

TCG

TPM Main
Part 3 Commands

Specification Version 1.2
Revision 62
2 October 2003
Published

Contact: tpmwg@trustedcomputinggroup.org

TCG PUBLISHED
Copyright © TCG 2003

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page ii of xii
 TCG PUBLISHED

Copyright © 2003 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims
all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification and to the implementation of this specification, and TCG disclaims all liability for cost of
procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise,
arising in any way out of use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual property
rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for internal use
only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Copyright C 2005 Trusted Computing Group (TCG) (www.trustedcomputinggroup.org). All rights reserved.

The only official, normative version of a TCG Specification or related document is the English-language text
adopted by TCG under its Bylaws and published on the TCG website, www.trustedcomputing.org. TCG does
not guarantee the accuracy or completeness of any other version. Other language versions of Specifications
and related documents are provided for convenience and are intended to be technically identical to the
official English version, but they may contain translation and other errors.

Translations may be provided by volunteers through the Trusted Computing Group's translation program (see
www.trustedcomputinggroup.org/specifications.

Other legal notices and terms governing the publication of materials on the TCG website are found at
www.trustedcomputinggroup.org/about/legal. TCG incorporates by reference the same notices and terms
with respect to TCG-authorized translations of Specifications and related documents, whether published on
the TCG website or at another online location.

www.trustedcomputinggroup.org
www.trustedcomputing.org
www.trustedcomputinggroup.org/specifications
www.trustedcomputinggroup.org/about/legal

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page iii of xii
 TCG PUBLISHED

Acknowledgement

TCG wishes to thank all those who contributed to this specification. This version builds on the work published
in version 1.1 and those who helped on that version have helped on this version.

A special thank you goes to the members of the TPM workgroup who had early access to this version and
made invaluable contributions, corrections and support.

David Grawrock

TPM Workgroup chair

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page iv of xii
 TCG PUBLISHED

Change History

Version Date Description

Rev 50 Jul
2003

Started 01 Jul 2003 by David Grawrock

Breakup into parts and the merge of 1.1 commands

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page v of xii
 TCG PUBLISHED

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page vi of xii
 TCG PUBLISHED

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page vii of xii
 TCG PUBLISHED

Table of Contents

1. Scope and Audience..1

1.1 Key words..1

1.2 Statement Type..1

2. Description and TODO..2

3. Admin Startup and State ..3

3.1 TPM_Init ..4

3.2 TPM_Startup ...5

3.3 TPM_SaveState ..8

4. Admin Testing...10

4.1 TPM_SelfTestFull ...10

4.2 TPM_ContinueSelfTest ...11

4.3 TPM_GetTestResult..12

5. Admin Opt-in..13

5.1 TPM_SetOwnerInstall...13

5.2 TPM_OwnerSetDisable ...14

5.3 TPM_PhysicalEnable ..15

5.4 TPM_PhysicalDisable ...16

5.5 TPM_PhysicalSetDeactivated..17

5.6 TPM_SetTempDeactivated ..18

5.7 TPM_SetOperatorAuth ...19

6. Admin Ownership ...20

6.1 TPM_TakeOwnership ...20

6.2 TPM_OwnerClear ...22

6.3 TPM_ForceClear...24

6.4 TPM_DisableOwnerClear..25

6.5 TPM_DisableForceClear ...26

6.6 TSC_PhysicalPresence ...27

6.7 TSC_ResetEstablishmentBit...29

7. The GetCapability Commands...30

7.1 TPM_GetCapability ..31

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page viii of xii
 TCG PUBLISHED

8. Auditing..34

8.1 Audit Generation ...34

8.2 Effect of audit failing after successful completion of a command35

8.3 TPM_GetAuditDigest ..36

8.4 TPM_GetAuditDigestSigned..37

8.5 TPM_SetOrdinalAuditStatus ..39

9. Administrative Functions - Management ...40

9.1 TPM_FieldUpgrade ...40

9.2 TPM_SetRedirection ...42

10. Storage functions ...44

10.1 TPM_Seal...44

10.2 TPM_Unseal...48

10.3 TPM_UnBind ...51

10.4 TPM_CreateWrapKey..53

10.5 TPM_LoadKey ..56

10.6 TPM_GetPubKey ..59

11. Migration ...61

11.1 TPM_CreateMigrationBlob..61

11.2 TPM_ConvertMigrationBlob..64

11.3 TPM_AuthorizeMigrationKey ..66

11.4 TPM_CMK_CreateKey...68

11.5 TPM_CMK_CreateTicket ...71

11.6 TPM_CMK_CreateBlob ...73

11.7 TPM_CMK_SetRestrictions ...76

12. Maintenance Functions (optional)...77

12.1 TPM_CreateMaintenanceArchive ..77

12.2 TPM_LoadMaintenanceArchive...79

12.3 TPM_KillMaintenanceFeature...81

12.4 TPM_LoadManuMaintPub ..82

12.5 TPM_ReadManuMaintPub..84

13. Cryptographic Functions ..85

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page ix of xii
 TCG PUBLISHED

13.1 TPM_SHA1Start ...85

13.2 TPM_SHA1Update..86

13.3 TPM_SHA1Complete ..87

13.4 TPM_SHA1CompleteExtend ...88

13.5 TPM_Sign ..89

13.6 TPM_GetRandom ...91

13.7 TPM_StirRandom...92

13.8 TPM_CertifyKey ...93

13.9 TPM_CertifyKey2..96

14. Credential Handling ...99

14.1 TPM_CreateEndorsementKeyPair ...100

14.2 TPM_CreateRevocableEK..101

14.3 TPM_RevokeTrust ..103

14.4 TPM_ReadPubek ..104

14.5 TPM_DisablePubekRead...105

14.6 TPM_OwnerReadInteralPub ...106

15. Identity Creation and Activation ...107

15.1 TPM_MakeIdentity ...107

15.2 TPM_ActivateIdentity ...110

16. Integrity Collection and Reporting...113

16.1 TPM_Extend ..114

16.2 TPM_PCRRead ...115

16.3 TPM_Quote ..116

16.4 TPM_PCR_Reset...118

17. Authorization Changing..120

17.1 TPM_ChangeAuth ..120

17.2 TPM_ChangeAuthOwner ..123

18. Authorization Sessions ...125

18.1 TPM_OIAP..125

18.1.1 Actions to validate an OIAP session..126

18.2 TPM_OSAP...127

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page x of xii
 TCG PUBLISHED

18.2.1 Actions to validate an OSAP session...129

18.3 TPM_DSAP...130

18.4 TPM_SetOwnerPointer ...134

19. Delegation Commands..135

19.1 TPM_Delegate_Manage...136

19.2 TPM_Delegate_CreateKeyDelegation ...139

19.3 TPM_Delegate_CreateOwnerDelegation...141

19.4 TPM_Delegate_LoadOwnerDelegation ...144

19.5 TPM_Delegate_ReadTable...146

19.6 TPM_Delegate_UpdateVerification ..147

19.7 TPM_Delegate_VerifyDelegation..149

20. Non-volatile Storage ...151

20.1 TPM_NV_DefineSpace ..152

20.2 TPM_NV_WriteValue ..155

20.3 TPM_NV_WriteValueAuth...158

20.4 TPM_NV_ReadValue...160

20.5 TPM_NV_ReadValueAuth ...162

21. Session Management..164

21.1 TPM_KeyControlOwner ..165

21.2 TPM_SaveContext ..167

21.3 TPM_LoadContext ..170

22. Eviction..172

22.1 TPM_FlushSpecific...173

23. Timing Ticks...174

23.1 TPM_SetTickType...175

23.2 TPM_GetTicks..176

23.3 TPM_TickStampBlob..177

24. Transport Sessions...179

24.1 TPM_EstablishTransport..180

24.2 TPM_ExecuteTransport ..183

24.3 TPM_ReleaseTransportSigned ..188

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page xi of xii
 TCG PUBLISHED

25. Monotonic Counter...191

25.1 TPM_CreateCounter...191

25.2 TPM_IncrementCounter ...193

25.3 TPM_ReadCounter ...195

25.4 TPM_ReleaseCounter ...196

25.5 TPM_ReleaseCounterOwner ...197

26. DAA commands..198

26.1 TPM_DAA_Join ..198

26.2 TPM_DAA_Sign ..212

27. GPIO ..221

27.1 TPM_GPIO_AuthChannel ...221

27.2 TPM_GPIO_ReadWrite..223

28. Deprecated commands ...225

28.1 Key commands ..226

28.1.1 TPM_EvictKey ..226

28.1.2 TPM_Terminate_Handle..227

28.2 Context management...228

28.2.1 TPM_SaveKeyContext ...228

28.2.2 TPM_LoadKeyContext...230

28.2.3 TPM_SaveAuthContext ...231

28.2.4 TPM_LoadAuthContext...232

28.3 DIR commands ..233

28.3.1 TPM_DirWriteAuth ...233

28.3.2 TPM_DirRead ...235

28.4 Change Auth ...236

28.4.1 TPM_ChangeAuthAsymStart ..236

28.4.2 TPM_ChangeAuthAsymFinish ..239

28.5 TPM_Reset...241

28.6 TPM_CertifySelfTest ...242

28.7 TPM_OwnerReadPubek ..244

29. Deleted Commands ..245

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page xii of xii
 TCG PUBLISHED

29.1 TPM_GetCapabilityOwner ..246

29.2 TPM_GetCapabilitySigned ..248

29.3 TPM_GetOrdinalAuditStatus ..250

29.4 Audit Generation ...250

29.5 Effect of audit failing after successful completion of a command252

29.6 TPM_GetAuditDigest ..253

29.7 TPM_GetAuditDigestSigned..254

29.8 TPM_SetOrdinalAuditStatus ..256
End of Introduction do not delete

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 1 of257
 TCG PUBLISHED

1. Scope and Audience
The TPCA main specification is an industry specification that enables trust in computing platforms in general.
The main specification is broken into parts to make the role of each document clear. A version of the
specification (like 1.2) requires all parts to be a complete specification.

