_LoadKey command. 1515

TPM_CreateMigrationBlob implicitly cannot be used to migrate a non-migratory key. No 1516
explicit check is required. Only the TPM knows tpmProof. Therefore, it is impossible for the 1517
caller to submit an AuthData value equal to tpmProof and migrate a non-migratory key. 1518

End of informative comment. 1519

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 84 9 July 2007
 TCG Published

Incoming Operands and Sizes 1520

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 4 4S 4 UINT32 encDataSize The size of the encData parameter

8 <> 5S <> BYTE[] encData The encrypted entity that is to be modified.

9 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

12 20 20 TPM_AUTHDATA parentAuth Authorization HMAC key: parentKey.usageAuth.

13 4 TPM_AUTHHANDLE entityAuthHandle The authorization session handle used for the encrypted entity.

 2H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

14 20 3H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

15 1 4H2 1 BOOL continueEntitySession Continue use flag for entity session

16 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

 1521

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 85 9 July 2007

 TCG Published

Outgoing Operands and Sizes 1522

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: parentKey.usageAuth.

11 20 3H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 4H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

12 1 5 H2 1 BOOL continueEntitySession Continue use flag for entity session

13 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

Description 1523

The TPM does not check the PCR values when migrating values locked to a PCR. 1524

The second authorization session (using entityAuth) MUST be OIAP because OSAP does not 1525
have a suitable entityType 1526

Actions 1527

1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle. 1528

2. Validate that parentHandle -> keyUsage is TPM_KEY_STORAGE, if not return 1529
TPM_INVALID_KEYUSAGE 1530

3. Create d1 a TPM_STORE_ASYMKEY structure by decrypting encData using the key 1531
pointed to by parentHandle. 1532

a. Verify that d1 -> payload is TPM_PT_ASYM. 1533

4. Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> 1534
migrationAuth as the secret. 1535

5. Verify that the digest within migrationKeyAuth is legal for this TPM and public key 1536

6. If migrationType == TPM_MS_MIGRATE the TPM SHALL perform the following actions: 1537

a. Build two byte arrays, K1 and K2: 1538

i. K1 = d1.privKey[0..19] (d1.privKey.keyLength + 16 bytes of d1.privKey.key), 1539
sizeof(K1) = 20 1540

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 86 9 July 2007
 TCG Published

ii. K2 = d1.privKey[20..131] (position 16-127 of d1 . privKey.key), sizeof(K2) = 112 1541

b. Build M1 a TPM_MIGRATE_ASYMKEY structure 1542

i. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_MIGRATE 1543

ii. TPM_MIGRATE_ASYMKEY.usageAuth = d1.usageAuth 1544

iii. TPM_MIGRATE_ASYMKEY.pubDataDigest = d1. pubDataDigest 1545

iv. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 1546

v. TPM_MIGRATE_ASYMKEY.partPrivKey = K2 1547

c. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the 1548
OAEP encoding of m using OAEP parameters of 1549

i. m = M1 the TPM_MIGRATE_ASYMKEY structure 1550

ii. pHash = d1->migrationAuth 1551

iii. seed = s1 = K1 1552

d. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 1553
Return r1 in the Random parameter. 1554

e. Create x1 by XOR of o1 with r1 1555

f. Copy r1 into the output field “random”. 1556

g. Encrypt x1 with the migration public key included in migrationKeyAuth. 1557

7. If migrationType == TPM_MS_REWRAP the TPM SHALL perform the following actions: 1558

a. Rewrap the key using the public key in migrationKeyAuth, keeping the existing 1559
contents of that key. 1560

b. Set randomSize to 0 in the output parameter array 1561

8. Else 1562

a. Return TPM_BAD_PARAMETER 1563

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 87 9 July 2007

 TCG Published

11.2 TPM_ConvertMigrationBlob 1564

Start of informative comment: 1565

This command takes a migration blob and creates a normal wrapped blob. The migrated 1566
blob must be loaded into the TPM using the normal TPM_LoadKey function. 1567

Note that the command migrates private keys, only. The migration of the associated public 1568
keys is not specified by TPM because they are not security sensitive. Migration of the 1569
associated public keys may be specified in a platform specific specification. A TPM_KEY 1570
structure must be recreated before the migrated key can be used by the target TPM in a 1571
TPM_LoadKey command. 1572

End of informative comment. 1573

Incoming Operands and Sizes 1574

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 4 2S 4 UINT32 inDataSize Size of inData

6 <> 3S <> BYTE [] inData The XOR’d and encrypted key

7 4 4S 4 UINT32 randomSize Size of random

8 <> 5S <> BYTE [] random Random value used to hide key data.

9 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 TPM_AUTHDATA parentAuth
The authorization session digest that authorizes the inputs and the
migration of the key in parentHandle. HMAC key: parentKey.usageAuth

 1575

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 88 9 July 2007
 TCG Published

Outgoing Operands and Sizes 1576

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
parentKey.usageAuth

Action 1577

The TPM SHALL perform the following: 1578

1. Validate the AuthData to use the key in parentHandle 1579

2. If the keyUsage field of the key referenced by parentHandle does not have the value 1580
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE 1581

3. Create d1 by decrypting the inData area using the key in parentHandle 1582

4. Create o1 by XOR d1 and random parameter 1583

5. Create m1 a TPM_MIGRATE_ASYMKEY structure, seed and pHash by OAEP decoding o1 1584

6. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field 1585

7. Create d2 a TPM_STORE_ASYMKEY structure 1586

a. Verify that m1 -> payload == TPM_PT_MIGRATE 1587

b. Set d2 -> payload = TPM_PT_ASYM 1588

c. Set d2 -> usageAuth to m1 -> usageAuth 1589

d. Set d2 -> migrationAuth to pHash 1590

e. Set d2 -> pubDataDigest to m1 -> pubDataDigest 1591

f. Set d2 -> privKey field to k1 1592

8. Create outData using the key in parentHandle to perform the encryption 1593

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 89 9 July 2007

 TCG Published

11.3 TPM_AuthorizeMigrationKey 1594

Start of informative comment: 1595

This command creates an authorization blob, to allow the TPM owner to specify which 1596
migration facility they will use and allow users to migrate information without further 1597
involvement with the TPM owner. 1598

It is the responsibility of the TPM Owner to determine whether migrationKey is appropriate 1599
for migration. The TPM checks just the cryptographic strength of migrationKey. 1600

End of informative comment. 1601

Incoming Operands and Sizes 1602

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 2 2S 2 TPM_MIGRATE_SCHEME migrationScheme Type of migration operation that is to be permitted for this key.

4 <> 3S <> TPM_PUBKEY migrationKey The public key to be authorized.

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authorization.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 1603

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_AuthorizeMigrationKey

4 <> 3S <> TPM_MIGRATIONKEYAUTH outData Returned public key and authorization session digest.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC
key: ownerAuth.

 1604

Action 1605

The TPM SHALL perform the following: 1606

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 90 9 July 2007
 TCG Published

1. Check that the cryptographic strength of migrationKey is at least that of a 2048 bit RSA 1607
key. If migrationKey is an RSA key, this means that migrationKey MUST be 2048 bits or 1608
greater 1609

2. Validate the AuthData to use the TPM by the TPM Owner 1610

3. Create a f1 a TPM_MIGRATIONKEYAUTH structure 1611

4. Verify that migrationKey-> algorithmParms -> encScheme is 1612
TPM_ES_RSAESOAEP_SHA1_MGF1, and return the error code 1613
TPM_INAPPROPRIATE_ENC if it is not 1614

5. Set f1 -> migrationKey to the input migrationKey 1615

6. Set f1 -> migrationScheme to the input migrationScheme 1616

7. Create v1 by concatenating (migrationKey || migrationScheme || 1617
TPM_PERMANENT_DATA -> tpmProof) 1618

8. Create h1 by performing a SHA-1 hash of v1 1619

9. Set f1 -> digest to h1 1620

10. Return f1 as outData 1621

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 91 9 July 2007

 TCG Published

11.4 TPM_MigrateKey 1622

Start of informative comment: 1623

The TPM_MigrateKey command performs the function of a migration authority. 1624

The command is relatively simple; it just decrypts the input packet (coming from 1625
TPM_CreateMigrationBlob or TPM_CMK_CreateBlob) and then re-encrypts it with the input 1626
public key. The output of this command would then be sent to TPM_ConvertMigrationBlob 1627
or TPM_CMK_ConvertMigration on the target TPM. 1628

TPM_MigrateKey does not make ANY assumptions about the contents of the encrypted blob. 1629
Since it does not have the XOR string, it cannot actually determine much about the key 1630
that is being migrated. 1631

This command exists to permit the TPM to be a migration authority. If used in this way, it is 1632
expected that the physical security of the system containing the TPM and the AuthData 1633
value for the MA key would be tightly controlled. 1634

To prevent the execution of this command using any other key as a parent key, this 1635
command works only if keyUsage for maKeyHandle is TPM_KEY_MIGRATE. 1636

End of informative comment. 1637

Incoming Operands and Sizes 1638

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 TPM_KEY_HANDLE maKeyHandle Handle of the key to be used to migrate the key.

5 <> 2S <> TPM_PUBKEY pubKey Public key to which the blob is to be migrated

6 4 3S 4 UINT32 inDataSize The size of inData

7 <> 4S <> BYTE[] inData The input blob

8 4 TPM_AUTHHANDLE maAuthHandle The authorization session handle used for maKeyHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth
The authorization session digest for the inputs and key to be signed.
HMAC key: maKeyHandle.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 92 9 July 2007
 TCG Published

Outgoing Operands and Sizes 1639

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MigrateKey

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The re-encrypted blob

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

8 20 TPM_AUTHDATA keyAuth
The authorization session digest for the target key. HMAC key:
maKeyHandle.usageAuth

Actions 1640

1. Validate that keyAuth authorizes the use of the key pointed to by maKeyHandle 1641

2. The TPM validates that the key pointed to by maKeyHandle has a key usage value of 1642
TPM_KEY_MIGRATE, and that the allowed encryption scheme is 1643
TPM_ES_RSAESOAEP_SHA1_MGF1. 1644

3. The TPM validates that pubKey is of a size supported by the TPM and that its size is 1645
consistent with the input blob and maKeyHandle. 1646

4. The TPM decrypts inData and re-encrypts it using pubKey. 1647

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 93 9 July 2007

 TCG Published

11.5 TPM_CMK_SetRestrictions 1648

Start of informative comment: 1649

This command is used by the Owner to dictate the usage of a certified-migration key with 1650
delegated authorization (authorization other than actual owner authorization). 1651

This command is provided for privacy reasons and must not itself be delegated, because a 1652
certified-migration-key may involve a contractual relationship between the Owner and an 1653
external entity. 1654

Since restrictions are validated at DSAP session use, there is no need to invalidate DSAP 1655
sessions when the restriction value changes. 1656

End of informative comment. 1657

Incoming Operands and Sizes 1658

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 4 2S 4 TPM_CMK_DELEGATE restriction The bit mask of how to set the restrictions on CMK keys

5 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Outgoing Operands and Sizes 1659

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Description 1660

TPM_PERMANENT_DATA -> restrictDelegate is used as follows 1661

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 94 9 July 2007
 TCG Published

1. If the session type is TPM_PID_DSAP and TPM_KEY -> keyFlags -> migrateAuthority is 1662
TRUE 1663

a. If 1664

TPM_KEY_USAGE is TPM_KEY_SIGNING and restrictDelegate -> 1665
TPM_CMK_DELEGATE_SIGNING is TRUE, or 1666

TPM_KEY_USAGE is TPM_KEY_STORAGE and restrictDelegate -> 1667
TPM_CMK_DELEGATE_STORAGE is TRUE, or 1668

TPM_KEY_USAGE is TPM_KEY_BIND and restrictDelegate -> TPM_CMK_DELEGATE_BIND 1669
is TRUE, or 1670

TPM_KEY_USAGE is TPM_KEY_LEGACY and restrictDelegate -> 1671
TPM_CMK_DELEGATE_LEGACY is TRUE, or 1672

TPM_KEY_USAGE is TPM_KEY_MIGRATE and restrictDelegate -> 1673
TPM_CMK_DELEGATE_MIGRATE is TRUE 1674

then the key can be used. 1675

b. Else return TPM_INVALID_KEYUSAGE. 1676

Actions 1677

1. Validate the ordinal and parameters using TPM Owner authentication, return 1678
TPM_AUTHFAIL on error 1679

2. Set TPM_PERMANENT_DATA -> TPM_CMK_DELEGATE -> restrictDelegate = restriction 1680

3. Return TPM_SUCCESS 1681

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 95 9 July 2007

 TCG Published

11.6 TPM_CMK_ApproveMA 1682

Start of informative comment: 1683

This command creates an authorization ticket, to allow the TPM owner to specify which 1684
Migration Authorities they approve and allow users to create certified-migration-keys 1685
without further involvement with the TPM owner. 1686

It is the responsibility of the TPM Owner to determine whether a particular Migration 1687
Authority is suitable to control migration 1688

End of informative comment. 1689

Incoming Operands and Sizes 1690

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 2S 20 TPM_DIGEST migrationAuthorityDigest
A digest of a TPM_MSA_COMPOSITE structure (itself one or more
digests of public keys belonging to migration authorities)

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth Authorization HMAC, key: ownerAuth.

Outgoing Operands and Sizes 1691

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ApproveMA

4 20 3S 20 TPM_HMAC outData HMAC of migrationAuthorityDigest

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC, key: ownerAuth.

Action 1692

The TPM SHALL perform the following: 1693

1. Validate the AuthData to use the TPM by the TPM Owner 1694

2. Create M2 a TPM_CMK_MA_APPROVAL structure 1695

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 96 9 July 2007
 TCG Published

a. Set M2 ->migrationAuthorityDigest to migrationAuthorityDigest 1696

3. Set outData = HMAC(M2) using tpmProof as the secret 1697

4. Return TPM_SUCCESS 1698

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 97 9 July 2007

 TCG Published

11.7 TPM_CMK_CreateKey 1699

Start of informative comment: 1700

The TPM_CMK_CreateKey command both generates and creates a secure storage bundle for 1701
asymmetric keys whose migration is controlled by a migration authority. 1702

TPM_CMK_CreateKey is very similar to TPM_CreateWrapKey, but: (1) the resultant key must 1703
be a migratable key and can be migrated only by TPM_CMK_CreateBlob; (2) the command is 1704
Owner authorized via a ticket. 1705

TPM_CMK_CreateKey creates an otherwise normal migratable key except that (1) 1706
migrationAuth is an HMAC of the migration authority and the new key’s public key, signed 1707
by tpmProof (instead of being tpmProof); (2) the migrationAuthority bit is set TRUE; (3) the 1708
payload type is TPM_PT_MIGRATE_RESTRICTED. 1709

The migration-selection/migration authority is specified by passing in a public key (actually 1710
the digests of one or more public keys, so more than one migration authority can be 1711
specified). 1712

End of informative comment. 1713

Incoming Operands and Sizes 1714

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage AuthData for the sealed data.

6 <> 3S <> TPM_KEY12 keyInfo
Information about key to be created, pubkey.keyLength and
keyInfo.encData elements are 0. MUST be TPM_KEY12

7 20 4S 20 TPM_HMAC migrationAuthorityApproval
A ticket, created by the TPM Owner using TPM_CMK_ApproveMA,
approving a TPM_MSA_COMPOSITE structure

8 20 5S 20 TPM_DIGEST migrationAuthorityDigest The digest of a TPM_MSA_COMPOSITE structure

9 4 TPM_AUTHHANDLE authHandle
The authorization session handle used for parent key authorization.
Must be an OSAP session.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Ignored

12 20 TPM_AUTHDATA pubAuth
The authorization session digest that authorizes the use of the public
key in parentHandle. HMAC key: parentKey.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 98 9 July 2007
 TCG Published

Outgoing Operands and Sizes 1715

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 <> 3S <> TPM_KEY12 wrappedKey
The TPM_KEY structure which includes the public and encrypted private
key. MUST be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Actions 1716

The TPM SHALL do the following: 1717

1. Validate the AuthData to use the key pointed to by parentHandle. Return 1718
TPM_AUTHFAIL on any error 1719

2. Validate the session type for parentHandle is OSAP 1720

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the 1721
error code TPM_BAD_KEY_PROPERTY 1722

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE 1723

5. Verify that parentHandle-> keyFlags-> migratable == FALSE and parentHandle-> 1724
encData -> migrationAuth == tpmProof 1725

6. If keyInfo -> keyFlags -> migratable is FALSE, return TPM_INVALID_KEYUSAGE 1726

7. If keyInfo -> keyFlags -> migrateAuthority is FALSE , return TPM_INVALID_KEYUSAGE 1727

8. Verify that the migration authority is authorized 1728

a. Create M1 a TPM_CMK_MA_APPROVAL structure 1729

i. Set M1 ->migrationAuthorityDigest to migrationAuthorityDigest 1730

b. Verify that migrationAuthorityApproval == HMAC(M1) using tpmProof as the secret 1731
and return error TPM_MA_AUTHORITY on mismatch 1732

9. Validate key parameters 1733

a. keyInfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or 1734
TPM_KEY_AUTHCHANGE. If it is, return TPM_INVALID_KEYUSAGE 1735

10. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then 1736

a. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS 1737

b. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS 1738

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 99 9 July 2007

 TCG Published

c. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS 1739

11. If keyInfo -> keyUsage equals TPM_KEY_STORAGE or TPM_KEY_MIGRATE 1740

a. algorithmID MUST be TPM_ALG_RSA 1741

b. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1 1742

c. sigScheme MUST be TPM_SS_NONE 1743

d. key size MUST be 2048 1744

12. If keyInfo -> tag is NOT TPM_TAG_KEY12 return error TPM_INVALID_STRUCTURE 1745

13. Map wrappedKey to a TPM_KEY12 structure 1746

14. Create DU1 by decrypting dataUsageAuth according to the ADIP indicated by 1747
authHandle. 1748

15. Set continueAuthSession to FALSE 1749

16. Generate asymmetric key according to algorithm information in keyInfo 1750

17. Fill in the wrappedKey structure with information from the newly generated key. 1751

a. Set wrappedKey -> encData -> usageAuth to DU1 1752

b. Set wrappedKey -> encData -> payload to TPM_PT_MIGRATE_RESTRICTED 1753

c. Create thisPubKey, a TPM_PUBKEY structure containing wrappedKey’s public key 1754
and algorithm parameters 1755

d. Create M2 a TPM_CMK_MIGAUTH structure 1756

i. Set M2 -> msaDigest to migrationAuthorityDigest 1757

ii. Set M2 -> pubKeyDigest to SHA-1 (thisPubKey) 1758

e. Set wrappedKey -> encData -> migrationAuth equal to HMAC(M2), using tpmProof as 1759
the shared secret 1760

18. If keyInfo->PCRInfoSize is non-zero 1761

a. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure 1762

b. Set wrappedKey -> pcrInfo to keyInfo -> pcrInfo 1763

c. Set wrappedKey -> digestAtCreation to the TPM_COMPOSITE_HASH indicated by 1764
creationPCRSelection 1765

d. Set wrappedKey -> localityAtCreation to TPM_STANY_FLAGS -> localityModifier 1766

19. Encrypt the private portions of the wrappedKey structure using the key in parentHandle 1767

20. Return the newly generated key in the wrappedKey parameter 1768

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 100 9 July 2007
 TCG Published

11.8 TPM_CMK_CreateTicket 1769

Start of informative comment: 1770

The TPM_CMK_CreateTicket command uses a public key to verify the signature over a 1771
digest. 1772

TPM_CMK_CreateTicket returns a ticket that can be used to prove to the same TPM that 1773
signature verification with a particular public key was successful. 1774

End of informative comment. 1775

Incoming Operands and Sizes 1776

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 <> 2S <> TPM_PUBKEY verificationKey The public key to be used to check signatureValue

5 20 3S 20 TPM_DIGEST signedData The data to be verified

6 4 4S 4 UINT32 signatureValueSize The size of the signatureValue

7 <> 5S <> BYTE[] signatureValue The signatureValue to be verified

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth
The authorization session digest for inputs and owner. HMAC key:
ownerAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 101 9 July 2007

 TCG Published

Outgoing Operands and Sizes 1777

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 20 3S 20 TPM_HMAC sigTicket Ticket that proves digest created on this TPM

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key:. ownerAuth.

Actions 1778

The TPM SHALL do the following: 1779

1. Validate the TPM Owner authentication to use the command 1780

2. Validate that the key type and algorithm are correct 1781

a. Validate that verificationKey -> algorithmParms -> algorithmID == TPM_ALG_RSA 1782

b. Validate that verificationKey -> algorithmParms ->encScheme == TPM_ES_NONE 1783

c. Validate that verificationKey ->algorithmParms ->sigScheme is 1784
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO 1785

3. Use verificationKey to verify that signatureValue is a valid signature on signedData, and 1786
return error TPM_BAD_SIGNATURE on mismatch 1787

4. Create M2 a TPM_CMK_SIGTICKET 1788

a. Set M2 -> verKeyDigest to the SHA-1 (verificationKey) 1789

b. Set M2 -> signedData to signedData 1790

5. Set sigTicket = HMAC(M2) signed by using tpmProof as the secret 1791

6. Return TPM_SUCCESS 1792

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 102 9 July 2007
 TCG Published

11.9 TPM_CMK_CreateBlob 1793

Start of informative comment: 1794

TPM_CMK_CreateBlob command is very similar to TPM_CreateMigrationBlob, except that it: 1795
(1) uses an extra ticket (restrictedKeyAuth) instead of a migrationAuth authorization 1796
session; (2) uses the migration options TPM_MS_RESTRICT_MIGRATE or 1797
TPM_MS_RESTRICT_APPROVE; (3) produces a wrapped key blob whose migrationAuth is 1798
independent of tpmProof. 1799

If the destination (parent) public key is the MA, migration is implicitly permitted. Further 1800
checks are required if the MA is not the destination (parent) public key, and merely selects 1801
a migration destination: (1) sigTicket must prove that restrictTicket was signed by the MA; 1802
(2) restrictTicket must vouch that the target public key is approved for migration to the 1803
destination (parent) public key. (Obviously, this more complex method may also be used by 1804
an MA to approve migration to that MA.) In both cases, the MA must be one of the MAs 1805
implicitly listed in the migrationAuth of the target key-to-be-migrated. 1806

End of informative comment. 1807

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 103 9 July 2007

 TCG Published

Incoming Operands and Sizes 1808

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType
The migration type, either TPM_MS_RESTRICT_MIGRATE or
TPM_MS_RESTRICT_APPROVE

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization session digest.

7 20 4S 20 TPM_DIGEST pubSourceKeyDigest The digest of the TPM_PUBKEY of the entity to be migrated

8 4 5S 4 UINT32 msaListSize
The size of the msaList parameter, which is a variable length
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 restrictTicketSize
The size of the restrictTicket parameter, which is a TPM_CMK_AUTH
structure if migration type is TPM_MS_RESTRICT_APPROVE

11 <> 8S <> BYTE[] restrictTicket
Either a NULL parameter or a TPM_CMK_AUTH structure, containing the
digests of the public keys belonging to the Migration Authority, the
destination parent key and the key-to-be-migrated.

12 4 9S 4 UINT32 sigTicketSize
The size of the sigTicket parameter, which is a TPM_HMAC structure if
migration type is TPM_MS_RESTRICT_APPROVE.

13 <> 10S <> BYTE[] sigTicket
Either a NULL parameter or a TPM_HMAC structure, generated by the
TPM, signaling a valid signature over restrictTicket

14 4 11S 4 UINT32 encDataSize The size of the encData parameter

15 <> 12S <> BYTE[] encData The encrypted entity that is to be modified.

16 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

17 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

18 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

19 20 20 TPM_AUTHDATA parentAuth HMAC key: parentKey.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 104 9 July 2007
 TCG Published

Outgoing Operands and Sizes 1809

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth HMAC key: parentKey.usageAuth.

Description 1810

The TPM does not check the PCR values when migrating values locked to a PCR. 1811

Actions 1812

1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle. 1813

2. The TPM MAY verify that migrationType == migrationKeyAuth -> migrationScheme and 1814
return TPM_BAD_MODE on error. 1815

a. The TPM MAY ignore migrationType. 1816

3. Verify that parentHandle-> keyFlags-> migratable == FALSE and parentHandle-> 1817
encData -> migrationAuth == tpmProof 1818

4. Create d1 by decrypting encData using the key pointed to by parentHandle. 1819

5. Verify that the digest within migrationKeyAuth is legal for this TPM and public key 1820

6. Verify that d1 -> payload == TPM_PT_MIGRATE_RESTRICTED or 1821
TPM_PT_MIGRATE_EXTERNAL 1822

7. Verify that the migration authorities in msaList are authorized to migrate this key 1823

a. Create M2 a TPM_CMK_MIGAUTH structure 1824

i. Set M2 -> msaDigest to SHA-1[msaList] 1825

ii. Set M2 -> pubKeyDigest to pubSourceKeyDigest 1826

b. Verify that d1 -> migrationAuth == HMAC(M2) using tpmProof as the secret and 1827
return error TPM_MA_AUTHORITY on mismatch 1828

8. If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_MIGRATE 1829

a. Verify that intended migration destination is an MA: 1830

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 105 9 July 2007

 TCG Published

i. For one of n=1 to n=(msaList -> MSAlist), verify that SHA-1[migrationKeyAuth -> 1831
migrationKey] == msaList -> migAuthDigest[n] 1832

b. Validate that the MA key is the correct type 1833

i. Validate that migrationKeyAuth -> migrationKey -> algorithmParms -> 1834
algorithmID == TPM_ALG_RSA 1835

ii. Validate that migrationKeyAuth -> migrationKey -> algorithmParms -> encScheme 1836
is an encryption scheme supported by the TPM 1837

iii. Validate that migrationKeyAuth -> migrationKey ->algorithmParms -> sigScheme 1838
is TPM_SS_NONE 1839

9. else If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_APPROVE 1840

a. Verify that the intended migration destination has been approved by the MSA: 1841

i. Verify that for one of the n=1 to n=(msaList -> MSAlist) values of msaList -> 1842
migAuthDigest[n], sigTicket == HMAC (V1) using tpmProof as the secret where V1 1843
is a TPM_CMK_SIGTICKET structure such that: 1844

(1) V1 -> verKeyDigest = msaList -> migAuthDigest[n] 1845

(2) V1 -> signedData = SHA-1[restrictTicket] 1846

ii. If [restrictTicket -> destinationKeyDigest] != SHA-1[migrationKeyAuth -> 1847
migrationKey], return error TPM_MA_DESTINATION 1848

iii. If [restrictTicket -> sourceKeyDigest] != pubSourceKeyDigest, return error 1849
TPM_MA_SOURCE 1850

10. Else return with error TPM_BAD_PARAMETER. 1851

11. Build two bytes array, K1 and K2, using d1: 1852

a. K1 = TPM_STORE_ASYMKEY.privKey[0..19] 1853
(TPM_STORE_ASYMKEY.privKey.keyLength + 16 bytes of 1854
TPM_STORE_ASYMKEY.privKey.key), sizeof(K1) = 20 1855

b. K2 = TPM_STORE_ASYMKEY.privKey[20..131] (position 16-127 of 1856
TPM_STORE_ASYMKEY . privKey.key), sizeof(K2) = 112 1857

12. Build M1 a TPM_MIGRATE_ASYMKEY structure 1858

a. TPM_MIGRATE_ASYMKEY.payload = TPM_PT_CMK_MIGRATE 1859

b. TPM_MIGRATE_ASYMKEY.usageAuth = TPM_STORE_ASYMKEY.usageAuth 1860

c. TPM_MIGRATE_ASYMKEY.pubDataDigest = TPM_STORE_ASYMKEY. pubDataDigest 1861

d. TPM_MIGRATE_ASYMKEY.partPrivKeyLen = 112 – 127. 1862

e. TPM_MIGRATE_ASYMKEY.partPrivKey = K2 1863

13. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 1864
encoding of m using OAEP parameters m, pHash, and seed 1865

a. m is the previously created M1 1866

b. pHash = SHA-1(SHA-1[msaList] || pubSourceKeyDigest) 1867

c. seed = s1 = the previously created K1 1868

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 106 9 July 2007
 TCG Published

14. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. 1869
Return r1 in the random parameter 1870

15. Create x1 by XOR of o1 with r1 1871

16. Copy r1 into the output field “random” 1872

17. Encrypt x1 with the migrationKeyAuth-> migrationKey 1873

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 107 9 July 2007

 TCG Published

11.10 TPM_CMK_ConvertMigration 1874

Start of informative comment: 1875

TPM_CMK_ConvertMigration completes the migration of certified migration blobs. 1876

This command takes a certified migration blob and creates a normal wrapped blob with 1877
payload type TPM_PT_MIGRATE_EXTERNAL. The migrated blob must be loaded into the 1878
TPM using the normal TPM_LoadKey function. 1879

Note that the command migrates private keys, only. The migration of the associated public 1880
keys is not specified by TPM because they are not security sensitive. Migration of the 1881
associated public keys may be specified in a platform specific specification. A TPM_KEY 1882
structure must be recreated before the migrated key can be used by the target TPM in a 1883
TPM_LoadKey command. 1884

TPM_CMK_ConvertMigration checks that one of the MAs implicitly listed in the 1885
migrationAuth of the target key has approved migration of the target key to the destination 1886
(parent) key, and that the settings (flags etc.) in the target key are those of a CMK. 1887

End of informative comment. 1888

Incoming Operands and Sizes 1889

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 60 2S 60 TPM_CMK_AUTH restrictTicket
The digests of public keys belonging to the Migration Authority, the
destination parent key and the key-to-be-migrated.

6 20 3S 20 TPM_HMAC sigTicket
A signature ticket, generated by the TPM, signaling a valid signature
over restrictTicket

7 <> 4S <> TPM_KEY12 migratedKey
The public key of the key-to-be-migrated. The private portion MUST be
TPM_MIGRATE_ASYMKEY properly XOR’d

8 4 5S 4 UINT32 msaListSize
The size of the msaList parameter, which is a variable length
TPM_MSA_COMPOSITE structure

9 <> 6S <> TPM_MSA_COMPOSITE msaList One or more digests of public keys belonging to migration authorities

10 4 7S 4 UINT32 randomSize Size of random

11 <> 8S <> BYTE [] random Random value used to hide key data.

12 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA parentAuth Authorization HMAC: parentKey.usageAuth

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 108 9 July 2007
 TCG Published

Outgoing Operands and Sizes 1890

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_ConvertMigration

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth Authorization HMAC key .usageAuth

Action 1891

1. Validate the AuthData to use the key in parentHandle 1892

2. If the keyUsage field of the key referenced by parentHandle does not have the value 1893
TPM_KEY_STORAGE, the TPM must return the error code TPM_INVALID_KEYUSAGE 1894

3. Create d1 by decrypting the migratedKey -> encData area using the key in parentHandle 1895

4. Create o1 by XOR d1 and random parameter 1896

5. Create m1 a TPM_MIGRATE_ASYMKEY, seed and pHash by OAEP decoding o1 1897

6. Create migratedPubKey a TPM_PUBKEY structure corresponding to migratedKey 1898

a. Verify that pHash == SHA-1(SHA-1[msaList] || SHA-1(migratedPubKey) 1899

7. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY -> partPrivKey field 1900

8. Create d2 a TPM_STORE_ASYMKEY structure. 1901

a. Set the TPM_STORE_ASYMKEY -> privKey field to k1 1902

b. Set d2 -> usageAuth to m1 -> usageAuth 1903

c. Set d2 -> pubDataDigest to m1 -> pubDataDigest 1904

9. Verify that parentHandle-> keyFlags -> migratable == FALSE and parentHandle-> 1905
encData -> migrationAuth == tpmProof 1906

10. Verify that m1 -> payload == TPM_PT_CMK_MIGRATE then set d2-> payload = 1907
TPM_PT_MIGRATE_EXTERNAL 1908

11. Verify that for one of the n=1 to n=(msaList -> MSAlist) values of msaList -> 1909
migAuthDigest[n] sigTicket == HMAC (V1) using tpmProof as the secret where V1 is a 1910
TPM_CMK_SIGTICKET structure such that: 1911

a. V1 -> verKeyDigest = msaList -> migAuthDigest[n] 1912

b. V1 -> signedData = SHA-1[restrictTicket] 1913

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 109 9 July 2007

 TCG Published

12. Create parentPubKey, a TPM_PUBKEY structure corresponding to parentHandle 1914

13. If [restrictTicket -> destinationKeyDigest] != SHA-1(parentPubKey), return error 1915
TPM_MA_DESTINATION 1916

14. Verify that migratedKey is corresponding to d2 1917

15. If migratedKey -> keyFlags -> migratable is FALSE, and return error 1918
TPM_INVALID_KEYUSAGE 1919

16. If migratedKey -> keyFlags -> migrateAuthority is FALSE, return error 1920
TPM_INVALID_KEYUSAGE 1921

17. If [restrictTicket -> sourceKeyDigest] != SHA-1(migratedPubKey), return error 1922
TPM_MA_SOURCE 1923

18. Create M2 a TPM_CMK_MIGAUTH structure 1924

a. Set M2 -> msaDigest to SHA-1[msaList] 1925

b. Set M2 -> pubKeyDigest to SHA-1[migratedPubKey] 1926

19. Set d2 -> migrationAuth = HMAC(M2) using tpmProof as the secret 1927

20. Create outData using the key in parentHandle to perform the encryption 1928

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 110 9 July 2007
 TCG Published

12. Maintenance Functions (optional) 1929

Start of informative comment: 1930

When a maintenance archive is created with generateRandom FALSE, the maintenance blob 1931
is XOR encrypted with the owner authorization before encryption with the maintenance 1932
public key. This prevents the manufacturer from obtaining plaintext data. The receiving 1933
TPM must have the same owner authorization as the sending TPM in order to XOR decrypt 1934
the archive. 1935

When generateRandom is TRUE, the maintenance blob is XOR encrypted with random data, 1936
which is also returned. This permits someone trusted by the Owner to load the 1937
maintenance archive into the replacement platform in the absence of the Owner and 1938
manufacturer, without the Owner having to reveal information about his auth value. The 1939
receiving and sending TPM's may have different owner authorizations. The random data is 1940
transferred from the sending TPM owner to the receiving TPM owner out of band, so the 1941
maintenance blob remains hidden from the manufacturer. 1942

This is a typical maintenance sequence: 1943

1. Manufacturer: 1944

• generates maintenance key pair 1945

• gives public key to TPM1 owner 1946

2. TPM1: TPM_LoadManuMaintPub 1947

• load maintenance public key 1948

3. TPM1: TPM_CreateMaintenanceArchive 1949

• XOR encrypt with owner auth or random 1950

• encrypt with maintenance public key 1951

4. Manufacturer: 1952

• decrypt with maintenance private key 1953

• (still XOR encrypted with owner auth or random) 1954

• encrypt with TPM2 SRK public key 1955

5. TPM2: TPM_LoadMaintenanceArchive 1956

• decrypt with SRK private key 1957

• XOR decrypt with owner auth or random 1958

End of informative comment. 1959

 1960

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 111 9 July 2007

 TCG Published

 1961

12.1 TPM_CreateMaintenanceArchive 1962

Start of informative comment: 1963

This command creates the maintenance archive. It can only be executed by the owner, and 1964
may be shut off with the TPM_KillMaintenanceFeature command. 1965

End of informative comment. 1966

Incoming Operands and Sizes 1967

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 1 2S 1 BOOL generateRandom Use RNG or Owner auth to generate ‘random’.

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes 1968

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 4 3S 4 UINT32 randomSize Size of the returned random data. Will be 0 if generateRandom is FALSE.

5 <> 4S <> BYTE [] random Random data to XOR with result.