This is Part 3 the structures that the TPM will use.

This document is an industry specification that enables trust in computing platforms in general.

1.1 Key words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-10 normative statements are to be interpreted
as described in [RFC-2119].

1.2 Statement Type
Please note a very important distinction between different sections of text throughout this document. You
will encounter two distinctive kinds of text: informative comment and normative statements. Because most
of the text in this specification will be of the kind normative statements, the authors have informally defined
it as the default and, as such, have specifically called out text of the kind informative comment. They have
done this by flagging the beginning and end of each informative comment and highlighting its text in gray.
This means that unless text is specifically marked as of the kind informative comment, you can consider it of
the kind normative statements.

For example:

Start of informative comment:

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TPM specification the user must read the specification. (This use of MUST does not require
any action).

End of informative comment.

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the kind
normative statements ...

To understand the TPM specification the user MUST read the specification. (This use of MUST indicates a
keyword usage and requires an action).

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 2 of257
 TCG PUBLISHED

2. Description and TODO
This document is to show the changes necessary to create the 1.2 version of the TCG specification. Some of
the sections are brand new text; some are rewritten sections of the 1.1 version. Upon approval of the 1.2
changes, there will be a merging of the 1.1 and 1.2 versions to create a single 1.2 document.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 3 of257
 TCG PUBLISHED

3. Admin Startup and State
Start of informative comment:

This section is the commands that start a TPM.

End of informative comment.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 4 of257
 TCG PUBLISHED

3.1 TPM_Init
Start of informative comment:

TPM_Init is a physical method of initializing a TPM. There is no TPM_Init ordinal as this is a platform message
sent on the platform internals to the TPM. On a PC this command arrives at the TPM via the LPC bus and
informs the TPM that the platform is performing a boot process.

TPM_Init puts the TPM into a state where it waits for the command TPM_Startup (which specifies the type of
initialization that is required.

End of informative comment.

Definition

TPM_Init();
Type

Operation of the TPM. This is not a command that any software can execute. It is inherent in the design of
the TPM and the platform that the TPM resides on.

Parameters

None

Description

1. The TPM_Init signal indicates to the TPM that platform initialization is taking place. The TPM SHALL set
the TPM into a state such that the only legal command to receive after the TPM_Init is the TPM_Startup
command. The TPM_Startup will further indicate to the TPM how to handle and initialize the TPM
resources.

2. The platform design MUST be that the TPM is not the only component undergoing initialization. If the
TPM_Init signal forces the TPM to perform initialization then the platform MUST ensure that ALL
components of the platform receive an initialization signal. This is to prevent an attacker from causing
the TPM to initialize to a state where various masquerades are allowable. For instance, on a PC causing
the TPM to initialize and expect measurements in PCR0 but the remainder of the platform does not
initialize.

3. The design of the TPM MUST be such that the ONLY mechanism that signals TPM_Init also signals
initialization to the other platform components.

Actions

1. The TPM sets TPM_STANY_FLAGS -> postInitialise to TRUE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 5 of257
 TCG PUBLISHED

3.2 TPM_Startup
Start of informative comment:

TPM_Startup is always preceded by TPM_Init, which is the physical indication (a system-wide reset) that TPM
initialization is necessary.

There are many events on a platform that can cause a reset and the response to these events can require
different operations to occur on the TPM. The mere reset indication does not contain sufficient information
to inform the TPM as to what type of reset is occurring. Additional information known by the platform
initialization code needs transmitting to the TPM. The TPM_Startup command provides the mechanism to
transmit the information.

The TPM can startup in three different modes:

A “clear” start where all variables go back to their default or non-volatile set state

A “save” start where the TPM recovers appropriate information and restores various values based on a prior
TPM_SaveState. This recovery requires an invocation of TPM_Init to be successful.

A “deactivated” start where the TPM turns itself off and requires another TPM_Init before the TPM will
execute in a fully operational state.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Startup

4 2 TPM_STARTUP_TYPE startupType Type of startup that is occurring

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Description

TPM_Startup MUST be generated by a trusted entity (the RTM or the TPM, for example).

Actions

1. If TPM_STANY_FLAGS -> postInitialise is FALSE,

a. Then the TPM MUST return TPM_INVALID_POSTINIT, and exit this capability

2. If stType = TPM_ST_CLEAR

a. Ensure that sessions associated with resources TPM_RT_CONTEXT, TPM_RT_AUTH and TPM_RT_TRANS
are invalidated

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 6 of257
 TCG PUBLISHED

b. Reset PCR values to each correct default value

c. Set the following TPM_STCLEAR_FLAGS to their default state

i. PhysicalPresence

ii. PhysicalPresenceLock

iii. disableForceClear

d. The TPM MAY initialize auditDigest to NULL

i. If not initialized to NULL the TPM SHALL ensure that auditDigest contains a valid value

ii. If initialization fails the TPM SHALL set auditDigest to NULL and SHALL set the internal TPM state
so that the TPM returns TPM_FAILED_SELFTEST to all subsequent commands.

e. The TPM SHALL set TPM_STCLEAR_FLAGS -> deactivated to the same state as TPM_PERMANENT_FLAGS
-> deactivated

f. The TPM MUST set the TPM_STANY_DATA fields to:

i. TPM_STANY_DATA->contextNonceSession is set to NULLS

ii. TPM_STANY_DATA->contextCount is set to 0

iii. TPM_STANY_DATA->contextList is set to 0

g. The TPM MUST set TPM_STCLEAR_DATA fields to:

i. Invalidate contextNonceKey

ii. countID to NULL

iii. bGlobalLock to FALSE

h. Determine which keys should remain in the TPM

i. For each key that has a valid preserved value in the TPM

(1) if parentPCRStatus is TRUE then call TPM_FlushSpecific(keyHandle)

(2) if IsVolatile is TRUE then call TPM_FlushSpecifid(keyHandle)

3. If stType = TPM_ST_STATE

a. If the TPM has no state to restore the TPM MUST set the internal state such that it returns
TPM_FAILED_SELFTEST to all subsequent commands

b. The TPM MAY determine for each session type (authorization, transport…) to release or maintain the
session information. The TPM reports how it manages sessions in the GetCapability command.

c. The TPM SHALL take all necessary actions to ensure that all PCRs contain valid preserved values. If
the TPM is unable to successfully complete these actions, it SHALL enter the TPM failure mode.

d. The TPM MAY initialize auditDigest to NULL

i. Otherwise, the TPM SHALL take all actions necessary to ensure that auditDigest contains a valid
value. If the TPM is unable to successfully complete these actions, the TPM SHALL initialize
auditDigest to NULL and SHALL set the internal set such that the TPM returns
TPM_FAILED_SELFTEST to all subsequent commands.

e. The TPM MUST restore the following flags to their preserved states:

i. TPM_STCLEAR_FLAGS -> PhysicalPresence

ii. TPM_STCLEAR_FLAGS -> PhysicalPresenceLock

iii. TPM_STCLEAR_FLAGS -> deactivated

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 7 of257
 TCG PUBLISHED

iv. TPM_STCLEAR_FLAGS -> disableForceClear

f. The TPM MUST restore all keys that have been saved

g. The TPM resumes normal operation. If the TPM is unable to resume normal operation, it SHALL enter
the TPM failure mode.

4. If stType = TPM_ST_DEACTIVATED

a. Invalidate sessions

i. Ensure that all resources associated with saved and active sessions are invalidated

b. The TPM MUST set TPM_STCLEAR_FLAGS -> deactivated to TRUE

c. The TPM MUST invalidate any explicitly preserved state

i. The TPM MUST ensure that state associated with TPM_SaveState is invalidated

5. The TPM MUST set TPM_STANY_FLAGS -> postInitialise to FALSE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 8 of257
 TCG PUBLISHED

3.3 TPM_SaveState
Start of informative comment:

This warns a TPM to save some state information.

If the relevant shielded storage is non-volatile, this command need have no effect.

If the relevant shielded storage is volatile and the TPM alone is unable to detect the loss of external power in
time to move data to non-volatile memory, this command should be presented before the TPM enters a low or
no power state.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveState.

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Description

1. Preserved values MUST be non-volatile.

2. If data is never stored in a volatile medium, that data MAY be used as preserved data. In such cases, no
explicit action may be required to preserve that data.

3. If an explicit action is required to preserve data, it MUST be possible for the TPM to determine whether
preserved data is valid.

4. If the parameter mirrored by a preserved value is altered, the preserved value MUST be declared invalid.
If the parameter mirrored by any preserved value is altered, all preserved values MAY be declared
invalid.

Actions

1. Store PCR contents except for

a. If the PCR attribute pcrReset is TRUE

b. PCR 15 (debug PCR)

2. The auditDigest MUST be handled according to the audit requirements as reported by TPM_GetCapability

3. Handle TPM_STANY_DATA -> currentTicks according to the values returned by tickType

4. All values in TPM_STCLEAR_DATA MUST be preserved

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 9 of257
 TCG PUBLISHED

5. All values in TPM_STCLEAR_FLAGS MUST be preserved

6. The contents of any key that is currently loaded SHOULD be preserved if the key's parentPCRStatus
indicator is FALSE and its IsVolatile indicator is FALSE.