6 4 5S 4 UINT32 archiveSize Size of the encrypted archive

7 <> 6S <> BYTE [] archive Encrypted key archive.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 1969

Upon authorization being confirmed this command does the following: 1970

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 112 9 July 2007
 TCG Published

1. Validates that the TPM_PERMANENT_FLAGS -> allowMaintenance is TRUE. If it is 1971
FALSE, the TPM SHALL return TPM_DISABLED_CMD and exit this capability. 1972

2. Validates the TPM Owner AuthData. 1973

3. If the value of TPM_PERMANENT_DATA -> manuMaintPub is zero, the TPM MUST 1974
return the error code TPM_KEYNOTFOUND 1975

4. Build a1 a TPM_KEY structure using the SRK. The encData field is not a normal 1976
TPM_STORE_ASYMKEY structure but rather a TPM_MIGRATE_ASYMKEY structure built 1977
using the following actions. 1978

5. Build a TPM_STORE_PRIVKEY structure from the SRK. This privKey element should be 1979
132 bytes long for a 2K RSA key. 1980

6. Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is 1981
the first 20 bytes of privKey, k2 contains the remainder of privKey. 1982

7. Build m1 by creating and filling in a TPM_MIGRATE_ASYMKEY structure 1983

a. m1 -> usageAuth is set to TPM_PERMANENT_DATA -> tpmProof 1984

b. m1 -> pubDataDigest is set to the digest value of the SRK fields from step 4 1985

c. m1 -> payload is set to TPM_PT_MAINT 1986

d. m1 -> partPrivKey is set to k2 1987

8. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP 1988
encoding of m using OAEP parameters of 1989

a. m = TPM_MIGRATE_ASYMKEY structure (step 7) 1990

b. pHash = TPM_PERMANENT_DATA -> ownerAuth 1991

c. seed = s1 = k1 (step 6) 1992

9. If generateRandom = TRUE 1993

a. Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same 1994
size as o1. Set random parameter to r1 1995

10. If generateRandom = FALSE 1996

a. Create r1 by applying MGF1 to the TPM Owner AuthData. The size of r1 MUST be the 1997
same size as o1. Set randomSize to 0. 1998

11. Create x1 by XOR of o1 with r1 1999

12. Encrypt x1 with the manuMaintPub key using the TPM_ES_RSAESOAEP_SHA1_MGF1 2000
encryption scheme. 2001

13. Set a1 -> encData to the encryption of x1 2002

14. Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE 2003

15. Return a1 in the archive parameter 2004

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 113 9 July 2007

 TCG Published

12.2 TPM_LoadMaintenanceArchive 2005

Start of informative comment: 2006

This command loads in a Maintenance archive that has been massaged by the 2007
manufacturer to load into another TPM. 2008

If the maintenance archive was created using the owner authorization for XOR encryption, 2009
the current owner authorization must be used for decryption. The owner authorization does 2010
not change. 2011

If the maintenance archive was created using random data for the XOR encryption, the 2012
vendor specific arguments must include the random data. The owner authorization may 2013
change. 2014

End of informative comment. 2015

Incoming Operands and Sizes 2016

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

4 4 2S 4 UINT32 archiveSize Sice of the encrypted archive

5 <> 3S <> BYTE[] archive Encrypted key archive

 … … Vendor specific arguments

- 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

- 20 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

-- 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

 2017

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 114 9 July 2007
 TCG Published

Outgoing Operands and Sizes 2018

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 4 TPM_RESULT returnCode The return code of the operation.

 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

 Vendor specific arguments

- 20 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

- 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth, the original value and not the new auth value

Descriptions 2019

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global 2020
secret. The definition of global secret is a secret value shared by more than one TPM. 2021

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of 2022
maintenance. The TPM MUST NOT use the endorsement key for identification or encryption 2023
in the maintenance process. The maintenance process MAY use a TPM Identity to deliver 2024
maintenance information to specific TPM’s. 2025

The maintenance process can only change the SRK, tpmProof and TPM Owner AuthData 2026
fields. 2027

The maintenance process can only access data in shielded locations where this data is 2028
necessary to validate the TPM Owner, validate the TPME and manipulate the blob 2029

The TPM MUST be conformant to the TPM specification, protection profiles and security 2030
targets after maintenance. The maintenance MAY NOT decrease the security values from 2031
the original security target. 2032

The security target used to evaluate this TPM MUST include this command in the TOE. 2033

Actions 2034

The TPM SHALL perform the following when executing the command 2035

1. Validate the TPM Owner’s AuthData 2036

2. Validate that the maintenance information was sent by the TPME. The validation 2037
mechanism MUST use a strength of function that is at least the same strength of 2038
function as a digital signature performed using a 2048 bit RSA key. 2039

3. The packet MUST contain m2 as defined in section 12.1. 2040

4. Ensure that only the target TPM can interpret the maintenance packet. The protection 2041
mechanism MUST use a strength of function that is at least the same strength of 2042
function as a digital signature performed using a 2048 bit RSA key. 2043

5. Execute the actions of TPM_OwnerClear. 2044

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 115 9 July 2007

 TCG Published

6. Process the maintenance information 2045

a. Update the SRK 2046

i. Set the SRK usageAuth to be the same as the source TPM owner's AuthData 2047

b. Update TPM_PERMANENT_DATA -> tpmProof 2048

c. Update TPM_PERMANENT_DATA -> ownerAuth 2049

7. Set TPM_PERMANENT_FLAGS -> maintenanceDone to TRUE 2050

 2051

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 116 9 July 2007
 TCG Published

12.3 TPM_KillMaintenanceFeature 2052

Informative Comments: 2053

The TPM_KillMaintencanceFeature is a permanent action that prevents ANYONE from 2054
creating a maintenance archive. This action, once taken, is permanent until a new TPM 2055
Owner is set. 2056

This action is to allow those customers who do not want the maintenance feature to not 2057
allow the use of the maintenance feature. 2058

At the discretion of the Owner, it should be possible to kill the maintenance feature in such 2059
a way that the only way to recover maintainability of the platform would be to wipe out the 2060
root keys. This feature is mandatory in any TPM that implements the maintenance feature. 2061

End informative Comment 2062

Incoming Operands and Sizes 2063

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes 2064

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Actions 2065

1. Validate the TPM Owner AuthData 2066

2. Set the TPM_PERMANENT_FLAGS.allowMaintenance flag to FALSE. 2067

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 117 9 July 2007

 TCG Published

12.4 TPM_LoadManuMaintPub 2068

Informative Comments: 2069

The TPM_LoadManuMaintPub command loads the manufacturer’s public key for use in the 2070
maintenance process. The command installs manuMaintPub in PERMANENT data storage 2071
inside a TPM. Maintenance enables duplication of non-migratory data in protected storage. 2072
There is therefore a security hole if a platform is shipped before the maintenance public key 2073
has been installed in a TPM. 2074

The command is expected to be used before installation of a TPM Owner or any key in TPM 2075
protected storage. It therefore does not use authorization. 2076

End of Informative Comments 2077

Incoming Operands and Sizes 2078

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

5 <> 3S <> TPM_PUBKEY pubKey The public key of the manufacturer to be in use for maintenance

Outgoing Operands and Sizes 2079

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description 2080

The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm 2081
with 2048bit keys. 2082

pubKey SHOULD unambiguously identify the entity that will perform the maintenance 2083
process with the TPM Owner. 2084

TPM_PERMANENT_DATA -> manuMaintPub SHALL exist in a TPM-shielded location, only. 2085

If an entity (Platform Entity) does not support the maintenance process but issues a 2086
platform credential for a platform containing a TPM that supports the maintenance process, 2087
the value of TPM_PERMANENT_DATA -> manuMaintPub MUST be set to zero before the 2088
platform leaves the entity’s control. That is, this ordinal can only be run once, and used to 2089
either load the key or load a NULL key. 2090

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 118 9 July 2007
 TCG Published

Actions 2091

The first valid TPM_LoadManuMaintPub command received by a TPM SHALL 2092

1. Store the parameter pubKey as TPM_PERMANENT_DATA -> manuMaintPub. 2093

2. Set checksum to SHA-1 of (pubKey || antiReplay) 2094

3. Export the checksum 2095

4. Subsequent calls to TPM_LoadManuMaintPub SHALL return code 2096
TPM_DISABLED_CMD. 2097

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 119 9 July 2007

 TCG Published

12.5 TPM_ReadManuMaintPub 2098

Informative Comments: 2099

The TPM_ReadManuMaintPub command is used to check whether the manufacturer’s 2100
public maintenance key in a TPM has the expected value. This may be useful during the 2101
manufacture process. The command returns a digest of the installed key, rather than the 2102
key itself. This hinders discovery of the maintenance key, which may (or may not) be useful 2103
for manufacturer privacy. 2104

The command is expected to be used before installation of a TPM Owner or any key in TPM 2105
protected storage. It therefore does not use authorization. 2106

End of Informative Comments 2107

Incoming Operands and Sizes 2108

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 2S 20 TPM_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes 2109

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 3S 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description 2110

This command returns the hash of the antiReplay nonce and the previously loaded 2111
manufacturer’s maintenance public key. 2112

Actions 2113

The TPM_ReadManuMaintPub command SHALL 2114

1. Create “checksum” by concatenating data to form (TPM_PERMANENT_DATA -> 2115
manuMaintPub ||antiReplay) and passing the concatenated data through SHA-1. 2116

2. Export the checksum 2117

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 120 9 July 2007
 TCG Published

13. Cryptographic Functions 2118

13.1 TPM_SHA1Start 2119

Start of informative comment: 2120

This capability starts the process of calculating a SHA-1 digest. 2121

The exposure of the SHA-1 processing is a convenience to platforms in a mode that do not 2122
have sufficient memory to perform SHA-1 themselves. As such, the use of SHA-1 is 2123
restrictive on the TPM. 2124

The TPM may not allow any other types of processing during the execution of a SHA-1 2125
session. There is only one SHA-1 session active on a TPM. The exclusivity of a SHA-1 2126
context is due to the relatively large volatile buffer it requires in order to hold the 2127
intermediate results between the SHA-1 context commands. This buffer can be in 2128
contradiction to other command needs. 2129

After the execution of TPM_SHA1Start, and prior to TPM_SHA1Complete or 2130
TPM_SHA1CompleteExtend, the receipt of any command other than TPM_SHA1Update will 2131
cause the invalidation of the SHA-1 session. 2132

End of informative comment. 2133

Incoming Operands and Sizes 2134

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

Outgoing Operands and Sizes 2135

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Start

4 4 3S 4 UINT32 maxNumBytes
Maximum number of bytes that can be sent to TPM_SHA1Update. Must be a
multiple of 64 bytes.

Description 2136

1. This capability prepares the TPM for a subsequent TPM_SHA1Update, 2137
TPM_SHA1Complete or TPM_SHA1CompleteExtend command. The capability SHALL 2138
open a thread that calculates a SHA-1 digest. 2139

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 121 9 July 2007

 TCG Published

2. After receipt of TPM_SHA1Start, and prior to the receipt of TPM_SHA1Complete or 2140
TPM_SHA1CompleteExtend, receipt of any command other than TPM_SHA1Update 2141
invalidates the SHA-1 session. 2142

a. If the command received is TPM_ExecuteTransport, the SHA-1 session invalidation is 2143
based on the wrapped command, not the TPM_ExecuteTransport ordinal. 2144

b. A SHA-1 thread (start, update, complete) MUST take place either completely outside 2145
a transport session or completely within a single transport session. 2146

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 122 9 July 2007
 TCG Published

13.2 TPM_SHA1Update 2147

Start of informative comment: 2148

This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of 2149
the process, the digest remains pending. 2150

End of informative comment. 2151

Incoming Operands and Sizes 2152

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

4 4 2S 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64 bytes.

5 <> 3S <> BYTE [] hashData Bytes to be hashed

Outgoing Operands and Sizes 2153

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Update

Description 2154

This command SHALL incorporate complete blocks of data into the digest of an existing 2155
SHA-1 thread. Only integral numbers of complete blocks (64 bytes each) can be processed. 2156

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 123 9 July 2007

 TCG Published

13.3 TPM_SHA1Complete 2157

Start of informative comment: 2158

This capability terminates a pending SHA-1 calculation. 2159

End of informative comment. 2160

Incoming Operands and Sizes 2161

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 4 2S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

5 <> 3S <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes 2162

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1Complete

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

Description 2163

This command SHALL incorporate a partial or complete block of data into the digest of an 2164
existing SHA-1 thread, and terminate that thread. hashDataSize MAY have values in the 2165
range of 0 through 64, inclusive. 2166

If the SHA-1 thread has received no bytes the TPM SHALL calculate the SHA-1 of the empty 2167
buffer. 2168

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 124 9 July 2007
 TCG Published

13.4 TPM_SHA1CompleteExtend 2169

Start of informative comment: 2170

This capability terminates a pending SHA-1 calculation and EXTENDS the result into a 2171
Platform Configuration Register using a SHA-1 hash process. 2172

This command is designed to complete a hash sequence and extend a PCR in memory-less 2173
environments. 2174

End of informative comment. 2175

Incoming Operands and Sizes 2176

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 4 2S 4 TPM_PCRINDEX pcrNum Index of the PCR to be modified

5 4 3S 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 <> 4S <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes 2177

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SHA1CompleteExtend

4 20 3S 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

5 20 4S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description 2178

This command SHALL incorporate a partial or complete block of data into the digest of an 2179
existing SHA-1 thread, EXTEND the resultant digest into a PCR, and terminate the SHA-1 2180
session. hashDataSize MAY have values in the range of 0 through 64, inclusive. 2181

The SHA-1 session MUST terminate even if the command returns an error, e.g. 2182
TPM_BAD_LOCALITY. 2183

Actions 2184

1. Map V1 to TPM_STANY_DATA 2185

2. Map L1 to V1 -> localityModifier 2186

3. If the current locality, held in L1, is not selected in TPM_PERMANENT_DATA -> pcrAttrib 2187
[pcrNum]. pcrExtendLocal, return TPM_BAD_LOCALITY 2188

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 125 9 July 2007

 TCG Published

4. Create H1 the TPM_DIGEST of the SHA-1 session ensuring that hashData, if any, is 2189
added to the SHA-1 session 2190

5. Perform the actions of TPM_Extend using H1 as the data and pcrNum as the PCR to 2191
extend 2192

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 126 9 July 2007
 TCG Published

13.5 TPM_Sign 2193

Start of informative comment: 2194

The Sign command signs data and returns the resulting digital signature 2195

End of informative comment. 2196

Incoming Operands and Sizes 2197

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 TPM_KEY_HANDLE keyHandle
The keyHandle identifier of a loaded key that can perform digital
signatures.

5 4 2s 4 UINT32 areaToSignSize The size of the areaToSign parameter

6 <> 3s <> BYTE[] areaToSign The value to sign

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth
The authorization session digest that authorizes the use of keyHandle.
HMAC key: key.usageAuth

Outgoing Operands and Sizes 2198

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Sign.

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth

Description 2199

The TPM MUST support all values of areaToSignSize that are legal for the defined signature 2200
scheme and key size. The maximum value of areaToSignSize is determined by the defined 2201
signature scheme and key size. 2202

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 127 9 July 2007

 TCG Published

In the case of PKCS1v15_SHA1 the areaToSignSize MUST be TPM_DIGEST (the hash size of 2203
a SHA-1 operation - see 8.5.1 TPM_SS_RSASSAPKCS1v15_SHA1). In the case of 2204
PKCS1v15_DER the maximum size of areaToSign is k-11 octets, where k is limited by the 2205
key size (see TPM_SS_RSASSAPKCS1v15_DER). 2206

Actions 2207

1. The TPM validates the AuthData to use the key pointed to by keyHandle. 2208

2. If the areaToSignSize is 0 the TPM returns TPM_BAD_PARAMETER. 2209

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING or TPM_KEY_LEGACY, if not 2210
return the error code TPM_INVALID_KEYUSAGE 2211

4. The TPM verifies that the signature scheme and key size can properly sign the 2212
areaToSign parameter. 2213

5. If signature scheme is TPM_SS_RSASSAPKCS1v15_SHA1 then 2214

a. Validate that areaToSignSize is 20 return TPM_BAD_PARAMETER on error 2215

b. Set S1 to areaToSign 2216

6. Else if signature scheme is TPM_SS_RSASSAPKCS1v15_DER then 2217

a. Validate that areaToSignSize is at least 11 bytes less than the key size, return 2218
TPM_BAD_PARAMETER on error 2219

b. Set S1 to areaToSign 2220

7. else if signature scheme is TPM_SS_RSASSAPKCS1v15_INFO then 2221

a. Create S2 a TPM_SIGN_INFO structure 2222

b. Set S2 -> fixed to “SIGN” 2223

c. Set S2 -> replay to nonceOdd 2224

i. If nonceOdd is not present due to an unauthorized command return 2225
TPM_BAD_PARAMETER 2226

d. Set S2 -> dataLen to areaToSignSize 2227

e. Set S2 -> data to areaToSign 2228

f. Set S1 to the SHA-1(S2) 2229

8. Else return TPM_INVALID_KEYUSAGE 2230

9. The TPM computes the signature, sig, using the key referenced by keyHandle using S1 2231
as the value to sign 2232

10. Return the computed signature in Sig 2233

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 128 9 July 2007
 TCG Published

13.6 TPM_GetRandom 2234

Start of informative comment: 2235

TPM_GetRandom returns the next bytesRequested bytes from the random number 2236
generator to the caller. 2237

It is recommended that a TPM implement the RNG in a manner that would allow it to return 2238
RNG bytes such that the frequency of bytesRequested being more than the number of bytes 2239
available is an infrequent occurrence. 2240

End of informative comment. 2241

Incoming Operands and Sizes 2242

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 2S 4 UINT32 bytesRequested Number of bytes to return

Outgoing Operands and Sizes 2243

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetRandom.

4 4 3S 4 UINT32 randomBytesSize The number of bytes returned

5 <> 4S <> BYTE[] randomBytes The returned bytes

Actions 2244

1. The TPM determines if amount bytesRequested is available from the TPM. 2245

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY 2246
be less than bytesRequested. 2247

3. Set randomBytes to the next randomBytesSize bytes from the RNG 2248

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 129 9 July 2007

 TCG Published

13.7 TPM_StirRandom 2249

Start of informative comment: 2250

TPM_StirRandom adds entropy to the RNG state. 2251

End of informative comment. 2252

Incoming Operands and Sizes 2253

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

4 4 2S 4 UINT32 dataSize Number of bytes of input (<256)

5 <> 3S <> BYTE[] inData Data to add entropy to RNG state

Outgoing Operands and Sizes 2254

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_StirRandom

Actions 2255

The TPM updates the state of the current RNG using the appropriate mixing function. 2256

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 130 9 July 2007
 TCG Published

13.8 TPM_CertifyKey 2257

Start of informative comment: 2258

The TPM_CertifyKey operation allows one key to certify the public portion of another key. 2259

A TPM identity key may be used to certify non-migratable keys but is not permitted to 2260
certify migratory keys or certified migration keys. As such, it allows the TPM to make the 2261
statement “this key is held in a TPM-shielded location, and it will never be revealed.” For 2262
this statement to have veracity, the Challenger must trust the policies used by the entity 2263
that issued the identity and the maintenance policy of the TPM manufacturer. 2264

Signing and legacy keys may be used to certify both migratable and non-migratable keys. 2265
Then the usefulness of a certificate depends on the trust in the certifying key by the 2266
recipient of the certificate. 2267

The key to be certified must be loaded before TPM_CertifyKey is called. 2268

The determination to use the TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 on the output is 2269
based on which PCRs and what localities the certified key is restricted to. A key to be 2270
certified that does not have locality restrictions and which uses no PCRs greater than PCR 2271
#15 will cause this command to return and sign a TPM_CERTIFY_INFO structure, which 2272
provides compatibility with V1.1 TPMs. 2273

When this command is run to certify all other keys (those that use PCR #16 or higher, as 2274
well as those limited by locality in any way), it will return and sign a TPM_CERTIFY_INFO2 2275
structure. 2276

TPM_CertifyKey does not support the case where (a) the certifying key requires a usage 2277
authorization to be provided but (b) the key-to-be-certified does not. In such cases, 2278
TPM_CertifyKey2 must be used. TPM_CertifyKey cannot be used to certify CMKs. 2279

If a command tag (in the parameter array) specifies only one authorisation session, then the 2280
TPM convention is that the first session listed is ignored (authDataUsage must be NEVER 2281
for this key) and the incoming session data is used for the second auth session in the list. 2282
In TPM_CertifyKey, the first session is the certifying key and the second session is the key-2283
to-be-certified. In TPM_CertifyKey2, the first session is the key-to-be-certified and the 2284
second session is the certifying key. 2285

The key handles of both the certifying key and the key to be certified are not included in the 2286
HMAC protecting the command. This permits key handle virtualization (swapping of keys 2287
in and out of the TPM that results in different key handles while at the same time 2288
maintaining key identifiers of upper layer software). In environments where the interface to 2289
the TPM is accessible by other parties, the key handles not being protected allows an 2290
attacker to change the handle of the key to be certified. This can be avoided by processing 2291
this command within a transport session and making sure that antiReplay indeed contains 2292
a nonce. 2293

End of informative comment. 2294

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 131 9 July 2007

 TCG Published

Incoming Operands and Sizes 2295

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TPM_NONCE antiReplay
160 bits of externally supplied data (typically a nonce provided to
prevent replay-attacks)

7 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA certAuth
The authorization session digest for inputs and certHandle. HMAC key:
certKey.auth.

11 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed.

 2H2 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

12 20 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

13 1 4H2 1 BOOL continueKeySession The continue use flag for the authorization session handle

14 20 TPM_AUTHDATA keyAuth
The authorization session digest for the inputs and key to be signed.
HMAC key: key.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 132 9 July 2007
 TCG Published

Outgoing Operands and Sizes 2296

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey

4 <> 3S <> TPM_CERTIFY_INFO certifyInfo
TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 structure that
provides information relative to keyhandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[] outData The signature of certifyInfo

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters and
parentHandle. HMAC key: certKey -> auth.

10 20 2H2 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

11 1 4H2 1 BOOL continueKeySession Continue use flag for target key session

12 20 TPM_AUTHDATA keyAuth
The authorization session digest for the target key. HMAC key:
key.auth.

Actions 2297

1. The TPM validates that the key pointed to by certHandle has a signature scheme of 2298
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO 2299

2. Verify command and key AuthData values: 2300

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND 2301

i. The TPM verifies the AuthData in certAuthHandle provides authorization to use 2302
the key pointed to by certHandle, return TPM_AUTHFAIL on error 2303

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to use 2304
the key pointed to by keyHandle, return TPM_AUTH2FAIL on error 2305

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND 2306

i. Verify that authDataUsage is TPM_AUTH_NEVER for the key referenced by 2307
certHandle, return TPM_AUTHFAIL on error. 2308

ii. The TPM verifies the AuthData in keyAuthHandle provides authorization to use 2309
the key pointed to by keyHandle, return TPM_AUTHFAIL on error 2310

c. else if tag is TPM_TAG_RQU_COMMAND 2311

i. Verify that authDataUsage is TPM_AUTH_NEVER for the key referenced by 2312
certHandle, return TPM_AUTHFAIL on error. 2313

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 133 9 July 2007

 TCG Published

ii. Verify that authDataUsage is TPM_AUTH_NEVER or TPM_AUTH_PRIV_USE_ONLY 2314
for the key referenced by keyHandle, return TPM_AUTHFAIL on error. 2315

3. If keyHandle -> payload is not TPM_PT_ASYM, return TPM_INVALID_KEYUSAGE. 2316

4. If the key pointed to by certHandle is an identity key (certHandle -> keyUsage is 2317
TPM_KEY_IDENTITY) 2318

a. If keyHandle -> keyFlags -> migratable is TRUE return TPM_MIGRATEFAIL 2319

5. Validate that certHandle -> keyUsage is TPM_KEY_SIGN, TPM_KEY_IDENTITY or 2320
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE 2321

6. Validate that keyHandle -> keyUsage is TPM_KEY_SIGN, TPM_KEY_STORAGE, 2322
TPM_KEY_IDENTITY, TPM_KEY_BIND or TPM_KEY_LEGACY, if not return 2323
TPM_INVALID_KEYUSAGE 2324

7. If keyHandle -> digestAtRelease requires the use of PCRs 16 or higher to calculate or if 2325
keyHandle -> localityAtRelease is not 0x1F 2326

a. Set V1 to 1.2 2327

8. Else 2328

a. Set V1 to 1.1 2329

9. If keyHandle -> pcrInfoSize is not 0 2330

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE 2331

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> PCR 2332
registers and compare to keyHandle -> digestAtRelease and if a mismatch return 2333
TPM_WRONGPCRVAL 2334

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY 2335

b. If V1 is 1.1 2336

i. Create C1 a TPM_CERTIFY_INFO structure 2337

ii. Fill in C1 with the information from the key pointed to by keyHandle 2338

iii. The TPM MUST set c1 -> pcrInfoSize to 44. 2339

iv. The TPM MUST set c1 -> pcrInfo to a TPM_PCR_INFO structure properly filled out 2340
using the information from keyHandle. 2341

v. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00. 2342

c. Else 2343

i. Create C1 a TPM_CERTIFY_INFO2 structure 2344

ii. Fill in C1 with the information from the key pointed to by keyHandle 2345

iii. Set C1 -> pcrInfoSize to the size of an appropriate TPM_PCR_INFO_SHORT 2346
structure. 2347

iv. Set C1 -> pcrInfo to a properly filled out TPM_PCR_INFO_SHORT structure, using 2348
the information from keyHandle. 2349

v. Set C1 -> migrationAuthoritySize to 0 2350

10. Else 2351

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 134 9 July 2007
 TCG Published

a. Create C1 a TPM_CERTIFY_INFO structure 2352

b. Fill in C1 with the information from the key pointed to by keyHandle 2353

c. The TPM MUST set c1 -> pcrInfoSize to 0 2354

11. Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 2355
that <key> is the actual public modulus, and does not include any structure formatting. 2356

12. Set C1 -> pubKeyDigest to H1 2357

13. The TPM copies the antiReplay parameter to c1 -> data. 2358

14. The TPM sets certifyInfo to C1. 2359

15. The TPM creates m1, a message digest formed by taking the SHA-1 of c1. 2360

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 2361
signed blob is returned in outData. 2362

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 135 9 July 2007

 TCG Published

13.9 TPM_CertifyKey2 2363

Start of informative comment: 2364

This command is based on TPM_CertifyKey, but includes the ability to certify a Certifiable 2365
Migration Key (CMK), which requires extra input parameters. 2366

TPM_CertifyKey2 always produces a TPM_CERTIFY_INFO2 structure. 2367

TPM_CertifyKey2 does not support the case where (a) the key-to-be-certified requires a 2368
usage authorization to be provided but (b) the certifying key does not. 2369

If a command tag (in the parameter array) specifies only one authorisation session, then the 2370
TPM convention is that the first session listed is ignored (authDataUsage must be NEVER 2371
for this key) and the incoming session data is used for the second auth session in the list. 2372
In TPM_CertifyKey2, the first session is the key to be certified and the second session is the 2373
certifying key. 2374

The key handles of both the certifying key and the key to be certified are not included in the 2375
HMAC protecting the command. This permits key handle virtualization (swapping of keys 2376
in and out of the TPM that results in different key handles while at the same time 2377
maintaining key identifiers of upper layer software). In environments where the interface to 2378
the TPM is accessible by other parties, the key handles not being protected allows an 2379
attacker to change the handle of the key to be certified. This can be avoided by processing 2380
this command within a transport session and making sure that antiReplay indeed contains 2381
a nonce. 2382

End of informative comment. 2383

Incoming Operands and Sizes 2384

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

5 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

6 20 2S 20 TPM_DIGEST migrationPubDigest
The digest of a TPM_MSA_COMPOSITE structure, containing at least
one public key of a Migration Authority

7 20 3S 20 TPM_NONCE antiReplay
160 bits of externally supplied data (typically a nonce provided to
prevent replay-attacks)

8 4 TPM_AUTHHANDLE keyAuthHandle The authorization session handle used for the key to be signed.

 2H1 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

9 20 3H1 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

10 1 4H1 1 BOOL continueKeySession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth
The authorization session digest for the inputs and key to be signed.
HMAC key: key.usageAuth.

12 4 TPM_AUTHHANDLE certAuthHandle The authorization session handle used for certHandle.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 136 9 July 2007
 TCG Published

13 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

14 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA certAuth Authorization HMAC key: certKey.auth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 137 9 July 2007

 TCG Published

Outgoing Operands and Sizes 2385

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifyKey2

4 <> 3S <> TPM_CERTIFY_INFO2 certifyInfo TPM_CERTIFY_INFO2 relative to keyHandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[] outData The signed public key.

7 20 2H1 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE keyNonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL keyContinueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA keyResAuth Authorization HMAC key: keyHandle -> auth.

10 20 2H2 20 TPM_NONCE certNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE AuthLastNonceOdd Nonce generated by system associated with certAuthHandle

11 1 4H2 1 BOOL CertContinueAuthSession Continue use flag for cert key session

12 20 20 TPM_AUTHDATA certResAuth Authorization HMAC key: certHandle -> auth.

Actions 2386

1. The TPM validates that the key pointed to by certHandle has a signature scheme of 2387
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO 2388

2. Verify command and key AuthData values: 2389

a. If tag is TPM_TAG_RQU_AUTH2_COMMAND 2390

i. The TPM verifies the AuthData in keyAuthHandle provides authorization to use 2391
the key pointed to by keyHandle, return TPM_AUTHFAIL on error 2392

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to use 2393
the key pointed to by certHandle, return TPM_AUTH2FAIL on error 2394

b. else if tag is TPM_TAG_RQU_AUTH1_COMMAND 2395

i. Verify that authDataUsage is TPM_AUTH_NEVER or TPM_AUTH_PRIV_USE_ONLY 2396
for the key referenced by keyHandle, return TPM_AUTHFAIL on error 2397

ii. The TPM verifies the AuthData in certAuthHandle provides authorization to use 2398
the key pointed to by certHandle, return TPM_AUTH2FAIL on error 2399

c. else if tag is TPM_TAG_RQU_COMMAND 2400

i. Verify that authDataUsage is TPM_AUTH_NEVER or TPM_AUTH_PRIV_USE_ONLY 2401
for the key referenced by keyHandle, return TPM_AUTHFAIL on error 2402

ii. Verify that authDataUsage is TPM_AUTH_NEVER for the key referenced by 2403
certHandle, return TPM_AUTHFAIL on error. 2404

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 138 9 July 2007
 TCG Published

3. If the key pointed to by certHandle is an identity key (certHandle -> keyUsage is 2405
TPM_KEY_IDENTITY) 2406

a. If keyHandle -> keyFlags -> migratable is TRUE and [keyHandle -> keyFlags-> 2407
migrateAuthority is FALSE or (keyHandle -> payload != TPM_PT_MIGRATE_RESTRICTED 2408
and keyHandle -> payload != TPM_PT_MIGRATE_EXTERNAL)] return 2409
TPM_MIGRATEFAIL 2410

4. Validate that certHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_IDENTITY or 2411
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE 2412

5. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_STORAGE, 2413
TPM_KEY_IDENTITY, TPM_KEY_BIND or TPM_KEY_LEGACY, if not return 2414
TPM_INVALID_KEYUSAGE 2415

6. The TPM SHALL create a c1 a TPM_CERTIFY_INFO2 structure from the key pointed to 2416
by keyHandle 2417

7. Create TPM_DIGEST H1 which is the SHA-1 hash of keyHandle -> pubKey -> key. Note 2418
that <key> is the actual public modulus, and does not include any structure formatting. 2419

8. Set C1 -> pubKeyDigest to H1 2420

9. Copy the antiReplay parameter to c1 -> data 2421

10. Copy other keyHandle parameters into C1 2422

11. If keyHandle -> payload == TPM_PT_MIGRATE_RESTRICTED or 2423
TPM_PT_MIGRATE_EXTERNAL 2424

a. create thisPubKey, a TPM_PUBKEY structure containing the public key, algorithm 2425
and parameters corresponding to keyHandle 2426

b. Verify that the migration authorization is valid for this key 2427

i. Create M2 a TPM_CMK_MIGAUTH structure 2428

ii. Set M2 -> msaDigest to migrationPubDigest 2429

iii. Set M2 -> pubkeyDigest to SHA-1[thisPubKey] 2430

iv. Verify that [keyHandle -> migrationAuth] == HMAC(M2) signed by using tpmProof 2431
as the secret and return error TPM_MA_SOURCE on mismatch 2432

c. Set C1 -> migrationAuthority = SHA-1(migrationPubDigest || keyHandle -> payload) 2433

d. if keyHandle -> payload == TPM_PT_MIGRATE_RESTRICTED 2434

i. Set C1 -> payloadType = TPM_PT_MIGRATE_RESTRICTED 2435

e. if keyHandle -> payload == TPM_PT_MIGRATE_EXTERNAL 2436

i. Set C1 -> payloadType = TPM_PT_MIGRATE_EXTERNAL 2437

12. Else 2438

a. set C1 -> migrationAuthority = NULL 2439

b. set C1 -> migrationAuthoritySize =0 2440

c. Set C1 -> payloadType = TPM_PT_ASYM 2441

13. If keyHandle -> pcrInfoSize is not 0 2442

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 139 9 July 2007

 TCG Published

a. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle 2443
key. 2444

b. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key 2445

c. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE 2446

i. Create a digestAtRelease according to the specified TPM_STCLEAR_DATA -> PCR 2447
registers and compare to keyHandle -> digestAtRelease and if a mismatch return 2448
TPM_WRONGPCRVAL 2449

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY 2450

14. Else 2451

a. The TPM MUST set c1 -> pcrInfoSize to 0 2452

15. The TPM creates m1, a message digest formed by taking the SHA-1 of c1 2453

a. The TPM then computes a signature using certHandle -> sigScheme. The resulting 2454
signed blob is returned in outData 2455

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 140 9 July 2007
 TCG Published

14. Endorsement Key Handling 2456

Start of informative comment: 2457

There are two create EK commands. The first matches the 1.1 functionality. The second 2458
provides the mechanism to enable revokeEK. 2459

The TPM and platform manufacturer decide on the inclusion or exclusion of the ability to 2460
execute revokeEK. 2461

The restriction to have the TPM generate the EK does not remove the manufacturing option 2462
to “squirt” the EK. During manufacturing, the TPM does not enforce all protections or 2463
requirements; hence, the restriction on only TPM generation of the EK is also not in force. 2464

End of informative comment. 2465

1. A TPM SHALL NOT install an EK unless generated on the TPM by execution of 2466
TPM_CreateEndorsementKeyPair or TPM_CreateRevocableEK 2467

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 141 9 July 2007

 TCG Published

14.1 TPM_CreateEndorsementKeyPair 2468

Start of informative comment: 2469

This command creates the TPM endorsement key. It returns a failure code if an 2470
endorsement key already exists. 2471

End of informative comment. 2472

Incoming Operands and Sizes 2473

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

Outgoing Operands and Sizes 2474

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Actions 2475

1. If an EK already exists, return TPM_DISABLED_CMD 2476

2. Validate the keyInfo parameters for the key description 2477

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For 2478
interoperability the key length SHOULD be 2048 2479

b. If the algorithm type is other than RSA the strength provided by the key MUST be 2480
comparable to RSA 2048 2481

c. The other parameters of keyInfo (signatureScheme etc.) are ignored. 2482

3. Create a key pair called the “endorsement key pair” using a TPM-protected capability. 2483
The type and size of key are that indicated by keyInfo 2484

4. Create checksum by performing SHA-1 on the concatenation of (PUBEK || antiReplay) 2485

5. Store the PRIVEK 2486

6. Create TPM_PERMANENT_DATA -> tpmDAASeed from the TPM RNG 2487

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 142 9 July 2007
 TCG Published

7. Create TPM_PERMANENT_DATA -> daaProof from the TPM RNG 2488

8. Create TPM_PERMANENT_DATA -> daaBlobKey from the TPM RNG 2489

9. Set TPM_PERMANENT_FLAGS -> CEKPUsed to TRUE 2490

10. Set TPM_PERMANENT_FLAGS -> enableRevokeEK to FALSE 2491

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 143 9 July 2007

 TCG Published

14.2 TPM_CreateRevocableEK 2492

Start of informative comment: 2493

This command creates the TPM endorsement key. It returns a failure code if an 2494
endorsement key already exists. The TPM vendor may have a separate mechanism to create 2495
the EK and “squirt” the value into the TPM. 2496

The input parameters specify whether the EK is capable of being reset, whether the 2497
AuthData value to reset the EK will be generated by the TPM, and the new AuthData value 2498
itself if it is not to be generated by the TPM. The output parameter is the new AuthData 2499
value that must be used when resetting the EK (if it is capable of being reset). 2500

The command TPM_RevokeTrust must be used to reset an EK (if it is capable of being 2501
reset). 2502

Owner authorisation is unsuitable for authorizing resetting of an EK: someone with 2503
Physical Presence can remove a genuine Owner, install a new Owner, and revoke the EK. 2504
The genuine Owner can reinstall, but the platform will have lost its original attestation and 2505
may not be trusted by challengers. Therefore if a password is to be used to revoke an EK, it 2506
must be a separate password, given to the genuine Owner. 2507

In v1.2 an OEM has extra choices when creating EKs. 2508

a) An OEM could manufacture all of its TPMs with enableRevokeEK==TRUE. 2509

If the OEM has tracked the EKreset passwords for these TPMs, the OEM can give the 2510
passwords to customers. The customers can use the passwords as supplied, change the 2511
passwords, or clear the EKs and create new EKs with new passwords. 2512