7. The contents of any key that has TPM_KEY_CONTROL_OWNER_EVICT set MUST be preserved

8. The contents of any key that is currently loaded MAY be preserved as reported by TPM_GetCapability

9. The contents of sessions (authorization, transport etc.) MAY be preserved as reported by
TPM_GetCapability

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 10 of257
 TCG PUBLISHED

4. Admin Testing

4.1 TPM_SelfTestFull
Start of informative comment:

SelfTestFull tests all of the TPM capabilities.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SelfTestFull

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. TPM_SelfTestFull SHALL cause a TPM to perform self-test of each TPM internal function.

2. Failure of any test results in overall failure, and the TPM goes into failure mode.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 11 of257
 TCG PUBLISHED

4.2 TPM_ContinueSelfTest
Start of informative comment:

CotinueSelfTest informs the TPM that it may complete the self test of all TPM functions.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ContinueSelfTest

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. If TPM_PERMANENT_FLAGS -> FIPS is TRUE

a. The TPM MUST run ALL self-tests

2. Else

a. The TPM MUST complete all self-tests that are outstanding

i. Instead of completing all outstanding self-tests the TPM MAY run all self-tests

3. The TPM SHALL immediately respond to the caller with a return code.

a. When TPM_ContinueSelfTest finishes execution, it SHALL NOT respond to the caller with a return
code.

4. The TPM SHALL unilaterally execute the functions of TPM_ContinueSelfTest upon receipt of a command
that calls a capability-X that uses untested TPM functions. If the self-test fails, the TPM SHALL return the
error code TPM_FAILEDSELFTEST. If the self-test passes, the TPM SHALL execute capability-X.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 12 of257
 TCG PUBLISHED

4.3 TPM_GetTestResult
Start of informative comment:

TPM_GetTestResult provides manufacturer specific information regarding the results of the self test. This
command will work when the TPM is in self test failure mode. The reason for allowing this command to
operate in the failure mode is to allow TPM manufacturers to obtain diagnostic information.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetTestResult

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 outDataSize The size of the outData area

5 <> BYTE[] outData The outData this is manufacturer specific

Actions

1. The TPM SHALL respond to this command with a manufacturer specific block of information that describes
the result of the latest self test.

2. The information MUST NOT contain any data that uniquely identifies an individual TPM.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 13 of257
 TCG PUBLISHED

5. Admin Opt-in

5.1 TPM_SetOwnerInstall
Start of informative comment:

When enabled but without an owner this command sets the persistent flag that allows or disallows the ability
to insert an owner.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOwnerInstall

4 1 BOOL state State to which ownership flag is to be set.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action

1. If the TPM has a current owner, this command immediately returns with TPM_SUCCESS.

2. The TPM validates the assertion of physical access. The TPM then sets the value of
TPM_PERMANENT_FLAGS -> ownership to the value in state.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 14 of257
 TCG PUBLISHED

5.2 TPM_OwnerSetDisable
Start of informative comment:

The TPM owner sets the persistent disable flag

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 1 2S 1 BOOL disableState Value for disable state – enable if TRUE

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Action

1. The TPM SHALL authenticate the command as coming from the TPM Owner. If unsuccessful, the TPM
SHALL return TPM_BAD_AUTH.

2. The TPM SHALL set the TPM_PERMANENT_FLAGS -> disable flag to the value in the disableState
parameter.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 15 of257
 TCG PUBLISHED

5.3 TPM_PhysicalEnable
Start of informative comment:

Sets the persistent disable flag to FALSE using physical presence as authorization.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalEnablel

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to FALSE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 16 of257
 TCG PUBLISHED

5.4 TPM_PhysicalDisable
Start of informative comment:

Sets the persistent disable flag to TRUE using physical presence as authorization

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalDisable

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.disable value to TRUE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 17 of257
 TCG PUBLISHED

5.5 TPM_PhysicalSetDeactivated
Start of informative comment:

Enables the TPM using physical presence as authorization.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_PhysicalSetDeactivated

4 1 BOOL state State to which deactivated flag is to be set.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action

1. Validate that physical presence is being asserted, if not return TPM_BAD_PRESENCE

2. The TPM SHALL set the TPM_PERMANENT_FLAGS.deactivated flag to the value in the state parameter.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 18 of257
 TCG PUBLISHED

5.6 TPM_SetTempDeactivated
Start of informative comment:

This command allows the operator of the platform to deactivate the TPM until the next boot of the platform.

This command requires operator authorization. The operator can provide the authorization by either the
assertion of physical presence or presenting the operation authorization value.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetTempDeactivated

5 4 2S 4 TPM_AUTHHANDLE authHandle The authorization handle used for operator authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA operatorAuth HMAC key: operatorAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerSetDisable

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
operatorAuth.

Action

1. If tag = TPM_TAG_REQ_AUTH1_COMMAND

a. Validate that authHandle is TPM_KH_OPERATOR, on error return TPM_INVALID_KEYHANDLE

b. If TPM_PERMANENT_FLAGS -> operator is FALSE return TPM_NOOPERATOR

c. Validate command and parameters using operatorAuth, on error return TPM_AUTHFAIL

2. Else

a. If physical presence is not asserted the TPM MUST return TPM_BADPRESENCE

3. The TPM SHALL set the TPM_STCLEAR_FLAGS.deactivated flag to the value TRUE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 19 of257
 TCG PUBLISHED

5.7 TPM_SetOperatorAuth
Start of informative comment:

This command allows the setting of the operator authorization value.

There is no confidentiality applied to the operator authorization as the value is sent under the assumption of
being local to the platform. If there is a concern regarding the path between the TPM and the keyboard then
unless the keyboard is using encryption and a secure channel an attacker can read the values.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOperatorAuth

4 20 TPM_SECRET operatorAuth The operator authorization

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action

1. If physical presence is not asserted the TPM MUST return TPM_BADPRESENCE

2. The TPM SHALL set the TPM_PERSISTENT_DATA -> operatorAuth

3. The TPM SHALL set TPM_PERMANENT_FLAGS -> operator to TRUE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 20 of257
 TCG PUBLISHED

6. Admin Ownership

6.1 TPM_TakeOwnership
Start of informative comment:

This command inserts the TPM Ownership value into the TPM.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 2 2S 2 TPM_PROTOCOL_ID protocolID The ownership protocol in use.

5 4 3S 4 UINT32 encOwnerAuthSize The size of the encOwnerAuth field

6 <> 4S <> BYTE[] encOwnerAuth The owner authorization data encrypted with PUBEK

7 4 5S 4 UINT32 encSrkAuthSize The size of the encSrkAuth field

8 <> 6S <> BYTE[] encSrkAuth The SRK authorization data encrypted with PUBEK

9 <> 7S <> TPM_KEY srkParams Structure containing all parameters of new SRK. pubKey.keyLength &
encSize are both 0

10 4 TPM_AUTHHANDLE authHandle The authorization handle used for this command

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

13 20 TPM_AUTHDATA ownerAuth Authorization digest for input params. HMAC key: the new ownerAuth
value. See actions for validation operations

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_TakeOwnership

4 <> 3S <> TPM_KEY srkPub Structure containing all parameters of new SRK. srkPub.encData is set to
0.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: the new
ownerAuth value

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 21 of257
 TCG PUBLISHED

Actions

1. If TPM_PERMANENT_DATA -> ownerAuth is valid return TPM_OWNER_SET

2. If TPM_PERMANENT_FLAGS -> ownership is FALSE return TPM_INSTALL_DISABLED

3. If TPM_PERMANENT_DATA -> endorsementKey is invalid return TPM_NO_ENDORSEMENT

4. Verify that authHandle is of type OIAP on error return TPM_AUTHFAIL

5. Create A1 a TPM_SECRET by decrypting EncOwnerAuth using PRIVEK as the key

a. This requires that A1 was encrypted using the PUBEK

b. Validate that A1 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

6. Validate the command and parameters using A1 and ownerAuth, on error return TPM_AUTHFAIL

7. Validate srkParams

a. If srkParams -> keyUsage is not TPM_KEY_STORAGE return TPM_INVALID_KEYUSAGE

b. If srkParams -> migratable is TRUE return TPM_INVALID_KEYUSAGE

c. If srkParams -> algorithmParms -> algorithmID is NOT TPM_ALG_RSA return TPM_BAD_KEY_PROPERTY

d. If srkParams -> algorithmParms -> encScheme is NOT TPM_ES_RSAESOAEP_SHA1_MGF1 return
TPM_BAD_KEY_PROPERTY

e. If srkParams -> algorithmParms -> sigScheme is NOT TPM_SS_NONE return TPM_BAD_KEY_PROPERTY

f. If srkParams -> algorithmParms -> parms -> keyLength MUST be greater than or equal to 2048, on
error return TPM_BAD_KEY_PROPERTY

8. Generate K1 according to the srkParams on error return TPM_BAD_KEY_PROPERTY

9. Create A2 a TPM_SECRET by decrypting EncSrkAuth using the PRIVEK

a. This requires A2 to be encrypted using the PUBEK

b. Validate that A1 is a length of 20 bytes, on error return TPM_BAD_KEY_PROPERTY

c. Store A2 in K1 -> authData

10. Store K1 in TPM_PERMANENT_DATA -> srk

11. Store A1 in TPM_PERMANENT_DATA -> ownerAuth

12. Create TPM_PERMANENT_DATA -> contextKey according to the rules for the algorithm in use by the TPM
to save context blobs

13. Create TPM_PERMANENT_DATA -> delegateKey according to the rules for the algorithm in use by the TPM
to save delegate blobs

14. Create TPM_PERMANENT_DATA -> tpmProof by using the TPM RNG

15. Export TPM_PERMANENT_DATA -> srk as srkPub

16. Calculate resAuth using the newly established TPM_PERMANENT_DATA -> ownerAuth

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 22 of257
 TCG PUBLISHED

6.2 TPM_OwnerClear
Start of informative comment:

The OwnerClear command performs the clear operation under Owner authorization. This command is
available until the Owner executes the DisableOwnerClear, at which time any further invocation of this
command returns TPM_CLEAR_DISABLED.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Ignored

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Fixed value FALSE

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: old
ownerAuth.