If EKreset passwords are random values, the OEM can discard those values and not give 2513
them to customers. There is then a low probability (statistically zero) chance of a local DOS 2514
attack to reset the EK by guessing the password. The chance of a remote DOS attack is zero 2515
because Physical Presence must also be asserted to use TPM_RevokeTrust. 2516

b) An OEM could manufacture some of its TPMs with enableRevokeEK==FALSE. Then the 2517
EK can never be revoked, and the chance of even a local DOS attack on the EK is 2518
eliminated. 2519

End of informative comment. 2520

This is an optional command 2521

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 144 9 July 2007
 TCG Published

Incoming Operands and Sizes 2522

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

5 <> 3S <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

6 1 4S 1 BOOL generateReset
If TRUE use TPM RNG to generate EKreset. If FALSE use the passed
value inputEKreset

7 20 5S 20 TPM_NONCE inputEKreset
The authorization value to be used with TPM_RevokeTrust if
generateReset==FALSE, else the parameter is present but ignored

Outgoing Operands and Sizes 2523

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

6 20 5S 20 TPM_NONCE outputEKreset The AuthData value to use TPM_RevokeTrust

Actions 2524

1. If an EK already exists, return TPM_DISABLED_CMD 2525

2. Perform the actions of TPM_CreateEndorsementKeyPair, if any errors return with error 2526

3. Set TPM_PERMANENT_FLAGS -> enableRevokeEK to TRUE 2527

a. If generateReset is TRUE then 2528

i. Set TPM_PERMANENT_DATA -> EKreset to the next value from the TPM RNG 2529

b. Else 2530

i. Set TPM_PERMANENT_DATA -> EKreset to inputEKreset 2531

4. Return PUBEK, checksum and Ekreset 2532

5. The outputEKreset AuthData is sent in the clear. There is no uniqueness on the TPM 2533
available to actually perform encryption or use an encrypted channel. The assumption is 2534
that this operation is occurring in a controlled environment and sending the value in the 2535
clear is acceptable. 2536

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 145 9 July 2007

 TCG Published

14.3 TPM_RevokeTrust 2537

Start of informative comment: 2538

This command clears the EK and sets the TPM back to a pure default state. The generation 2539
of the AuthData value occurs during the generation of the EK. It is the responsibility of the 2540
EK generator to properly protect and disseminate the RevokeTrust AuthData. 2541

End of informative comment. 2542

This is an optional command 2543

Incoming Operands and Sizes 2544

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

4 20 2S 20 TPM_NONCE EKReset The value that will be matched to EK Reset

Outgoing Operands and Sizes 2545

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_RevokeTrust

Actions 2546

1. The TPM MUST validate that TPM_PERMANENT_FLAGS -> enableRevokeEK is TRUE, 2547
return TPM_PERMANENTEK on error 2548

2. The TPM MUST validate that the EKReset matches TPM_PERMANENT_DATA -> EKReset 2549
return TPM_AUTHFAIL on error. 2550

3. Ensure that physical presence is being asserted 2551

4. Perform the actions of TPM_OwnerClear (excepting the command authentication) 2552

a. NV items with the pubInfo -> nvIndex D value set MUST be deleted. This changes the 2553
TPM_OwnerClear handling of the same NV areas 2554

b. Set TPM_PERMANENT_FLAGS -> nvLocked to FALSE 2555

5. Invalidate TPM_PERMANENT_DATA -> tpmDAASeed 2556

6. Invalidate TPM_PERMANENT_DATA -> daaProof 2557

7. Invalidate TPM_PERMANENT_DATA -> daaBlobKey 2558

8. Invalidate the EK and any internal state associated with the EK 2559

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 146 9 July 2007
 TCG Published

14.4 TPM_ReadPubek 2560

Start of informative comment: 2561

Return the endorsement key public portion. This value should have controls placed upon 2562
access, as it is a privacy sensitive value. 2563

The readPubek flag is set to FALSE by TPM_TakeOwnership and set to TRUE by 2564
TPM_OwnerClear, thus mirroring if a TPM Owner is present. 2565

End of informative comment. 2566

Incoming Operands and Sizes 2567

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 20 2S 20 TPM_NONCE antiReplay Arbitrary data

Outgoing Operands and Sizes 2568

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 4S 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description 2569

This command returns the PUBEK. 2570

Actions 2571

The TPM_ReadPubek command SHALL 2572

1. If TPM_PERMANENT_FLAGS -> readPubek is FALSE return TPM_DISABLED_CMD 2573

2. If no EK is present the TPM MUST return TPM_NO_ENDORSEMENT 2574

3. Create checksum by performing SHA-1 on the concatenation of (pubEndorsementKey || 2575
antiReplay). 2576

4. Export the PUBEK and checksum. 2577

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 147 9 July 2007

 TCG Published

14.5 TPM_OwnerReadInternalPub 2578

Start of informative comment: 2579

A TPM Owner authorized command that returns the public portion of the EK or SRK. 2580

The keyHandle parameter is included in the incoming session authorization to prevent 2581
alteration of the value, causing a different key to be read. Unlike most key handles, which 2582
can be mapped by higher layer software, this key handle has only two fixed values. 2583

End of informative comment. 2584

Incoming Operands and Sizes 2585

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 4 2S 4 TPM_KEY_HANDLE keyHandle Handle for either PUBEK or SRK

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 2586

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 <> 3S <> TPM_PUBKEY publicPortion The public portion of the requested key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 2587

1. Validate the parameters and TPM Owner AuthData for this command 2588

2. If keyHandle is TPM_KH_EK 2589

a. Set publicPortion to PUBEK 2590

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 148 9 July 2007
 TCG Published

3. Else If keyHandle is TPM_KH_SRK 2591

a. Set publicPortion to the TPM_PUBKEY of the SRK 2592

4. Else return TPM_BAD_PARAMETER 2593

5. Export the public key of the referenced key 2594

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 149 9 July 2007

 TCG Published

15. Identity Creation and Activation 2595

15.1 TPM_MakeIdentity 2596

Start of informative comment: 2597

Generate a new Attestation Identity Key (AIK). 2598

labelPrivCADigest identifies the privacy CA that the owner expects to be the target CA for 2599
the AIK. The selection is not enforced by the TPM. It is advisory only. It is included 2600
because the TSS cannot be trusted to send the AIK to the correct privacy CA. The privacy 2601
CA can use this parameter to validate that it is the target privacy CA and label intended by 2602
the TPM owner at the time the key was created. The label can be used to indicate an 2603
application purpose. 2604

End of informative comment. 2605

Incoming Operands and Sizes 2606

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MakeIdentity.

4 20 2S 20 TPM_ENCAUTH identityAuth Encrypted usage AuthData for the new identity

5 20 3S 20 TPM_CHOSENID_HASH labelPrivCADigest The digest of the identity label and privacy CA chosen for the AIK

6 <> 4S <> TPM_KEY idKeyParams
Structure containing all parameters of new identity key.
pubKey.keyLength & idKeyParams.encData are both 0 MAY be
TPM_KEY12

7 4 TPM_AUTHHANDLE srkAuthHandle The authorization session handle used for SRK authorization.

 2H1 20 TPM_NONCE srkLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

9 1 4H1 1 BOOL continueSrkSession Ignored

10 20 TPM_AUTHDATA srkAuth
The authorization session digest for the inputs and the SRK. HMAC
key: srk.usageAuth.

11 4 TPM_AUTHHANDLE authHandle
The authorization session handle used for owner authentication.
Session type MUST be OSAP.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession Ignored

14 20 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner. HMAC key:
ownerAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 150 9 July 2007
 TCG Published

Outgoing Operands and Sizes 2607

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_MakeIdentity.

4 <> 3S <> TPM_KEY idKey The newly created identity key. MAY be TPM_KEY12

5 4 4S 4 UINT32 identityBindingSize The used size of the output area for identityBinding

6 <> 5S <> BYTE[] identityBinding Signature of TPM_IDENTITY_CONTENTS using idKey.private.

7 20 2H2 20 TPM_NONCE srkNonceEven Even nonce newly generated by TPM.

 3H2 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

8 1 4H2 1 BOOL continueSrkSession Continue use flag. Fixed value of FALSE

9 20 TPM_AUTHDATA srkAuth
The authorization session digest used for the outputs and srkAuth
session. HMAC key: srk.usageAuth.

10 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

12 20 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Description 2608

The public key of the new TPM identity SHALL be identityPubKey. The private key of the 2609
new TPM identity SHALL be tpm_signature_key. 2610

Properties of the new identity 2611

Type Name Description

TPM_PUBKEY identityPubKey This SHALL be the public key of a previously unused asymmetric key pair.

TPM_STORE_ASYMKEY tpm_signature_key This SHALL be the private key that forms a pair with identityPubKey and SHALL be
extant only in a TPM-shielded location.

 2612

This capability also generates a TPM_KEY containing the tpm_signature_key. 2613

If identityPubKey is stored on a platform it SHALL exist only in storage to which access is 2614
controlled and is available to authorized entities. 2615

Actions 2616

A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the 2617
following: 2618

1. Validate the idKeyParams parameters for the key description 2619

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For 2620
interoperability the key length SHOULD be 2048 2621

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 151 9 July 2007

 TCG Published

b. If the algorithm type is other than RSA the strength provided by the key MUST be 2622
comparable to RSA 2048 2623

c. If the TPM is not designed to create a key of the requested type, return the error code 2624
TPM_BAD_KEY_PROPERTY 2625

d. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then 2626

i. If authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS 2627

2. Use authHandle to verify that the Owner authorized all TPM_MakeIdentity input 2628
parameters. 2629

3. Use srkAuthHandle to verify that the SRK owner authorized all TPM_MakeIdentity input 2630
parameters. 2631

4. Verify that idKeyParams -> keyUsage is TPM_KEY_IDENTITY. If it is not, return 2632
TPM_INVALID_KEYUSAGE 2633

5. Verify that idKeyParams -> keyFlags -> migratable is FALSE. If it is not, return 2634
TPM_INVALID_KEYUSAGE 2635

6. Create a1 by decrypting identityAuth according to the ADIP indicated by authHandle. 2636

7. Set continueAuthSession and continueSRKSession to FALSE. 2637

8. Determine the structure version 2638

a. If idKeyParams -> tag is TPM_TAG_KEY12 2639

i. Set V1 to 2 2640

ii. Create idKey a TPM_KEY12 structure using idKeyParams as the default values for 2641
the structure 2642

b. If idKeyParams -> ver is 1.1 2643

i. Set V1 to 1 2644

ii. Create idKey a TPM_KEY structure using idKeyParams as the default values for 2645
the structure 2646

9. Set the digestAtCreation values for pcrInfo 2647

a. For TPM_PCR_INFO_LONG include the locality of the current command 2648

10. Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TPM-2649
protected capability, in accordance with the algorithm specified in idKeyParams 2650

11. Ensure that the AuthData information in A1 is properly stored in the idKey as 2651
usageAuth. 2652

12. Attach identityPubKey and tpm_signature_key to idKey 2653

13. Set idKey -> migrationAuth to TPM_PERMANENT_DATA-> tpmProof 2654

14. Ensure that all TPM_PAYLOAD_TYPE structures identify this key as TPM_PT_ASYM 2655

15. Encrypt the private portion of idKey using the SRK as the parent key 2656

16. Create a TPM_IDENTITY_CONTENTS structure named idContents using 2657
labelPrivCADigest and the information from idKey 2658

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 152 9 July 2007
 TCG Published

17. Sign idContents using tpm_signature_key and TPM_SS_RSASSAPKCS1v15_SHA1. Store 2659
the result in identityBinding. 2660

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 153 9 July 2007

 TCG Published

15.2 TPM_ActivateIdentity 2661

Start of informative comment: 2662

The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance 2663
that the credential in the TPM_SYM_CA_ATTESTATION is for this TPM. The second purpose 2664
is to obtain the session key used to encrypt the TPM_IDENTITY_CREDENTIAL. 2665

This is an extension to the 1.1 functionality of TPM_ActivateIdentity. The blob sent to from 2666
the CA can be in the 1.1 format or the 1.2 format. The TPM determines the type from the 2667
size or version information in the blob. 2668

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity 2669
before releasing that session key. 2670

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is 2671
required to authorize the TPM_ActivateIdentity command. The owner may authorize the 2672
command using either the TPM_OIAP or TPM_OSAP authorization protocols. 2673

The creator of the ActivateIdentity package can specify if any PCR values are to be checked 2674
before releasing the session key. 2675

End of informative comment. 2676

Incoming Parameters and Sizes 2677

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ActivateIdentity

4 4 TPM_KEY_HANDLE idKeyHandle Identity key to be activated

5 4 2S 4 UINT32 blobSize Size of encrypted blob from CA

6 <> 3S <> BYTE [] blob The encrypted ASYM_CA_CONTENTS or TPM_EK_BLOB

7 4 TPM_AUTHHANDLE idKeyAuthHandle The authorization session handle used for ID key authorization.

 2H1 20 TPM_NONCE idKeyLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

9 1 4H1 1 BOOL continueIdKeySession Continue usage flag for idKeyAuthHandle.

10 20 TPM_AUTHDATA idKeyAuth
The authorization session digest for the inputs and ID key. HMAC key:
idKey.usageAuth.

11 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization session handle

14 20 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner. HMAC key:
ownerAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 154 9 July 2007
 TCG Published

Outgoing Parameters and Sizes 2678

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ActivateIdentity

4 <> 3S <> TPM_SYMMETRIC_KEY symmetricKey The decrypted symmetric key.

5 20 2H1 20 TPM_NONCE idKeyNonceEven Even nonce newly generated by TPM.

 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

6 1 4H1 1 BOOL continueIdKeySession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA idKeyAuth
The authorization session digest used for the returned parameters and
idKeyAuth session. HMAC key: idKey.usageAuth.

8 20 2H2 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H2 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC
key: ownerAuth.

Description 2679

1. The command TPM_ActivateIdentity activates a TPM identity created using the command 2680
TPM_MakeIdentity. 2681

2. The command assumes the availability of the private key associated with the identity. 2682
The command will verify the association between the keys during the process. 2683

3. The command will decrypt the input blob and extract the session key and verify the 2684
connection between the public and private keys. The input blob can be in 1.1 or 1.2 2685
format. 2686

Actions 2687

A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do 2688
the following: 2689

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 2690
all of the incoming parameters. 2691

2. Using the idKeyAuthHandle, validate the AuthData to execute command and all of the 2692
incoming parameters 2693

3. Validate that the idKey is the public key of a valid TPM identity by checking that 2694
idKeyHandle -> keyUsage is TPM_KEY_IDENTITY. Return TPM_BAD_PARAMETER on 2695
mismatch 2696

4. Create H1 the digest of a TPM_PUBKEY derived from idKey 2697

5. Decrypt blob creating B1 using PRIVEK as the decryption key 2698

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 155 9 July 2007

 TCG Published

6. Determine the type and version of B1 2699

a. If B1 -> tag is TPM_TAG_EK_BLOB then 2700

i. B1 is a TPM_EK_BLOB 2701

b. Else 2702

i. B1 is a TPM_ASYM_CA_CONTENTS. As there is no tag for this structure it is 2703
possible for the TPM to make a mistake here but other sections of the structure 2704
undergo validation 2705

7. If B1 is a version 1.1 TPM_ASYM_CA_CONTENTS then 2706

a. Compare H1 to B1 -> idDigest on mismatch return TPM_BAD_PARAMETER 2707

b. Set K1 to B1 -> sessionKey 2708

8. If B1 is a TPM_EK_BLOB then 2709

a. Validate that B1 -> ekType is TPM_EK_TYPE_ACTIVATE, return TPM_BAD_TYPE if 2710
not. 2711

b. Assign A1 as a TPM_EK_BLOB_ACTIVATE structure from B1 -> blob 2712

c. Compare H1 to A1 -> idDigest on mismatch return TPM_BAD_PARAMETER 2713

d. If A1 -> pcrSelection is not NULL 2714

i. Compute a composite hash C1 using the PCR selection A1 -> pcrSelection 2715

ii. Compare C1 to A1 -> pcrInfo->digestAtRelease and return TPM_WRONGPCRVAL 2716
on a mismatch 2717

iii. If A1 -> pcrInfo specifies a locality ensure that the appropriate locality has been 2718
asserted, return TPM_BAD_LOCALITY on error 2719

e. Set K1 to A1 -> symmetricKey 2720

9. Return K1 2721

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 156 9 July 2007
 TCG Published

16. Integrity Collection and Reporting 2722

Start of informative comment: 2723

This section deals with what commands have direct access to the PCR 2724

End of informative comment. 2725

1. The TPM SHALL only allow the following commands to alter the value of 2726
TPM_STCLEAR_DATA -> PCR 2727

a. TPM_Extend 2728

b. TPM_SHA1CompleteExtend 2729

c. TPM_Startup 2730

d. TPM_PCR_Reset 2731

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 157 9 July 2007

 TCG Published

16.1 TPM_Extend 2732

Start of informative comment: 2733

This adds a new measurement to a PCR 2734

End of informative comment. 2735

Incoming Operands and Sizes 2736

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 4 2S 4 TPM_PCRINDEX pcrNum The PCR to be updated.

5 20 3S 20 TPM_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes 2737

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Extend.

4 20 3S 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Descriptions 2738

Add a measurement value to a PCR 2739

Actions 2740

1. Map L1 to TPM_STANY_FLAGS -> localityModifier 2741

2. Map P1 to TPM_PERMANENT_DATA -> pcrAttrib [pcrNum]. pcrExtendLocal 2742

3. If, for the value of L1, the corresponding bit is not set in the bit map P1, return 2743
TPM_BAD_LOCALITY 2744

4. Create c1 by concatenating (TPM_STCLEAR_DATA -> PCR[pcrNum] || inDigest). This 2745
takes the current PCR value and concatenates the inDigest parameter. 2746

5. Create h1 by performing a SHA-1 digest of c1. 2747

6. Store h1 to TPM_STCLEAR_DATA -> PCR[pcrNum] 2748

7. If TPM_PERMANENT_FLAGS -> disable is TRUE or TPM_STCLEAR_FLAGS -> deactivated 2749
is TRUE 2750

a. Set outDigest to 20 bytes of 0x00 2751

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 158 9 July 2007
 TCG Published

8. Else 2752

a. Set outDigest to h1 2753

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 159 9 July 2007

 TCG Published

16.2 TPM_PCRRead 2754

Start of informative comment: 2755

The TPM_PCRRead operation provides non-cryptographic reporting of the contents of a 2756
named PCR. 2757

End of informative comment. 2758

Incoming Operands and Sizes 2759

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 4 2S 4 TPM_PCRINDEX pcrIndex Index of the PCR to be read

Outgoing Operands and Sizes 2760

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCRRead.

4 20 3S 20 TPM_PCRVALUE outDigest The current contents of the named PCR

Description 2761

The TPM_PCRRead operation returns the current contents of the named register to the 2762
caller. 2763

Actions 2764

1. Set outDigest to TPM_STCLEAR_DATA -> PCR[pcrIndex] 2765

2. Return TPM_SUCCESS 2766

 2767

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 160 9 July 2007
 TCG Published

16.3 TPM_Quote 2768

Start of informative comment: 2769

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is 2770
required for operation. TPM_Quote uses a key to sign a statement that names the current 2771
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 2772
Challenger). 2773

The term "ExternalData" is used because an important use of TPM_Quote is to provide a 2774
digital signature on arbitrary data, where the signature includes the PCR values of the 2775
platform at time of signing. Hence the "ExternalData" is not just for anti-replay purposes, 2776
although it is (of course) used for that purpose in an integrity challenge. 2777

End of informative comment. 2778

Incoming Operands and Sizes 2779

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData
160 bits of externally supplied data (typically a nonce provided by a
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth
The authorization session digest for inputs and keyHandle. HMAC key:
key -> usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 161 9 July 2007

 TCG Published

Outgoing Operands and Sizes 2780

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote.

4 <> 3S <> TPM_PCR_COMPOSITE pcrData
A structure containing the same indices as targetPCR, plus the
corresponding current PCR values.

5 4 4S 4 UINT32 sigSize The used size of the output area for the signature

6 <> 5S <> BYTE[] sig The signed data blob.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
Key -> usageAuth.

Actions 2781

1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle. 2782

2. Validate that keyHandle -> sigScheme is TPM_SS_RSASSAPKCS1v15_SHA1 or 2783
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG. 2784

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_IDENTITY, or 2785
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE 2786

4. Validate targetPCR 2787

a. targetPCR is a valid TPM_PCR_SELECTION structure 2788

b. On errors return TPM_INVALID_PCR_INFO 2789

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 2790
PCR indicated by targetPCR -> pcrSelect 2791

6. Create Q1 a TPM_QUOTE_INFO structure 2792

a. Set Q1 -> version to 1.1.0.0 2793

b. Set Q1 -> fixed to “QUOT” 2794

c. Set Q1 -> digestValue to H1 2795

d. Set Q1 -> externalData to externalData 2796

7. Sign SHA-1 hash of Q1 using keyHandle as the signature key 2797

8. Return the signature in sig 2798

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 162 9 July 2007
 TCG Published

16.4 TPM_PCR_Reset 2799

Start of informative comment: 2800

For PCR with the pcrReset attribute set to TRUE, this command resets the PCR back to the 2801
default value, this mimics the actions of TPM_Init. The PCR may have restrictions as to 2802
which locality can perform the reset operation. 2803

Sending a null pcrSelection results in an error is due to the requirement that the command 2804
actually do something. If pcrSelection is null there are no PCR to reset and the command 2805
would then do nothing. 2806

For PCR that are resettable, the presence of a Trusted Operating System (TOS) can change 2807
the behavior of TPM_PCR_Reset. The following pseudo code shows how the behavior 2808
changes 2809

At TPM_Startup 2810

 If TPM_PCR_ATTRIBUTES->pcrReset is FALSE 2811

 Set PCR to 0x00…00 2812

 Else 2813

 Set PCR to 0xFF…FF 2814

At TPM_PCR_Reset 2815

 If TPM_PCR_ATTRIBUTES->pcrReset is TRUE 2816

 If TOSPresent 2817

 Set PCR to 0x00…00 2818

 Else 2819

 Set PCR to 0xFF…FF 2820

 Else 2821

 Return error 2822

The above pseudocode is for example only, for the details of a specific platform, the reader 2823
must review the platform specific specification. The purpose of the above pseudocode is to 2824
show that both pcrReset and the TOSPresent bit control the value in use to when the PCR 2825
resets. 2826

End of informative comment. 2827

Incoming Parameters and Sizes 2828

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

4 <> 2S <> TPM_PCR_SELECTION pcrSelection The PCR’s to reset

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 163 9 July 2007

 TCG Published

Outgoing Parameters and Sizes 2829

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PCR_Reset

Descriptions 2830

This command resets PCR values back to the default value. The command MUST validate 2831
that all PCR registers that are selected are available to be reset before resetting any PCR. 2832
This command MUST either reset all selected PCR registers or none of the PCR registers. 2833

Actions 2834

1. Validate that pcrSelection is valid 2835

a. is a valid TPM_PCR_SELECTION structure 2836

b. pcrSelection -> pcrSelect is non-zero 2837

c. On errors return TPM_INVALID_PCR_INFO 2838

2. Map L1 to TPM_STANY_FLAGS -> localityModifier 2839

3. For each PCR selected perform the following 2840

a. If TPM_PERMANENT_DATA -> pcrAttrib[pcrIndex].pcrReset is FALSE, return 2841
TPM_NOTRESETABLE 2842

b. If, for the value L1, the corresponding bit is clear in the bit map 2843
TPM_PERMANENT_DATA -> pcrAttrib[pcrIndex].pcrResetLocal, return TPM_NOTLOCAL 2844

4. For each PCR selected perform the following 2845

a. The PCR MAY only reset to 0x00…00 or 0xFF…FF 2846

b. The logic to determine which value to use MUST be described by a platform specific 2847
specification 2848

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 164 9 July 2007
 TCG Published

16.5 TPM_Quote2 2849

Start of informative comment: 2850

The TPM_Quote2 operation provides cryptographic reporting of PCR values. A loaded key is 2851
required for operation. TPM_Quote2 uses a key to sign a statement that names the current 2852
value of a chosen PCR and externally supplied data (which may be a nonce supplied by a 2853
Challenger). 2854

The term "externalData" is used because an important use of TPM_Quote2 is to provide a 2855
digital signature on arbitrary data, where the signature includes the PCR values of the 2856
platform at time of signing. Hence the "externalData" is not just for anti-replay purposes, 2857
although it is (of course) used for that purpose in an integrity challenge. 2858

TPM_Quote2 differs from TPM_Quote in that TPM_Quote2 uses TPM_PCR_INFO_SHORT to 2859
hold information relative to the PCR registers. TPM_PCR_INFO_SHORT includes locality 2860
information to provide the requestor a more complete view of the current platform 2861
configuration. 2862

End of informative comment. 2863

Incoming Operands and Sizes 2864

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE externalData
160 bits of externally supplied data (typically a nonce provided by a
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 1 4S 1 BOOL addVersion When TRUE add TPM_CAP_VERSION_INFO to the output

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA privAuth
The authorization session digest for inputs and keyHandle. HMAC key:
key -> usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 165 9 July 2007

 TCG Published

Outgoing Operands and Sizes 2865

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Quote2

4 <> 3S <> TPM_PCR_INFO_SHORT pcrData The value created and signed for the quote

5 4 4S 4 UINT32 versionInfoSize Size of the version info

6 <> 5S <> TPM_CAP_VERSION_INFO versionInfo The version info

7 4 6S 4 UINT32 sigSize The used size of the output area for the signature

8 <> 7S <> BYTE[] sig The signed data blob.

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
Key -> usageAuth.

Actions 2866

1. The TPM MUST validate the AuthData to use the key pointed to by keyHandle. 2867

2. Validate that keyHandle -> sigScheme is TPM_SS_RSASSAPKCS1v15_SHA1 or 2868
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG. 2869

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_IDENTITY, or 2870
TPM_KEY_LEGACY, if not return TPM_INVALID_KEYUSAGE 2871

4. Validate targetPCR is a valid TPM_PCR_SELECTION structure, on errors return 2872
TPM_INVALID_PCR_INFO 2873

5. Create H1 a SHA-1 hash of a TPM_PCR_COMPOSITE using the TPM_STCLEAR_DATA -> 2874
PCR[] indicated by targetPCR -> pcrSelect 2875

6. Create S1 a TPM_PCR_INFO_SHORT 2876

a. Set S1->pcrSelection to targetPCR 2877

b. Set S1->localityAtRelease to TPM_STANY_DATA -> localityModifier 2878

c. Set S1->digestAtRelease to H1 2879

7. Create Q1 a TPM_QUOTE_INFO2 structure 2880

a. Set Q1 -> fixed to “QUT2” 2881

b. Set Q1 -> infoShort to S1 2882

c. Set Q1 -> externalData to externalData 2883

8. If addVersion is TRUE 2884

a. Concatenate to Q1 a TPM_CAP_VERSION_INFO structure 2885

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 166 9 July 2007
 TCG Published

b. Set the output parameters for versionInfo 2886

9. Else 2887

a. Set versionInfoSize to 0 2888

b. Return no bytes in versionInfo 2889

10. Sign a SHA-1 hash of Q1 using keyHandle as the signature key 2890

11. Return the signature in sig 2891

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 167 9 July 2007

 TCG Published

17. Changing AuthData 2892

17.1 TPM_ChangeAuth 2893

Start of informative comment: 2894

The TPM_ChangeAuth command allows the owner of an entity to change the AuthData for 2895
the entity. 2896

This command cannot invalidate the old entity. Therefore, the authorization change is only 2897
effective if the application can guarantee that the old entity can be securely destroyed. If 2898
not, two valid entities will exist, one with the old and one with the new authorization secret. 2899

If this command is delegated, the delegated party can expand its key use privileges. That 2900
party can create a copy of the key with known authorization, and it can then use the key 2901
without any ordinal restrictions. 2902

TPM_ChangeAuth requires the encryption of one parameter (“NewAuth”). For the sake of 2903
uniformity with other commands that require the encryption of more than one parameter, 2904
the parameters used for used encryption are generated from the authLastNonceEven 2905
(created during the OSAP session), nonceOdd, and the session shared secret. 2906

The parameter list to this command must always include two authorization sessions, 2907
regardless of the state of authDataUsage for the respective keys. 2908

End of informative comment. 2909

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key to the entity.

5 2 2 S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

6 20 3 S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

7 2 4 S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

8 4 5 S 4 UINT32 encDataSize The size of the encData parameter

9 <> 6 S <> BYTE[] encData The encrypted entity that is to be modified.

10 4 TPM_AUTHHANDLE parentAuthHandle The authorization session handle used for the parent key.

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.

13 20 TPM_AUTHDATA parentAuth
The authorization session digest for inputs and parentHandle. HMAC
key: parentKey.usageAuth.

14 4 TPM_AUTHHANDLE entityAuthHandle
The authorization session handle used for the encrypted entity. The
session type MUST be OIAP

 2 H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

15 20 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

16 1 4 H2 1 BOOL continueEntitySession Ignored, entityAuthHandle is always terminated.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 168 9 July 2007
 TCG Published

17 20 TPM_AUTHDATA entityAuth
The authorization session digest for the inputs and encrypted entity.
HMAC key: entity.usageAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 169 9 July 2007

 TCG Published

Outgoing Operands and Sizes 2910

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuth

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters and
parentHandle. HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

10 1 4 H2 1 BOOL continueEntitySession Continue use flag, fixed value of FALSE

11 20 TPM_AUTHDATA entityAuth
The authorization session digest for the returned parameters and entity.
HMAC key: entity.usageAuth, the original and not the new auth value

Description 2911

1. The parentAuthHandle session type MUST be TPM_PID_OSAP. 2912

2. In this capability, the SRK cannot be accessed as entityType TPM_ET_KEY, since the 2913
SRK is not wrapped by a parent key. 2914

Actions 2915

1. Verify that entityType is one of TPM_ET_DATA, TPM_ET_KEY and return the error 2916
TPM_WRONG_ENTITYTYPE if not. 2917

2. Verify that parentAuthHandle session type is TPM_PID_OSAP return TPM_BAD_MODE 2918
on error 2919

3. Verify that entityAuthHandle session type is TPM_PID_OIAP return TPM_BAD_MODE on 2920
error 2921

4. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER. 2922

5. The encData parameter MUST be the encData field from either the TPM_STORED_DATA 2923
or TPM_KEY structures. 2924

6. Create decryptAuth by decrypting newAuth according to the ADIP indicated by 2925
parentHandle. 2926

7. The TPM MUST validate the command using the AuthData in the parentAuth parameter 2927

8. Validate that parentHandle -> keyUsage is TPM_KEY_STORAGE, if not return 2928
TPM_INVALID_KEYUSAGE 2929

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 170 9 July 2007
 TCG Published

9. After parameter validation, the TPM creates b1 by decrypting encData using the key 2930
pointed to by parentHandle. 2931

10. The TPM MUST validate that b1 is a valid TPM structure, either a 2932
TPM_STORE_ASYMKEY or a TPM_SEALED_DATA 2933

a. Check the tag, length and authValue for match, return TPM_INVALID_STRUCTURE 2934
on any mismatch 2935

11. The TPM replaces the AuthData for b1 with decryptAuth created above. 2936

12. The TPM encrypts b1 using the appropriate mechanism for the type using the 2937
parentKeyHandle to provide the key information. 2938

13. The TPM MUST enforce the destruction of both the parentAuthHandle and 2939
entityAuthHandle sessions. 2940

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 171 9 July 2007

 TCG Published

17.2 TPM_ChangeAuthOwner 2941

Start of informative comment: 2942

The TPM_ChangeAuthOwner command allows the owner of an entity to change the 2943
AuthData for the TPM Owner or the SRK. 2944

This command requires authorization from the current TPM Owner to execute. 2945

TPM's targeted for an environment (e.g. a server) with long lasting sessions should not 2946
invalidate all sessions. 2947

End of informative comment. 2948

Incoming Operands and Sizes 2949

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

5 20 3S 20 TPM_ENCAUTH newAuth The encrypted new AuthData for the entity

6 2 4S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 4 TPM_AUTHHANDLE ownerAuthHandle The authorization session handle used for the TPM Owner.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag the TPM ignores this value

10 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and ownerHandle. HMAC key:
ownerAuth.

Outgoing Operands and Sizes 2950

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters and
ownerHandle. HMAC key: ownerAuth, the original value and not the new
auth value

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 172 9 July 2007
 TCG Published

Actions 2951

1. The TPM MUST validate the command using the AuthData in the ownerAuth parameter 2952

2. The ownerAuthHandle session type MUST be TPM_PID_OSAP 2953

3. If protocolID is not TPM_PID_ADCP, the TPM MUST return TPM_BAD_PARAMETER. 2954

4. Verify that entityType is either TPM_ET_OWNER or TPM_ET_SRK, and return the error 2955
TPM_WRONG_ENTITYTYPE if not. 2956

5. Create decryptAuth by decrypting newAuth according to the ADIP indicated by 2957
ownerAuthHandle. 2958

6. The TPM MUST enforce the destruction of the ownerAuthHandle session upon 2959
completion of this command (successful or unsuccessful). This includes setting 2960
continueAuthSession to FALSE 2961

7. Set the AuthData for the indicated entity to decryptAuth 2962

8. The TPM MUST invalidate all owner authorized OSAP and DSAP sessions, active or 2963
saved. 2964

9. The TPM MAY invalidate all sessions, active or saved 2965

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 173 9 July 2007

 TCG Published

18. Authorization Sessions 2966

18.1 TPM_OIAP 2967

Incoming Operands and Sizes 2968

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

Outgoing Operands and Sizes 2969

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OIAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

Actions 2970

1. The TPM_OIAP command allows the creation of an authorization session handle and the 2971
tracking of the handle by the TPM. The TPM generates the handle and nonce. 2972

2. The TPM has an internal limit as to the number of handles that may be open at one 2973
time, so the request for a new handle may fail if there is insufficient space available. 2974

3. Internally the TPM will do the following: 2975

a. TPM allocates space to save handle, protocol identification, both nonces and any 2976
other information the TPM needs to manage the session. 2977

b. TPM generates authHandle and nonceEven, returns these to caller 2978

4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven 2979
value. 2980

5. When TPM_OIAP is wrapped in an encrypted transport session, no input or output 2981
parameters are encrypted. 2982

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 174 9 July 2007
 TCG Published

 2983

18.1.1 Actions to validate an OIAP session 2984

Start of informative comment: 2985

This section describes the authorization-related actions of a TPM when it receives a 2986
command that has been authorized with the OIAP protocol. 2987

Many commands use OIAP authorization. The following description is therefore necessarily 2988
abstract. 2989

End of informative comment. 2990

Actions 2991

The TPM MUST perform the following operations: 2992

1. The TPM MUST verify that the authorization session handle (H, say) referenced in the 2993
command points to a valid session. If it does not, the TPM returns the error code 2994
TPM_INVALID_AUTHHANDLE 2995

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and 2996
continueAuthSession flag from the input parameter list, and store it in internal TPM 2997
memory with the authSession ‘H’. 2998

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the 2999
authorization session H (authLastNonceEven) computed during the previously executed 3000
command. 3001

4. The TPM MUST retrieve the secret AuthData (SecretE, say) of the target entity. The 3002
entity and its secret must have been previously loaded into the TPM. 3003

a. If the command using the OIAP session requires owner authorization 3004

i. If TPM_STCLEAR_DATA -> ownerReference is TPM_KH_OWNER, the secret 3005
AuthData is TPM_PERMANENT_DATA -> ownerAuth 3006

ii. If TPM_STCLEAR_DATA -> ownerReference is pointing to a delegate row 3007

(1) Set R1 a row index to TPM_STCLEAR_DATA -> ownerReference 3008

(2) Set D1 a TPM_DELEGATE_TABLE_ROW to TPM_PERMANENT_DATA -> 3009
delegateTable -> delRow[R1] 3010

(3) Set the secret AuthData to D1 -> authValue 3011

(4) Validate the TPM_DELEGATE_PUBLIC D1 -> pub 3012

(a) Validate D1 -> pub -> permissions based on the command ordinal 3013

(b) Validate D1 -> pub -> pcrInfo based on the PCR values 3014

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input 3015
command parameters and authorization parameters per Part 1 Object-Independent 3016
Authorization Protocol. 3017

6. The TPM SHALL compare HM to the AuthData value received in the input parameters. If 3018
they are different, the TPM returns the error code TPM_AUTHFAIL if the authorization 3019
session is the first session of a command, or TPM_AUTH2FAIL if the authorization 3020

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 175 9 July 2007

 TCG Published

session is the second session of a command. Otherwise, the TPM executes the command 3021
which (for this example) produces an output that requires authentication. 3022

7. The TPM SHALL generate a nonce (nonceEven). 3023

8. The TPM creates an HMAC digest to authenticate the return code, return values and 3024
authorization parameters to the same entity secret per Part 1 Object-Independent 3025
Authorization Protocol. 3026

9. The TPM returns the return code, output parameters, authorization parameters and 3027
authorization session digest. 3028

10. If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. 3029
Future references to H will return an error. 3030

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 176 9 July 2007
 TCG Published

18.2 TPM_OSAP 3031

Start of informative comment: 3032

The TPM_OSAP command creates the authorization session handle, the shared secret and 3033
generates nonceEven and nonceEvenOSAP. 3034

End of informative comment. 3035

Incoming Operands and Sizes 3036

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 2 TPM_ENTITY_TYPE entityType The type of entity in use

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 20 TPM_NONCE nonceOddOSAP The nonce generated by the caller associated with the shared secret.