Actions

1. Verify that the TPM Owner authorizes the command and all of the input, on error return TPM_AUTHFAIL.

2. If TPM_PERMANENT_FLAGS -> DisableOwnerClear is TRUE then return TPM_CLEAR_DISABLED.

3. Unload all loaded keys.

4. The TPM MUST NOT modify the following TPM_PERMANENT_DATA items

a. endorsementKey

b. revMajor

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 23 of257
 TCG PUBLISHED

c. revMinor

d. tickType

e. manuMaintPub

f. auditMonotonicCounter

g. monotonicCounter

h. pcrAttrib

i. rngState

j. fipsReset

k. maxNVBufSize

5. The TPM MUST invalidate the following TPM_PERMANENT_DATA items and any internal resources
associated with these items

a. ownerAuth

b. srk

c. delegateKey

d. contextKey

e. tpmProof

f. operatorAuth

6. The TPM MUST reset to manufacturing defaults the following TPM_PERMANENT_DATA items

a. None

7. The TPM MUST invalidate all fields of TPM_STANY_DATA

8. The TPM MUST invalidate all fields of TPM_STCLEAR_DATA

9. The TPM MUST set the following TPM_PERMANENT_FLAGS to their default values

a. disable

b. deactivated

c. readPubek

d. disableOwnerClear

10. The TPM MUST set TPM_PERMANENT_FLAGS -> ownership to FALSE

11. The TPM MUST set TPM_PERMANENT_FLAGS -> operator to FALSE

12. The TPM releases all TPM_PERMANENT_DATA -> monotonicCounter settings

a. This includes invalidating all currently allocated counters. The result will be no currently allocated
counters and the new owner will need to allocate counters. The actual count value will continue to
increase.

13. The TPM MUST NOT deallocate any currently defined NV storage areas

14. The TPM MUST invalidate all familyTable entries

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 24 of257
 TCG PUBLISHED

6.3 TPM_ForceClear
Start of informative comment:

The ForceClear command performs the Clear operation under physical access. This command is available until
the execution of the DisableForceClear, at which time any further invocation of this command returns
TPM_CLEAR_DISABLED.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ForceClear

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. The TPM SHALL check for the assertion of physical presence, if not present return TPM_BAD_PRESENCE

2. If TPM_STCLEAR_FLAGS -> disableForceClear is TRUE return TPM_CLEAR_DISABLED

3. The TPM SHALL execute the actions of TPM_OwnerClear (except for the TPM Owner authorization check)

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 25 of257
 TCG PUBLISHED

6.4 TPM_DisableOwnerClear
Start of informative comment:

The DisableOwnerClear command disables the ability to execute the TPM_OwnerClear command permanently.
Once invoked the only method of clearing the TPM will require physical access to the TPM.

After the execution of TPM_ForceClear, ownerClear is re-enabled and must be explicitly disabled again by the
new TPM Owner.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisableOwnerClear

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

1. The TPM verifies that the authHandle properly authorizes the owner.

2. The TPM sets the TPM_PERMANENT_FLAGS -> disableownerclear flag to TRUE.

3. When this flag is TRUE the only mechanism that can clear the TPM is the TPM_ForceClear command. The
TPM_ForceClear command requires physical access to the TPM to execute.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 26 of257
 TCG PUBLISHED

6.5 TPM_DisableForceClear
Start of informative comment:

The DisableForceClear command disables the execution of the ForceClear command until the next startup
cycle. Once this command is executed, the TPM_ForceClear is disabled until another startup cycle is run.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_DisableForceClear

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. The TPM sets the TPM_STCLEAR_FLAGS.disableforceclear flag in the TPM that disables the execution of
the TPM_ForceClear command.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 27 of257
 TCG PUBLISHED

6.6 TSC_PhysicalPresence
Start of informative comment:

Some TPM operations require the indication of a human’s physical presence at the platform. The presence of
the human either provides another indication of platform ownership or a mechanism to ensure that the
execution of the command is not the result of a remote software process.

This command allows a process on the platform to indicate the assertion of physical presence. As this
command is executable by software there must be protections against the improper invocation of this
command.

The physicalPresenceHWEnable and physicalPresenceCMDEnable indicate the ability for either SW or HW to
indicate physical presence. These flags can be reset until the physicalPresenceLifetimeLock is set. The
platform manufacturer should set these flags to indicate the capabilities of the platform the TPM is bound to.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TSC_ORD_PhysicalPresence.

4 2 TPM_PHYSICAL_PRESENCE physicalPresence The state to set the TPM’s Physical Presence flags.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. See section 4.3 of Main Specification.

Descriptions

Actions

1. If TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock is FALSE

a. If physicalPresence -> TPM_PHYSICAL_PRESENCE_HW_ENABLE is TRUE

i. Set TPM_PERMANENT_FLAGS -> physicalPresenceHWEnable to TRUE

b. If physicalPresence -> TPM_PHYSICAL_PRESENCE_CMD_ENABLE is TRUE

i. Set TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable to TRUE

2. If physicalPresence -> TPM_PHYSICAL_PRESENCE_LIFETIME_LOCK is TRUE

a. Set TPM_PERMANENT_FLAGS -> physicalPresenceLifetimeLock to TRUE

3. If TPM_PERMANENT_FLAGS -> physicalPresenceCMDEnable is TRUE and TPM_STCLEAR_FLAGS ->
physicalPresenceLock is FALSE.

a. If physicalPresence -> TPM_PHYSICAL_PRESENCE_PRESENT is TRUE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 28 of257
 TCG PUBLISHED

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to TRUE

b. If physicalPresence -> TPM_PHYSICAL_PRESENCE_NOTPRESENT is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresence to FALSE

c. if physicalPresence -> TPM_PHYSICAL_PRESENCE_LOCK is TRUE

i. Set TPM_STCLEAR_FLAGS -> physicalPresenceLock to TRUE

4. Else

a. Return TPM_BAD_PARAMETER

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 29 of257
 TCG PUBLISHED

6.7 TSC_ResetEstablishmentBit
Start of informative comment:

The PC TPM Interface Specification (TIS) specifies a bit that is set upon execution of the HASH_START
sequence. The setting of this implies the creation of a Trusted Operating System on the platform.

There are reasons to reset the bit. This command allows for the resetting of the bit under controlled
circumstances.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TSC_ORD_ResetEstablishmentBit

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. Validate the assertion of locality 3 or locality 4

2. Set the tpmEstablished bit contained in the TPM_ACCESS register to 1

3. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 30 of257
 TCG PUBLISHED

7. The GetCapability Commands
Start of informative comment:

The TPM has numerous capabilities that a remote entity may wish to know about. These items include
support of algorithms, key sizes, protocols and vendor-specific additions. The GetCapability command allows
the TPM to report back to the requestor what type of TPM it is dealing with.

The request for information requires the requestor to specify which piece of information that is required. The
request does not allow the “merging” of multiple requests and returns only a single piece of information.

In failure mode, the TPM returns a limited set of information that includes the TPM manufacture and model
and the SelfTestResult

In version 1.2 with the deletion of GetCapabilitySigned the way to obtain a signed listing of the capabilities is
to create a transport session, perform GetCapability commands to list the information and then close the
transport session using ReleaseTransportSigned.

End of informative comment.

1. The standard information provided in TPM_GetCapability MUST NOT provide unique information

a. The TPM has no control of information placed into areas on the TPM like the NV store that is reported
by the TPM. Configuration information for these areas could conceivably be unique

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 31 of257
 TCG PUBLISHED

7.1 TPM_GetCapability
Start of informative comment:

This command returns current information regarding the TPM.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapability

4 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

5 4 UINT32 subCapSize Size of subCap parameter

6 <> BYTE[] subCap Further definition of information

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 respSize The length of the returned capability response

5 <> BYTE[] resp The capability response

Actions

The TPM validates the capArea and subCap indicators. If the information is available, the TPM creates the
response field and fills in the actual information.

The num column is merely for help in labeling the table and is informative only.

TPM response to various requests

Num CapArea subCap Response

1 TPM_CAP_ALG TPM_ALG_XX:

A value of TPM_ALGORITHM_ID

Boolean value. TRUE means that the TPM supports the algorithm for
TPM_Sign, TPM_Seal, TPM_UnSeal and TPM_Unbind and related
commands. FALSE indicates that for these types of commands the
algorithm is not supported.

2 TPM_CAP_KEY_STATUS handle Boolean value of ownerEvict. The handle MUST point to a valid key
handle.

3 TPM_CAP_PROPERTY TPM_CAP_PROP_DAA_MAX UINT32. The maximum number of DAA sessions (join or sign) that the
TPM supports

4 TPM_CAP_CHECK_LOADED ALGORITHM:

A value of TPM_KEY_PARMS

A Boolean value. TRUE indicates that the TPM has enough memory
available to load a key of the type specified by ALGORITHM. FALSE
indicates that the TPM does not have enough memory.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 32 of257
 TCG PUBLISHED

5 TPM_CAP_FLAG TPM_CAP_FLAG_PERSISTENT The TPM_PERMANENT_FLAGS structure

6 TPM_CAP_FLAG TPM_CAP_FLAG_VOLATILE The TPM_STCLEAR_FLAGS structure

7 TPM_CAP_PROPERTY TPM_CAP_PROP_DELEGATE_ROW UINT32. The size of the delegate table in rows.

8 TPM_CAP_ORD ORDINAL:

A value of command ordinal:

Boolean value. TRUE indicates that the TPM supports the ordinal. FALSE
indicates that the TPM does not support the ordinal.