Outgoing Operands and Sizes 3037

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenOSAP Nonce generated by TPM and associated with shared secret.

Description 3038

1. The TPM_OSAP command allows the creation of an authorization session handle and the 3039
tracking of the handle by the TPM. The TPM generates the handle, nonceEven and 3040
nonceEvenOSAP. 3041

2. The TPM has an internal limit on the number of handles that may be open at one time, 3042
so the request for a new handle may fail if there is insufficient space available. 3043

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows 3044
the caller to continue to send in AuthData for each command but not have to request 3045
the information or cache the actual AuthData. 3046

4. When TPM_OSAP is wrapped in an encrypted transport session, no input or output 3047
parameters are encrypted. 3048

5. If the owner pointer is pointing to a delegate row, the TPM internally MUST treat the 3049
OSAP session as a DSAP session 3050

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 177 9 July 2007

 TCG Published

6. TPM_ET_SRK or TPM_ET_KEYHANDLE with a value of TPM_KH_SRK MUST specify the 3051
SRK. 3052

7. If the entity is tied to PCR values, the PCR’s are not validated during the TPM_OSAP 3053
ordinal session creation. The PCR’s are validated when the OSAP session is used. 3054

Actions 3055

1. The TPM creates S1 a storage area that keeps track of the information associated with 3056
the authorization. 3057

2. S1 MUST track the following information 3058

a. Protocol identification (i.e. TPM_PID_OSAP) 3059

b. nonceEven 3060

i. Initialized to the next value from the TPM RNG 3061

c. shared secret 3062

d. ADIP encryption scheme from TPM_ENTITY_TYPE entityType 3063

e. Any other internal TPM state the TPM needs to manage the session 3064

3. The TPM MUST create and MAY track the following information 3065

a. nonceEvenOSAP 3066

i. Initialized to the next value from the TPM RNG 3067

4. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 3068
calculation is the secret AuthData assigned to the key handle identified by entityValue. 3069
The input to the HMAC calculation is the concatenation of nonces nonceEvenOSAP and 3070
nonceOddOSAP. The output of the HMAC calculation is the shared secret which is saved 3071
in the authorization area associated with authHandle 3072

5. Check if the ADIP encryption scheme specified by entityType is supported, if not return 3073
TPM_INAPPROPRIATE_ENC. 3074

6. If entityType = TPM_ET_KEYHANDLE 3075

a. The entity to authorize is a key held in the TPM. entityValue contains the keyHandle 3076
that holds the key. 3077

b. If entityValue is TPM_KH_OPERATOR return TPM_BAD_HANDLE 3078

7. else if entityType = TPM_ET_OWNER 3079

a. This value indicates that the entity is the TPM owner. entityValue is ignored 3080

b. The HMAC key is the secret pointed to by ownerReference (owner secret or delegated 3081
secret) 3082

8. else if entityType = TPM_ET_SRK 3083

a. The entity to authorize is the SRK. entityValue is ignored. 3084

9. else if entityType = TPM_ET_COUNTER 3085

a. The entity is a monotonic counter, entityValue contains the counter handle 3086

10. else if entityType = TPM_ET_NV 3087

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 178 9 July 2007
 TCG Published

a. The entity is a NV index, entityValue contains the NV index 3088

11. else return TPM_BAD_PARAMETER 3089

12. On each subsequent use of the OSAP session the TPM MUST generate a new nonce 3090
value. 3091

13. The TPM MUST ensure that OSAP shared secret is only available while the OSAP session 3092
is valid. 3093

14. The session MUST terminate upon any of the following conditions: 3094

a. The command that uses the session returns an error 3095

b. The resource is evicted from the TPM or otherwise invalidated 3096

c. The session is used in any command for which the shared secret is used to encrypt 3097
an input parameter (TPM_ENCAUTH) 3098

d. The TPM Owner is cleared 3099

e. TPM_ChangeAuthOwner is executed and this session is attached to the owner 3100
authorization 3101

f. The session explicitly terminated with continueAuth, TPM_Reset or 3102
TPM_FlushSpecific 3103

g. All OSAP sessions associated with the delegation table MUST be invalidated when 3104
any of the following commands execute: 3105

i. TPM_Delegate_Manage 3106

ii. TPM_Delegate_CreateOwnerDelegation with Increment==TRUE 3107

iii. TPM_Delegate_LoadOwnerDelegation 3108

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 179 9 July 2007

 TCG Published

 3109

18.2.1 Actions to validate an OSAP session 3110

Start of informative comment: 3111

This section describes the authorization-related actions of a TPM when it receives a 3112
command that has been authorized with the OSAP protocol. 3113

Many commands use OSAP authorization. The following description is therefore necessarily 3114
abstract. 3115

End of informative comment 3116

Actions 3117

1. On reception of a command with ordinal C1 that uses an authorization session, the TPM 3118
SHALL perform the following actions: 3119

2. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target 3120
entity when the authorization session was established with TPM_OSAP. The entity and 3121
its secret must have been previously loaded into the TPM. 3122

3. The TPM MUST verify that the authorization session handle (H, say) referenced in the 3123
command points to a valid session. If it does not, the TPM returns the error code 3124
TPM_INVALID_AUTHHANDLE. 3125

4. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according 3126
to Part 1 Object-Specific Authorization Protocol. 3127

5. The TPM SHALL compare HM1 to the AuthData value received in the command. If they 3128
are different, the TPM returns the error code TPM_AUTHFAIL if the authorization session 3129
is the first session of a command, or TPM_AUTH2FAIL if the authorization session is the 3130
second session of a command., the TPM executes command C1 which produces an 3131
output (O, say) that requires authentication and uses a particular return code (RC, say). 3132

6. The TPM SHALL generate the latest version of the even nonce (nonceEven). 3133

7. The TPM MUST calculate the HMAC (HM2) of the return parameters according to section 3134
Part 1 Object-Specific Authorization Protocol. 3135

8. The TPM returns HM2 in the parameter list. 3136

9. The TPM SHALL retrieve the continue flag from the received command. If the flag is 3137
FALSE, the TPM SHALL terminate the session and destroy the thread associated with 3138
handle H. 3139

10. If the shared secret was used to provide confidentiality for data in the received 3140
command, the TPM SHALL terminate the session and destroy the thread associated with 3141
handle H. 3142

11. Each time that access to an entity (e.g., key) is authorized using OSAP, the TPM MUST 3143

a. ensure that the OSAP shared secret is that derived from the entity using TPM_OSAP 3144

b. validate the PCR values if specified for the entity 3145

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 180 9 July 2007
 TCG Published

i. The TPM SHOULD validate the PCR values before using the shared secret to 3146
validate the command parameters. This prevents a dictionary attack on the 3147
shared secret when the PCR values are invalid for the entity. 3148

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 181 9 July 2007

 TCG Published

18.3 TPM_DSAP 3149

Start of informative comment: 3150

The TPM_DSAP command creates the authorization session handle using a delegated 3151
AuthData value passed into the command as an encrypted blob or from the internal 3152
delegation table. It can be used to start an authorization session for a user key or the 3153
owner. 3154

Identically to TPM_OSAP, it generates a shared secret and generates nonceEven and 3155
nonceEvenOSAP. 3156

End of informative comment. 3157

Incoming Operands and Sizes 3158

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 2 TPM_ENTITY_TYPE entityType The type of delegation information to use

5 4 TPM_KEY_HANDLE keyHandle
Key for which delegated authority corresponds, or 0 if delegated owner activity.
Only relevant if entityValue equals TPM_DELEGATE_KEY_BLOB

6 20 TPM_NONCE nonceOddDSAP The nonce generated by the caller associated with the shared secret.

7 4 UINT32 entityValueSize The size of entityValue.

8 <> 2S <> BYTE [] entityValue

TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB or index
MUST not be empty

If entityType is TPM_ET_DEL_ROW then entityValue is a
TPM_DELEGATE_INDEX

Outgoing Operands and Sizes 3159

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DSAP.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenDSAP Nonce generated by TPM and associated with shared secret.

Description 3160

1. The TPM_DSAP command allows the creation of an authorization session handle and the 3161
tracking of the handle by the TPM. The TPM generates the handle, nonceEven and 3162
nonceEvenOSAP. 3163

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 182 9 July 2007
 TCG Published

2. The TPM has an internal limit on the number of handles that may be open at one time, 3164
so the request for a new handle may fail if there is insufficient space available. 3165

3. The TPM_DSAP allows the binding of a delegated authorization to a specific entity. This 3166
allows the caller to continue to send in AuthData for each command but not have to 3167
request the information or cache the actual AuthData. 3168

4. Each ordinal that uses the DSAP session MUST validate that TPM_PERMANENT_DATA -3169
> restrictDelegate does not restrict delegation, based on keyHandle -> keyUsage and 3170
keyHandle -> keyFlags, return TPM_INVALID_KEYUSAGE on error. 3171

5. On each subsequent use of the DSAP session the TPM MUST generate a new nonce 3172
value and check if the ordinal to be executed has delegation to execute. The TPM MUST 3173
ensure that the DSAP shared secret is only available while the DSAP session is valid. 3174

6. When TPM_DSAP is wrapped in an encrypted transport session 3175

a. For input the only parameter encrypted is entityValue 3176

b. For output no parameters are encrypted 3177

7. The DSAP session MUST terminate under any of the following conditions 3178

a. The command that uses the session returns an error 3179

b. If attached to a key, when the key is evicted from the TPM or otherwise invalidated 3180

c. The session is used in any command for which the shared secret is used to encrypt 3181
an input parameter (TPM_ENCAUTH) 3182

d. The TPM Owner is cleared 3183

e. TPM_ChangeAuthOwner is executed and this session is attached to the owner 3184
authorization 3185

f. The session explicitly terminated with continueAuth, TPM_Reset or 3186
TPM_FlushSpecific 3187

g. All DSAP sessions MUST be invalidated when any of the following commands 3188
execute: 3189

i. TPM_Delegate_CreateOwnerDelegation 3190

ii. When Increment is TRUE 3191

iii. TPM_Delegate_LoadOwnerDelegation 3192

iv. TPM_Delegate_Manage 3193

entityType = TPM_ET_DEL_OWNER_BLOB 3194

 The entityValue parameter contains an owner delegation blob structure. 3195

entityType = TPM_ET_DEL_ROW 3196

The entityValue parameter contains a row number in the nv Delegation table which 3197
should be used for the AuthData value. 3198

entityType = TPM_DEL_KEY_BLOB 3199

 The entityValue parameter contains a key delegation blob structure. 3200

Actions 3201

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 183 9 July 2007

 TCG Published

1. If entityType == TPM_ET_DEL_OWNER_BLOB 3202

a. Map entityValue to B1 a TPM_DELEGATE_OWNER_BLOB 3203

b. Validate that B1 is a valid TPM_DELEGATE_OWNER_BLOB, return 3204
TPM_WRONG_ENTITYTYPE on error 3205

c. Locate B1 -> pub -> familyID in the TPM_FAMILY_TABLE and set familyRow to 3206
indicate row, return TPM_BADINDEX if not found 3207

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3208

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3209

f. Verify that B1->verificationCount equals FR -> verificationCount. 3210

g. Validate the integrity of the blob 3211

i. Copy B1 -> integrityDigest to H2 3212

ii. Set B1 -> integrityDigest to all zeros 3213

iii. Create H3 the HMAC of B1 using tpmProof as the secret 3214

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch 3215

h. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting B1 -> sensitiveArea using 3216
TPM_DELEGATE_KEY 3217

i. Validate S1 values 3218

i. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE 3219

ii. Return TPM_BAD_DELEGATE on error 3220

j. Set A1 to S1 -> authValue 3221

2. Else if entityType == TPM_ET_DEL_ROW 3222

a. Verify that entityValue points to a valid row in the delegation table. 3223

b. Set D1 to the delegation information in the row. 3224

c. Set A1 to D1->authValue. 3225

d. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 3226
row, return TPM_BADINDEX if not found 3227

e. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3228

f. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3229

g. Verify that D1->verificationCount equals FR -> verificationCount. 3230

3. Else if entityType == TPM_ET_DEL_KEY_BLOB 3231

a. Map entityValue to K1 a TPM_DELEGATE_KEY_BLOB 3232

b. Validate that K1 is a valid TPM_DELEGATE_KEY_BLOB, return 3233
TPM_WRONG_ENTITYTYPE on error 3234

c. Locate K1 -> pub -> familyID in the TPM_FAMILY_TABLE and set familyRow to 3235
indicate that row, return TPM_BADINDEX if not found 3236

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3237

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 184 9 July 2007
 TCG Published

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3238

f. Verify that K1 -> pub -> verificationCount equals FR -> verificationCount. 3239

g. Validate the integrity of the blob 3240

i. Copy K1 -> integrityDigest to H2 3241

ii. Set K1 -> integrityDigest to all zeros 3242

iii. Create H3 the HMAC of K1 using tpmProof as the secret 3243

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch 3244

h. Validate that K1 -> pubKeyDigest identifies keyHandle, return TPM_KEYNOTFOUND 3245
on error 3246

i. Create S1 a TPM_DELEGATE_SENSITIVE by decrypting K1 -> sensitiveArea using 3247
TPM_DELEGATE_KEY 3248

j. Validate S1 values 3249

i. S1 -> tag is TPM_TAG_DELEGATE_SENSTIVE 3250

ii. Return TPM_BAD_DELEGATE on error 3251

k. Set A1 to S1 -> authValue 3252

4. Else return TPM_BAD_PARAMETER 3253

5. Generate a new authorization session handle and reserve space to save protocol 3254
identification, shared secret, pcrInfo, both nonces, ADIP encryption scheme, delegated 3255
permission bits and any other information the TPM needs to manage the session. 3256

6. Read two new values from the RNG to generate nonceEven and nonceEvenOSAP. 3257

7. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC 3258
calculation is A1. The input to the HMAC calculation is the concatenation of nonces 3259
nonceEvenOSAP and nonceOddOSAP. The output of the HMAC calculation is the shared 3260
secret which is saved in the authorization area associated with authHandle. 3261

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 185 9 July 2007

 TCG Published

18.4 TPM_SetOwnerPointer 3262

Start of informative comment: 3263

This command will set a reference to which secret the TPM will use when executing an 3264
owner secret related OIAP or OSAP session. 3265

This command should only be used to provide an owner delegation function for legacy code 3266
that does not itself support delegation. Normally, TPM_STCLEAR_DATA->ownerReference 3267
points to TPM_KH_OWNER, indicating that OIAP and OSAP sessions should use the owner 3268
authorization. This command allows ownerReference to point to an index in the delegation 3269
table, indicating that OIAP and OSAP sessions should use the delegation authorization. 3270

In use, a TSS supporting delegation would create and load the owner delegation and set the 3271
owner pointer to that delegation. From then on, a legacy TSS application would use its OIAP 3272
and OSAP sessions with the delegated owner authorization. 3273

Since this command is not authorized, the ownerReference is open to DoS attacks. 3274
Applications can attempt to recover from a failing owner authorization by resetting 3275
ownerReference to an appropriate value. 3276

End of informative comment. 3277

Incoming Operands and Sizes 3278

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_ COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

4 2 2S 2 TPM_ENTITY_TYPE entityType The type of entity in use

5 4 3S 4 UINT32 entityValue The selection value based on entityType

Outgoing Operands and Sizes 3279

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_ COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

Actions 3280

1. Map TPM_STCLEAR_DATA to V1 3281

2. If entityType = TPM_ET_DEL_ROW 3282

a. This value indicates that the entity is a delegate row. entityValue is a delegate index 3283
in the delegation table. 3284

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 186 9 July 2007
 TCG Published

b. Validate that entityValue points to a legal row within the delegate table stored within 3285
the TPM. If not return TPM_BADINDEX 3286

i. Set D1 to the delegation information in the row. 3287

c. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that 3288
row, return TPM_BADINDEX if not found. 3289

d. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3290

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3291

f. Verify that B1->verificationCount equals FR -> verificationCount. 3292

g. The TPM sets V1-> ownerReference to entityValue 3293

h. Return TPM_SUCCESS 3294

3. else if entityType = TPM_ET_OWNER 3295

a. This value indicates that the entity is the TPM owner. entityValue is ignored. 3296

b. The TPM sets V1-> ownerReference to TPM_KH_OWNER 3297

c. Return TPM_SUCCESS 3298

4. Return TPM_BAD_PARAMETER 3299

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 187 9 July 2007

 TCG Published

19. Delegation Commands 3300

19.1 TPM_Delegate_Manage 3301

Start of informative comment: 3302

TPM_Delegate_Manage is the fundamental process for managing the Family tables, 3303
including enabling/disabling Delegation for a selected Family. Normally 3304
TPM_Delegate_Manage must be executed at least once (to create Family tables for a 3305
particular family) before any other type of Delegation command in that family can succeed. 3306

TPM_Delegate_Manage is authorized by the TPM Owner if an Owner is installed, because 3307
changing a table is a privileged Owner operation. If no Owner is installed, 3308
TPM_Delegate_Manage requires no privilege to execute. This does not disenfranchise an 3309
Owner, since there is no Owner, and simplifies loading of tables during platform 3310
manufacture or on first-boot. Burn-out of TPM non-volatile storage by inappropriate use is 3311
mitigated by the TPM’s normal limits on NV-writes in the absence of an Owner. Tables can 3312
be locked after loading, to prevent subsequent tampering, and only unlocked by the Owner, 3313
his delegate, or the act of removing the Owner (even if there is no Owner). 3314

TPM_Delegate_Manage command is customized by opCode: 3315

(1) TPM_FAMILY_ENABLE enables/disables use of a family and all the rows of the delegate 3316
table belonging to that family, 3317

(2) TPM_FAMILY_ADMIN can be used to prevent further management of the Tables until an 3318
Owner is installed, or until the Owner is removed from the TPM. (Note that the Physical 3319
Presence command TPM_ForceClear always enables further management, even if 3320
TPM_ForceClear is used when no Owner is installed.) 3321

 (3) TPM_FAMILY_CREATE creates a new family. Sessions are invalidated even in this case 3322
because the lastFamilyID could wrap. 3323

(4) TPM_FAMILY_INVALIDATE invalidates an existing family. The TPM_SELFTEST_FAILED 3324
error code is returned because the familyRow has already been validated earlier. Failure 3325
here indicates a malfunction of the TPM. 3326

End of informative comment. 3327

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 188 9 July 2007
 TCG Published

Incoming Operands and Sizes 3328

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 2S 4 TPM_FAMILY_ID familyID The familyID that is to be managed

5 4 3s 4 TPM_FAMILY_OPERATION opCode Operation to be performed by this command.

6 4 4s 4 UINT32 opDataSize Size in bytes of opData

7 <> 5s <> BYTE [] opData Data necessary to implement opCode

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

Outgoing Operands and Sizes 3329

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 3S 4 UINT32 retDataSize Size in bytes of retData

5 <> 4S <> BYTE [] retData Returned data

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Action 3330

1. If opCode != TPM_FAMILY_CREATE 3331

a. Locate familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, 3332
return TPM_BADINDEX if not found 3333

b. Set FR, a TPM_FAMILY_TABLE_ENTRY, to TPM_FAMILY_TABLE. famTableRow 3334
[familyRow] 3335

2. If tag = TPM_TAG_RQU_AUTH1_COMMAND 3336

a. Validate the command and parameters using ownerAuth, return TPM_AUTHFAIL on 3337
error 3338

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 189 9 July 2007

 TCG Published

b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 3339
ownerReference delegation) 3340

i. If opCode = TPM_FAMILY_CREATE 3341

(1) The TPM MUST ignore familyID 3342

ii. Else 3343

(1) Verify that the familyID associated with authHandle matches the familyID 3344
parameter, return TPM_DELEGATE_FAMILY on error 3345

3. Else 3346

a. If TPM_PERMANENT_DATA -> ownerAuth is valid, return TPM_AUTHFAIL 3347

b. If opCode != TPM_FAMILY_CREATE and FR -> flags -> 3348
TPM_DELEGATE_ADMIN_LOCK is TRUE, return TPM_DELEGATE_LOCK 3349

c. Validate max NV writes without an owner 3350

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite 3351

ii. Increment NV1 by 1 3352

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES 3353

iv. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1 3354

4. The TPM invalidates sessions 3355

a. MUST invalidate all DSAP sessions 3356

b. MUST invalidate all OSAP sessions associated with the delegation table 3357

c. MUST set TPM_STCLEAR_DATA -> ownerReference to TPM_KH_OWNER 3358

d. MAY invalidate any other session 3359

5. If opCode == TPM_FAMILY_CREATE 3360

a. Validate that sufficient space exists within the TPM to store an additional family and 3361
map F2 to the newly allocated space. 3362

b. Validate that opData is a TPM_FAMILY_LABEL 3363

i. If opDataSize != sizeof(TPM_FAMILY_LABEL) return TPM_BAD_PARAM_SIZE 3364

c. Map F2 to a TPM_FAMILY_TABLE_ENTRY 3365

i. Set F2 -> tag to TPM_TAG_FAMILY_TABLE_ENTRY 3366

ii. Set F2 -> familyLabel to opData 3367

d. Increment TPM_PERMANENT_DATA -> lastFamilyID by 1 3368

e. Set F2 -> familyID = TPM_PERMANENT_DATA -> lastFamilyID 3369

f. Set F2 -> verificationCount = 1 3370

g. Set F2 -> flags -> TPM_FAMFLAG_ENABLED to FALSE 3371

h. Set F2 -> flags -> TPM_DELEGATE_ADMIN_LOCK to FALSE 3372

i. Set retDataSize = 4 3373

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 190 9 July 2007
 TCG Published

j. Set retData = F2 -> familyID 3374

k. Return TPM_SUCCESS 3375

6. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE 3376

7. If opCode == TPM_FAMILY_ADMIN 3377

a. Validate that opDataSize == 1, and that opData is a Boolean value. 3378

b. Set (FR -> flags -> TPM_DELEGATE_ADMIN_LOCK) = opData 3379

c. Set retDataSize = 0 3380

d. Return TPM_SUCCESS 3381

8. else If opCode == TPM_FAMILY_ENABLE 3382

a. Validate that opDataSize == 1, and that opData is a Boolean value. 3383

b. Set FR -> flags-> TPM_FAMFLAG_ENABLED = opData 3384

c. Set retDataSize = 0 3385

d. Return TPM_SUCCESS 3386

9. else If opCode == TPM_FAMILY_INVALIDATE 3387

a. Invalidate all data associated with familyRow 3388

i. All data is all information pointed to by FR 3389

ii. return TPM_SELFTEST_FAILED on failure 3390

b. Set retDataSize = 0 3391

c. Return TPM_SUCCESS 3392

10. Else return TPM_BAD_PARAMETER 3393

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 191 9 July 2007

 TCG Published

19.2 TPM_Delegate_CreateKeyDelegation 3394

Start of informative comment: 3395

This command delegates privilege to use a key by creating a blob that can be used by 3396
TPM_DSAP. 3397

There is no check for appropriateness of the key’s key usage against the key permission 3398
settings. If the key usage is incorrect, this command succeeds, but the delegated command 3399
will fail. 3400

These blobs CANNOT be used as input data for TPM_LoadOwnerDelegation because the 3401
internal TPM delegate table can store owner delegations only. 3402

(TPM_Delegate_CreateOwnerDelegation must be used to delegate Owner privilege.) 3403

End of informative comment 3404

Incoming Operands and Sizes 3405

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key.

5 <> 2S <> TPM_DELEGATE_PUBLIC publicInfo The public information necessary to fill in the blob

6 20 3S 20 TPM_ENCAUTH delAuth
The encrypted new AuthData for the blob. The encryption key is the
shared secret from the authorization session protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA privAuth
The authorization session digest that authorizes the use of keyHandle.
HMAC key: key.usageAuth

 3406

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 192 9 July 2007
 TCG Published

Outgoing Operands and Sizes 3407

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_CreateKeyDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_KEY_BLOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth

Description 3408

1. The use restrictions that may be present on the key pointed to by keyHandle are not 3409
enforced for this command. Stated another way, TPM_CreateKeyDelegation is not a use 3410
of the key. 3411

Action 3412

1. Verify AuthData for the command and parameters using privAuth 3413

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 3414
row, return TPM_BADINDEX if not found 3415

3. If the key authentication is in fact a delegation, then the TPM SHALL validate the 3416
command and parameters using Delegation authorisation, then 3417

a. Validate that authHandle -> familyID equals publicInfo -> familyID return 3418
TPM_DELEGATE_FAMILY on error 3419

b. If TPM_FAMILY_TABLE.famTableRow[authHandle -> familyID] -> flags -> 3420
TPM_FAMFLAG_ENABLED is FALSE, return error TPM_DISABLED_CMD. 3421

c. Verify that the delegation bits in publicInfo do not grant more permissions then 3422
currently delegated. Otherwise return error TPM_AUTHFAIL 3423

4. Check that publicInfo -> delegateType is TPM_DEL_KEY_BITS 3424

5. Verify that authHandle indicates an OSAP or DSAP session return 3425
TPM_INVALID_AUTHHANDLE on error 3426

6. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle. 3427

7. Create h1 the SHA-1 of TPM_STORE_PUBKEY structure of the key pointed to by 3428
keyHandle 3429

8. Create M1 a TPM_DELEGATE_SENSITIVE structure 3430

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE 3431

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 193 9 July 2007

 TCG Published

b. Set M1 -> authValue to a1 3432

c. The TPM MAY add additional information of a sensitive nature relative to the 3433
delegation 3434

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY 3435

10. Create P1 a TPM_DELEGATE_KEY_BLOB 3436

a. Set P1 -> tag to TPM_TAG_DELG_KEY_BLOB 3437

b. Set P1 -> pubKeyDigest to H1 3438

c. Set P1 -> pub to PublicInfo 3439

d. Set P1 -> pub -> verificationCount to familyRow -> verificationCount 3440

e. Set P1 -> integrityDigest to all zeros 3441

f. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The 3442
information MAY include symmetric IV, symmetric mode of encryption and other data 3443
that allows the TPM to process the blob in the future. 3444

g. Set P1 -> sensitiveSize to the size of M2 3445

h. Set P1 -> sensitiveArea to M2 3446

11. Calculate H2 the HMAC of P1 using tpmProof as the secret 3447

12. Set P1 -> integrityDigest to H2 3448

13. Ignore continueAuthSession on input set continueAuthSession to FALSE on output 3449

14. Return P1 as blob 3450

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 194 9 July 2007
 TCG Published

19.3 TPM_Delegate_CreateOwnerDelegation 3451

Start of informative comment: 3452

TPM_Delegate_CreateOwnerDelegation delegates the Owner’s privilege to use a set of 3453
command ordinals, by creating a blob. Such blobs can be used as input data for TPM_DSAP 3454
or TPM_Delegate_LoadOwnerDelegation. 3455

TPM_Delegate_CreateOwnerDelegation includes the ability to void all existing delegations 3456
(by incrementing the verification count) before creating the new delegation. This ensures 3457
that the new delegation will be the only delegation that can operate at Owner privilege in 3458
this family. This new delegation could be used to enable a security monitor (a local separate 3459
entity, or remote separate entity, or local host entity) to reinitialize a family and perhaps 3460
perform external verification of delegation settings. Normally the ordinals for a delegated 3461
security monitor would include TPM_Delegate_CreateOwnerDelegation (this command) in 3462
order to permit the monitor to create further delegations, and 3463
TPM_Delegate_UpdateVerification to reactivate some previously voided delegations. 3464

If the verification count is incremented and the new delegation does not delegate any 3465
privileges (to any ordinals) at all, or uses an authorisation value that is then discarded, this 3466
family’s delegations are all void and delegation must be managed using actual Owner 3467
authorisation. 3468

(TPM_Delegate_CreateKeyDelegation must be used to delegate privilege to use a key.) 3469

End of informative comment. 3470

Incoming Operands and Sizes 3471

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation.

4 1 2S 1 BOOL increment Flag dictates whether verificationCount will be incremented

5 <> 3S <> TPM_DELEGATE_PUBLIC publicInfo The public parameters for the blob

6 20 4S 20 TPM_ENCAUTH delAuth
The encrypted new AuthData for the blob. The encryption key is the
shared secret from the OSAP protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 195 9 July 2007

 TCG Published

Outgoing Operands and Sizes 3472

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <>
TPM_DELEGATE_OWNER_B
LOB

blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag. Fixed value of FALSE

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth

Action 3473

1. The TPM SHALL authenticate the command using TPM Owner authentication. Return 3474
TPM_AUTHFAIL on failure. 3475

2. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 3476
the row return TPM_BADINDEX if not found 3477

a. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3478

3. If the TPM Owner authentication is in fact a delegation 3479

a. Validate that authHandle -> familyID equals publicInfo -> familyID return 3480
TPM_DELEGATE_FAMILY on error 3481

b. If FR -> flags -> TPM_FAMFLAG_ENABLED is FALSE, return error 3482
TPM_DISABLED_CMD. 3483

c. Verify that the delegation bits in publicInfo do not grant more permissions then 3484
currently delegated. Otherwise, return error TPM_AUTHFAIL. 3485

4. Check that publicInfo -> delegateType is TPM_DEL_OWNER_BITS 3486

5. Verify that authHandle indicates an OSAP or DSAP session return 3487
TPM_INVALID_AUTHHANDLE on error 3488

6. If increment == TRUE 3489

a. Increment FR -> verificationCount 3490

b. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER 3491

c. The TPM invalidates sessions 3492

i. MUST invalidate all DSAP sessions 3493

ii. MUST invalidate all OSAP sessions associated with the delegation table 3494

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 196 9 July 2007
 TCG Published

iii. MAY invalidate any other session 3495

7. Create a1 by decrypting delAuth according to the ADIP indicated by authHandle. 3496

8. Create M1 a TPM_DELEGATE_SENSITIVE structure 3497

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE 3498

b. Set M1 -> authValue to a1 3499

c. Set other M1 fields as determined by the TPM vendor 3500

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY 3501

10. Create B1 a TPM_DELEGATE_OWNER_BLOB 3502

a. Set B1 -> tag to TPM_TAG_DELG_OWNER_BLOB 3503

b. Set B1 -> pub to publicInfo 3504

c. Set B1 -> sensitiveSize to the size of M2 3505

d. Set B1 -> sensitiveArea to M2 3506

e. Set B1 -> integrityDigest to all zeros 3507

f. Set B1 -> pub -> verificationCount to FR -> verificationCount 3508

11. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The 3509
information MAY include symmetric IV, symmetric mode of encryption and other data 3510
that allows the TPM to process the blob in the future. 3511

12. Create H1 the HMAC of B1 using tpmProof as the secret 3512

13. Set B1 -> integrityDigest to H1 3513

14. Ignore continueAuthSession on input set continueAuthSession to FALSE on output 3514

15. Return B1 as blob 3515

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 197 9 July 2007

 TCG Published

19.4 TPM_Delegate_LoadOwnerDelegation 3516

Start of informative comment: 3517

This command loads a delegate table row blob into a non-volatile delegate table row. 3518
TPM_Delegate_LoadOwnerDelegation can be used during manufacturing or on first boot 3519
(when no Owner is installed), or after an Owner is installed. If an Owner is installed, 3520
TPM_Delegate_LoadOwnerDelegation requires Owner authorisation, and sensitive 3521
information must be encrypted. 3522

Burn-out of TPM non-volatile storage by inappropriate use is mitigated by the TPM’s normal 3523
limits on NV-writes in the absence of an Owner. Tables can be locked after loading using 3524
TPM_Delegate_Manage, to prevent subsequent tampering. 3525

A management system outside the TPM is expected to manage the delegate table rows 3526
stored on the TPM, and can overwrite any previously stored data. 3527

This command cannot be used to load key delegation blobs into the TPM 3528

End of informative comment. 3529

Incoming Operands and Sizes 3530

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_Delegate_LoadOwnerDelegation

4 4 3S 4 TPM_DELEGATE_INDEX index The index of the delegate row to be written

5 4 4S 4 UINT32 blobSize The size of the delegate blob

6 <> 5S <>
TPM_DELEGATE_OWNER
_BLOB

blob Delegation information, including encrypted portions as appropriate

7 4 TPM_AUTHHANDLE authHandle The authorization session handle TPM Owner authentication

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth The authorization session digest. HMAC key:ownerAuth

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 198 9 July 2007
 TCG Published

Outgoing Operands and Sizes 3531

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_LoadOwnerDelegation

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions 3532

1. Map blob to D1 a TPM_DELEGATE_OWNER_BLOB. 3533

a. Validate that D1 -> tag == TPM_TAG_DELEGATE_OWNER_BLOB 3534

2. Locate D1 -> pub -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate 3535
row, return TPM_BADINDEX if not found 3536

3. Set FR to TPM_FAMILY_TABLE -> famTableRow[familyRow] 3537

4. If TPM Owner is installed 3538

a. Validate the command and parameters using TPM Owner authentication, return 3539
TPM_AUTHFAIL on error 3540

b. If the command is delegated (authHandle session type is TPM_PID_DSAP or through 3541
ownerReference delegation), verify that D1 -> pub -> familyID matches authHandle -> 3542
familyID, on error return TPM_DELEGATE_FAMILY 3543

5. Else 3544

a. If tag is not TPM_TAG_RQU_COMMAND, return TPM_AUTHFAIL 3545

b. If FR -> flags -> TPM_DELEGATE_ADMIN_LOCK is TRUE return 3546
TPM_DELEGATE_LOCK 3547

c. Validate max NV writes without an owner 3548

i. Set NV1 to PD -> noOwnerNVWrite 3549

ii. Increment NV1 by 1 3550

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES 3551

iv. Set PD -> noOwnerNVWrite to NV1 3552

6. If FR -> flags -> TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3553

7. If TPM Owner is installed, validate the integrity of the blob 3554

a. Copy D1 -> integrityDigest to H2 3555

b. Set D1 -> integrityDigest to all zeros 3556

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 199 9 July 2007

 TCG Published

c. Create H3 the HMAC of D1 using tpmProof as the secret 3557

d. Compare H2 to H3, return TPM_AUTHFAIL on mismatch 3558

8. If TPM Owner is installed, create S1 a TPM_DELEGATE_SENSITIVE area by decrypting 3559
D1 -> sensitiveArea using TPM_DELEGATE_KEY. Otherwise set S1 = D1 -> sensitiveArea 3560

9. Validate S1 3561

a. Validate that S1 -> tag == TPM_TAG_DELEGATE_SENSITIVE, return 3562
TPM_INVALID_STRUCTURE on error 3563

10. Validate that index is a valid value for delegateTable, return TPM_BADINDEX on error 3564

11. The TPM invalidates sessions 3565

a. MUST invalidate all DSAP sessions 3566

b. MUST invalidate all OSAP sessions associated with the delegation table 3567

c. MAY invalidate any other session 3568

12. Copy data to the delegate table row 3569

a. Copy the TPM_DELEGATE_PUBLIC from D1 -> pub to TPM_DELEGATE_TABLE -> 3570
delRow[index] -> pub. 3571

b. Copy the TPM_SECRET from S1 -> authValue to TPM_DELEGATE_TABLE -> 3572
delRow[index] -> authValue. 3573

c. Set TPM_STCLEAR_DATA-> ownerReference to TPM_KH_OWNER 3574

d. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE 3575

13. Return TPM_SUCCESS 3576

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 200 9 July 2007
 TCG Published

19.5 TPM_Delegate_ReadTable 3577

Start of informative comment: 3578

This command reads from the TPM the public contents of the family and delegate tables 3579
that are stored on the TPM. Such data is required during external verification of tables. 3580

There are no restrictions on the execution of this command; anyone can read this 3581
information regardless of the state of the PCRs, regardless of whether they know any 3582
specific AuthData value and regardless of whether or not the enable and admin bits are set 3583
one way or the other. 3584