9 TPM_CAP_PID TPM_PID:

A value of TPM_PROTOCOL_ID:

Boolean value. TRUE indicates that the TPM supports the protocol,
FALSE indicates that the TPM does not support the protocol.

10 TPM_CAP_PROPERTY TPM_CAP_PROP_PCR UINT32 value. Returns the number of PCR registers supported by the
TPM

11 TPM_CAP_PROPERTY TPM_CAP_PROP_DIR_AUTH UINT32 value. Returns the number of DIR registers under control of the
TPM owner supported by the TPM.

12 TPM_CAP_PROPERTY TPM_CAP_PROP_MANUFACTURER UINT32 value. Returns the Identifier of the TPM manufacturer.

13 TPM_CAP_PROPERTY TPM_CAP_PROP_KEYS UINT32 value. Returns the number of 2048-bit RSA keys that can be
loaded. This MAY vary with time and circumstances.

14 TPM_CAP_PROPERTY TPM_CAP_PROP_TIS These report the platform specific communication timeout values. For
further detail refer to the platform specific specification

15 TPM_CAP_PROPERTY TPM_CAP_MIN_COUNTER UINT32. The minimum amount of time in 10ths of a second that must
pass between invocations of incrementing the monotonic counter.

16 TPM_CAP_PROPERTY TPM_CAP_PROP_SESSIONS UNIT32. The number of available sessions from the pool. This MAY vary
with time and circumstances. Pool sessions include authorization and
transport sessions.

17 TPM_CAP_PROPERTY TPM_CAP_PROP_CONTEXT_DIST UINT32. The maximum distance between context count values. This
MUST be at least 2^16.

18 TPM_CAP_PROPERTY TPM_CAP_PROP_COUNTERS UINT32. The number of available monotonic counters. This MAY vary
with time and circumstances.

19 TPM_CAP_VERSION Ignored TPM_Version structure. The version MUST be 1.2.0.0

20 TPM_CAP_PROPERTY TPM_CAP_PROP_MAX_SESSIONS UINT32. The maximum number of available sessions. Sessions include
authorization and transport sessions.

21 TPM_CAP_MANUFACTURER_
VER

Ignored TPM_Version structure. The version MUST be 1.2.x.x where the x’s
represent the manufacturer version of the TPM

22 TPM_CAP_PROPERTY TPM_CAP_PROP_MAX_COUNTERS UINT32. The maximum number of monotonic counters under control of
TPM_CreateCounter

23 TPM_CAP_PROPERTY TPM_CAP_PROP_MAX_KEYS UINT32. The maximum number of 2048 RSA keys that the TPM can
support. The number does not include the EK or SRK.

24 TPM_CAP_PROPERTY TPM_CAP_PROP_DAA_INTERRUPT BOOL. A value of TRUE indicates that the TPM will accept ANY
command while executing a DAA Join or Sign.

A value of FALSE indicates that the TPM will invalidate the DAA Join or
Sign upon the receipt of any command other than the next join/sign in the
session or a TPM_SaveContext

25 TPM_CAP_PROPERTY TPM_CAP_PROP_OWNER BOOL. A value of TRUE indicates that the TPM has successfully installed
an owner.

26 TPM_CAP_PROPERTY TPM_CAP_PROP_CONTEXT UINT32. The number of available context slots. This MAY vary with time
and circumstances.

27 TPM_CAP_PROPERTY TPM_CAP_PROP_MAX_CONTEXT UINT32. The maximum number of context slots.

28 TPM_CAP_PROPERTY TPM_CAP_PROP_STARTUP_EFFECT The TPM_STARTUP_EFFECTS structure

30 TPM_CAP_PROPERTY TPM_CAP_PROP_FAMILYROWS UINT32. The number of rows in the family table

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 33 of257
 TCG PUBLISHED

31 TPM_CAP_HANDLE TPM_RESOURCE_TYPE A TPM_KEY_HANDLE_LIST structure that enumerates all handles
currently loaded in the TPM for the given resource type.

When describing keys the handle list only contains the number of handles
that an external manager can operate with and does not include the EK
or SRK.

Legal resources are TPM_RT_KEY, TPM_RT_AUTH, TPM_RT_TRANS,
TPM_RT_DELEGATE

32 TPM_CAP_PROP_PROPERTY TPM_CAP_PROP_NV_AVAILABLE UINT32 the maximum available NV space left in the TPM. This area is a
total count of bytes available and does not indicate that a contigous area
of this size can be allocated

33 TPM_CAP_PROP_PROPERTY TPM_CAP_PROP_NV_MAXBUF UINT32 the maixum size that a NV allocation can take. This value is
reflected in TPM_PERMANENT_DATA -> maxNVBufSize

34 TPM_CAP_NV_INDEX TPM_NV_INDEX A TPM_NV_DATA_PUBLIC structure that indicates the values for the
TPM_NV_INDEX

35 TPM_CAP_NV_LIST ignored A list of UINT32 that are the NV storage indexes.

36 TPM_CAP_TRANS_ALG TPM_ALG_XXX Boolean value. TRUE means that the TPM supports the algorithm for
TPM_EstablishTransport, TPM_ExecuteTransport and
TPM_ReleaseTransportSigned. FALSE indicates that for these three
commands the algorithm is not supported."

37 TPM_CAP_FLAG TPM_CAP_FLAG_STANY The TPM_STANY_FLAGS structure

38 TPM_CAP_GPIO_CHA NNEL UINT16 TPM_PLATFORM_SPECIFIC

UINT16 channel number

Boolean value – TRUE the TPM supports the channel and FALSE the
TPM does not support the channel

39 TPM_CAP_PROP_PROPERTY TPM_CAP_PROP_CMK_RESTRICTION TPM_Permanent_Data -> restrictDelegation

40 TPM_CAP_KEY_HANDLE Ignored A TPM_KEY_HANDLE_LIST structure that enumerates all key handles
loaded on the TPM. The list only contains the number of handles that an
external manager can operate with and does not include the EK or SRK.

This is command is available for backwards compability. It is the same as
item 31 with a resouce type of keys.

41 TPM_CAP_TRANS_ES TPM_EX_XXX Boolean value. TRUE means the TPM supports the encryption scheme in
a transport session.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 34 of257
 TCG PUBLISHED

8. Auditing

8.1 Audit Generation
Start of informative comment:

The TPM generates an audit event in response to the TPM executing a function that has the audit flag set to
TRUE for that function.

The TPM maintains an extended value for all audited operations.

Input audit generation occurs before the listed actions and output audit generation occurs after the listed
actions.

End of informative comment.

Description

The TPM extends the audit digest whenever the ordinalAuditStatus is TRUE for the ordinal about to be
executed.

Actions

The TPM will execute the ordinal and perform auditing in the following manner

1. Map V1 to TPM_STANY_DATA

2. Map P1 to TPM_PERMANENT_DATA

3. If V1 -> auditDigest is NULL

a. Increment P1 -> auditMonotonicCounter by 1

4. Create A1 a TPM_AUDIT_EVENT_IN structure

a. Set A1 -> inputParms to the input parameters from the command

b. Set A1 -> ordinal to the ordinal of the command

c. Set A1 -> auditCount to P1 -> auditMonotonicCounter

d. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A1)

5. Execute command

a. Execution implies the performance of the listed actions for the ordinal.

6. Create A2 a TPM_AUDIT_EVENT_OUT structure

a. Set A2 -> outputParms to the output parameters from the command

b. Set A2 -> returnCode to the return code for the command

c. Set A2 -> ordinal to the ordinal of the command

d. Set A2 -> auditCount to P1 -> auditMonotonicCounter

e. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A2)

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 35 of257
 TCG PUBLISHED

8.2 Effect of audit failing after successful completion of a command
Start of informative comment:

An operation could complete successfully and then when the TPM attempts to audit the command the audit
process could have an internal error that forces the TPM to return an error.

The TPM is unable to return the results of the command that ran and this includes success or failure. To
indicate to the caller the TPM will one of two error codes TPM_AUDITFAIL_SUCCESSFUL and
TPM_AUDITFAIL_UNSUCCESSFUL. These two error codes indicate if the command succeeded or failed. The
purpose of this command is to indicate to the caller what occurred with the command execution.

This is new functionality that changes the 1.1 TPM functionality when this condition occurs.

End of informative comment.

1. When after successful completion of an operation, and in performing the audit process, the TPM has an
internal failure (unable to write, SHA-1 failure etc.) the TPM MUST set the internal TPM state such that
the TPM returns the TPM_FAILEDSELFTEST error.

2. If the command is returning a return code that indicates successful execution of the command the TPM
SHALL change the return code to TPM_AUDITFAIL_SUCCESSFUL. For all other error codes the TPM MUST
return TPM_AUDITFAIL_UNSUCCESSFUL.

3. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST always return
TPM_FAILEDSELFTEST for every command other than TPM_GetTestResult. This state must persist
regardless of power cycling, the execution of TPM_Init or any other actions.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 36 of257
 TCG PUBLISHED

8.3 TPM_GetAuditDigest
Start of informative comment:

This returns the current audit digest. The external audit log has the responsibility to track the parameters
that constitute the audit digest.

This value may be unique to an individual TPM. The value however will be changing at a rate set by the TPM
Owner. Those attempting to use this value may find it changing without their knowledge. This value
represents a very poor source of tracking uniqueness.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE Ordinal Command ordinal: TPM_ORD_GetAuditDigest

4 4 UINT32 startOrdinal The starting ordinal for the list of audited ordinals

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

5 10 TPM_COUNTER_VALUE counterValue The current value of the audit monotonic counter

4 20 TPM_DIGEST auditDigest Log of all audited events

5 1 BOOL more TRUE if the output does not contain a full list of audited ordinals

5 4 UINT32 ordSize Size of the ordinal list in bytes

6 <> UINT32[] ordList List of ordinals that are audited.