End of informative comment. 3585

Incoming Operands and Sizes 3586

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

Outgoing Operands and Sizes 3587

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_ReadTable

4 4 3S 4 UINT32 familyTableSize Size in bytes of familyTable

5 <> 4S <> BYTE [] familyTable Array of TPM_FAMILY_TABLE_ENTRY elements

6 4 5S 4 UINT32 delegateTableSize Size in bytes of delegateTable

7 <> 6S <> BYTE[] delegateTable
Array of TPM_DELEGATE_INDEX and TPM_DELEGATE_PUBLIC
elements

Actions 3588

1. Set familyTableSize to the number of valid families on the TPM times 3589
sizeof(TPM_FAMILY_TABLE_ELEMENT). 3590

2. Copy the valid entries in the internal family table to the output array familyTable 3591

3. Set delegateTableSize to the number of valid delegate table entries on the TPM times 3592
(sizeof(TPM_DELEGATE_PUBLIC) + 4). 3593

4. For each valid entry 3594

a. Write the TPM_DELEGATE_INDEX to delegateTable 3595

b. Copy the TPM_DELEGATE_PUBLIC to delegateTable 3596

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 201 9 July 2007

 TCG Published

5. Return TPM_SUCCESS 3597

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 202 9 July 2007
 TCG Published

19.6 TPM_Delegate_UpdateVerification 3598

Start of informative comment: 3599

TPM_UpdateVerification sets the verificationCount in an entity (a blob or a delegation row) 3600
to the current family value, in order that the delegations represented by that entity will 3601
continue to be accepted by the TPM. 3602

End of informative comment. 3603

Incoming Operands and Sizes 3604

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 2S 4 UINT32 inputSize The size of inputData

5 <> 3S <> BYTE inputData
TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB
or TPM_DELEGATE_INDEX

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth Authorization HMAC key: ownerAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 203 9 July 2007

 TCG Published

Outgoing Operands and Sizes 3605

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 3S 4 UINT32 outputSize The size of the output

5 <> 4S <> BYTE outputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 3606

1. Verify the TPM Owner, directly or indirectly through delegation, authorizes the command 3607
and parameters, on error return TPM_AUTHFAIL 3608

2. Determine the type of inputData (TPM_DELEGATE_TABLE_ROW or 3609
TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB) and map D1 to that 3610
structure 3611

a. Mapping to TPM_DELEGATE_TABLE_ROW requires taking inputData as a tableIndex 3612
and locating the appropriate row in the table 3613

3. If D1 is a TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB, validate the 3614
integrity of D1 3615

a. Copy D1 -> integrityDigest to H2 3616

b. Set D1 -> integrityDigest to all zeros 3617

c. Create H3 the HMAC of D1 using tpmProof as the secret 3618

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch 3619

4. Locate (D1 -> pub -> familyID) in the TPM_FAMILY_TABLE and set familyRow to indicate 3620
row, return TPM_BADINDEX if not found 3621

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3622

6. If delegated, verify that family of the delegated Owner-auth is the same as D1: 3623
(authHandle -> familyID) == (D1 -> pub -> familyID); otherwise return error 3624
TPM_DELEGATE_FAMILY 3625

7. If delegated, verify that the family of the delegated Owner-auth is enabled: if (authHandle 3626
-> familyID -> flags TPM_FAMFLAG_ENABLED) is FALSE, return TPM_DISABLED_CMD 3627

8. Set D1 -> verificationCount to FR -> verificationCount 3628

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 204 9 July 2007
 TCG Published

9. If D1 is a TPM_DELEGATE_OWNER_BLOB or TPM_DELEGATE_KEY_BLOB set the 3629
integrity of D1 3630

a. Set D1 -> integrityDigest to all zeros 3631

b. Create H1 the HMAC of D1 using tpmProof as the secret 3632

c. Set D1 -> integrityDigest to H1 3633

10. If D1 is a blob recreate the blob and return it 3634

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 205 9 July 2007

 TCG Published

19.7 TPM_Delegate_VerifyDelegation 3635

Start of informative comment: 3636

TPM_VerifyDelegation interprets a delegate blob and returns success or failure, depending 3637
on whether the blob is currently valid. The delegate blob is NOT loaded into the TPM. 3638

End of informative comment. 3639

Incoming Operands and Sizes 3640

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

4 4 2S 4 UINT32 delegationSize The length of the delegated information blob

5 <> 3S <> BYTE[] delegation TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

Outgoing Operands and Sizes 3641

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_VerifyDelegation

Actions 3642

1. Determine the type of blob, If delegation -> tag is equal to 3643
TPM_TAG_DELGATE_OWNER_BLOB then 3644

a. Map D1 a TPM_DELEGATE_OWNER_BLOB to delegation 3645

2. Else if delegation -> tag = TPM_TAG_DELG_KEY_BLOB 3646

a. Map D1 a TPM_DELEGATE_KEY_BLOB to delegation 3647

3. Else return TPM_BAD_PARAMETER 3648

4. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, 3649
return TPM_BADINDEX if not found 3650

5. Set FR to TPM_FAMILY_TABLE.famTableRow[familyRow] 3651

6. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD 3652

7. Validate that D1 -> pub -> verificationCount matches FR -> verificationCount, on 3653
mismatch return TPM_FAMILYCOUNT 3654

8. Validate the integrity of D1 3655

a. Copy D1 -> integrityDigest to H2 3656

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 206 9 July 2007
 TCG Published

b. Set D1 -> integrityDigest to all zeros 3657

c. Create H3 the HMAC of D1 using tpmProof as the secret 3658

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch 3659

9. Create S1 a TPM_DELEGATE_SENSITIVE area by decrypting D1 -> sensitiveArea using 3660
TPM_DELEGATE_KEY 3661

10. Validate S1 values 3662

a. S1 -> tag is TPM_TAG_DELEGATE_SENSTIVE 3663

b. Return TPM_BAD_PARAMETER on error 3664

11. Return TPM_SUCCESS 3665

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 207 9 July 2007

 TCG Published

20. Non-volatile Storage 3666

Start of informative comment: 3667

This section handles the allocation and use of the TPM non-volatile storage. 3668

End of informative comment. 3669

If nvIndex refers to the DIR, the TPM ignores actions containing access control checks that 3670
have no meaning for the DIR. The TPM only checks the owner authorization. 3671

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 208 9 July 2007
 TCG Published

 3672

20.1 TPM_NV_DefineSpace 3673

Start of informative comment: 3674

This establishes the space necessary for the indicated index. The definition will include the 3675
access requirements for writing and reading the area. 3676

The space definition size does not include the area needed to manage the space. 3677

Setting TPM_PERMANENT_FLAGS -> nvLocked TRUE when it is already TRUE is not an 3678
error. 3679

End of informative comment. 3680

Incoming Operands and Sizes 3681

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_DefineSpace

4 <> 2S <> TPM_NV_DATA_PUBLIC pubInfo The public parameters of the NV area

5 20 3S 20 TPM_ENCAUTH encAuth
The encrypted AuthData, only valid if the attributes require subsequent
authorization

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for ownerAuth

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes 3682

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_DefineSpace

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed to FALSE

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Actions 3683

1. If pubInfo -> nvIndex == TPM_NV_INDEX_LOCK and tag = TPM_TAG_RQU_COMMAND 3684

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 209 9 July 2007

 TCG Published

a. If pubInfo -> dataSize is not 0, the command MAY return TPM_BADINDEX. 3685

b. Set TPM_PERMANENT_FLAGS -> nvLocked to TRUE 3686

c. Return TPM_SUCCESS 3687

2. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 3688
for the Max NV writes are ignored 3689

a. Ignored checks include physical presence, authorization, 'D' bit check, bGlobalLock, 3690
no authorization with a TPM owner present, bWriteSTClear, and the check that pubInfo 3691
-> dataSize is 0 in Action 5.c. (the no-authorization case). 3692

i. The check that pubInfo -> dataSize is 0 is still enforced in Action 6.f. (returning 3693
after deleting a previously defined storage area) and Action 9.f. (not allowing a 3694
space of size 0 to be defined). 3695

b. The check for pubInfo -> nvIndex == TPM_NV_INDEX0 in Action 3. is not ignored. 3696

3. If pubInfo -> nvIndex has the D bit (bit 28) set to a 1 or pubInfo -> nvIndex == 3697
TPM_NV_INDEX0 then 3698

a. Return TPM_BADINDEX 3699

b. The D bit specifies an index value that is set in manufacturing and can never be 3700
deleted or added to the TPM 3701

c. Index value TPM_NV_INDEX0 is reserved and cannot be defined 3702

4. If tag = TPM_TAG_RQU_AUTH1_COMMAND then 3703

a. The TPM MUST validate the command and parameters using the TPM Owner 3704
authentication and ownerAuth, on error return TPM_AUTHFAIL 3705

b. authHandle session type MUST be OSAP 3706

c. Create A1 by decrypting encAuth according to the ADIP indicated by authHandle. 3707

5. else 3708

a. Validate the assertion of physical presence. Return TPM_BAD_PRESENCE on error. 3709

b. If TPM Owner is present then return TPM_OWNER_SET. 3710

c. If pubInfo -> dataSize is 0 then return TPM_BAD_DATASIZE. Setting the size to 0 3711
represents an attempt to delete the value without TPM Owner authentication. 3712

d. Validate max NV writes without an owner 3713

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite 3714

ii. Increment NV1 by 1 3715

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES 3716

iv. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1 3717

e. Set A1 to encAuth. There is no nonce or authorization to create the encryption string, 3718
hence the AuthData value is passed in the clear 3719

6. If pubInfo -> nvIndex points to a valid previously defined storage area then 3720

a. Map D1 a TPM_NV_DATA_SENSITIVE to the storage area 3721

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 210 9 July 2007
 TCG Published

b. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK then 3722

i. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE then return 3723
TPM_AREA_LOCKED 3724

c. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR 3725

i. If D1 -> pubInfo -> bWriteSTClear is TRUE then return TPM_AREA_LOCKED 3726

d. Invalidate the data area currently pointed to by D1 and ensure that if the area is 3727
reallocated no residual information is left 3728

e. The TPM invalidates authorization sessions 3729

i. MUST invalidate all authorization sessions associated with D1 3730

ii. MAY invalidate any other authorization session 3731

f. If pubInfo -> dataSize is 0 then return TPM_SUCCESS 3732

7. Parse pubInfo -> pcrInfoRead 3733

a. Validate pcrInfoRead structure on error return TPM_INVALID_STRUCTURE 3734

i. Validation includes proper PCR selections and locality selections 3735

8. Parse pubInfo -> pcrInfoWrite 3736

a. Validate pcrInfoWrite structure on error return TPM_INVALID_STRUCTURE 3737

i. Validation includes proper PCR selections and locality selections 3738

b. If pcrInfoWrite -> localityAtRelease disallows some localities 3739

i. Set writeLocalities to TRUE 3740

c. Else 3741

i. Set writeLocalities to FALSE 3742

9. Validate that the attributes are consistent 3743

a. The TPM SHALL ignore the bReadSTClear, bWriteSTClear and bWriteDefine 3744
attributes during the execution of this command 3745

b. If TPM_NV_PER_OWNERWRITE is TRUE and TPM_NV_PER_AUTHWRITE is TRUE 3746
return TPM_AUTH_CONFLICT 3747

c. If TPM_NV_PER_OWNERREAD is TRUE and TPM_NV_PER_AUTHREAD is TRUE 3748
return TPM_AUTH_CONFLICT 3749

d. If TPM_NV_PER_OWNERWRITE and TPM_NV_PER_AUTHWRITE and 3750
TPM_NV_PER_WRITEDEFINE and TPM_NV_PER_PPWRITE and writeLocalities are all 3751
FALSE 3752

i. Return TPM_PER_NOWRITE 3753

e. Validate pubInfo -> nvIndex 3754

i. Make sure that the index is applicable for this TPM. Return TPM_BADINDEX on 3755
error. A valid index is platform and context sensitive. That is, attempting to 3756
validate an index may be successful in one configuration and invalid in another 3757
configuration. The individual index values MUST indicate if there are any 3758
restrictions on the use of the index. 3759

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 211 9 July 2007

 TCG Published

ii. TPM_NV_INDEX_DIR is always an invalid defined index. 3760

f. If dataSize is 0 return TPM_BAD_PARAM_SIZE 3761

10. Create D1 a TPM_NV_DATA_SENSITIVE structure 3762

a. Set D1 -> pubInfo to pubInfo 3763

b. Set D1 -> authValue to A1 3764

c. Set D1 -> pubInfo -> bReadSTClear to FALSE 3765

d. Set D1 -> pubInfo -> bWriteSTClear to FALSE 3766

e. Set D1 -> pubInfo -> bWriteDefine to FALSE 3767

11. Validate that sufficient NV is available to store D1 and pubInfo -> dataSize bytes of data 3768

a. Return TPM_NOSPACE if pubInfo -> dataSize is not available in the TPM 3769

12. If pubInfo -> nvIndex is not TPM_NV_INDEX_TRIAL 3770

a. Reserve NV space for pubInfo -> dataSize 3771

b. Set all bytes in the newly defined area to 0xFF 3772

13. Ignore continueAuthSession on input and set to FALSE on output 3773

14. Return TPM_SUCCESS 3774

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 212 9 July 2007
 TCG Published

20.2 TPM_NV_WriteValue 3775

Start of informative comment: 3776

This command writes the value to a defined area. The write can be TPM Owner authorized 3777
or unauthorized and protected by other attributes and will work when no TPM Owner is 3778
present. 3779

The action setting bGlobalLock to TRUE is intentionally before the action checking the 3780
owner authorization. This allows code (e.g., a BIOS) to lock NVRAM without knowing the 3781
owner authorization. 3782

End of informative comment. 3783

Incoming Operands and Sizes 3784

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the NV Area

6 4 4S 4 UINT32 dataSize The size of the data parameter

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Outgoing Operands and Sizes 3785

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValue

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA ownerAuth The authorization session digest HMAC key: ownerAuth

Actions 3786

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 213 9 July 2007

 TCG Published

1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks except 3787
for the max NV writes are ignored 3788

a. Ignored checks include physical presence, authorization, 3789
TPM_NV_PER_OWNERWRITE, PCR, bWriteDefine, bGlobalLock, bWriteSTClear, and 3790
locality. 3791

b. TPM_NV_PER_AUTHWRITE is not ignored. 3792

2. If nvIndex is TPM_NV_INDEX0 then 3793

a. If dataSize is not 0, the TPM MAY return TPM_BADINDEX. 3794

b. Set TPM_STCLEAR_FLAGS -> bGlobalLock to TRUE 3795

c. Return TPM_SUCCESS 3796

3. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, return 3797
TPM_BADINDEX on error 3798

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0] 3799

4. If D1 -> permission -> TPM_NV_PER_AUTHWRITE is TRUE return 3800
TPM_AUTH_CONFLICT 3801

5. If tag = TPM_TAG_RQU_AUTH1_COMMAND then 3802

a. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is FALSE return 3803
TPM_AUTH_CONFLICT 3804

b. Validate command and parameters using ownerAuth HMAC with TPM Owner 3805
authentication as the secret, return TPM_AUTHFAIL on error 3806

6. Else 3807

a. If D1 -> permission -> TPM_NV_PER_OWNERWRITE is TRUE return 3808
TPM_AUTH_CONFLICT 3809

b. If no TPM Owner validate max NV writes without an owner 3810

i. Set NV1 to TPM_PERMANENT_DATA -> noOwnerNVWrite 3811

ii. Increment NV1 by 1 3812

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITES 3813

iv. Set TPM_PERMANENT_DATA -> noOwnerNVWrite to NV1 3814

7. Check that D1 -> pcrInfoWrite -> localityAtRelease for TPM_STANY_DATA -> 3815
localityModifier is TRUE 3816

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 3817
localityAtRelease -> TPM_LOC_TWO would have to be TRUE 3818

b. On error return TPM_BAD_LOCALITY 3819

8. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 3820
asserted if not return TPM_BAD_PRESENCE 3821

9. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE 3822

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED 3823

10. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK 3824

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 214 9 July 2007
 TCG Published

a. If TPM_STCLEAR_DATA -> bGlobalLock is TRUE return TPM_AREA_LOCKED 3825

11. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR 3826

a. If D1 ->bWriteSTClear is TRUE return TPM_AREA_LOCKED 3827

12. If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of TPM_STCLEAR_DATA -> 3828
PCR[] 3829

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 3830
pcrInfoWrite 3831

b. Compare P1 to D1 -> pcrInfoWrite -> digestAtRelease return TPM_WRONGPCRVAL 3832
on mismatch 3833

13. If dataSize = 0 then 3834

a. Set D1 -> bWriteSTClear to TRUE 3835

b. Set D1 -> bWriteDefine to TRUE 3836

14. Else 3837

a. Set S1 to offset + dataSize 3838

b. If S1 > D1 -> dataSize return TPM_NOSPACE 3839

c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL 3840

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE 3841

d. Write the new value into the NV storage area 3842

15. Set D1 -> bReadSTClear to FALSE 3843

16. Return TPM_SUCCESS 3844

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 215 9 July 2007

 TCG Published

20.3 TPM_NV_WriteValueAuth 3845

Start of informative comment: 3846

This command writes to a previously defined area. The area must require authorization to 3847
write. Use this command when authorization other than the owner authorization is to be 3848
used. Otherwise, use TPM_NV_WriteValue. 3849

End of informative comment. 3850

Incoming Operands and Sizes 3851

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WriteValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the chunk

6 4 4S 4 UINT32 dataSize The size of the data area

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for NV element authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Outgoing Operands and Sizes 3852

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WriteValueAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE NonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Actions 3853

1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, return 3854
TPM_BADINDEX on error 3855

2. If D1 -> attributes does not specify TPM_NV_PER_AUTHWRITE then return 3856
TPM_AUTH_CONFLICT 3857

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 216 9 July 2007
 TCG Published

3. Validate authValue using D1 -> authValue, return TPM_AUTHFAIL on error 3858

4. Check that D1 -> pcrInfoWrite -> localityAtRelease for TPM_STANY_DATA -> 3859
localityModifier is TRUE 3860

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 3861
localityAtRelease -> TPM_LOC_TWO would have to be TRUE 3862

b. On error return TPM_BAD_LOCALITY 3863

5. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is 3864
asserted if not return TPM_BAD_PRESENCE 3865

6. If D1 -> pcrInfoWrite -> pcrSelection specifies a selection of PCR 3866

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 3867
pcrInfoWrite 3868

b. Compare P1 to digestAtRelease return TPM_WRONGPCRVAL on mismatch 3869

7. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE 3870

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED 3871

8. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK 3872

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED 3873

9. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR 3874

a. If D1 -> bWriteSTClear is TRUE return TPM_AREA_LOCKED 3875

10. If dataSize = 0 then 3876

a. Set D1 -> bWriteSTClear to TRUE 3877

b. Set D1 -> bWriteDefine to TRUE 3878

11. Else 3879

a. Set S1 to offset + dataSize 3880

b. If S1 > D1 -> dataSize return TPM_NOSPACE 3881

c. If D1 -> attributes specifies TPM_NV_PER_WRITEALL 3882

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE 3883

d. Write the new value into the NV storage area 3884

12. Set D1 -> bReadSTClear to FALSE 3885

13. Return TPM_SUCCESS 3886

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 217 9 July 2007

 TCG Published

20.4 TPM_NV_ReadValue 3887

Start of informative comment: 3888

Read a value from the NV store. This command uses optional owner authentication. 3889

Action 1 indicates that if the NV area is not locked then reading of the NV area continues 3890
without ANY authorization. This is intentional, and allows a platform manufacturer to set 3891
the NV areas, read them back, and then lock them all without having to install a TPM 3892
owner. 3893

End of informative comment. 3894

Incoming Operands and Sizes 3895

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValue

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the area

6 4 4S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for TPM Owner authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Outgoing Operands and Sizes 3896

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_NV_ReadValue

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data to set the area to

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth

Actions 3897

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 218 9 July 2007
 TCG Published

1. If TPM_PERMANENT_FLAGS -> nvLocked is FALSE then all authorization checks are 3898
ignored. 3899

a. Ignored checks include physical presence, authorization, PCR, bReadSTClear, 3900
locality, and TPM_NV_PER_OWNERREAD. 3901

b. TPM_NV_PER_AUTHREAD is not ignored. 3902

2. Set D1 a TPM_NV_DATA_AREA structure to the area pointed to by nvIndex, if not found 3903
return TPM_BADINDEX 3904

a. If nvIndex = TPM_NV_INDEX_DIR, set D1 to TPM_PERMANENT_DATA -> authDir[0] 3905

3. If tag = TPM_TAG_RQU_AUTH1_COMMAND then 3906

a. If D1 -> TPM_NV_PER_OWNERREAD is FALSE return TPM_AUTH_CONFLICT 3907

b. Validate command and parameters using TPM Owners authentication on error return 3908
TPM_AUTHFAIL 3909

4. Else 3910

a. If D1 -> TPM_NV_PER_AUTHREAD is TRUE return TPM_AUTH_CONFLICT 3911

b. If D1 -> TPM_NV_PER_OWNERREAD is TRUE return TPM_AUTH_CONFLICT 3912

5. Check that D1 -> pcrInfoRead -> localityAtRelease for TPM_STANY_DATA -> 3913
localityModifier is TRUE 3914

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 3915
localityAtRelease -> TPM_LOC_TWO would have to be TRUE 3916

b. On error return TPM_BAD_LOCALITY 3917

6. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 3918
asserted if not return TPM_BAD_PRESENCE 3919

7. If D1 -> TPM_NV_PER_READ_STCLEAR then 3920

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD 3921

8. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR 3922

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 3923
pcrInfoRead 3924

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 3925
mismatch 3926

9. If dataSize is 0 then 3927

a. Set D1 -> bReadSTClear to TRUE 3928

b. Set data to all zeros 3929

10. Else 3930

a. Set S1 to offset + dataSize 3931

b. If S1 > D1 -> dataSize return TPM_NOSPACE 3932

c. Set data to area pointed to by offset 3933

11. Return TPM_SUCCESS 3934

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 219 9 July 2007

 TCG Published

20.5 TPM_NV_ReadValueAuth 3935

Start of informative comment: 3936

This command requires that the read be authorized by a value set with the blob. 3937

End of informative comment. 3938

Incoming Operands and Sizes 3939

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_ReadValueAuth

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UNIT32 offset The offset from the data area

6 4 5S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle authThe auth handle for the NV element authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL authContinueSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA authHmac HMAC key: nv element authorization

Outgoing Operands and Sizes 3940

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_ReadValueAuth

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data

6 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE authLastNonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL authContinueSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA authHmacOut HMAC key: nv element authorization

Actions 3941

1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, on error 3942
return TPM_BADINDEX 3943

2. If D1 -> TPM_NV_PER_AUTHREAD is FALSE return TPM_AUTH_CONFLICT 3944

3. Validate authHmac using D1 -> authValue on error return TPM_AUTHFAIL 3945

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 220 9 July 2007
 TCG Published

4. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is 3946
asserted if not return TPM_BAD_PRESENCE 3947

5. Check that D1 -> pcrInfoRead -> localityAtRelease for TPM_STANY_DATA -> 3948
localityModifier is TRUE 3949

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> 3950
localityAtRelease -> TPM_LOC_TWO would have to be TRUE 3951

b. On error return TPM_BAD_LOCALITY 3952

6. If D1 -> pcrInfoRead -> pcrSelection specifies a selection of PCR 3953

a. Create P1 a composite hash of the TPM_STCLEAR_DATA -> PCR[] specified by D1 -> 3954
pcrInfoRead 3955

b. Compare P1 to D1 -> pcrInfoRead -> digestAtRelease return TPM_WRONGPCRVAL on 3956
mismatch 3957

7. If D1 specifies TPM_NV_PER_READ_STCLEAR then 3958

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD 3959

8. If dataSize is 0 then 3960

a. Set D1 -> bReadSTClear to TRUE 3961

b. Set data to all zeros 3962

9. Else 3963

a. Set S1 to offset + dataSize 3964

b. If S1 > D1 -> dataSize return TPM_NOSPACE 3965

c. Set data to area pointed to by offset 3966

10. Return TPM_SUCCESS 3967

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 221 9 July 2007

 TCG Published

21. Session Management 3968

Start of informative comment: 3969

Three TPM_RT_CONTEXT session resources located in TPM_STANY_DATA work together to 3970
control session save and load: contextNonceSession, contextCount, and contextList[]. 3971

All three MUST initialized at TPM_Startup(ST_CLEAR) and TPM_Startup(ST_DEACTIVATED) 3972
and MAY be initialized at TPM_Startup(ST_STATE). Initializing invalidates all saved 3973
sessions. They MAY be restored by TPM_Startup(ST_STATE). This case would allow saved 3974
sessions to be loaded. The actual ST_STATE operation is reported by the 3975
TPM_RT_CONTEXT startup effect. 3976

TPM_SaveContext creates a contextBlob containing an encrypted contextNonceSession. The 3977
nonce is checked by TPM_LoadContext. So initializing contextNonceSession invalidates all 3978
saved contexts. The nonce is large and protected, making a replay infeasible. 3979

The contextBlob also contains a public but protected contextCount. The count increments 3980
for each saved contextBlob. The TPM also saves contextCount in contextList[]. The TPM 3981
validates contextBlob against the contextList[] during TPM_LoadContext. Since the 3982
contextList[] is finite, it limits the number of valid saved sessions. Since the contextCount 3983
cannot be allowed to wrap, it limits the total number of saved sessions. 3984

After a contextBlob is loaded, its contextCount entry is removed from contextList[]. This 3985
releases space in the context list for future entries. It also invalidates the contextBlob. So a 3986
saved contextBlob can be loaded only once. 3987

TPM_FlushSpecific can also specify a contextCount to be removed from the contextList[], 3988
allowing invalidation of an individual contextBlob. This is different from TPM_FlushSpecific 3989
specifying a session handle, which invalidates a loaded session, not a saved contextBlob. 3990

End of informative comment. 3991

 3992

21.1 TPM_KeyControlOwner 3993

Start of informative comment: 3994

This command controls some attributes of keys that are stored within the TPM key cache. 3995

OwnerEvict: If this bit is set to true, this key remains in the TPM non-volatile storage 3996
through all TPM_Startup events. The only way to evict this key is for the TPM Owner to 3997
execute this command again, setting the owner control bit to false and then executing 3998
TPM_FlushSpecific. 3999

The key handle does not reference an authorized entity and is not validated. 4000

End of informative comment. 4001

Incoming Parameters and Sizes 4002

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 222 9 July 2007
 TCG Published

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KeyControlOwner

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key.

5 <> 2S <> TPM_PUBKEY pubKey The public key associated with the loaded key

6 4 3S 4 TPM_KEY_CONTROL bitName The name of the bit to be modified

7 1 4S 1 BOOL bitValue The value to set the bit to

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

9 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

12 20 20 TPM_AUTHDATA ownerAuth HMAC authorization: key ownerAuth

Outgoing Parameters and Sizes 4003

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_KeyControlOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM.

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC authorization: key ownerAuth

Descriptions 4004

1. Set an internal bit within the key cache that controls some attribute of a loaded key. 4005

Actions 4006

1. Validate the AuthData using the owner authentication value, on error return 4007
TPM_AUTHFAIL 4008

2. Validate that keyHandle refers to a loaded key, return TPM_INVALID_KEYHANDLE on 4009
error. 4010

3. Validate that pubKey matches the key held by the TPM pointed to by keyHandle, return 4011
TPM_BAD_PARAMETER on mismatch 4012

a. This check added so that virtualization of the keyHandle does not result in attacks as 4013
the keyHandle is not associated with an authorization value 4014

4. Validate that bitName is valid, return TPM_BAD_MODE on error. 4015

5. If bitName == TPM_KEY_CONTROL_OWNER_EVICT 4016

a. If bitValue == TRUE 4017

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 223 9 July 2007

 TCG Published

i. Verify that after this operation at least two key slots will be present within the 4018
TPM that can store any type of key both of which do NOT have the OwnerEvict bit 4019
set, on error return TPM_NOSPACE 4020

ii. Verify that for this key handle, parentPCRStatus is FALSE and isVolatile is 4021
FALSE. Return TPM_BAD_PARAMETER on error. 4022

iii. Set ownerEvict within the internal key storage structure to TRUE. 4023

b. Else if bitValue == FALSE 4024

i. Set ownerEvict within the internal key storage structure to FALSE. 4025

6. Return TPM_SUCCESS 4026

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 224 9 July 2007
 TCG Published

21.2 TPM_SaveContext 4027

Start of informative comment: 4028

TPM_SaveContext saves a loaded resource outside the TPM. After successful execution of 4029
the command, the TPM automatically releases the internal memory for sessions but leaves 4030
keys in place. 4031

There is no assumption that a saved context blob is stored in a safe, protected area. Since 4032
the context blob can be loaded at any time, do not rely on TPM_SaveContext to restrict 4033
access to an entity such as a key. If use of the entity should be restricted, means such as 4034
authorization secrets or PCR’s should be used. 4035

In general, TPM_SaveContext can save a transport session. However, it cannot save an 4036
exclusive transport session, because any ordinal other than TPM_ExecuteTransport 4037
terminates the exclusive transport session. This action prevents the exclusive transport 4038
session from being saved and reloaded while intervening commands are hidden from the 4039
transport log. 4040

End of informative comment. 4041

Incoming Parameters and Sizes 4042

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 TPM_HANDLE handle Handle of the resource being saved.

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being saved

6 16 3S 16 BYTE[16] label Label for identification purposes

Outgoing Parameters and Sizes 4043

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveContext

4 4 3S 4 UINT32 contextSize The actual size of the outgoing context blob

5 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Description 4044

1. The caller of the function uses the label field to add additional sequencing, anti-replay or 4045
other items to the blob. The information does not need to be confidential but needs to be 4046
part of the blob integrity. 4047

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 225 9 July 2007

 TCG Published

Actions 4048

1. Map V1 to TPM_STANY_DATA 4049

2. Validate that handle points to resource that matches resourceType, return 4050
TPM_INVALID_RESOURCE on error 4051

3. Validate that resourceType is a resource from the following list if not return 4052
TPM_INVALID_RESOURCE 4053

a. TPM_RT_KEY 4054

b. TPM_RT_AUTH 4055

c. TPM_RT_TRANS 4056

d. TPM_RT_DAA_TPM 4057

4. Locate the correct nonce 4058

a. If resourceType is TPM_RT_KEY 4059

i. If TPM_STCLEAR_DATA -> contextNonceKey is all zeros 4060

(1) Set TPM_STCLEAR_DATA -> contextNonceKey to the next value from the TPM 4061
RNG 4062

ii. Map N1 to TPM_STCLEAR_DATA -> contextNonceKey 4063

iii. If the key has TPM_KEY_CONTROL_OWNER_EVICT set then return 4064
TPM_OWNER_CONTROL 4065

b. Else 4066

i. If V1 -> contextNonceSession is all zeros 4067

(1) Set V1 -> contextNonceSession to the next value from the TPM RNG 4068

ii. Map N1 to V1 -> contextNonceSession 4069

5. Set K1 to TPM_PERMANENT_DATA -> contextKey 4070

6. Create R1 by putting the sensitive part of the resource pointed to by handle into a 4071
structure. The structure is a TPM manufacturer option. The TPM MUST ensure that ALL 4072
sensitive information of the resource is included in R1. 4073

7. Create C1 a TPM_CONTEXT_SENSITIVE structure 4074

a. C1 forms the inner encrypted wrapper for the blob. All saved context blobs MUST 4075
include a TPM_CONTEXT_SENSITIVE structure and the TPM_CONTEXT_SENSITIVE 4076
structure MUST be encrypted. 4077

b. Set C1 -> contextNonce to N1 4078

c. Set C1 -> internalData to R1 4079

8. Create B1 a TPM_CONTEXT_BLOB 4080

a. Set B1 -> tag to TPM_TAG_CONTEXTBLOB 4081

b. Set B1 -> resourceType to resourceType 4082

c. Set B1 -> handle to handle 4083

d. Set B1 -> integrityDigest to all zeros 4084

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 226 9 July 2007
 TCG Published

e. Set B1 -> label to label 4085

f. Set B1 -> additionalData to information determined by the TPM manufacturer. This 4086
data will help the TPM to reload and reset context. This area MUST NOT hold any data 4087
that is sensitive (symmetric IV are fine, prime factors of an RSA key are not). 4088

i. For OSAP sessions, and DSAP attached to keys, the hash of the entity MUST be 4089
included in additionalData 4090

g. Set B1 -> additionalSize to the size of additionalData 4091

h. Set B1 -> sensitiveSize to the size of C1 4092

i. Set B1 -> sensitiveData to C1 4093

9. If resourceType is TPM_RT_KEY 4094

a. Set B1 -> contextCount to 0 4095

10. Else 4096

a. If V1 -> contextCount > 232-2 then 4097

i. Return with TPM_TOOMANYCONTEXTS 4098

b. Else 4099

i. Validate that the TPM can still manage the new count value 4100

(1) If the distance between the oldest saved context and the contextCount is too 4101
large return TPM_CONTEXT_GAP 4102

ii. Find contextIndex such that V1 -> contextList[contextIndex] equals 0. If not found 4103
exit with TPM_NOCONTEXTSPACE 4104

iii. Increment V1 -> contextCount by 1 4105

iv. Set V1-> contextList[contextIndex] to V1 -> contextCount 4106

v. Set B1 -> contextCount to V1 -> contextCount 4107

c. The TPM MUST invalidate all information regarding the resource except for 4108
information needed for reloading 4109

11. Calculate B1 -> integrityDigest the HMAC of B1 using TPM_PERMANENT_DATA -> 4110
tpmProof as the secret 4111

12. Create E1 by encrypting C1 using K1 as the key 4112

a. Set B1 -> sensitiveSize to the size of E1 4113

b. Set B1 -> sensitiveData to E1 4114

13. Set contextSize to the size of B1 4115

14. Return B1 in contextBlob 4116

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 227 9 July 2007

 TCG Published

21.3 TPM_LoadContext 4117

Start of informative comment: 4118

TPM_LoadContext loads into the TPM a previously saved context. The command returns a 4119
handle. 4120

End of informative comment. 4121

Incoming Parameters and Sizes 4122

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE entityHandle
The handle the TPM MUST use to locate the entity tied to the OSAP/DSAP
session

5 1 2S 1 BOOL keepHandle Indication if the handle MUST be preserved

6 4 3S 4 UINT32 contextSize The size of the following context blob.

7 <> 4S <> TPM_CONTEXT_BLOB contextBlob The context blob

Outgoing Parameters and Sizes 4123

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadContext

4 4 TPM_HANDLE handle The handle assigned to the resource after it has been successfully loaded.