Actions

1. The TPM sets auditDigest to TPM_STANY_DATA -> auditDigest

2. The TPM sets counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

3. The TPM creates an ordered list of audited ordinals. The list starts at startOrdinal listing each ordinal that
is audited.

a. If startOrdinal is 0 then the first ordinal that could be audited would be TPM_OIAP (ordinal
0x0000000A)

b. The next ordinal would be TPM_OSAP (ordinal 0x0000000B)

4. If the ordered list does not fit in the output buffer the TPM sets more to TRUE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 37 of257
 TCG PUBLISHED

8.4 TPM_GetAuditDigestSigned
Start of informative comment:

The signing of the audit log returns the entire digest value and the list of currently audited commands.

The inclusion of the list of audited commands as an atomic operation is to tie the current digest value with
the list of commands that are being audited.

The signing functionality of this command could be handled by a signed transport session. The resetting of the
audit log functionality must remain in this command; hence there is no way to remove this ordinal from the
set of active ordinals a TPM must support.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_GetAuditDigestSigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 4 2S 4 UINT32 startOrdinal The starting ordinal for the ordered list

6 1 3S 1 BOOL closeAudit Indication if audit session should be closed

7 20 4S 20 TPM_NONCE antiReplay A nonce to prevent replay attacks

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for key authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA keyAuth Authorization. HMAC key: key.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 38 of257
 TCG PUBLISHED

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_GetAuditDigestSigned

4 10 3S 10 TPM_COUNTER_VALUE counterValue The value of the audit monotonic counter

5 20 4S 20 TPM_DIGEST auditDigest Log of all audited events

6 1 5S 1 BOOL more TRUE if the output does not contain a full list of audited ordinals

7 4 5S 4 UINT32 ordSize The size of the ordinal list in bytes

8 <> 6S <> UINT32[] ordinalList The list of ordinals that are being audited

 9 4 7S 4 UINT32 sigSize The size of the sig parameter

10 <> 8S <> BYTE[] sig The signature of the area

11 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 TPM_AUTHDATA resAuth Authorization HMAC key: key.usageAuth.

Actions

1. Call TPM_GetAuditDigest passing startOrdinal and obtain auditDigest, counterValue, ordSize and
ordinalList

a. The TPM MUST ensure that ordinal list AND the resulting signature will fit in the output buffer

b. The TPM MAY truncate the ordinal list returned by TPM_GetAuditDigest

c. If GetAuditDigest truncates the ordinalList or this command truncates the list the TPM MUST set more
to TRUE

2. Create D1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set D1 -> fixed to “ADIG”

b. Set D1 -> replay to antiReplay

c. Create D2 the concatenation of auditDigest || counterValue || ordinalList

d. Set D1 -> dataLen to the length of D2

e. Set D1 -> data to D2

f. Create a digital signature of D1 by using the signature scheme for keyHandle

3. If closeAudit == TRUE and keyHandle->keyUsage is TPM_KEY_IDENTITY

a. TPM_STANY_DATA -> auditDigest MUST be set to NULLS.

4. Else

a. TPM_INVALID_KEYUSAGE

5. Return the signature in the sig parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 39 of257
 TCG PUBLISHED

8.5 TPM_SetOrdinalAuditStatus
Start of informative comment:

Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TPM_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set

5 1 3S 1 BOOL auditState Value for audit flag

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

1. Validate the authorization to execute the command and the parameters

2. Validate that the ordinal points to a valid TPM ordinal, return TPM_BAD_INDEX on error

3. Set the non-volatile flag associated with ordinalToAudit to the value in auditState

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 40 of257
 TCG PUBLISHED

9. Administrative Functions - Management

9.1 TPM_FieldUpgrade
Start of informative comment:

The TPM needs a mechanism to allow for updating the protected capabilities once a TPM is in the field. Given
the varied nature of TPM implementations there will be numerous methods of performing an upgrade of the
protected capabilities. This command, when implemented, provides a manufacturer specific method of
performing the upgrade.

The manufacturer can determine, within the listed requirements, how to implement this command. The
command may be more than one command and actually a series of commands.

The IDL definition is to create an ordinal for the command, however the remaining parameters are
manufacturer specific.

End of informative comment.

IDL Definition

TPM_RESULT TPM_FieldUpgrade(
 [in, out] TPM_AUTH* ownerAuth,
 …);
Type

This is an optional command and a TPM is not required to implement this command in any form.

Parameters

Type Name Description

TPM_AUTH ownerAuth Authentication from TPM owner to execute command

… Remaining parameters are manufacturer specific

Descriptions

The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field upgrade.
The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade process. The
upgrade process MAY use a TPM Identity to deliver upgrade information to specific TPM’s.

The upgrade process can only change protected capabilities.

The upgrade process can only access data in shielded locations where this data is necessary to validate the
TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TPM specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Actions

The TPM SHALL perform the following when executing the command:

1. Validate the TPM Owners authorization to execute the command

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 41 of257
 TCG PUBLISHED

2. Validate that the upgrade information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed using a
2048 bit RSA key.

3. Validate that the upgrade target is the appropriate TPM model and version.

4. Process the upgrade information and update the protected capabilities

5. Set the TPM_PERMANENT_DATA.revMajor and TPM_PERMANENT_DATA.revMinor to the values indicated in
the upgrade. The selection of the value is a manufacturer option. The values MUST be monotonically
increasing. Installing an upgrade with a major and minor revision that is less than currently installed in
the TPM is a valid operation.

6. Set the TPM_STCLEAR_FLAGS.deactivated to TRUE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 42 of257
 TCG PUBLISHED

9.2 TPM_SetRedirection
Informative comment

The redirection command attaches a key to a redirection receiver.

When making the connection to a GPIO channel the authorization restrictions are set at connection time and
not for each invocation that uses the channel.

End of informative comments

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SetRedirection

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can implement redirection.

5 4 2S 4 TPM_REDIR_COMMAND redirCmd The command to execute

6 4 3S 4 UINT32 inputDataSize The size of the input data

7 <> 4S <> BYTE inputData Manufacturer parameter

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA ownerAuth HMAC key TPM Owner authorization

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetRedirection

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

Action

1. If tag == TPM_TAG_REQ_AUTH1_COMMAND

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 43 of257
 TCG PUBLISHED

a. Validate the command and parameters using TPM Owner authorization, on error return
TPM_AUTHFAIL

2. if redirCmd == TPM_REDIR_GPIO

a. Validate that keyHandle points to a loaded key, return TPM_INVALID_KEYHANDLE on error

b. Validate the key attributes specify redirection, return TPM_BAD_TYPE on error

c. Validate that inputDataSize is 4, return TPM_BAD_SIZE on error

d. Validate that inputData points to a valid GPIO channel, return TPM_BAD_PARAMETER on error

e. Map C1 to the TPM_GPIO_CONFIG_CHANNEL structure indicated by inputData

f. If C1 -> attr specifies TPM_GPIO_ATTR_OWNER

i. If tag != TPM_TAG_REQ_AUTH1_COMMAND return TPM_AUTHFAIL

g. If C1 -> attr specifies TPM_GPIO_ATTR_PP

i. If TPM_STCLEAR_FLAGS -> physicalPresence == FALSE, then return TPM_BAD_PRESENCE

h. Return TPM_SUCCESS

3. The TPM MAY support other redirection types. These types may be specified by TCG or provided by the
manufacturer.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 44 of257
 TCG PUBLISHED

10. Storage functions

10.1 TPM_Seal
Start of informative comment:

The SEAL operation allows software to explicitly state the future “trusted” configuration that the platform
must be in for the secret to be revealed. The SEAL operation also implicitly includes the relevant platform
configuration (PCR-values) when the SEAL operation was performed. The SEAL operation uses the tpmProof
value to BIND the blob to an individual TPM.

If the UNSEAL operation succeeds, proof of the platform configuration that was in effect when the SEAL
operation was performed is returned to the caller, as well as the secret data. This proof may, or may not, be
of interest. If the SEALed secret is used to authenticate the platform to a third party, a caller is normally
unconcerned about the state of the platform when the secret was SEALed, and the proof may be of no
interest. On the other hand, if the SEALed secret is used to authenticate a third party to the platform, a
caller is normally concerned about the state of the platform when the secret was SEALed. Then the proof is
of interest.

For example, if SEAL is used to store a secret key for a future configuration (probably to prove that the
platform is a particular platform that is in a particular configuration), the only requirement is that that key
can be used only when the platform is in that future configuration. Then there is no interest in the platform
configuration when the secret key was SEALed. An example of this case is when SEAL is used to store a
network authentication key.

On the other hand, suppose an OS contains an encrypted database of users allowed to log on to the platform.
The OS uses a SEALED blob to store the encryption key for the user-database. However, the nature of SEAL is
that any SW stack can SEAL a blob for any other software stack. Hence the OS can be attacked by a second
OS replacing both the SEALED-blob encryption key, and the user database itself, allowing untrusted parties
access to the services of the OS. To thwart such attacks, SEALED blobs include the past SW configuration.
Hence, if the OS is concerned about such attacks, it may check to see whether the past configuration is one
that is known to be trusted.

TPM_Seal requires the encryption of one parameter (“Secret”). For the sake of uniformity with other
commands that require the encryption of more than one parameter, the string used for XOR encryption is
generated by concatenating a nonce (created during the OSAP session) with the session shared secret and
then hashing the result.

End of informative comment.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 45 of257
 TCG PUBLISHED

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Seal.

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key that can perform seal operations.