Actions 4124

1. Map contextBlob to B1, a TPM_CONTEXT_BLOB structure 4125

2. Map V1 to TPM_STANY_DATA 4126

3. Create M1 by decrypting B1 -> sensitiveData using TPM_PERMANENT_DATA -> 4127
contextKey 4128

4. Create C1 and R1 by splitting M1 into a TPM_CONTEXT_SENSITIVE structure and 4129
internal resource data 4130

5. Check contextNonce 4131

a. If B1 -> resourceType is NOT TPM_RT_KEY 4132

i. If C1 -> contextNonce does not equal V1 -> contextNonceSession return 4133
TPM_BADCONTEXT 4134

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 228 9 July 2007
 TCG Published

ii. Validate that the resource pointed to by the context is loaded (i.e. for OSAP the 4135
key referenced is loaded and DSAP connected to the key) return 4136
TPM_RESOURCEMISSING 4137

(1) For OSAP sessions the TPM MUST validate that the incoming pubkey hash 4138
matches the key held by the TPM 4139

(2) For OSAP and DSAP sessions referring to a key, verify that entityHandle 4140
identifies the key linked to this OSAP/DSAP session, if not return 4141
TPM_BAD_HANDLE. 4142

b. Else 4143

i. If C1 -> internalData -> parentPCRStatus is FALSE and C1 -> internalData -> 4144
isVolatile is FALSE 4145

(1) Ignore C1 -> contextNonce 4146

ii. else 4147

(1) If C1 -> contextNonce does not equal TPM_STCLEAR_DATA -> 4148
contextNonceKey return TPM_BADCONTEXT 4149

6. Validate the structure 4150

a. Set H1 to B1 -> integrityDigest 4151

b. Set B1 -> integrityDigest to all zeros 4152

c. Copy M1 to B1 -> sensitiveData 4153

d. Create H2 the HMAC of B1 using TPM_PERMANENT_DATA -> tpmProof as the HMAC 4154
key 4155

e. If H2 does not equal H1 return TPM_BADCONTEXT 4156

7. If keepHandle is TRUE 4157

a. Set handle to B1 -> handle 4158

b. If the TPM is unable to restore the handle the TPM MUST return TPM_BAD_HANDLE 4159

8. Else 4160

a. The TPM SHOULD attempt to restore the handle but if not possible it MAY set the 4161
handle to any valid for B1 -> resourceType 4162

9. If B1 -> resourceType is NOT TPM_RT_KEY 4163

a. Find contextIndex such that V1 -> contextList[contextIndex] equals B1 -> 4164
TPM_CONTEXT_BLOB -> contextCount 4165

b. If not found then return TPM_BADCONTEXT 4166

c. Set V1 -> contextList[contextIndex] to 0 4167

10. Process B1 to return the resource back into TPM use 4168

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 229 9 July 2007

 TCG Published

22. Eviction 4169

Start of informative comment: 4170

The TPM has numerous resources held inside of the TPM that may need eviction. The need 4171
for eviction occurs when the number or resources in use by the TPM exceed the available 4172
space. For resources that are hard to reload (i.e. keys tied to PCR values) the outside entity 4173
should first perform a context save before evicting items. 4174

In version 1.1 there were separate commands to evict separate resource types. This new 4175
command set uses the resource types defined for context saving and creates a generic 4176
command that will evict all resource types. 4177

End of informative comment. 4178

The TPM MUST NOT flush the EK or SRK using this command. 4179

Version 1.2 deprecates the following commands: 4180

● TPM_Terminate_Handle 4181

● TPM_EvictKey 4182

● TPM_Reset 4183

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 230 9 July 2007
 TCG Published

22.1 TPM_FlushSpecific 4184

Start of informative comment: 4185

TPM_FlushSpecific flushes from the TPM a specific handle. 4186

End of informative comment. 4187

Incoming Parameters and Sizes 4188

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

4 4 TPM_HANDLE handle The handle of the item to flush

5 4 2S 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being flushed

Outgoing Parameters and Sizes 4189

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_FlushSpecific

Description 4190

TPM_FlushSpecific releases the resources associated with the given handle. 4191

Actions 4192

1. If resourceType is TPM_RT_CONTEXT 4193

a. The handle for a context is not a handle but the "context count" value. The TPM uses 4194
the "context count" value to locate the proper contextList entry and sets R1 to the 4195
contextList entry 4196

2. Else if resourceType is TPM_RT_KEY 4197

a. Set R1 to the key pointed to by handle 4198

b. If R1 -> ownerEvict is TRUE return TPM_KEY_OWNER_CONTROL 4199

3. Else if resourceType is TPM_RT_AUTH 4200

a. Set R1 to the authorization session pointed to by handle 4201

4. Else if resourceType is TPM_RT_TRANS 4202

a. Set R1 to the transport session pointed to by handle 4203

5. Else if resourceType is TPM_RT_DAA_TPM 4204

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 231 9 July 2007

 TCG Published

a. Set R1 to the DAA session pointed to by handle 4205

6. Else return TPM_INVALID_RESOURCE 4206

7. Validate that R1 determined by resourceType and handle points to a valid allocated 4207
resource. Return TPM_BAD_PARAMETER on error. 4208

8. Invalidate R1 and all internal resources allocated to R1 4209

a. Resources include authorization sessions 4210

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 232 9 July 2007
 TCG Published

23. Timing Ticks 4211

Start of informative comment: 4212

The TPM timing ticks are always available for use. The association of timing ticks to actual 4213
time is a protocol that occurs outside of the TPM. See the design document for details. 4214

The setting of the clock type variable is a one time operation that allows the TPM to be 4215
configured to the type of platform that is installed on. 4216

The ability for the TPM to continue to increment the timer ticks across power cycles of the 4217
platform is a TPM and platform manufacturer decision. 4218

End of informative comment. 4219

23.1 TPM_GetTicks 4220

Start of informative comment: 4221

This command returns the current tick count of the TPM. 4222

End of informative comment. 4223

Incoming Parameters and Sizes 4224

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

Outgoing Parameters and Sizes 4225

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

4 32 3S 32 TPM_CURRENT_TICKS currentTime The current time held in the TPM

Descriptions 4226

This command returns the current time held in the TPM. It is the responsibility of the 4227
external system to maintain any relation between this time and a UTC value or local real 4228
time value. 4229

Actions 4230

1. Set T1 to the internal TPM_CURRENT_TICKS structure 4231

2. Return T1 as currentTime. 4232

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 233 9 July 2007

 TCG Published

23.2 TPM_TickStampBlob 4233

Start of informative comment: 4234

This command applies a time stamp to the passed blob. The TPM makes no representation 4235
regarding the blob merely that the blob was present at the TPM at the time indicated. 4236

End of informative comment. 4237

Incoming Parameters and Sizes 4238

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 4 TPM_KEY_HANDLE keyHandle
The keyHandle identifier of a loaded key that can perform digital
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti replay value added to signature

6 20 3S 20 TPM_DIGEST digestToStamp The digest to perform the tick stamp on

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA privAuth
The authorization session digest that authorizes the use of keyHandle.
HMAC key: key.usageAuth

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 234 9 July 2007
 TCG Published

Outgoing Parameters and Sizes 4239

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 32 3S 32 TPM_CURRENT_TICKS currentTicks The current time according to the TPM

5 4 4S 4 UINT32 sigSize The length of the returned digital signature

6 <> 5S <> BYTE[] sig The resulting digital signature.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth

Description 4240

The function performs a digital signature on the hash of digestToStamp and the current tick 4241
count. 4242

It is the responsibility of the external system to maintain any relation between tick count 4243
and a UTC value or local real time value. 4244

Actions 4245

1. The TPM validates the AuthData to use the key pointed to by keyHandle. 4246

2. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, TPM_KEY_IDENTITY or 4247
TPM_KEY_LEGACY, if not return the error code TPM_INVALID_KEYUSAGE. 4248

3. Validate that keyHandle -> sigScheme is TPM_SS_RSASSAPKCS1v15_SHA1 or 4249
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG. 4250

4. If TPM_STCLEAR_DATA -> currentTicks is not properly initialized 4251

a. Initialize the TPM_STCLEAR_DATA -> currentTicks 4252

5. Create T1, a TPM_CURRENT_TICKS structure. 4253

6. Create H1 a TPM_SIGN_INFO structure and set the structure defaults 4254

a. Set H1 -> fixed to “TSTP” 4255

b. Set H1 -> replay to antiReplay 4256

c. Create H2 the concatenation of digestToStamp || T1 4257

d. Set H1 -> dataLen to the length of H2 4258

e. Set H1 -> data to H2 4259

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 235 9 July 2007

 TCG Published

7. The TPM computes the signature, sig, using the key referenced by keyHandle, using 4260
SHA-1 of H1 as the information to be signed 4261

8. The TPM returns T1 as currentTicks parameter 4262

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 236 9 July 2007
 TCG Published

24. Transport Sessions 4263

24.1 TPM_EstablishTransport 4264

Start of informative comment: 4265

This establishes the transport session. Depending on the attributes specified for the session 4266
this may establish shared secrets, encryption keys, and session logs. The session will be in 4267
use for by the TPM_ExecuteTransport command. 4268

The only restriction on what can happen inside of a transport session is that there is no 4269
“nesting” of sessions. It is permissible to perform operations that delete internal state and 4270
make the TPM inoperable. 4271

End of informative comment. 4272

Incoming Parameters and Sizes 4273

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_KEY_HANDLE encHandle The handle to the key that encrypted the blob

5 <> 2S <> TPM_TRANSPORT_PUBLIC transPublic The public information describing the transport session

6 4 3S 4 UINT32 secretSize The size of the secret Area

7 <> 4S <> BYTE[] secret The encrypted secret area

8 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

11 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: encKey.usageAuth

 4274

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 237 9 July 2007

 TCG Published

Outgoing Parameters and Sizes 4275

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_TRANSHANDLE transHandle The handle for the transport session

5 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 32 4S 32 TPM_CURRENT_TICKS currentTicks The current tick count

7 20 5S 20 TPM_NONCE transNonceEven The even nonce in use for subsequent execute transport

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth

Description 4276

This command establishes the transport sessions shared secret. The encryption of the 4277
shared secret uses the public key of the key loaded in encKey. 4278

Actions 4279

1. If encHandle is TPM_KH_TRANSPORT then 4280

a. If tag is NOT TPM_TAG_RQU_COMMAND return TPM_BADTAG 4281

b. If transPublic -> transAttributes specifies TPM_TRANSPORT_ENCRYPT return 4282
TPM_BAD_SCHEME 4283

c. If secretSize is not 20 return TPM_BAD_PARAM_SIZE 4284

d. Set A1 to secret 4285

2. Else 4286

a. encHandle -> keyUsage MUST be TPM_KEY_STORAGE or TPM_KEY_LEGACY return 4287
TPM_INVALID_KEYUSAGE on error 4288

b. If encHandle -> authDataUsage does not equal TPM_AUTH_NEVER and tag is NOT 4289
TPM_TAG_RQU_AUTH1_COMMAND return TPM_AUTHFAIL 4290

c. Using encHandle -> usageAuth validate the AuthData to use the key and the 4291
parameters to the command 4292

d. Create K1 a TPM_TRANSPORT_AUTH structure by decrypting secret using the key 4293
pointed to by encHandle 4294

e. Validate K1 for tag 4295

f. Set A1 to K1 -> authData 4296

3. If transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT 4297

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 238 9 July 2007
 TCG Published

a. If TPM_PERMANENT_FLAGS -> FIPS is true and transPublic -> algId is equal to 4298
TPM_ALG_MGF1 return TPM_INAPPROPRIATE_ENC 4299

b. Check if the transPublic -> algId is supported, if not return 4300
TPM_BAD_KEY_PROPERTY 4301

c. If transPublic -> algid is TPM_ALG_AESXXX, check that transPublic -> encScheme is 4302
supported, if not return TPM_INAPPROPRIATE_ENC 4303

d. Perform any initializations necessary for the algorithm 4304

4. Generate transNonceEven from the TPM RNG 4305

5. Create T1 a TPM_TRANSPORT_INTERNAL structure 4306

a. Ensure that the TPM has sufficient internal space to allocate the transport session, 4307
return TPM_RESOURCES on error 4308

b. Assign a T1 -> transHandle value. This value is assigned by the TPM 4309

c. Set T1 -> transDigest to all zeros 4310

d. Set T1 -> transPublic to transPublic 4311

e. Set T1-> transNonceEven to transNonceEven 4312

f. Set T1 -> authData to A1 4313

6. If TPM_STANY_DATA -> currentTicks is not properly initialized 4314

a. Initialize the TPM_STANY_DATA -> currentTicks 4315

7. Set currentTicks to TPM_STANY_DATA -> currentTicks 4316

8. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then 4317

a. Create L1 a TPM_TRANSPORT_LOG_IN structure 4318

i. Set L1 -> parameters to SHA-1 (ordinal || transPublic || secretSize || secret) 4319

ii. Set L1 -> pubKeyHash to all zeros 4320

iii. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L1) 4321

b. Create L2 a TPM_TRANSPORT_LOG_OUT structure 4322

i. Set L2 -> parameters to SHA-1 (returnCode || ordinal || locality || currentTicks 4323
|| transNonceEven) 4324

ii. Set L2 -> locality to the locality of this command 4325

iii. Set L2 -> currentTicks to currentTicks, this MUST be the same value that is 4326
returned in the currentTicks parameter 4327

iv. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L2) 4328

9. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_EXCLUSIVE then set 4329
TPM_STANY_FLAGS -> transportExclusive to TRUE 4330

a. Execution of any command other than TPM_ExecuteTransport or 4331
TPM_ReleaseTransportSigned targeting this transport session will cause the abnormal 4332
invalidation of this transport session transHandle 4333

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 239 9 July 2007

 TCG Published

b. The TPM gives no indication, other than invalidation of transHandle, that the session 4334
is terminated 4335

10. Return T1 -> transHandle as transHandle 4336

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 240 9 July 2007
 TCG Published

24.2 TPM_ExecuteTransport 4337

Start of informative comment: 4338

Delivers a wrapped TPM command to the TPM where the TPM unwraps the command and 4339
then executes the command. 4340

TPM_ExecuteTransport uses the same rolling nonce paradigm as other authorized TPM 4341
commands. The even nonces start in TPM_EstablishTransport and change on each 4342
invocation of TPM_ExecuteTransport. 4343

The only restriction on what can happen inside of a transport session is that there is no 4344
“nesting” of sessions. It is permissible to perform operations that delete internal state and 4345
make the TPM inoperable. 4346

Because, in general, key handles are not logged, a digest of the corresponding public key is 4347
logged. In cases where the key handle is logged (e.g. TPM_OwnerReadInternalPub), the 4348
public key is also logged. 4349

The method of incrementing the symmetric key counter value is different from that used by 4350
some standard crypto libraries (e.g. openSSL, Java JCE) that increment the entire counter 4351
value. TPM users should be aware of this to avoid errors when the counter wraps. 4352

End of informative comment. 4353

Incoming Parameters and Sizes 4354

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 4 2S 4 UINT32 wrappedCmdSize Size of the wrapped command

5 <> 3S <> BYTE[] wrappedCmd The wrapped command

6 4 TPM_TRANSHANDLE transHandle The transport session handle

 2H1 20 TPM_NONCE transLastNonceEven Even nonce previously generated by TPM

7 20 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueTransSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

 4355

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 241 9 July 2007

 TCG Published

Outgoing Parameters and Sizes 4356

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode
The return code of the ExecuteTransport command. This does not reflect
the status of wrapped command.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 8 3S 8 UINT64 currentTicks The current ticks when the command was executed

5 4 4S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

6 4 5S 4 UINT32 wrappedRspSize Size of the wrapped response

7 <> 6S <> BYTE[] wrappedRsp The wrapped response

8 20 2H1 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueTransSession The continue use flag for the session

10 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

Description 4357

1. This command executes a TPM command using the transport session. 4358

2. Prior to execution of the wrapped command (action 11 below) failure of the transport 4359
session MUST have no effect on the resources referenced by the wrapped command. The 4360
exception is when the TPM goes into failure mode and return FAILED_SELFTEST for all 4361
subsequent commands. 4362

3. After execution of the wrapped command, failure of the transport session MAY NOT 4363
affect wrapped command resources. That is, the TPM is not required to clean up the 4364
effects of the wrapped command. Sessions and keys MAY remain loaded. It is 4365
understood that the transport session will be returning an error code and not reporting 4366
any session nonces. Therefore, wrapped sessions are no longer useful to the caller. It is 4367
the responsibility of the caller to clean up the result of the wrapped command. 4368

4. Execution of the wrapped command (action 11) SHOULD have no effect on the transport 4369
session. 4370

a. The wrapped command SHALL use no resources of the transport session, this 4371
includes authorization sessions 4372

b. If the wrapped command execution returns an error (action 11 below) then the 4373
sessions for TPM_ExecuteTransport still operate properly. 4374

c. The exception to this is when the wrapped command causes the TPM to go into 4375
failure mode and return TPM_FAILSELFTEST for all subsequent commands 4376

5. Field layout 4377

a. Notation 4378

i. et indicates the outer TPM_ExecuteTransport command and response 4379

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 242 9 July 2007
 TCG Published

ii. w indicates the inner command and response that is wrapped by the 4380
TPM_ExecuteTransport. 4381

iii. (o) indicates optional parameters that may or may not be present in the wrapped 4382
command. 4383

b. Command representation 4384

c. ** 4385

d. TAGet | LENet | ORDet | wrappedCmdSize | wrappedCmd | AUTHet 4386

e. ** 4387

f. wrappedCmd looks like the following 4388

g. ** 4389

h. TAGw | LENw | ORDw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o) 4390

i. ** 4391

j. | LEN1 | 4392

k. | E1 | (encrypted) 4393

l. | C1 | (decrypted) 4394

m. Response representation 4395

n. ** 4396

o. TAGet | LENet | RCet | wrappedRspSize | wrappedRsp | AUTHet 4397

p. ** 4398

q. wrappedRsp looks like the following 4399

r. *** 4400

s. TAGw | LENw | RCw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o) 4401

t. *** 4402

u. | LEN2 | 4403

v. | �-------------------------- C2 --� | 4404

w. | S2 | (decrypted) 4405

x. | E2 | (encrypted) 4406

y. The only command and response parameter that is possibly encrypted is DATAw. 4407

6. Additional DATAw comments 4408

a. For TPM_FlushSpecific and TPM_SaveContext 4409

i. The DATAw part of these commands does not include the handle. 4410

(1) It is understood that encrypting the resourceType prevents a determination of 4411
the handle type. 4412

ii. If the resourceType is TPM_RT_KEY, then the public key SHOULD be logged. 4413

b. For TPM_DAA_Join and TPM_DAA_Sign 4414

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 243 9 July 2007

 TCG Published

i. The DATAw part of these commands does not include the input handle. The 4415
output handle from stage 0 is included in DATAW. 4416

c. For TPM_LoadKey2 4417

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 4418
logged by the outgoing transport. 4419

d. For TPM_LoadKey 4420

i. The outgoing handle is part of the outgoing DATAw and is encrypted and logged. 4421

e. For TPM_LoadContext 4422

i. The outgoing handle is not part of the outgoing DATAw and is not encrypted or 4423
logged by the outgoing transport. 4424

(1) It is understood that encrypting the contextBlob prevents a determination of 4425
the handle type. 4426

7. TPM_ExecuteTransport returns an implementation defined result when the wrapped 4427
command would cause termination of the transport session. Implementation defined 4428
possibilities include but are not limited to: the wrapped command may execute, 4429
completely, partially, or not at all, the transport session may or may not be terminated, 4430
continueTransSession may not be processed or returned correctly, and an error may or 4431
may not be returned. The wrapped commands include: 4432

a. TPM_FlushSpecific, TPM_SaveContext targeting the transport session 4433

b. TPM_OwnerClear, TPM_ForceClear, TPM_RevokeTrust 4434

Actions 4435

1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1 4436

2. Parse wrappedCmd 4437

a. Set TAGw, LENw, and ORDw to the parameters from wrappedCmd 4438

b. Set E1 to DATAw 4439

i. This pointer is ordinal dependent and requires the execute transport command to 4440
parse wrappedCmd 4441

c. Set LEN1 to the length of DATAw 4442

i. DATAw always ends at the start of AUTH1w if AUTH1w is present 4443

3. If LEN1 is less that 0, or if ORDw is unknown, unimplemented, or cannot be determined 4444

a. Return TPM_BAD_PARAMETER 4445

4. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then 4446

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1 4447

i. Using the MGF1 function, create string G1 of length LEN1. The inputs to the 4448
MGF1 are transLastNonceEven, transNonceOdd, “in”, and T1 -> authData. These 4449
four values concatenated together form the Z value that is the seed for the MGF1. 4450

ii. Create C1 by performing an XOR of G1 and wrappedCmd starting at E1. 4451

b. If the encryption algorithm requires an IV or CTR, calculate the IV or CTR value 4452

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 244 9 July 2007
 TCG Published

i. Using the MGF1 function, create string IV1 or CTR1 with a length set by the block 4453
size of the encryption algorithm. The inputs to the MGF1 are 4454
transLastNonceEven, transNonceOdd, and “in”. These three values concatenated 4455
together form the Z value that is the seed for the MGF1. Note that any 4456
terminating characters within the string “in” are ignored, so a total of 42 bytes are 4457
hashed. 4458

ii. The symmetric key is taken from the first bytes of T1 -> authData. 4459

iii. Decrypt DATAw and replace the DATAw area of E1 creating C1 4460

c. TPM_OSAP, TPM_OIAP have no parameters encrypted 4461

d. TPM_DSAP has special rules for parameter encryption 4462

5. Else 4463

a. Set C1 to the DATAw area E1 of wrappedCmd 4464

6. Create H1 the SHA-1 of (ORDw || C1). 4465

a. C1 MUST point at the decrypted DATAw area of E1 4466

b. The TPM MAY use this calculation for both execute transport authorization, 4467
authorization of the wrapped command and transport log creation 4468

7. Validate the incoming transport session authorization 4469

a. Set inParamDigest to SHA-1 (ORDet || wrappedCmdSize || H1) 4470

b. Calculate the HMAC of (inParamDigest || transLastNonceEven || transNonceOdd || 4471
continueTransSession) using T1 -> authData as the HMAC key 4472

c. Validate transAuth, on errors return TPM_AUTHFAIL 4473

8. If TPM_ExecuteTransport requires auditing 4474

a. Create TPM_AUDIT_EVENT_IN using H1 as the input parameter digest and update 4475
auditDigest 4476

b. On any error return TPM_AUDITFAIL_UNSUCCESSFUL 4477

9. If ORDw is from the list of following commands return TPM_NO_WRAP_TRANSPORT 4478

a. TPM_EstablishTransport 4479

b. TPM_ExecuteTransport 4480

c. TPM_ReleaseTransportSigned 4481

10. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then 4482

a. Create L2 a TPM_TRANSPORT_LOG_IN structure 4483

b. Set L2 -> parameters to H1 4484

c. If ORDw is a command with no key handles 4485

i. Set L2 -> pubKeyHash to all zeros 4486

d. If ORDw is a command with one key handle 4487

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed to 4488
by the key handle. 4489

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 245 9 July 2007

 TCG Published

ii. Set L2 -> pubKeyHash to SHA-1 (K2) 4490

e. If ORDw is a command with two key handles 4491

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed to 4492
by the first key handle. 4493

ii. Create K3 the hash of the TPM_STORE_PUBKEY structure of the key pointed to 4494
by the second key handle. 4495

iii. Set L2 -> pubKeyHash to SHA-1 (K2 || K3) 4496

f. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L2) 4497

g. If ORDw is a command with key handles, and the key is not loaded, return 4498
TPM_INVALID_KEYHANDLE. 4499

11. Send the wrapped command to the normal TPM command parser, the output is C2 and 4500
the return code is RCw 4501

a. If ORDw is a command that is audited then the TPM MUST perform the input and 4502
output audit of the command as part of this action. 4503

b. The TPM MAY use H1 as the data value in the authorization and audit calculations 4504
during the execution of C1 4505

12. Set CT1 to TPM_STANY_DATA -> currentTicks -> currentTicks and return CT1 in the 4506
currentTicks output parameter 4507

13. Calculate S2 the pointer to the DATAw area of C2 4508

a. Calculate LEN2 the length of S2 according to the same rules that calculated LEN1 4509

14. Create H2 the SHA-1 of (RCw || ORDw || S2) 4510

a. The TPM MAY use this calculation for execute transport authorization and transport 4511
log out creation 4512

15. Calculate the outgoing transport session authorization 4513

a. Create the new transNonceEven for the output of the command 4514

b. Set outParamDigest to SHA-1 (RCet || ORDet || TPM_STANY_DATA -> currentTicks 4515
-> currentTicks || locality || wrappedRspSize || H2) 4516

c. Calculate transAuth, the HMAC of (outParamDigest || transNonceEven || 4517
transNonceOdd || continueTransSession) using T1 -> authData as the HMAC key 4518

16. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_LOG set then 4519

a. Create L3 a TPM_TRANSPORT_LOG_OUT structure 4520

b. Set L3 -> parameters to H2 4521

c. Set L3 -> currentTicks to TPM_STANY_DATA -> currentTicks 4522

d. Set L3 -> locality to TPM_STANY_DATA -> localityModifier 4523

e. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L3) 4524

17. If T1 -> transPublic -> transAttributes has TPM_TRANSPORT_ENCRYPT set then 4525

a. If T1 -> transPublic -> algId is TPM_ALG_MGF1 4526

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 246 9 July 2007
 TCG Published

i. Using the MGF1 function, create string G2 of length LEN2. The inputs to the 4527
MGF1 are transNonceEven, transNonceOdd, “out”, and T1 -> authData. These 4528
four values concatenated together form the Z value that is the seed for the MGF1. 4529

ii. Create E2 by performing an XOR of G2 and C2 starting at S2. 4530

b. Else 4531

i. Create IV2 or CTR2 using the same algorithm as IV1 or CTR1 with the input 4532
values transNonceEven, transNonceOdd, and “out”. Note that any terminating 4533
characters within the string “out” are ignored, so a total of 43 bytes are hashed. 4534

ii. The symmetric key is taken from the first bytes of T1 -> authData 4535

iii. Create E2 by encrypting C2 starting at S2 4536

18. Else 4537

a. Set E2 to the DATAw area S2 of wrappedRsp 4538

19. If continueTransSession is FALSE 4539

a. Invalidate all session data related to transHandle 4540

20. If TPM_ExecuteTranport requires auditing 4541

a. Create TPM_AUDIT_EVENT_OUT using H2 for the parameters and update the 4542
auditDigest 4543

b. On any errors return TPM_AUDITFAIL_SUCCESSFUL or 4544
TPM_AUDITFAIL_UNSUCCESSFUL depending on RCw 4545

21. Return C2 but with S2 replaced by E2 in the wrappedRsp parameter 4546

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 247 9 July 2007

 TCG Published

24.3 TPM_ReleaseTransportSigned 4547

Start of informative comment: 4548

This command completes the transport session. If logging for this session is turned on, then 4549
this command returns a hash of all operations performed during the session along with a 4550
digital signature of the hash. 4551

This command serves no purpose if logging is turned off, and results in an error if 4552
attempted. 4553

This command uses two authorization sessions, the key that will sign the log and the 4554
authorization from the session. Having the session authorization proves that the requestor 4555
that is signing the log is the owner of the session. If this restriction is not put in then an 4556
attacker can close the log and sign using their own key. 4557

The hash of the session log includes the information associated with the input phase of 4558
execution of the TPM_ReleaseTransportSigned command. It cannot include the output 4559
phase information. 4560

End of informative comment. 4561

Incoming Parameters and Sizes 4562

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that will perform the signing

5 20 2S 20 TPM_NONCE antiReplay Value provided by caller for anti-replay protection

6 4 TPM_AUTHHANDLE authHandle The authorization session to use key

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA keyAuth
The authorization session digest that authorizes the use of key. HMAC
key: key -> usageAuth

10 4 TPM_TRANSHANDLE transHandle The transport session handle

 2H2 20 TPM_NONCE transLastNonceEven Even nonce in use by execute Transport

11 20 3H2 20 TPM_NONCE transNonceOdd Nonce supplied by caller for transport session

12 1 4H2 1 BOOL continueTransSession The continue use flag for the authorization session handle

13 20 TPM_AUTHDATA transAuth HMAC for transport session key: transHandle -> authData

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 248 9 July 2007
 TCG Published

Outgoing Parameters and Sizes 4563

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 3S 4 TPM_MODIFIER_INDICATOR locality The locality that called this command

5 32 4S 32 TPM_CURRENT_TICKS currentTicks The current ticks when the command executed

6 4 5S 4 UINT32 signSize The size of the signature area

7 <> 6S <> BYTE[] signature The signature of the digest

8 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the session

10 20 TPM_AUTHDATA keyAuth HMAC: key -> usageAuth

11 20 2H2 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE transNonceOdd Nonce generated by caller

12 1 4H2 1 BOOL continueTransSession The continue use flag for the session

13 20 TPM_AUTHDATA transAuth HMAC: transHandle -> authData

Description 4564

This command releases a transport session and signs the transport log 4565

Actions 4566

1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1 4567

2. Validate that keyHandle -> sigScheme is TPM_SS_RSASSAPKCS1v15_SHA1 or 4568
TPM_SS_RSASSAPKCS1v15_INFO, if not return TPM_INAPPROPRIATE_SIG. 4569

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGNING, if not return 4570
TPM_INVALID_KEYUSAGE 4571

4. Using key -> authData validate the command and parameters, on error return 4572
TPM_AUTHFAIL 4573

5. Using transHandle -> authData validate the command and parameters, on error return 4574
TPM_AUTH2FAIL 4575

6. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then 4576

a. Create A1 a TPM_TRANSPORT_LOG_OUT structure 4577

b. Set A1 –> parameters to the SHA-1 (ordinal || antiReplay) 4578

c. Set A1 -> currentTicks to TPM_STANY_DATA -> currentTicks 4579

d. Set A1 -> locality to the locality modifier for this command 4580

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 249 9 July 2007

 TCG Published

e. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || A1) 4581

7. Else 4582

a. Return TPM_BAD_MODE 4583

8. Create H1 a TPM_SIGN_INFO structure and set the structure defaults 4584

a. Set H1 -> fixed to “TRAN” 4585

b. Set H1 -> replay to antiReplay 4586

c. Set H1 -> data to T1 -> transDigest 4587

d. Sign SHA-1 hash of H1 using the key pointed to by keyHandle 4588

9. Invalidate all session data related to T1 4589

10. Set continueTransSession to FALSE 4590

11. Return TPM_SUCCESS 4591

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 250 9 July 2007
 TCG Published

25. Monotonic Counter 4592

25.1 TPM_CreateCounter 4593

Start of informative comment: 4594

This command creates the counter but does not select the counter. Counter creation 4595
assigns an AuthData value to the counter and sets the counters original start value. The 4596
original start value is the current internal base value plus one. Setting the new counter to 4597
the internal base avoids attacks on the system that are attempting to use old counter 4598
values. 4599

End of informative comment. 4600

Incoming Parameters and Sizes 4601

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 20 2S 20 TPM_ENCAUTH encAuth The encrypted auth data for the new counter

5 4 3s 4 BYTE label Label to associate with counter

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Ignored

10 20 20 TPM_AUTHDATA ownerAuth Authorization ownerAuth.

 4602

Outgoing Parameters and Sizes 4603

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 4 3s 4 TPM_COUNT_ID countID The handle for the counter

5 10 4S 10 TPM_COUNTER_VALUE counterValue The starting counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Fixed value of FALSE

8 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: ownerAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 251 9 July 2007

 TCG Published

Description 4604

This command creates a new monotonic counter. The TPM MUST support a minimum of 4 4605
concurrent counters. 4606

Actions 4607

The TPM SHALL do the following: 4608

1. Using the authHandle field, validate the owner’s AuthData to execute the command and 4609
all of the incoming parameters. The authorization session MUST be OSAP or DSAP 4610

2. Ignore continueAuthSession on input and set continueAuthSession to FALSE on output 4611

3. Create a1 by decrypting encAuth according to the ADIP indicated by authHandle. 4612

4. Validate that there is sufficient internal space in the TPM to create a new counter. If 4613
there is insufficient space, the command returns an error. 4614

a. The TPM MUST provide storage for a1, TPM_COUNTER_VALUE, countID, and any 4615
other internal data the TPM needs to associate with the counter 4616

5. Increment the max counter value 4617

6. Set the counter to the max counter value 4618

7. Set the counter label to label 4619

8. Create a countID 4620

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 252 9 July 2007
 TCG Published

25.2 TPM_IncrementCounter 4621

Start of informative comment: 4622

This authorized command increments the indicated counter by one. Once a counter has 4623
been incremented then all subsequent increments must be for the same handle until a 4624
successful TPM_Startup(ST_CLEAR) is executed. 4625

The order for checking validation of the command parameters when no counter is active, 4626
keeps an attacker from creating a denial-of-service attack. 4627

End of informative comment. 4628

Incoming Parameters and Sizes 4629

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

4 4 2s 4 TPM_COUNT_ID countID The handle of a valid counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for counter authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth
The authorization session digest that authorizes the use of countID.
HMAC key: countID -> authData

Outgoing Parameters and Sizes 4630

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

5 10 3S 10 TPM_COUNTER_VALUE count The counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
countID -> authData

Description 4631

This function increments the counter by 1. 4632

The TPM MAY implement increment throttling to avoid burn problems 4633

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 253 9 July 2007

 TCG Published

Actions 4634

1. If TPM_STCLEAR_DATA -> countID is 0 4635

a. Validate that countID is a valid counter, return TPM_BAD_COUNTER on mismatch 4636

b. Validate the command parameters using counterAuth 4637

c. Set TPM_STCLEAR_DATA -> countID to countID 4638

2. else 4639

a. If TPM_STCLEAR_DATA -> countID does not equal countID 4640

i. Return TPM_BAD_COUNTER 4641

b. Validate the command parameters using counterAuth 4642

3. Increments the counter by 1 4643

4. Return new count value in count 4644

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 254 9 July 2007
 TCG Published

25.3 TPM_ReadCounter 4645

Start of informative comment: 4646

Reading the counter provides the caller with the current number in the sequence. 4647

End of informative comment. 4648

Incoming Parameters and Sizes 4649

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 4 2S 4 TPM_COUNT_ID countID ID value of the counter

Outgoing Parameters and Sizes 4650

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 10 3S 4 TPM_COUNTER_VALUE count The counter value

Description 4651

This returns the current value for the counter indicated. The counter MAY be any valid 4652
counter. 4653

Actions 4654

1. Validate that countID points to a valid counter. Return TPM_BAD_COUNTER on error. 4655

2. Return count 4656

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 255 9 July 2007

 TCG Published

25.4 TPM_ReleaseCounter 4657

Start of informative comment: 4658

This command releases a counter such that no reads or increments of the indicated counter 4659
will succeed. 4660

End of informative comment. 4661

Incoming Parameters and Sizes 4662

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for countID authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce associated with countID

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA counterAuth
The authorization session digest that authorizes the use of countID.
HMAC key: countID -> authData

Outgoing Parameters and Sizes 4663

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
countID -> authData

Actions 4664

The TPM uses countID to locate a valid counter. 4665

1. Authenticate the command and the parameters using the AuthData pointed to by 4666
countID. Return TPM_AUTHFAIL on error 4667

2. The TPM invalidates all internal information regarding the counter. This includes 4668
releasing countID such that any subsequent attempts to use countID will fail. 4669

3. The TPM invalidates sessions 4670

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 256 9 July 2007
 TCG Published

a. MUST invalidate all OSAP sessions associated with the counter 4671

b. MAY invalidate any other session 4672

4. If TPM_STCLEAR_DATA -> countID equals countID, 4673

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value) 4674

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 257 9 July 2007

 TCG Published

25.5 TPM_ReleaseCounterOwner 4675

Start of informative comment: 4676

This command releases a counter such that no reads or increments of the indicated counter 4677
will succeed. 4678

End of informative comment. 4679

Incoming Parameters and Sizes 4680

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

8 20 TPM_AUTHDATA ownerAuth
The authorization session digest that authorizes the inputs. HMAC key:
ownerAuth

Outgoing Parameters and Sizes 4681

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth

Description 4682

This invalidates all information regarding a counter. 4683

Actions 4684

1. Validate that ownerAuth properly authorizes the command and parameters 4685

2. The TPM uses countID to locate a valid counter. Return TPM_BAD_COUNTER if not 4686
found. 4687

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 258 9 July 2007
 TCG Published

3. The TPM invalidates all internal information regarding the counter. This includes 4688
releasing countID such that any subsequent attempts to use countID will fail. 4689

4. The TPM invalidates sessions 4690

a. MUST invalidate all OSAP sessions associated with the counter 4691

b. MAY invalidate any other session 4692

5. If TPM_STCLEAR_DATA -> countID equals countID, 4693

a. Set TPM_STCLEAR_DATA -> countID to an illegal value (not the zero value) 4694

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 259 9 July 2007

 TCG Published

26. DAA commands 4695

26.1 TPM_DAA_Join 4696

Start of informative comment: 4697

TPM_DAA_Join is the process that establishes the DAA parameters in the TPM for a specific 4698
DAA issuing authority. 4699

outputSize and outputData are always included in the outParamDigest. This includes stage 4700
0, where the outputData contains the DAA session handle. 4701

 End of informative comment. 4702

Incoming Parameters and Sizes 4703

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 TPM_HANDLE handle Session handle

5 1 2S 1 BYTE stage Processing stage of join

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of JOIN

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of JOIN

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner. HMAC key:
ownerAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 260 9 July 2007
 TCG Published

Outgoing Operands and Sizes 4704

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 3S 4 UINT32 outputSize Size of outputData

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 261 9 July 2007

 TCG Published

Description 4705

This table summaries the input, output and saved data that is associated with each stage of 4706
processing. 4707

Stage Input Data0 Input Data1 Operation Output Data Scratchpad

0 DAA_count

(used as # repetitions of stage 1)

NULL initialise Session Handle NULL

1 n0 signatureValue rekeying NULL n0

2 DAA_issuerSettings signatureValue issuer settings NULL NULL

3 DAA_count NULL DAA_join_uo,

DAA_join_u1

NULL NULL

4 DAA_generic_R0 DAA_generic_n P1=R0^f0 mod n NULL P1

5 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^f1) mod n NULL P2

6 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^u0) mod n NULL P3

7 DAA_generic_S1 DAA_generic_n U = P3*(S1^u1) mod n U NULL

8 NE NULL U2 U2 NULL

9 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

10 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

11 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

12 DAA_generic_S1 DAA_generic_n P4 = P3*(S1^r3) mod n P4 NULL

13 DAA_generic_gamma w w1 = w^q mod gamma NULL w

14 DAA_generic_gamma NULL E = w^f mod gamma E w

15 DAA_generic_gamma NULL r = r0 + (2^power0)*r1 mod q,

E1 = w^r mod gamma

E1 NULL

16 c1 NULL c = hash(c1 || NT) nt NULL

17 NULL NULL s0 = r0 + c*f0 s0 NULL

18 NULL NULL s1 = r1 + c*f1 s1 NULL

19 NULL NULL s2 = r2 + c*u0

 mod 2^power1

s2 NULL

20 NULL NULL s12 = r2 + c*u0

>> power1

c s12

21 NULL NULL s3 = r3 + c*u1 + s12 s3 NULL

22 u2 NULL v0 = u2 + u0 mod 2^power1

v10 = u2 + u0 >> power1

enc(v0) v10

23 u3 NULL V1 = u3 + u1 + v10 enc(v1) NULL

24 NULL NULL enc(DAA_tpmSpecific) enc(DAA_tpmSpecific) NULL

 4708

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 262 9 July 2007
 TCG Published

Actions 4709

A Trusted Platform Module that receives a valid TPM_DAA_Join command SHALL: 4710

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Join input parameters. 4711

2. Any error return results in the TPM invalidating all resources associated with the join 4712

3. Constant values of 0 or 1 are 1 byte integers, stages affected are 4713

a. 4(j), 5(j), 14(f), 17(e) 4714

4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are 4715

a. 9(i), 10(h), 11(h), 12(h), 15(f),15(g), 17(d), 18(d), 19(d), 20(d), 21(d) 4716

Start of informative comment: 4717

5. Variable DAA_Count 4718

a. In stage 0, DAA_Count denotes the length of the RSA key chain, which certifies the 4719
main DAA public key and which will be loaded in stage 1. It also denotes the number of 4720
times stage 1 is executed. 4721

b. In stage 3 the variable DAA_count denotes the actual DAA counter. It allows a DAA 4722
issuer to keep track of the number of times it has issued 'different' DAA credentials to 4723
the same platform. (The counter does not need to be equal to the actual number.) 4724

End of informative comment. 4725

Stages 4726

0. If stage==0 4727

a. Determine that sufficient resources are available to perform a TPM_DAA_Join. 4728

i. The TPM MUST support sufficient resources to perform one (1) TPM_DAA_Join/ 4729
TPM_DAA_Sign. The TPM MAY support additional TPM_DAA_Join/ 4730
TPM_DAA_Sign sessions. 4731

ii. The TPM may share internal resources between the DAA operations and other 4732
variable resource requirements: 4733

iii. If there are insufficient resources within the stored key pool (and one or more 4734
keys need to be removed to permit the DAA operation to execute) return 4735
TPM_NOSPACE 4736

iv. If there are insufficient resources within the stored session pool (and one or 4737
more authorization or transport sessions need to be removed to permit the 4738
DAA operation to execute), return TPM_RESOURCES. 4739

b. Set all fields in DAA_issuerSettings = NULL 4740

c. set all fields in DAA_tpmSpecific = NULL 4741

d. set all fields in DAA_session = NULL 4742

e. Set all fields in DAA_joinSession = NULL 4743

f. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 4744
error TPM_DAA_INPUT_DATA0 on mismatch 4745

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 263 9 July 2007

 TCG Published

g. Verify that inputData0 > 0, and return error TPM_DAA_INPUT_DATA0 on mismatch 4746

h. Set DAA_tpmSpecific -> DAA_count = inputData0 4747

i. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 4748
DAA_joinSession) 4749

j. set DAA_session -> DAA_stage = 1 4750

k. Assign session handle for TPM_DAA_Join 4751

l. set outputData = new session handle 4752

i. The handle in outputData is included the output HMAC. 4753

m. return TPM_SUCCESS 4754

1. If stage==1 4755

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 4756
on mismatch 4757

b. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4758
DAA_joinSession) and return TPM_DAA_TPM_SETTINGS on mismatch 4759

c. Verify that sizeOf(inputData0) == DAA_SIZE_issuerModulus and return error 4760
TPM_DAA_INPUT_DATA0 on mismatch 4761

d. If DAA_session -> DAA_scratch == NULL: 4762

i. Set DAA_session -> DAA_scratch = inputData0 4763

ii. set DAA_joinSession -> DAA_digest_n0 = SHA-1(DAA_session -> DAA_scratch) 4764

iii. set DAA_tpmSpecific -> DAA_rekey = SHA-1(tpmDAASeed || DAA_joinSession -> 4765
DAA_digest_n0) 4766

e. Else (If DAA_session -> DAA_scratch != NULL): 4767

i. Set signedData = inputData0 4768

ii. Verify that sizeOf(inputData1) == DAA_SIZE_issuerModulus and return error 4769
TPM_DAA_INPUT_DATA1 on mismatch 4770

iii. Set signatureValue = inputData1 4771

iv. Use the RSA key == [DAA_session -> DAA_scratch] to verify that signatureValue is 4772
a signature on signedData using TPM_SS_RSASSAPKCS1v15_SHA1 (RSA 4773
PKCS1.5 with SHA-1), and return error TPM_DAA_ISSUER_VALIDITY on 4774
mismatch 4775

v. Set DAA_session -> DAA_scratch = signedData 4776

f. Decrement DAA_tpmSpecific -> DAA_count by 1 (unity) 4777

g. If DAA_tpmSpecific -> DAA_count ==0: 4778

h. increment DAA_session -> DAA_stage by 1 4779

i. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 4780
DAA_joinSession) 4781

j. set outputData = NULL 4782

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 264 9 July 2007
 TCG Published

k. return TPM_SUCCESS 4783

2. If stage==2 4784

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 4785
on mismatch 4786

b. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4787
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4788

c. Verify that sizeOf(inputData0) == sizeOf(TPM_DAA_ISSUER) and return error 4789
TPM_DAA_INPUT_DATA0 on mismatch 4790

d. Set DAA_issuerSettings = inputData0. Verify that all fields in DAA_issuerSettings are 4791
present and return error TPM_DAA_INPUT_DATA0 if not. 4792

e. Verify that sizeOf(inputData1) == DAA_SIZE_issuerModulus and return error 4793
TPM_DAA_INPUT_DATA1 on mismatch 4794

f. Set signatureValue = inputData1 4795

g. Set signedData = (DAA_joinSession -> DAA_digest_n0 ||DAA_issuerSettings) 4796

h. Use the RSA key [DAA_session -> DAA_scratch] to verify that signatureValue is a 4797
signature on signedData using TPM_SS_RSASSAPKCS1v15_SHA1 (RSA PKCS1.5 with 4798
SHA-1),, and return error TPM_DAA_ISSUER_VALIDITY on mismatch 4799

i. Set DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) 4800

j. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 4801
DAA_joinSession) 4802

k. Set DAA_session -> DAA_scratch = NULL 4803

l. increment DAA_session -> DAA_stage by 1 4804

m. return TPM_SUCCESS 4805

3. If stage==3 4806

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 4807
on mismatch 4808

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4809
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4810

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4811
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4812

d. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return 4813
error TPM_DAA_INPUT_DATA0 on mismatch 4814

e. Set DAA_tpmSpecific -> DAA_count = inputData0 4815

f. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u0 4816

g. Obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u1 4817

h. set outputData = NULL 4818

i. increment DAA_session -> DAA_stage by 1 4819

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 265 9 July 2007

 TCG Published

j. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 4820
DAA_joinSession) 4821

k. return TPM_SUCCESS 4822

4. If stage==4, 4823

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 4824
on mismatch 4825

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4826
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4827

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4828
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4829

d. Set DAA_generic_R0 = inputData0 4830

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and 4831
return error TPM_DAA_INPUT_DATA0 on mismatch 4832

f. Set DAA_generic_n = inputData1 4833

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4834
return error TPM_DAA_INPUT_DATA1 on mismatch 4835

h. Set X = DAA_generic_R0 4836

i. Set n = DAA_generic_n 4837

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 4838
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 4839
mod DAA_issuerSettings -> DAA_generic_q 4840

k. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f) 4841

l. Set DAA_session -> DAA_scratch = (X^f0) mod n 4842

m. set outputData = NULL 4843

n. increment DAA_session -> DAA_stage by 1 4844

o. return TPM_SUCCESS 4845

5. If stage==5 4846

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 4847
on mismatch 4848

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4849
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4850

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4851
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4852

d. Set DAA_generic_R1 = inputData0 4853

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and 4854
return error TPM_DAA_INPUT_DATA0 on mismatch 4855

f. Set DAA_generic_n = inputData1 4856

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 266 9 July 2007
 TCG Published

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4857
return error TPM_DAA_INPUT_DATA1 on mismatch 4858

h. Set X = DAA_generic_R1 4859

i. Set n = DAA_generic_n 4860

j. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 4861
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 4862
mod DAA_issuerSettings -> DAA_generic_q. 4863

k. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 4864
result f1 4865

l. Set Z = DAA_session -> DAA_scratch 4866

m. Set DAA_session -> DAA_scratch = Z*(X^f1) mod n 4867

n. set outputData = NULL 4868

o. increment DAA_session -> DAA_stage by 1 4869

p. return TPM_SUCCESS 4870

6. If stage==6 4871

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 4872
on mismatch 4873

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4874
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4875

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4876
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4877

d. Set DAA_generic_S0 = inputData0 4878

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and 4879
return error TPM_DAA_INPUT_DATA0 on mismatch 4880

f. Set DAA_generic_n = inputData1 4881

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4882
return error TPM_DAA_INPUT_DATA1 on mismatch 4883

h. Set X = DAA_generic_S0 4884

i. Set n = DAA_generic_n 4885

j. Set Z = DAA_session -> DAA_scratch 4886

k. Set Y = DAA_joinSession -> DAA_join_u0 4887

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 4888

m. set outputData = NULL 4889

n. increment DAA_session -> DAA_stage by 1 4890

o. return TPM_SUCCESS 4891

7. If stage==7 4892

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 267 9 July 2007

 TCG Published

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 4893
on mismatch 4894

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4895
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4896

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4897
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4898

d. Set DAA_generic_S1 = inputData0 4899

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and 4900
return error TPM_DAA_INPUT_DATA0 on mismatch 4901

f. Set DAA_generic_n = inputData1 4902

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4903
return error TPM_DAA_INPUT_DATA1 on mismatch 4904

h. Set X = DAA_generic_S1 4905

i. Set n = DAA_generic_n 4906

j. Set Y = DAA_joinSession -> DAA_join_u1 4907

k. Set Z = DAA_session -> DAA_scratch 4908

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 4909

m. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_scratch || 4910
DAA_tpmSpecific -> DAA_count || DAA_joinSession -> DAA_digest_n0) 4911

n. set outputData = DAA_session -> DAA_scratch 4912

o. set DAA_session -> DAA_scratch = NULL 4913

p. increment DAA_session -> DAA_stage by 1 4914

q. return TPM_SUCCESS 4915

8. If stage==8 4916

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 4917
on mismatch 4918

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4919
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4920

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4921
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4922

d. Verify inputSize0 == DAA_SIZE_NE and return error TPM_DAA_INPUT_DATA0 on 4923
mismatch 4924

e. Set NE = decrypt(inputData0, privEK) 4925

f. set outputData = SHA-1(DAA_session -> DAA_digest || NE) 4926

g. set DAA_session -> DAA_digest = NULL 4927

h. increment DAA_session -> DAA_stage by 1 4928

i. return TPM_SUCCESS 4929

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 268 9 July 2007
 TCG Published

9. If stage==9 4930

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 4931
on mismatch 4932

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4933
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4934

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4935
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4936

d. Set DAA_generic_R0 = inputData0 4937

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and 4938
return error TPM_DAA_INPUT_DATA0 on mismatch 4939

f. Set DAA_generic_n = inputData1 4940

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4941
return error TPM_DAA_INPUT_DATA1 on mismatch 4942

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed 4943

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them Y. “r0” || 4944
DAA_session -> DAA_contextSeed is the Z seed. 4945

j. Set X = DAA_generic_R0 4946

k. Set n = DAA_generic_n 4947

l. Set DAA_session -> DAA_scratch = (X^Y) mod n 4948

m. set outputData = NULL 4949

n. increment DAA_session -> DAA_stage by 1 4950

o. return TPM_SUCCESS 4951

10. If stage==10 4952

a. Verify that DAA_session ->DAA_stage==10. Return TPM_DAA_STAGE and flush 4953
handle on mismatch h 4954

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4955
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4956

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4957
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4958

d. Set DAA_generic_R1 = inputData0 4959

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and 4960
return error TPM_DAA_INPUT_DATA0 on mismatch 4961

f. Set DAA_generic_n = inputData1 4962

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4963
return error TPM_DAA_INPUT_DATA1 on mismatch 4964

h. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them Y. “r1” || 4965
DAA_session -> DAA_contextSeed is the Z seed. 4966

i. Set X = DAA_generic_R1 4967

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 269 9 July 2007

 TCG Published

j. Set n = DAA_generic_n 4968

k. Set Z = DAA_session -> DAA_scratch 4969

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 4970

m. set outputData = NULL 4971

n. increment DAA_session -> DAA_stage by 1 4972

o. return TPM_SUCCESS 4973

11. If stage==11 4974

a. Verify that DAA_session ->DAA_stage==11. Return TPM_DAA_STAGE and flush 4975
handle on mismatch 4976

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4977
return error TPM_DAA_ISSUER_SETTINGS on mismatch 4978

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 4979
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 4980

d. Set DAA_generic_S0 = inputData0 4981

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and 4982
return error TPM_DAA_INPUT_DATA0 on mismatch 4983

f. Set DAA_generic_n = inputData1 4984

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 4985
return error TPM_DAA_INPUT_DATA1 on mismatch 4986

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them Y. “r2” || 4987
DAA_session -> DAA_contextSeed is the Z seed. 4988

i. Set X = DAA_generic_S0 4989

j. Set n = DAA_generic_n 4990

k. Set Z = DAA_session -> DAA_scratch 4991

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 4992

m. set outputData = NULL 4993

n. increment DAA_session -> DAA_stage by 1 4994

o. return TPM_SUCCESS 4995

12. If stage==12 4996

a. Verify that DAA_session ->DAA_stage==12. Return TPM_DAA_STAGE and flush 4997
handle on mismatch 4998

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 4999
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5000

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5001
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5002

d. Set DAA_generic_S1 = inputData0 5003

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 270 9 July 2007
 TCG Published

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and 5004
return error TPM_DAA_INPUT_DATA0 on mismatch 5005

f. Set DAA_generic_n = inputData1 5006

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 5007
return error TPM_DAA_INPUT_DATA1 on mismatch 5008

h. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label them Y. “r3” || 5009
DAA_session -> DAA_contextSeed is the Z seed. 5010

i. Set X = DAA_generic_S1 5011

j. Set n = DAA_generic_n 5012

k. Set Z = DAA_session -> DAA_scratch 5013

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 5014

m. set outputData = DAA_session -> DAA_scratch 5015

n. Set DAA_session -> DAA_scratch = NULL 5016

o. increment DAA_session -> DAA_stage by 1 5017

p. return TPM_SUCCESS 5018

13. If stage==13 5019

a. Verify that DAA_session->DAA_stage==13. Return TPM_DAA_STAGE and flush 5020
handle on mismatch 5021

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5022
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5023

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5024
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5025

d. Set DAA_generic_gamma = inputData0 5026

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5027
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5028

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 5029
mismatch 5030

g. Set w = inputData1 5031

h. Set w1 = w^(DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma) 5032

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W 5033

j. Set DAA_session -> DAA_scratch = w 5034

k. set outputData = NULL 5035

l. increment DAA_session -> DAA_stage by 1 5036

m. return TPM_SUCCESS. 5037

14. If stage==14 5038

a. Verify that DAA_session ->DAA_stage==14. Return TPM_DAA_STAGE and flush 5039
handle on mismatch 5040

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 271 9 July 2007

 TCG Published

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5041
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5042

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5043
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5044

d. Set DAA_generic_gamma = inputData0 5045

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5046
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5047

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5048
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5049
mod DAA_issuerSettings -> DAA_generic_q. 5050

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma). 5051

h. Set outputData = E 5052

i. increment DAA_session -> DAA_stage by 1 5053

j. return TPM_SUCCESS. 5054

15. If stage==15 5055

a. Verify that DAA_session ->DAA_stage==15. Return TPM_DAA_STAGE and flush 5056
handle on mismatch 5057

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5058
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5059

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5060
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5061

d. Set DAA_generic_gamma = inputData0 5062

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5063
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5064

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0. “r0” || 5065
DAA_session -> DAA_contextSeed is the Z seed. 5066

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1. “r1” || 5067
DAA_session -> DAA_contextSeed is the Z seed. 5068

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q). 5069

i. set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma). 5070

j. Set DAA_session -> DAA_scratch = NULL 5071

k. Set outputData = E1 5072

l. increment DAA_session -> DAA_stage by 1 5073

m. return TPM_SUCCESS. 5074

16. If stage==16 5075

a. Verify that DAA_session ->DAA_stage==16. Return TPM_DAA_STAGE and flush 5076
handle on mismatch 5077

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 272 9 July 2007
 TCG Published

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5078
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5079

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5080
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5081

d. Verify that inputSize0 == sizeOf(TPM_DIGEST) and return error 5082
TPM_DAA_INPUT_DATA0 on mismatch 5083

e. Set DAA_session -> DAA_digest = inputData0 5084

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT 5085

g. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_digest || NT) 5086

h. Set outputData = NT 5087

i. increment DAA_session -> DAA_stage by 1 5088

j. return TPM_SUCCESS. 5089

17. If stage==17 5090

a. Verify that DAA_session ->DAA_stage==17. Return TPM_DAA_STAGE and flush 5091
handle on mismatch 5092

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5093
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5094

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5095
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5096

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0. “r0” || 5097
DAA_session -> DAA_contextSeed is the Z seed. 5098

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5099
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5100
mod DAA_issuerSettings -> DAA_generic_q. 5101

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f) 5102

g. Set s0 = r0 + (DAA_session -> DAA_digest) * f0 in Z. Compute over the integers. The 5103
computation is not reduced with a modulus. 5104

h. set outputData = s0 5105

i. increment DAA_session -> DAA_stage by 1 5106

j. return TPM_SUCCESS 5107

18. If stage==18 5108

a. Verify that DAA_session ->DAA_stage==18. Return TPM_DAA_STAGE and flush 5109
handle on mismatch 5110

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5111
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5112

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5113
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5114

d. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1. “r1” || 5115
DAA_session -> DAA_contextSeed is the Z seed. 5116

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 273 9 July 2007

 TCG Published

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5117
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5118
mod DAA_issuerSettings -> DAA_generic_q. 5119

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 5120
result f1 5121

g. Set s1 = r1 + (DAA_session -> DAA_digest)* f1 in Z. Compute over the integers. The 5122
computation is not reduced with a modulus. 5123

h. set outputData = s1 5124

i. increment DAA_session -> DAA_stage by 1 5125

j. return TPM_SUCCESS 5126

19. If stage==19 5127

a. Verify that DAA_session ->DAA_stage==19. Return TPM_DAA_STAGE and flush 5128
handle on mismatch 5129

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5130
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5131

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5132
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5133

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2. “r2” || 5134
DAA_session -> DAA_contextSeed is the Z seed. 5135

e. Set s2 = r2 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u0) mod 5136
2^DAA_power1 (Erase all but the lowest DAA_power1 bits of s2) 5137

f. set outputData = s2 5138

g. increment DAA_session -> DAA_stage by 1 5139

h. return TPM_SUCCESS 5140

20. If stage==20 5141

a. Verify that DAA_session ->DAA_stage==20. Return TPM_DAA_STAGE and flush 5142
handle on mismatch 5143

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5144
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5145

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5146
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5147

d. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2. “r2” || 5148
DAA_session -> DAA_contextSeed is the Z seed. 5149

e. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u0) 5150

f. Shift s12 right by DAA_power1 bit (discard the lowest DAA_power1 bits). 5151

g. Set DAA_session -> DAA_scratch = s12 5152

h. Set outputData = DAA_session -> DAA_digest 5153

i. increment DAA_session -> DAA_stage by 1 5154

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 274 9 July 2007
 TCG Published

j. return TPM_SUCCESS 5155

21. If stage==21 5156

a. Verify that DAA_session ->DAA_stage==21. Return TPM_DAA_STAGE and flush 5157
handle on mismatch 5158

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5159
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5160

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5161
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5162

d. Obtain DAA_SIZE_r3 bytes using the MGF1 function and label them r3. “r3” || 5163
DAA_session -> DAA_contextSeed is the Z seed. 5164

e. Set s3 = r3 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u1) + 5165
(DAA_session -> DAA_scratch). 5166

f. Set DAA_session -> DAA_scratch = NULL 5167

g. set outputData = s3 5168

h. increment DAA_session -> DAA_stage by 1 5169

i. return TPM_SUCCESS 5170

22. If stage==22 5171

a. Verify that DAA_session ->DAA_stage==22. Return TPM_DAA_STAGE and flush 5172
handle on mismatch 5173

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5174
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5175

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5176
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5177

d. Verify inputSize0 == DAA_SIZE_v0 and return error TPM_DAA_INPUT_DATA0 on 5178
mismatch 5179

e. Set u2 = inputData0 5180

f. Set v0 = u2 + (DAA_joinSession -> DAA_join_u0) mod 2^DAA_power1 (Erase all but 5181
the lowest DAA_power1 bits of v0). 5182

g. Set DAA_tpmSpecific -> DAA_digest_v0 = SHA-1(v0) 5183

h. Set v10 = u2 + (DAA_joinSession -> DAA_join_u0) in Z. Compute over the integers. 5184
The computation is not reduced with a modulus. 5185

i. Shift v10 right by DAA_power1 bits (erase the lowest DAA_power1 bits). 5186

j. Set DAA_session ->DAA_scratch = v10 5187

k. Set outputData 5188

i. Fill in TPM_DAA_BLOB with a type of TPM_RT_DAA_V0 and encrypt the v0 5189
parameters using TPM_PERMANENT_DATA -> daaBlobKey 5190

ii. set outputData to the encrypted TPM_DAA_BLOB 5191

l. increment DAA_session -> DAA_stage by 1 5192

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 275 9 July 2007

 TCG Published

m. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 5193
DAA_joinSession) 5194

n. return TPM_SUCCESS 5195

23. If stage==23 5196

a. Verify that DAA_session ->DAA_stage==23. Return TPM_DAA_STAGE and flush 5197
handle on mismatch 5198

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5199
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5200

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5201
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5202

d. Verify inputSize0 == DAA_SIZE_v1 and return error TPM_DAA_INPUT_DATA0 on 5203
mismatch 5204

e. Set u3 = inputData0 5205

f. Set v1 = u3 + DAA_joinSession -> DAA_join_u1 + DAA_session ->DAA_scratch 5206

g. Set DAA_tpmSpecific -> DAA_digest_v1 = SHA-1(v1) 5207

h. Set outputData 5208

i. Fill in TPM_DAA_BLOB with a type of TPM_RT_DAA_V1 and encrypt the v1 5209
parameters using TPM_PERMANENT_DATA -> daaBlobKey 5210

ii. set outputData to the encrypted TPM_DAA_BLOB 5211

i. Set DAA_session ->DAA_scratch = NULL 5212

j. increment DAA_session -> DAA_stage by 1 5213

k. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || 5214
DAA_joinSession) 5215

l. return TPM_SUCCESS 5216

24. If stage==24 5217

a. Verify that DAA_session ->DAA_stage==24. Return TPM_DAA_STAGE and flush 5218
handle on mismatch 5219

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5220
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5221

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || 5222
DAA_joinSession) and return error TPM_DAA_TPM_SETTINGS on mismatch 5223

d. set outputData = enc(DAA_tpmSpecific) using TPM_PERMANENT_DATA -> 5224
daaBlobKey 5225

e. Terminate the DAA session and all resources associated with the DAA join session 5226
handle. 5227

f. return TPM_SUCCESS 5228

25. If stage > 24, return error: TPM_DAA_STAGE 5229

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 276 9 July 2007
 TCG Published

26.2 TPM_DAA_Sign 5230

Start of informative comment: 5231

outputSize and outputData are always included in the outParamDigest. This includes stage 5232
0, where the outputData contains the DAA session handle. 5233

 End of informative comment. 5234

TPM protected capability; user must provide authorizations from the TPM Owner. 5235

Incoming Operands and Sizes 5236

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE Ordinal Command ordinal: TPM_ORD_DAA_Sign

4 4 TPM_HANDLE handle Handle to the sign session

5 1 2S 1 BYTE stage Stage of the sign process

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of DAA_Sign

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of DAA_Sign

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner. HMAC key:
ownerAuth.

Outgoing Operands and Sizes 5237

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_DAA_Sign

4 4 3S 4 UINT32 outputSize Size of outputData

5 <> 4S <> BYTE[] outputData Data produced by this capability

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 277 9 July 2007

 TCG Published

Description 5238

This table summaries the input, output and saved data that is associated with each stage of 5239
processing. 5240

Stage Input Data0 Input Data1 Operation Output Data Scratchpad

0 DAA_issuerSettings NULL initialise handle NULL

1 enc(DAA_tpmSpecific) NULL initialise NULL NULL

2 DAA_generic_R0 DAA_generic_n P1=R0^r0 mod n NULL P1

3 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) mod n NULL P2

4 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) mod n NULL P3

5 DAA_generic_S1 DAA_generic_n T = P3*(S1^r4) mod n T NULL

6 DAA_generic_gamma w w1 = w^q mod gamma NULL w

7 DAA_generic_gamma NULL E = w^f mod gamma E w

8 DAA_generic_gamma NULL r = r0 + (2^power0)*r1
mod q,

E1 = w^r mod gamma

E1 NULL

9 c1 NULL c = hash(c1 || NT) NT NULL

10 b (selector) m or handle to AIK c = hash(c || 1 || m)

or

c = hash(c || 0 || AIK-
modulus)

c NULL

11 NULL NULL s0 = r0 + c*f0 s0 NULL

12 NULL NULL s1 = r1 + c*f1 s1 NULL

13 enc(v0) NULL s2 = r2 + c*v0

 mod 2^power1

s2 NULL

14 enc(v0) NULL s12 = r2 + c*v0

>> power1

NULL s12

15 enc(v1) NULL s3 = r4 + c*v1 + s12 s3 NULL

 5241

When a TPM receives an Owner authorized command to input enc(DAA_tpmSpecific) or 5242
enc(v0) or enc(v1), the TPM MUST verify that the TPM created the data and that neither the 5243
data nor the TPM's daaProof has been changed since the data was created. Loading one of 5244
these wrapped blobs does not require authorization, since correct blobs were created by the 5245
TPM under Owner authorization, and unwrapped blobs cannot be used without Owner 5246
authorisation. The TPM MUST NOT restrict the number of times that the contents of 5247
enc(DAA_tpmSpecific) or enc(v0) or enc(v1) can be used by the same combination of TPM 5248
and daaProof that created them. 5249

Actions 5250

A Trusted Platform Module that receives a valid TPM_DAA_Sign command SHALL: 5251

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Sign input parameters. 5252

2. Any error results in the TPM invalidating all resources associated with the command 5253

3. Constant values of 0 or 1 are 1 byte integers, stages affected are 5254

a. 7(f), 11(e), 12(e) 5255

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 278 9 July 2007
 TCG Published

4. Representation of the strings “r0” to “r4” are 2-byte ASCII encodings, stages affected are 5256

a. 2(h), 3(h), 4(h), 5(h), 12(d), 13(f), 14(f), 15(f) 5257

Stages 5258

0. If stage==0 5259

a. Determine that sufficient resources are available to perform a TPM_DAA_Sign. 5260

i. The TPM MUST support sufficient resources to perform one (1) TPM_DAA_Join/ 5261
TPM_DAA_Sign. The TPM MAY support addition TPM_DAA_Join/ TPM_DAA_Sign 5262
sessions. 5263

ii. The TPM may share internal resources between the DAA operations and other 5264
variable resource requirements: 5265

iii. If there are insufficient resources within the stored key pool (and one or more 5266
keys need to be removed to permit the DAA operation to execute) return 5267
TPM_NOSPACE 5268

iv. If there are insufficient resources within the stored session pool (and one or 5269
more authorization or transport sessions need to be removed to permit the 5270
DAA operation to execute), return TPM_RESOURCES. 5271

b. Set DAA_issuerSettings = inputData0 5272

c. Verify that all fields in DAA_issuerSettings are present and return error 5273
TPM_DAA_INPUT_DATA0 if not. 5274

d. set all fields in DAA_session = NULL 5275

e. Assign new handle for session 5276

f. Set outputData to new handle 5277

i. The handle in outputData is included the output HMAC. 5278

g. set DAA_session -> DAA_stage = 1 5279

h. return TPM_SUCCESS 5280

1. If stage==1 5281

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle 5282
on mismatch 5283

b. Set DAA_tpmSpecific = unwrap(inputData0) using TPM_PERMANENT_DATA -> 5284
daaBlobKey 5285

c. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5286
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5287

d. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific) 5288

e. set outputData = NULL 5289

f. set DAA_session -> DAA_stage =2 5290

g. return TPM_SUCCESS 5291

2. If stage==2 5292

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 279 9 July 2007

 TCG Published

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle 5293
on mismatch 5294

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5295
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5296

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5297
return error TPM_DAA_TPM_SETTINGS on mismatch 5298

d. Set DAA_generic_R0 = inputData0 5299

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and 5300
return error TPM_DAA_INPUT_DATA0 on mismatch 5301

f. Set DAA_generic_n = inputData1 5302

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 5303
return error TPM_DAA_INPUT_DATA1 on mismatch 5304

h. Obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed 5305

i. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them Y. “r0” || 5306
DAA_session -> DAA_contextSeed is the Z seed. 5307

j. Set X = DAA_generic_R0 5308

k. Set n = DAA_generic_n 5309

l. Set DAA_session -> DAA_scratch = (X^Y) mod n 5310

m. set outputData = NULL 5311

n. increment DAA_session -> DAA_stage by 1 5312

o. return TPM_SUCCESS 5313

3. If stage==3 5314

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle 5315
on mismatch 5316

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5317
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5318

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5319
return error TPM_DAA_TPM_SETTINGS on mismatch 5320

d. Set DAA_generic_R1 = inputData0 5321

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and 5322
return error TPM_DAA_INPUT_DATA0 on mismatch 5323

f. Set DAA_generic_n = inputData1 5324

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 5325
return error TPM_DAA_INPUT_DATA1 on mismatch 5326

h. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them Y. “r1” || 5327
DAA_session -> DAA_contextSeed is the Z seed. 5328

i. Set X = DAA_generic_R1 5329

j. Set n = DAA_generic_n 5330

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 280 9 July 2007
 TCG Published

k. Set Z = DAA_session -> DAA_scratch 5331

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 5332

m. set outputData = NULL 5333

n. increment DAA_session -> DAA_stage by 1 5334

o. return TPM_SUCCESS 5335

4. If stage==4 5336

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle 5337
on mismatch 5338

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5339
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5340

c. Verify that DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific) and 5341
return error TPM_DAA_TPM_SETTINGS on mismatch 5342

d. Set DAA_generic_S0 = inputData0 5343

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and 5344
return error TPM_DAA_INPUT_DATA0 on mismatch 5345

f. Set DAA_generic_n = inputData1 5346

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 5347
return error TPM_DAA_INPUT_DATA1 on mismatch 5348

h. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them Y. “r2” || 5349
DAA_session -> DAA_contextSeed is the Z seed. 5350

i. Set X = DAA_generic_S0 5351

j. Set n = DAA_generic_n 5352

k. Set Z = DAA_session -> DAA_scratch 5353

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 5354

m. set outputData = NULL 5355

n. increment DAA_session -> DAA_stage by 1 5356

o. return TPM_SUCCESS 5357

5. If stage==5 5358

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle 5359
on mismatch 5360

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5361
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5362

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5363
return error TPM_DAA_TPM_SETTINGS on mismatch 5364

d. Set DAA_generic_S1 = inputData0 5365

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and 5366
return error TPM_DAA_INPUT_DATA0 on mismatch 5367

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 281 9 July 2007

 TCG Published

f. Set DAA_generic_n = inputData1 5368

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and 5369
return error TPM_DAA_INPUT_DATA1 on mismatch 5370

h. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label them Y. “r4” || 5371
DAA_session -> DAA_contextSeed is the Z seed. 5372

i. Set X = DAA_generic_S1 5373

j. Set n = DAA_generic_n 5374

k. Set Z = DAA_session -> DAA_scratch 5375

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n 5376

m. set outputData = DAA_session -> DAA_scratch 5377

n. set DAA_session -> DAA_scratch = NULL 5378

o. increment DAA_session -> DAA_stage by 1 5379

p. return TPM_SUCCESS 5380

6. If stage==6 5381

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle 5382
on mismatch 5383

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5384
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5385

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5386
return error TPM_DAA_TPM_SETTINGS on mismatch 5387

d. Set DAA_generic_gammma = inputData0 5388

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5389
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5390

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on 5391
mismatch 5392

g. Set w = inputData1 5393

h. Set w1 = w^(DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma) 5394

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W 5395

j. Set DAA_session -> DAA_scratch = w 5396

k. set outputData = NULL 5397

l. increment DAA_session -> DAA_stage by 1 5398

m. return TPM_SUCCESS. 5399

7. If stage==7 5400

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle 5401
on mismatch 5402

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5403
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5404

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 282 9 July 2007
 TCG Published

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5405
return error TPM_DAA_TPM_SETTINGS on mismatch 5406

d. Set DAA_generic_gamma = inputData0 5407

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5408
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5409

f. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5410
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5411
mod DAA_issuerSettings -> DAA_generic_q. 5412

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma). 5413

h. Set outputData = E 5414

i. increment DAA_session -> DAA_stage by 1 5415

j. return TPM_SUCCESS. 5416

8. If stage==8 5417

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle 5418
on mismatch 5419

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5420
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5421

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5422
return error TPM_DAA_TPM_SETTINGS on mismatch 5423

d. Set DAA_generic_gamma = inputData0 5424

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> 5425
DAA_digest_gamma and return error TPM_DAA_INPUT_DATA0 on mismatch 5426

f. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0. “r0” || 5427
DAA_session -> DAA_contextSeed is the Z seed. 5428

g. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1. “r1” || 5429
DAA_session -> DAA_contextSeed is the Z seed. 5430

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q). 5431

i. Set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma) 5432

j. Set DAA_session -> DAA_scratch = NULL 5433

k. Set outputData = E1 5434

l. increment DAA_session -> DAA_stage by 1 5435

m. return TPM_SUCCESS. 5436

9. If stage==9 5437

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle 5438
on mismatch 5439

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5440
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5441

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 283 9 July 2007

 TCG Published

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5442
return error TPM_DAA_TPM_SETTINGS on mismatch 5443

d. Verify that inputSize0 == sizeOf(TPM_DIGEST) and return error 5444
TPM_DAA_INPUT_DATA0 on mismatch 5445

e. Set DAA_session -> DAA_digest = inputData0 5446

f. Obtain DAA_SIZE_NT bytes from the RNG and label them NT 5447

g. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_digest || NT) 5448

h. Set outputData = NT 5449

i. increment DAA_session -> DAA_stage by 1 5450

j. return TPM_SUCCESS. 5451

10. If stage==10 5452

a. Verify that DAA_session ->DAA_stage==10. Return TPM_DAA_STAGE and flush 5453
handle on mismatch 5454

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5455
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5456

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5457
return error TPM_DAA_TPM_SETTINGS on mismatch 5458

d. Verify that inputSize0 == sizeOf(BYTE), and return error TPM_DAA_INPUT_DATA0 on 5459
mismatch 5460

e. Set selector = inputData0, verify that selector == 0 or 1, and return error 5461
TPM_DAA_INPUT_DATA0 on mismatch 5462

f. If selector == 1, verify that inputSize1 == sizeOf(TPM_DIGEST), and return error 5463
TPM_DAA_INPUT_DATA1 on mismatch 5464

g. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 1 || 5465
inputData1) 5466

h. If selector == 0, verify that inputData1 is a handle to a TPM identity key (AIK), and 5467
return error TPM_DAA_INPUT_DATA1 on mismatch 5468

i. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 0 || n2) 5469
where n2 is the modulus of the AIK 5470

j. Set outputData = DAA_session -> DAA_digest 5471

k. increment DAA_session -> DAA_stage by 1 5472

l. return TPM_SUCCESS. 5473

11. If stage==11 5474

a. Verify that DAA_session ->DAA_stage==11. Return TPM_DAA_STAGE and flush 5475
handle on mismatch 5476

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5477
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5478

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5479
return error TPM_DAA_TPM_SETTINGS on mismatch 5480

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 284 9 July 2007
 TCG Published

d. Obtain DAA_SIZE_r0 bytes using the MGF1 function and label them r0. “r0” || 5481
DAA_session -> DAA_contextSeed is the Z seed. 5482

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5483
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5484
mod DAA_issuerSettings -> DAA_generic_q. 5485

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f) 5486

g. Set s0 = r0 + (DAA_session -> DAA_digest)*(f0) 5487

h. set outputData = s0 5488

i. increment DAA_session -> DAA_stage by 1 5489

j. return TPM_SUCCESS 5490

12. If stage==12 5491

a. Verify that DAA_session ->DAA_stage==12. Return TPM_DAA_STAGE and flush 5492
handle on mismatch 5493

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5494
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5495

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5496
return error TPM_DAA_TPM_SETTINGS on mismatch 5497

d. Obtain DAA_SIZE_r1 bytes using the MGF1 function and label them r1. “r1” || 5498
DAA_session -> DAA_contextSeed is the Z seed. 5499

e. Set f = SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 5500
0) || SHA-1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) 5501
mod DAA_issuerSettings -> DAA_generic_q. 5502

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the 5503
result f1 5504

g. Set s1 = r1 + (DAA_session -> DAA_digest)*(f1) 5505

h. set outputData = s1 5506

i. increment DAA_session -> DAA_stage by 1 5507

j. return TPM_SUCCESS 5508

13. If stage==13 5509

a. Verify that DAA_session ->DAA_stage==13. Return TPM_DAA_STAGE and flush 5510
handle on mismatch 5511

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5512
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5513

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5514
return error TPM_DAA_TPM_SETTINGS on mismatch 5515

d. Set DAA_private_v0= unwrap(inputData0) using TPM_PERMANENT_DATA -> 5516
daaBlobKey 5517

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 5518
error TPM_DAA_INPUT_DATA0 on mismatch 5519

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 285 9 July 2007

 TCG Published

f. Obtain DAA_SIZE_r2 bytes from the MGF1 function and label them r2. “r2” || 5520
DAA_session -> DAA_contextSeed is the Z seed. 5521

g. Set s2 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0) mod 2^DAA_power1 5522
(erase all but the lowest DAA_power1 bits of s2) 5523

h. set outputData = s2 5524

i. increment DAA_session -> DAA_stage by 1 5525

j. return TPM_SUCCESS 5526

14. If stage==14 5527

a. Verify that DAA_session ->DAA_stage==14. Return TPM_DAA_STAGE and flush 5528
handle on mismatch 5529

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5530
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5531

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5532
return error TPM_DAA_TPM_SETTINGS on mismatch 5533

d. Set DAA_private_v0= unwrap(inputData0) using TPM_PERMANENT_DATA -> 5534
daaBlobKey 5535

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return 5536
error TPM_DAA_INPUT_DATA0 on mismatch 5537

f. Obtain DAA_SIZE_r2 bytes using the MGF1 function and label them r2. “r2” || 5538
DAA_session -> DAA_contextSeed is the Z seed. 5539

g. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0). 5540

h. Shift s12 right by DAA_power1 bits (erase the lowest DAA_power1 bits). 5541

i. Set DAA_session -> DAA_scratch = s12 5542

j. set outputData = NULL 5543

k. increment DAA_session -> DAA_stage by 1 5544

l. return TPM_SUCCESS 5545

15. If stage==15 5546

a. Verify that DAA_session ->DAA_stage==15. Return TPM_DAA_STAGE and flush 5547
handle on mismatch 5548

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and 5549
return error TPM_DAA_ISSUER_SETTINGS on mismatch 5550

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and 5551
return error TPM_DAA_TPM_SETTINGS on mismatch 5552

d. Set DAA_private_v1 = unwrap(inputData0) using TPM_PERMANENT_DATA -> 5553
daaBlobKey 5554

e. Verify that SHA-1(DAA_private_v1) == DAA_tpmSpecific -> DAA_digest_v1 and return 5555
error TPM_DAA_INPUT_DATA0 on mismatch 5556

f. Obtain DAA_SIZE_r4 bytes using the MGF1 function and label them r4. “r4” || 5557
DAA_session -> DAA_contextSeed is the Z seed. 5558

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 286 9 July 2007
 TCG Published

g. Set s3 = r4 + (DAA_session -> DAA_digest)*(DAA_private_v1) + (DAA_session -> 5559
DAA_scratch). 5560

h. Set DAA_session -> DAA_scratch = NULL 5561

i. set outputData = s3 5562

j. Terminate the DAA session and all resources associated with the DAA sign session 5563
handle. 5564

k. return TPM_SUCCESS 5565

16. If stage > 15, return error: TPM_DAA_STAGE 5566

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 287 9 July 2007

 TCG Published

27. Deprecated commands 5567

Start of informative comment: 5568

This section covers the commands that were in version 1.1 but now have new functionality 5569
in other functions. The deprecated commands are still available in 1.2 but all new software 5570
should use the new functionality. 5571

There is no requirement that the deprecated commands work with new structures. 5572

End of informative comment. 5573

1. Commands deprecated in version 1.2 MUST work with version 1.1 structures 5574

2. Commands deprecated in version 1.2 MAY work with version 1.2 structures 5575

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 288 9 July 2007
 TCG Published

27.1 Key commands 5576

Start of informative comment: 5577

The key commands are deprecated as the new way to handle keys is to use the standard 5578
context commands. So TPM_EvictKey is now handled by TPM_FlushSpecific, 5579
TPM_Terminate_Handle by TPM_FlushSpecific. 5580

End of informative comment. 5581

27.1.1 TPM_EvictKey 5582

Incoming Operands and Sizes 5583

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

4 4 TPM_KEY_HANDLE evictHandle The handle of the key to be evicted.