5 20 2S 20 TPM_ENCAUTH encAuth The encrypted authorization data for the sealed data. The encryption
key is the shared secret from the OSAP protocol.

6 4 3S 4 UINT32 pcrInfoSize The size of the pcrInfo parameter. If 0 there are no PCR registers in use

7 <> 4S <> TPM_PCR_INFO pcrInfo The PCR selection information. The caller MAY use
TPM_PCR_INFO_LONG.

8 4 5S 4 UINT32 inDataSize The size of the inData parameter

9 <> 6S <> BYTE[] inData The data to be sealed to the platform and any specified PCRs

10 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization. Must be an
OS_AP session for this command.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4H1 1 BOOL continueAuthSession Ignored

13 20 TPM_AUTHDATA pubAuth The authorization digest for inputs and keyHandle. HMAC key:
key.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Seal.

4 <> 3S 4 TPM_STORED_DATA sealedData Encrypted, integrity-protected data object that is the result of the
TPM_Seal operation.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth.

Descriptions

The string used for XOR encryption of the command variable named encAuth SHALL be the digest created by
concatenating the shared session secret with the even numbered hash (generated by the TPM) and hashing
the concatenated value.

TPM_Seal is used to encrypt private objects that can only be decrypted using TPM_Unseal.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 46 of257
 TCG PUBLISHED

Actions

1. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

2. If the keyUsage field of the key indicated by keyHandle does not have the value TPM_KEY_STORAGE, the
TPM must return the error code TPM_INVALID_KEYUSAGE.

3. If the keyHandle points to a migratable key then the TPM MUST return the error code
TPM_INVALID_KEY_USAGE.

4. Determine the version of pcrInfo

a. If pcrInfoSize is 0

i. set V1 to 1

b. Else

i. Point X1 as TPM_PCR_INFO_LONG structure to pcrInfo

ii. If X1 -> tag is TPM_TAG_PCR_INFO_LONG

(1) Set V1 to 2

iii. Else

(1) Set V1 to 1

5. If V1 is 1 then

a. Create S1 a TPM_STORED_DATA structure

6. else

a. Create S1 a TPM_STORED_DATA12 structure

7. Set s1 -> encDataSize to 0

8. Set s1 -> encData to NULL

9. Set s1 -> sealInfoSize to pcrInfoSize

10. If pcrInfoSize is not 0 then

a. if V1 is 1 then

i. Validate pcrInfo as a valid TPM_PCR_INFO structure, return TPM_BADINDEX on error

ii. Create h1 the composite hash of the PCR selected by pcrInfo -> pcrSelection

iii. Set s1 -> sealInfo -> digestAtCreation to h1

iv. Set s1 -> sealInfo -> digestAtRelease to pcrInfo -> digestAtRelease

b. else

i. Validate pcrInfo as a valid TPM_PCR_INFO_LONG structure, return TPM_BADINDEX on error

ii. Set s1 -> creationPCRSelection to pcrInfo -> creationPCRSelection

iii. Set s1 -> releasePCRSelection to pcrInfo -> releasePCRSelection

iv. Set s1 -> digestAtRelease to pcrInfo -> digestAtRelease

v. Create h2 the composite hash of the PCR selected by pcrInfo -> creationPCRSelection

vi. Set s1 -> digestAtCreation to h2

vii. Set s1 -> localityAtCreation to TPM_STANY_DATA -> localityModifier

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 47 of257
 TCG PUBLISHED

11. Create X1 the SHA-1 result of the concatenation of (keyHandle -> sharedSecret || authLastNonceEven)

a. Create a1 the XOR of encAuth and X1

b. The TPM provides NO validation of a1. Well-known values (like NULLS) are valid and possible.

12. Create s2 a TPM_SEALED_DATA structure

a. Set s2 -> payload to TPM_PT_SEAL

b. Set s2 -> tpmProof to TPM_PERMANENT_DATA -> tpmProof

c. Create h2 the SHA-1 of s1

d. Set s2 -> storedDigest to h2

e. Set s2 -> authData to a1

f. Set s2 -> dataSize to inDataSize

g. Set s2 -> data to inData

13. Validate that the size of s2 can be encrypted by the key pointed to by keyHandle, return
TPM_BAD_DATASIZE on error

14. Create s3 the encryption of s2 using the key pointed to by keyHandle

15. Set continueAuthSession to FALSE

16. Set s1 -> encDataSize to the size of s3

17. Set s1 -> encData to s3

18. Return s1 as sealedData

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 48 of257
 TCG PUBLISHED

10.2 TPM_Unseal
Start of informative comment:

The TPM_Unseal operation will reveal TPM_Sealed data only if it was encrypted on this platform and the
current configuration (as defined by the named PCR contents) is the one named as qualified to decrypt it.
Internally, TPM_Unseal accepts a data blob generated by a TPM_Seal operation. TPM_Unseal decrypts the
structure internally, checks the integrity of the resulting data, and checks that the PCR named has the value
named during TPM_Seal. Additionally, the caller must supply appropriate authorization data for blob and for
the key that was used to seal that data.

If the integrity, platform configuration and authorization checks succeed, the sealed data is returned to the
caller; otherwise, an error is generated.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can unseal the data.

5 <> 2S <> TPM_STORED_DATA inData The encrypted data generated by TPM_Seal.

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for parentHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA parentAuth The authorization digest for inputs and parentHandle. HMAC key:
parentKey.usageAuth.

10 4 TPM_AUTHHANDLE dataAuthHandle The authorization handle used to authorize inData.

 2H2 20 TPM_NONCE dataLastNonceEven Even nonce previously generated by TPM

11 20 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with entityAuthHandle

12 1 4H2 1 BOOL continueDataSession Continue usage flag for dataAuthHandle.

13 20 TPM_AUTHDATA dataAuth The authorization digest for the encrypted entity. HMAC key:
entity.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 49 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Unseal.

4 4 3S 4 UINT32 sealedDataSize The used size of the output area for secret

5 <> 4S <> BYTE[] secret Decrypted data that had been sealed

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth.

9 20 2H2 20 TPM_NONCE dataNonceEven Even nonce newly generated by TPM.

 3H2 20 TPM_NONCE datanonceOdd Nonce generated by system associated with dataAuthHandle

10 1 4H2 1 BOOL continueDataSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA dataAuth The authorization digest used for the dataAuth session. HMAC key:
entity.usageAuth.

Actions

1. The TPM MUST validate that parentAuth authorizes the use of the key in parentHandle, on error return
TPM_AUTHFAIL

2. If the keyUsage field of the key indicated by parentHandle does not have the value TPM_KEY_STORAGE,
the TPM MUST return the error code TPM_INVALID_KEYUSAGE.

3. The TPM MUST check that the TPM_KEY_FLAGS -> Migratable flag has the value FALSE in the key indicated
by parentKeyHandle. If not, the TPM MUST return the error code TPM_INVALID_KEYUSAGE

4. Determine the version of inData

a. If inData -> tag = TPM_TAG_STORED_DATA12

i. Set V1 to 2

ii. Map S2 a TPM_STORED_DATA12 structure to inData

b. Else If inData -> ver = 1.1

i. Set V1 to 1

ii. Map S2 a TPM_STORED_DATA structure to inData

c. Else

i. Return TPM_VERSION

5. Create d1 by decrypting S2 -> encData using the key pointed to by parentHandle

6. Validate d1

a. d1 MUST be a TPM_SEALED_DATA structure

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 50 of257
 TCG PUBLISHED

b. d1 -> tpmProof MUST match TPM_PERMANENT_DATA -> tpmProof

c. Set S2 -> encDataSize to 0

d. Set S2 -> encData to NULL

e. Create h1 the SHA-1 of inData

f. d1 -> storedDigest MUST match h1

g. d1 -> payload MUST be TPM_PT_SEALED

h. Any failure MUST return TPM_NOTSEALED_BLOB

7. The TPM MUST validate authorization to use d1 by checking that the HMAC calculation using d1 ->
authData as the shared secret matches the dataAuth. Return TPM_AUTHFAIL on mismatch.

8. If S2 -> pcrInfoSize is not 0 then

a. If V1 is 1 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO structure

ii. Create h2 the composite hash of the PCR selected by S2 -> pcrInfo -> pcrSelection

b. If V1 is 2 then

i. Validate that S2 -> pcrInfo is a valid TPM_PCR_INFO_LONG structure

ii. Create h2 the composite hash of the PCR selected by S2 -> pcrInfo -> releasePCRSelection

iii. Check that S2 -> pcrInfo -> localityAtRelease for TPM_STANY_DATA -> localityModifier is TRUE

(1) For example if TPM_STANY_DATA -> localityModifier was 2 then S2 -> pcrInfo ->
localityAtRelease -> TPM_LOC_TWO would have to be TRUE

c. Compate h2 with S2 -> pcrInfo -> digestAtRelease, on mismatch return TPM_WRONGPCRVALUE

9. Set the return secret as d1 -> data

10. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 51 of257
 TCG PUBLISHED

10.3 TPM_UnBind
Start of informative comment:

TPM_UnBind takes the data blob that is the result of a TSS_Bind command and decrypts it for export to the
User. The caller must authorize the use of the key that will decrypt the incoming blob.

UnBInd operates on a block-by-block basis, and has no notion of any relation between one block and another.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_UnBind.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform UnBind
operations.

5 4 2S 4 UINT32 inDataSize The size of the input blob

6 <> 3S <> BYTE[] inData Encrypted blob to be decrypted

7 4 TPM_AUTHHANDLE authHandle The handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the inputs and use of keyHandle.
HMAC key: key.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 52 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_UnBind

4 4 3S 4 UINT32 outDataSize The length of the returned decrypted data

5 <> 4S <> BYTE[] outData The resulting decrypted data.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth.