Outgoing Operands and Sizes 5584

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EvictKey

Actions 5585

The TPM will invalidate the key stored in the specified handle and return the space to the 5586
available internal pool for subsequent query by TPM_GetCapability and usage by 5587
TPM_LoadKey. If the specified key handle does not correspond to a valid key, an error will 5588
be returned. 5589

New 1.2 functionality 5590

The command must check the status of the ownerEvict flag for the key and if the flag is 5591
TRUE return TPM_KEY_CONTROL_OWNER 5592

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 289 9 July 2007

 TCG Published

27.1.2 TPM_Terminate_Handle 5593

Start of informative comment: 5594

This allows the TPM manager to clear out information in a session handle. 5595

The TPM may maintain the authorization session even though a key attached to it has been 5596
unloaded or the authorization session itself has been unloaded in some way. When a 5597
command is executed that requires this session, it is the responsibility of the external 5598
software to load both the entity and the authorization session information prior to 5599
command execution. 5600

End of informative comment. 5601

Incoming Operands and Sizes 5602

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

4 4 TPM_AUTHHANDLE handle The handle to terminate

Outgoing Operands and Sizes 5603

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Terminate_Handle.

Descriptions 5604

The TPM SHALL terminate the session and destroy all data associated with the session 5605
indicated. 5606

Actions 5607

A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of 5608
the following events: 5609

1. Completion of a received command whose authorization “continueUse” flag is FALSE. 5610

2. Completion of a received command when a shared secret derived from the authorization 5611
session was exclusive-or’ed with data (to provide confidentiality for that data). This 5612
occurs during execution of a TPM_ChangeAuth command, for example. 5613

3. When the associated entity is destroyed (in the case of TPM Owner or SRK, for example) 5614

4. Upon execution of TPM_Init 5615

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 290 9 July 2007
 TCG Published

5. When the command returns an error. This is due to the fact that when returning an 5616
error the TPM does not send back nonceEven. There is no way to maintain the rolling 5617
nonces, hence the TPM MUST terminate the authorization session. 5618

6. Failure of an authorization check belonging to that authorization session. 5619

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 291 9 July 2007

 TCG Published

27.2 Context management 5620

Start of informative comment: 5621

The 1.1 context commands were written for specific resource types. The 1.2 commands are 5622
generic for all resource types. So the Savexxx commands are replaced by TPM_SaveContext 5623
and the LoadXXX commands by TPM_LoadContext. 5624

End of informative comment. 5625

27.2.1 TPM_SaveKeyContext 5626

Start of informative comment: 5627

TPM_SaveKeyContext saves a loaded key outside the TPM. After creation of the key context 5628
blob the TPM automatically releases the internal memory used by that key. The format of 5629
the key context blob is specific to a TPM. 5630

End of informative comment. 5631

Incoming Operands and Sizes 5632

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 TPM_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes 5633

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveKeyContext

4 4 3S 4 UINT32 keyContextSize
The actual size of the outgoing key context blob. If the command fails the value
will be 0

5 <> 4S <> BYTE[] keyContextBlob The key context blob.

Description 5634

1. This command allows saving a loaded key outside the TPM. After creation of the 5635
keyContextBlob, the TPM automatically releases the internal memory used by that key. 5636
The format of the key context blob is specific to a TPM. 5637

2. A TPM protected capability belonging to the TPM that created a key context blob MUST 5638
be the only entity that can interpret the contents of that blob. If a cryptographic 5639
technique is used for this purpose, the level of security provided by that technique 5640
SHALL be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) 5641

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 292 9 July 2007
 TCG Published

used in such a cryptographic technique MUST be generated using the TPM’s random 5642
number generator. Any symmetric key MUST be used within the power-on session 5643
during which it was created, only. 5644

3. A key context blob SHALL enable verification of the integrity of the contents of the blob 5645
by a TPM protected capability. 5646

4. A key context blob SHALL enable verification of the session validity of the contents of the 5647
blob by a TPM protected capability. The method SHALL ensure that all key context blobs 5648
are rendered invalid if power to the TPM is interrupted. 5649

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 293 9 July 2007

 TCG Published

27.2.2 TPM_LoadKeyContext 5650

Start of informative comment: 5651

TPM_LoadKeyContext loads a key context blob into the TPM previously retrieved by a 5652
TPM_SaveKeyContext call. After successful completion the handle returned by this 5653
command can be used to access the key. 5654

End of informative comment. 5655

Incoming Operands and Sizes 5656

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 2S 4 UINT32 keyContextSize The size of the following key context blob.

5 <> 3S <> BYTE[] keyContextBlob The key context blob.

Outgoing Operands and Sizes 5657

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKeyContext

4 4 TPM_KEY_HANDLE keyHandle The handle assigned to the key after it has been successfully loaded.

Description 5658

1. This command allows loading a key context blob into the TPM previously retrieved by a 5659
TPM_SaveKeyContext call. After successful completion the handle returned by this 5660
command can be used to access the key. 5661

2. The contents of a key context blob SHALL be discarded unless the contents have passed 5662
an integrity test. This test SHALL (statistically) prove that the contents of the blob are 5663
the same as when the blob was created. 5664

3. The contents of a key context blob SHALL be discarded unless the contents have passed 5665
a session validity test. This test SHALL (statistically) prove that the blob was created by 5666
this TPM during this power-on session. 5667

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 294 9 July 2007
 TCG Published

27.2.3 TPM_SaveAuthContext 5668

Start of informative comment: 5669

TPM_SaveAuthContext saves a loaded authorization session outside the TPM. After creation 5670
of the authorization context blob, the TPM automatically releases the internal memory used 5671
by that session. The format of the authorization context blob is specific to a TPM. 5672

End of informative comment. 5673

Incoming Operands and Sizes 5674

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 TPM_AUTHHANDLE authHandle Authorization session which will be kept outside the TPM

Outgoing Operands and Sizes 5675

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SaveAuthContext

4 4 3S 4 UINT32 authContextSize
The actual size of the outgoing authorization context blob. If the command fails
the value will be 0.

5 <> 4S 4 BYTE[] authContextBlob The authorization context blob.

Description 5676

This command allows saving a loaded authorization session outside the TPM. After creation 5677
of the authContextBlob, the TPM automatically releases the internal memory used by that 5678
session. The format of the authorization context blob is specific to a TPM. 5679

A TPM protected capability belonging to the TPM that created an authorization context blob 5680
MUST be the only entity that can interpret the contents of that blob. If a cryptographic 5681
technique is used for this purpose, the level of security provided by that technique SHALL 5682
be at least as secure as a 2048 bit RSA algorithm. Any secrets (such as keys) used in such a 5683
cryptographic technique MUST be generated using the TPM’s random number generator. 5684
Any symmetric key MUST be used within the power-on session during which it was created, 5685
only. 5686

An authorization context blob SHALL enable verification of the integrity of the contents of 5687
the blob by a TPM protected capability. 5688

An authorization context blob SHALL enable verification of the session validity of the 5689
contents of the blob by a TPM protected capability. The method SHALL ensure that all 5690
authorization context blobs are rendered invalid if power to the TPM is interrupted. 5691

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 295 9 July 2007

 TCG Published

27.2.4 TPM_LoadAuthContext 5692

Start of informative comment: 5693

TPM_LoadAuthContext loads an authorization context blob into the TPM previously 5694
retrieved by a TPM_SaveAuthContext call. After successful completion the handle returned 5695
by this command can be used to access the authorization session. 5696

End of informative comment. 5697

Incoming Operands and Sizes 5698

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 2S 4 UINT32 authContextSize The size of the following authorization context blob.

5 <> 3S <> BYTE[] authContextBlob The authorization context blob.

Outgoing Operands and Sizes 5699

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadAuthContext

4 4 TPM_KEY_HANDLE authHandle
The handle assigned to the authorization session after it has been successfully
loaded.

Description 5700

This command allows loading an authorization context blob into the TPM previously 5701
retrieved by a TPM_SaveAuthContext call. After successful completion the handle returned 5702
by this command can be used to access the authorization session. 5703

The contents of an authorization context blob SHALL be discarded unless the contents have 5704
passed an integrity test. This test SHALL (statistically) prove that the contents of the blob 5705
are the same as when the blob was created. 5706

The contents of an authorization context blob SHALL be discarded unless the contents have 5707
passed a session validity test. This test SHALL (statistically) prove that the blob was created 5708
by this TPM during this power-on session. 5709

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 296 9 July 2007
 TCG Published

27.3 DIR commands 5710

Start of informative comment: 5711

The DIR commands are replaced by the NV storage commands. 5712

The DIR [0] in 1.1 is now TPM_PERMANENT_DATA -> authDIR[0] and is always available for 5713
the TPM to use. It is accessed by DIR commands using dirIndex 0 and by NV commands 5714
using nvIndex TPM_NV_INDEX_DIR. 5715

If the TPM vendor supports additional DIR registers, the TPM vendor may return errors or 5716
provide vendor specific mappings for those DIR registers to NV storage locations. 5717

End of informative comment. 5718

1. A dirIndex value of 0 MUST corresponds to an NV storage nvIndex value 5719
TPM_NV_INDEX_DIR. 5720

2. The TPM vendor MAY return errors or MAY provide vendor specific mappings for DIR 5721
dirIndex values greater than 0 to NV storage locations. 5722

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 297 9 July 2007

 TCG Published

27.3.1 TPM_DirWriteAuth 5723

Start of informative comment: 5724

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs 5725
are non-volatile memory registers held in a TPM-shielded location. Owner authentication is 5726
required to authorize this action. 5727

Access is also provided through the NV commands with nvIndex TPM_NV_INDEX_DIR. 5728
Owner authorization is not required when nvLocked is FALSE. 5729

Version 1.2 requires only one DIR. If the DIR named does not exist, the TPM_DirWriteAuth 5730
operation returns TPM_BADINDEX. 5731

End of informative comment. 5732

Incoming Operands and Sizes 5733

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR

5 20 3S 20 TPM_DIRVALUE newContents New value to be stored in named DIR

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for command.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA ownerAuth The authorization session digest for inputs. HMAC key: ownerAuth.

Outgoing Operands and Sizes 5734

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 5735

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 298 9 July 2007
 TCG Published

1. Validate that authHandle contains a TPM Owner AuthData to execute the 5736
TPM_DirWriteAuth command 5737

2. Validate that dirIndex points to a valid DIR on this TPM 5738

3. Write newContents into the DIR pointed to by dirIndex 5739

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 299 9 July 2007

 TCG Published

 5740

27.3.2 TPM_DirRead 5741

Start of informative comment: 5742

The TPM_DirRead operation provides read access to the DIRs. No authentication is required 5743
to perform this action because typically no cryptographically useful AuthData is available 5744
early in boot. TSS implementers may choose to provide other means of authorizing this 5745
action. Version 1.2 requires only one DIR. If the DIR named does not exist, the 5746
TPM_DirRead operation returns TPM_BADINDEX. 5747

End of informative comment. 5748

Incoming Operands and Sizes 5749

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR to be read

Outgoing Operands and Sizes 5750

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirRead.

4 20 3S 20 TPM_DIRVALUE dirContents The current contents of the named DIR

Actions 5751

1. Validate that dirIndex points to a valid DIR on this TPM 5752

2. Return the contents of the DIR in dirContents 5753

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 300 9 July 2007
 TCG Published

27.4 Change Auth 5754

Start of informative comment: 5755

The change auth commands can be duplicated by creating a transport session with 5756
confidentiality and issuing the changeAuth command. 5757

End of informative comment. 5758

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 301 9 July 2007

 TCG Published

27.4.1 TPM_ChangeAuthAsymStart 5759

Start of informative comment: 5760

The TPM_ChangeAuthAsymStart starts the process of changing AuthData for an entity. It 5761
sets up an OIAP session that must be retained for use by its twin 5762
TPM_ChangeAuthAsymFinish command. 5763

TPM_ChangeAuthAsymStart creates a temporary asymmetric public key “tempkey” to 5764
provide confidentiality for new AuthData to be sent to the TPM. TPM_ChangeAuthAsymStart 5765
certifies that tempkey was generated by a genuine TPM, by generating a certifyInfo 5766
structure that is signed by a TPM identity. The owner of that TPM identity must cooperate 5767
to produce this command, because TPM_ChangeAuthAsymStart requires authorization to 5768
use that identity. 5769

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose 5770
authorization is to be changed. That owner uses certifyInfo and a 5771
TPM_IDENTITY_CREDENTIAL to verify that tempkey was generated by a genuine TPM. This 5772
is done by verifying the TPM_IDENTITY_CREDENTIAL using the public key of a CA, 5773
verifying the signature on the certifyInfo structure with the public key of the identity in 5774
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value 5775
inside certifyInfo. The owner uses tempkey to encrypt the desired new AuthData and inserts 5776
that encrypted data in a TPM_ChangeAuthAsymFinish command, in the knowledge that 5777
only a TPM with a specific identity can interpret the new AuthData. 5778

End of informative comment. 5779

Incoming Operands and Sizes 5780

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.

4 4 TPM_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key

5 20 2s 20 TPM_NONCE antiReplay The nonce to be inserted into the certifyInfo structure

6 <> 3S <> TPM_KEY_PARMS tempKey Structure contains all parameters of ephemeral key.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for idHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

10 20 TPM_AUTHDATA idAuth Authorization. HMAC key: idKey.usageAuth.

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 302 9 July 2007
 TCG Published

Outgoing Operands and Sizes 5781

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart

7 95 3S 95 TPM_CERTIFY_INFO certifyInfo The certifyInfo structure that is to be signed.

8 4 4S 4 UINT32 sigSize The used size of the output area for the signature

9 <> 5S <> BYTE[] sig The signature of the certifyInfo parameter.

10 4 6s 4 TPM_KEY_HANDLE ephHandle
The keyHandle identifier to be used by ChangeAuthAsymFinish for the
ephemeral key

11 <> 7S <> TPM_KEY tempKey
Structure containing all parameters and public part of ephemeral key.
TPM_KEY.encSize is set to 0.

12 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

14 20 TPM_AUTHDATA resAuth Authorization. HMAC key: idKey.usageAuth.

Actions 5782

1. The TPM SHALL verify the AuthData to use the TPM identity key held in idHandle. The 5783
TPM MUST verify that the key is a TPM identity key. 5784

2. The TPM SHALL validate the algorithm parameters for the key to create from the 5785
tempKey parameter. 5786

3. Recommended key type is RSA 5787

4. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024 5788

5. For other key types the minimum key size strength MUST be comparable to RSA 512 5789

6. If the TPM is not designed to create a key of the requested type, return the error code 5790
TPM_BAD_KEY_PROPERTY 5791

7. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The 5792
newly created key is pointed to by ephHandle. 5793

8. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TPM_KEY -5794
> encSize MUST be 0. 5795

9. The TPM SHALL fill in certifyInfo using k1 for the information. The certifyInfo -> data 5796
field is supplied by the antiReplay. 5797

10. The TPM then signs the certifyInfo parameter using the key pointed to by idHandle. The 5798
resulting signed blob is returned in sig parameter 5799

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 303 9 July 2007

 TCG Published

Field Descriptions for certifyInfo parameter 5800

Type Name Description

TPM_VERSION Version TPM version structure; Part 2 TPM_VERSION

keyFlags Redirection This SHALL be set to FALSE

 Migratable This SHALL be set to FALSE

 Volatile This SHALL be set to TRUE

TPM_AUTH_DATA_USAGE authDataUsage This SHALL be set to TPM_AUTH_NEVER

TPM_KEY_USAGE KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRInfoSize This SHALL be set to 0

TPM_DIGEST pubDigest This SHALL be the hash of the public key being certified.

TPM_NONCE Data This SHALL be set to antiReplay

TPM_KEY_PARMS info This specifies the type of key and its parameters.

BOOL parentPCRStatus This SHALL be set to FALSE.

 5801

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 304 9 July 2007
 TCG Published

27.4.2 TPM_ChangeAuthAsymFinish 5802

Start of informative comment: 5803

The TPM_ChangeAuth command allows the owner of an entity to change the AuthData for 5804
the entity. 5805

The command requires the cooperation of the owner of the parent of the entity, since 5806
AuthData must be provided to use that parent entity. The command requires knowledge of 5807
the existing AuthData information and passes the new AuthData information. The 5808
newAuthLink parameter proves knowledge of existing AuthData information and new 5809
AuthData information. The new AuthData information “encNewAuth” is encrypted using the 5810
“tempKey” variable obtained via TPM_ChangeAuthAsymStart. 5811

A parent therefore retains control over a change in the AuthData of a child, but is prevented 5812
from knowing the new AuthData for that child. 5813

The changeProof parameter provides a proof that the new AuthData value was properly 5814
inserted into the entity. The inclusion of a nonce from the TPM provides an entropy source 5815
in the case where the AuthData value may be in itself be a low entropy value (hash of a 5816
password etc). 5817

 End of informative comment. 5818

Incoming Operands and Sizes 5819

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 TPM_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data

5 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key

6 2 3S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 20 4s 20 TPM_HMAC newAuthLink HMAC calculation that links the old and new AuthData values together

8 4 5S 4 UINT32 newAuthSize Size of encNewAuth

9 <> 6S <> BYTE[] encNewAuth New AuthData encrypted with ephemeral key.

10 4 7S 4 UINT32 encDataSize The size of the inData parameter

11 <> 8S <> BYTE[] encData The encrypted entity that is to be modified.

12 4 TPM_AUTHHANDLE authHandle Authorization for parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

15 20 TPM_AUTHDATA privAuth
The authorization session digest for inputs and parentHandle. HMAC
key: parentKey.usageAuth.

 5820

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 305 9 July 2007

 TCG Published

Outgoing Operands and Sizes 5821

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 5s 20 TPM_NONCE saltNonce
A nonce value from the TPM RNG to add entropy to the changeProof
value

7 <> 6S <> TPM_DIGEST changeProof Proof that AuthData has changed.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Description 5822

If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM 5823
Owner authentication. 5824

Actions 5825

1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in 5826
parentHandle. 5827

2. The encData field MUST be the encData field from TPM_STORED_DATA or TPM_KEY. 5828

3. The TPM SHALL create e1 by decrypting the entity held in the encData parameter. 5829

4. The TPM SHALL create a1 by decrypting encNewAuth using the ephHandle -> 5830
TPM_KEY_AUTHCHANGE private key. a1 is a structure of type 5831
TPM_CHANGEAUTH_VALIDATE. 5832

5. The TPM SHALL create b1 by performing the following HMAC calculation: b1 = HMAC 5833
(a1 -> newAuthSecret). The secret for this calculation is encData -> currentAuth. This 5834
means that b1 is a value built from the current AuthData value (encData -> 5835
currentAuth) and the new AuthData value (a1 -> newAuthSecret). 5836

6. The TPM SHALL compare b1 with newAuthLink. The TPM SHALL indicate a failure if the 5837
values do not match. 5838

7. The TPM SHALL replace e1 -> authData with a1 -> newAuthSecret 5839

8. The TPM SHALL encrypt e1 using the appropriate functions for the entity type. The key 5840
to encrypt with is parentHandle. 5841

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG. 5842

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 306 9 July 2007
 TCG Published

10. The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with a1 -> n1) 5843
using a1 -> newAuthSecret as the HMAC secret. 5844

11. The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the 5845
authorization session. 5846

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 307 9 July 2007

 TCG Published

27.5 TPM_Reset 5847

Start of informative comment: 5848

TPM_Reset releases all resources associated with existing authorization sessions. This is 5849
useful if a TSS driver has lost track of the state in the TPM. 5850

End of informative comment. 5851

Deprecated Command in 1.2 5852

Incoming Parameters and Sizes 5853

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Outgoing Parameters and Sizes 5854

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Reset.

Description 5855

This is a deprecated command in V1.2. This command in 1.1 only referenced authorization 5856
sessions and is not upgraded to affect any other TPM entity in 1.2 5857

Actions 5858

1. The TPM invalidates all resources allocated to authorization sessions as per version 1.1 5859
extant in the TPM 5860

a. This includes structures created by TPM_SaveAuthContext and TPM_SaveKeyContext 5861

b. Structures created by TPM_Contextxxx (the new 1.2 commands) are not affected by 5862
this command 5863

2. The TPM does not reset any PCR or DIR values. 5864

3. The TPM does not reset any flags in the TPM_STCLEAR_FLAGS structure. 5865

4. The TPM does not reset or invalidate any keys 5866

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 308 9 July 2007
 TCG Published

27.6 TPM_OwnerReadPubek 5867

Start of informative comment: 5868

Return the endorsement key public portion. This is authorized by the TPM Owner. 5869

End of informative comment. 5870

Incoming Operands and Sizes 5871

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authentication.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 5872

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Description 5873

This command returns the PUBEK. 5874

Actions 5875

The TPM_OwnerReadPubek command SHALL 5876

1. Validate the TPM Owner AuthData to execute this command 5877

2. Export the PUBEK 5878

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 309 9 July 2007

 TCG Published

27.7 TPM_DisablePubekRead 5879

Start of informative comment: 5880

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command 5881
sets the non-volatile flag so that the TPM_ReadPubek command always returns 5882
TPM_DISABLED_CMD. 5883

This command has in essence been deprecated as TPM_TakeOwnership now sets the value 5884
to false. The command remains at this time for backward compatibility. 5885

End of informative comment. 5886

Incoming Operands and Sizes 5887

PARAM HMAC

SZ # SZ Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 4 TPM_AUTHHANDLE authHandle The authorization session handle used for owner authentication.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

7 20 TPM_AUTHDATA ownerAuth
The authorization session digest for inputs and owner authorization.
HMAC key: ownerAuth.

Outgoing Operands and Sizes 5888

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
ownerAuth.

Actions 5889

1. This capability sets the TPM_PERMANENT_FLAGS -> readPubek flag to FALSE. 5890

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 310 9 July 2007
 TCG Published

27.8 TPM_LoadKey 5891

Start of informative comment: 5892

Version 1.2 deprecates TPM_LoadKey due to the HMAC of the new key handle on return. 5893
The wrapping makes use of the handle difficult in an environment where the TSS, or other 5894
management entity, is changing the TPM handle to a virtual handle. 5895

Software using TPM_LoadKey on a 1.2 TPM can have a collision with the returned handle as 5896
the 1.2 TPM uses random values in the lower three bytes of the handle. All new software 5897
must use LoadKey2 to allow management software the ability to manage the key handle. 5898

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or 5899
perform any other action, it needs to be present in the TPM. The TPM_LoadKey function 5900
loads the key into the TPM for further use. 5901

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. 5902
The assumption is that the handle may change due to key management operations. It is the 5903
responsibility of upper level software to maintain the mapping between handle and any 5904
label used by external software. 5905

This command has the responsibility of enforcing restrictions on the use of keys. For 5906
example, when attempting to load a STORAGE key it will be checked for the restrictions on 5907
a storage key (2048 size etc.). 5908

The load command must maintain a record of whether any previous key in the key 5909
hierarchy was bound to a PCR using parentPCRStatus. 5910

The flag parentPCRStatus enables the possibility of checking that a platform passed 5911
through some particular state or states before finishing in the current state. A grandparent 5912
key could be linked to state-1, a parent key could linked to state-2, and a child key could be 5913
linked to state-3, for example. The use of the child key then indicates that the platform 5914
passed through states 1 and 2 and is currently in state 3, in this example. TPM_Startup 5915
with stType == TPM_ST_CLEAR indicates that the platform has been reset, so the platform 5916
has not passed through the previous states. Hence keys with parentPCRStatus==TRUE 5917
must be unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR. 5918

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" 5919
has passed AND the key is non-migratory, the key must have been created by the TPM. So 5920
there is every reason to believe that the key poses no security threat to the TPM. While there 5921
is no known attack from a rogue migratory key, there is a desire to verify that a loaded 5922
migratory key is a real key, arising from a general sense of unease about execution of 5923
arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt 5924
cycle, but this may be expensive. For RSA keys, it is therefore suggested that the 5925
consistency test consists of dividing the supposed RSA product by the supposed RSA prime, 5926
and checking that there is no remainder. 5927

End of informative comment. 5928

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 311 9 July 2007

 TCG Published

Incoming Operands and Sizes 5929

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey
Incoming key structure, both encrypted private and clear public portions.
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for parentHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA parentAuth
The authorization session digest for inputs and parentHandle. HMAC
key: parentKey.usageAuth.

Outgoing Operands and Sizes 5930

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey

4 4 3S 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Actions 5931

The TPM SHALL perform the following steps: 5932

1. Validate the command and the parameters using parentAuth and parentHandle -> 5933
usageAuth 5934

2. If parentHandle -> keyUsage is NOT TPM_KEY_STORAGE return 5935
TPM_INVALID_KEYUSAGE 5936

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the 5937
error code TPM_BAD_KEY_PROPERTY 5938

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures 5939

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key 5940
in parentHandle 5941

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 312 9 July 2007
 TCG Published

6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY 5942

a. Reproduce inKey -> TPM_STORE_ASYMKEY -> pubDataDigest using the fields of 5943
inKey, and check that the reproduced value is the same as pubDataDigest 5944

7. Validate the consistency of the key and it’s key usage. 5945

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the 5946
public and private components of the asymmetric key pair. If inKey -> keyFlags -> 5947
migratable is FALSE, the TPM MAY verify consistency of the public and private 5948
components of the asymmetric key pair. The consistency of an RSA key pair MAY be 5949
verified by dividing the supposed (P*Q) product by a supposed prime and checking that 5950
there is no remainder. 5951

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable 5952
is FALSE. If it is not, return TPM_INVALID_KEYUSAGE 5953

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE 5954

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY -5955
> migrationAuth equals TPM_PERMANENT_DATA -> tpmProof 5956

e. Validate the mix of encryption and signature schemes 5957

f. If TPM_PERMANENT_FLAGS -> FIPS is TRUE then 5958

i. If keyInfo -> keySize is less than 1024 return TPM_NOTFIPS 5959

ii. If keyInfo -> authDataUsage specifies TPM_AUTH_NEVER return TPM_NOTFIPS 5960

iii. If keyInfo -> keyUsage specifies TPM_KEY_LEGACY return TPM_NOTFIPS 5961

g. If inKey -> keyUsage is TPM_KEY_STORAGE or TPM_KEY_MIGRATE 5962

i. algorithmID MUST be TPM_ALG_RSA 5963

ii. Key size MUST be 2048 5964

iii. sigScheme MUST be TPM_SS_NONE 5965

h. If inKey -> keyUsage is TPM_KEY_IDENTITY 5966

i. algorithmID MUST be TPM_ALG_RSA 5967

ii. Key size MUST be 2048 5968

iii. encScheme MUST be TPM_ES_NONE 5969

i. If the decrypted inKey -> pcrInfo is NULL, 5970

i. The TPM MUST set the internal indicator to indicate that the key is not using any 5971
PCR registers. 5972

j. Else 5973

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a 5974
composite hash whenever the key will be in use 5975

ii. The TPM MUST handle both version 1.1 TPM_PCR_INFO and 1.2 5976
TPM_PCR_INFO_LONG structures according to the type of TPM_KEY structure 5977

iii. The TPM MUST validate the TPM_PCR_INFO or TPM_PCR_INFO_LONG 5978
structures 5979

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 313 9 July 2007

 TCG Published

8. Perform any processing necessary to make TPM_STORE_ASYMKEY key available for 5980
operations 5981

9. Load key and key information into internal memory of the TPM. If insufficient memory 5982
exists return error TPM_NOSPACE. 5983

10. Assign inKeyHandle according to internal TPM rules. 5984

11. Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus. 5985

12. If ParentHandle indicates it is using PCR registers then set inKeyHandle -> 5986
parentPCRStatus to TRUE. 5987

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 314 9 July 2007
 TCG Published

28. Deleted Commands 5988

Start of informative comment: 5989

These commands are no longer active commands. Their removal is due to security concerns 5990
with their use. 5991

End of informative comment. 5992

1. The TPM MUST return TPM_BAD_ORDINAL for any deleted command 5993

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 315 9 July 2007

 TCG Published

28.1 TPM_GetCapabilitySigned 5994

Start of informative comment: 5995

Along with TPM_GetCapabilityOwner this command allowed the possible signature of 5996
improper values. 5997

TPM_GetCapabilitySigned is almost the same as TPM_GetCapability. The differences are 5998
that the input includes a challenge (a nonce) and the response includes a digital signature 5999
to vouch for the source of the answer. 6000

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 6001
and the caller have AuthData. 6002

If a caller requires proof for a third party, the signing key must be one whose signature is 6003
trusted by the third party. A TPM-identity key may be suitable. 6004

End of informative comment. 6005

Deleted Ordinal 6006

TPM_GetCapabilitySigned 6007

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 316 9 July 2007
 TCG Published

28.2 TPM_GetOrdinalAuditStatus 6008

Start of informative comment: 6009

Get the status of the audit flag for the given ordinal. 6010

End of informative comment. 6011

Incoming Operands and Sizes 6012

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus

4 4 TPM_COMMAND_CODE ordinalToQuery The ordinal whose audit flag is to be queried

Outgoing Operands and Sizes 6013

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 1 BOOL State Value of audit flag for ordinalToQuery

Actions 6014

1. The TPM returns the Boolean value for the given ordinal. The value is TRUE if the 6015
command is being audited. 6016

TPM Main Part 3 Commands Copyright © TCG
Specification Version 1.2

Level 2 Revision 103 317 9 July 2007

 TCG Published

28.3 TPM_CertifySelfTest 6017

Start of informative comment: 6018

TPM_CertifySelfTest causes the TPM to perform a full self-test and return an authenticated 6019
value if the test passes. 6020

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM 6021
and the caller have AuthData. 6022

If a caller requires proof for a third party, the signing key must be one whose signature is 6023
trusted by the third party. A TPM-identity key may be suitable. 6024

End of informative comment. 6025

Incoming Operands and Sizes 6026

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 TPM_KEY_HANDLE keyHandle
The keyHandle identifier of a loaded key that can perform digital
signatures.

5 20 2S 20 TPM_NONCE antiReplay Anti Replay nonce to prevent replay of messages

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization session handle

9 20 TPM_AUTHDATA privAuth
The authorization session digest that authorizes the inputs and use of
keyHandle. HMAC key: key.usageAuth

Outgoing Operands and Sizes 6027

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC key:
key.usageAuth

Copyright © TCG TPM Main Part 3 Commands
 Specification Version 1.2

Level 2 Revision 103 318 9 July 2007
 TCG Published

Description 6028

The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or 6029
TPM_KEY_LEGACY or TPM_KEY_IDENTITY. 6030

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual 6031
TPM. 6032

Actions 6033

1. The TPM SHALL perform TPM_SelfTestFull. If the test fails the TPM returns the 6034
appropriate error code. 6035

2. After successful completion of the self-test the TPM then validates the authorization to 6036
use the key pointed to by keyHandle 6037

a. If the key pointed to by keyHandle has a signature scheme that is not 6038
TPM_SS_RSASSAPKCS1v15_SHA1, the TPM may either return TPM_BAD_SCHEME or 6039
may return TPM_SUCCESS and a vendor specific signature. 6040

3. Create t1 the NOT null terminated string of "Test Passed", i.e. 11 bytes. 6041

4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal. 6042

5. The TPM signs the SHA-1 of m2 using the key identified by keyHandle, and returns the 6043
signature as sig. 6044

 6045