Description

UnBind SHALL operate on a single block only.

Actions

The TPM SHALL perform the following:

1. If the inDataSize is 0 the TPM returns TPM_BAD_PARAMETER

2. Validate the authorization to use the key pointed to by keyHandle

3. If the keyUsage field of the key referenced by keyHandle does not have the value TPM_KEY_BIND or
TPM_KEY_LEGACY, the TPM must return the error code TPM_INVALID_KEYUSAGE

4. Decrypt the inData using the key pointed to by keyHandle

5. if (keyHandle -> encScheme does not equal TPM_ES_RSAESOAEP_SHA1_MGF1) and (keyHandle -> keyUsage
equals TPM_KEY_LEGACY),

a. The payload does not have TPM specific markers to validate, so no consistency check can be
performed.

b. Set the output parameter outData to the value of the decrypted value of inData. (Padding associated
with the encryption wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the decryption
process.

6. else

a. Interpret the decrypted data under the assumption that it is a TPM_BOUND_DATA structure, and
validate that the payload type is TPM_PT_BIND

b. Set the output parameter outData to the value of TPM_BOUND_DATA -> payloadData. (Other
parameters of TPM_BOUND_DATA SHALL NOT be returned. Padding associated with the encryption
wrapping of inData SHALL NOT be returned.)

c. Set the output parameter outDataSize to the size of outData, as deduced from the decryption process
and the interpretation of TPM_BOUND_DATA.

7. Return the output parameters.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 53 of257
 TCG PUBLISHED

10.4 TPM_CreateWrapKey
Start of informative comment:

The TPM_CreateWrapKey command both generates and creates a secure storage bundle for asymmetric keys.

The newly created key can be locked to a specific PCR value by specifying a set of PCR registers.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage authorization data for the sealed data.

6 20 3S 20 TPM_ENCAUTH dataMigrationAuth Encrypted migration authorization data for the sealed data.

7 <> 4S <> TPM_KEY keyInfo Information about key to be created, pubkey.keyLength and
keyInfo.encData elements are 0. MAY be TPM_KEY12

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for parent key authorization. Must be
an OS_AP session.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth The authorization digest that authorizes the use of the public key in
parentHandle. HMAC key: parentKey.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 54 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateWrapKey

4 <> 4S <> TPM_KEY wrappedKey The TPM_KEY structure which includes the public and encrypted private
key. MAY be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Descriptions

This command requires the encryption of two parameters. To create two XOR strings the caller combines the
two nonces in use by the OSAP session with the session shared secret.

DataUsageAuth is XOR'd with the SHA-1 hash of the concatenation of the OSAP session shared secret with the
even numbered nonce generated by the TPM (authLastNonceEven). MigrationAuth is XOR'd with the SHA-1
hash of the concatenation of the OSAP session shared secret with the odd numbered nonce generated by the
caller (nonceOdd).

Actions

The TPM SHALL do the following:

1. Validate the authorization to use the key pointed to by parentHandle. Return TPM_AUTHFAIL on any
error.

2. Validate the session type for parentHandle is OSAP.

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the error code
TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. If parentHandle -> keyFlag -> migratable is TRUE and keyInfo -> keyFlag -> migratable is FALSE then
return TPM_INVALID_KEYUSAGE

6. Validate key parameters

a. keyInfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or TPM_KEY_AUTHCHANGE. If it is, return
TPM_INVALID_KEYUSAGE

b. If keyInfo -> keyFlags -> migrateAuthority is TRUE then return TPM_INVALID_KEYUSAGE

7. If keyInfo -> keyUsage equals TPM_KEY_STORAGE

i. algorithmID MUST be TPM_ALG_RSA

ii. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

iii. sigScheme MUST be TPM_SS_NONE

iv. key size MUST be 2048

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 55 of257
 TCG PUBLISHED

8. Determine the version of key

a. If keyInfo -> ver is 1.1

i. Set V1 to 1

ii. Map wrappedKey to a TPM_KEY structure

b. Else if keyInfo -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Map wrappedKey to a TPM_KEY12 structure

9. Create X1 the SHA-1 of the concatenation of (authHandle -> sharedSecret || authLastNonceEven)

10. Create X2 the SHA-1 of the concatenation of (authHandle -> sharedSecret || nonceOdd)

11. Create DU1 the XOR of DataUsageAuth and X1

12. Create DM1 the XOR of DataMigrationAuth and X2

13. Set continueAuthSession to FALSE

14. Generate asymmetric key according to algorithm information in keyInfo

15. Fill in the wrappedKey structure with information from the newly generated key.

a. Set wrappedKey -> encData -> usageAuth to DU1

b. If the KeyFlags -> migratable bit is set to 1, the wrappedKey -> encData -> migrationAuth SHALL
contain the decrypted value from DataMigrationAuth.

c. If the KeyFlags -> migratable bit is set to 0, and wrappedKey -> encData -> migrationAuth SHALL be
set to the value tpmProof

16. If wrappedKey->PCRInfoSize is non-zero

a. If V1 is 1

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO structure using the pcrSelection to indicate the
PCR’s in use

b. Else

i. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure

c. If keyFlags -> migratable is TRUE

i. Set digestAtCreation to NULLS

ii. Set localityAtCreation to NULLS

d. Else

i. Set digestAtCreation to the TPM_COMPOSITE_HASH indicated by creationPCRSelection

ii. Set localityAtCreation to TPM_STANY_DATA -> locality

17. Encrypt the private portions of the wrappedKey structure using the key in keyHandle

18. Return the newly generated key in the wrappedKey parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 56 of257
 TCG PUBLISHED

10.5 TPM_LoadKey
Start of informative comment:

Before the TPM can use a key to either wrap, unwrap, bind, unbind, seal, unseal, sign or perform any other
action, it needs to be present in the TPM. The TPM_LoadKey function loads the key into the TPM for further
use.

The TPM assigns the key handle. The TPM always locates a loaded key by use of the handle. The assumption is
that the handle may change due to key management operations. It is the responsibility of upper level
software to maintain the mapping between handle and any label used by external software.

The load command must maintain a record of whether any previous key in the key hierarchy was bound to a
PCR using parentPCRStatus.

This command has the responsibility of enforcing restrictions on the use of keys. For example, when
attempting to load a STORAGE key it will be checked for the restrictions on a storage key (2048 size etc.).

The flag parentPCRStatus enables the possibility of checking that a platform passed through some particular
state or states before finishing in the current state. A grandparent key could be linked to state-1, a parent
key could linked to state-2, and a child key could be linked to state-3, for example. The use of the child key
then indicates that the platform passed through states 1 and 2 and is currently in state 3, in this example.
The issue of TPM_Startup is with stType == TPM_ST_CLEAR is an indication that the platform has been reset,
so the platform has not passed through the previous states. Hence keys with parentPCRStatus==TRUE must be
unloaded if TPM_Startup is issued with stType == TPM_ST_CLEAR.

If a TPM_KEY structure has been decrypted AND the integrity test using "pubDataDigest" has passed AND the
key is non-migratory, the key must have been created by the TPM. So there is every reason to believe that
the key poses no security threat to the TPM. While there is no known attack from a rogue migratory key,
there is a desire to verify that a loaded migratory key is a real key, arising from a general sense of unease
about execution of arbitrary data as a key. Ideally a consistency check would consist of an encrypt/decrypt
cycle, but this may be expensive. For RSA keys, it is therefore suggested that the consistency test consists of
dividing the supposed RSA product by the supposed RSA prime, and checking that there is no remainder.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadKey.

4 4 TPM_KEY_HANDLE parentHandle TPM handle of parent key.

5 <> 2S <> TPM_KEY inKey Incoming key structure, both encrypted private and clear public portions.
MAY be TPM_KEY12

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for parentHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA parentAuth The authorization digest for inputs and parentHandle. HMAC key:
parentKey.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 57 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadKey

4 4 3S 4 TPM_KEY_HANDLE inkeyHandle Internal TPM handle where decrypted key was loaded.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Actions

The TPM SHALL perform the following steps:

1. Validate the command and the parameters using parentAuth and parentHandle -> useAuth

2. If parentHandle -> keyUsage is NOT TPM_KEY_STORAGE return TPM_INVALID_KEYUSAGE

3. If the TPM is not designed to operate on a key of the type specified by inKey, return the error code
TPM_BAD_KEY_PROPERTY

4. The TPM MUST handle both TPM_KEY and TPM_KEY12 structures

5. Decrypt the inKey -> privkey to obtain TPM_STORE_ASYMKEY structure using the key in parentHandle

6. Validate the integrity of inKey and decrypted TPM_STORE_ASYMKEY

a. Reproduce inKey -> TPM_STORE_ASYMKEY -> pubDataDigest using the fields of inKey, and check that
the reproduced value is the same as pubDataDigest

7. Validate the consistency of the key and it’s key usage.

a. If inKey -> keyFlags -> migratable is TRUE, the TPM SHALL verify consistency of the public and private
components of the asymmetric key pair. If inKey -> keyFlags -> migratable is FALSE, the TPM MAY
verify consistency of the public and private components of the asymmetric key pair. The consistency
of an RSA key pair MAY be verified by dividing the supposed (P*Q) product by a supposed prime and
checking that there is no remainder..

b. If inKey -> keyUsage is TPM_KEY_IDENTITY, verify that inKey->keyFlags->migratable is FALSE. If it is
not, return TPM_INVALID_KEYUSAGE

c. If inKey -> keyUsage is TPM_KEY_AUTHCHANGE, return TPM_INVALID_KEYUSAGE

d. If inKey -> keyFlags -> migratable equals 0 then verify that TPM_STORE_ASYMKEY -> migration equals
TPM_PERSISTENT_DATA -> tpmProof

e. Validate the mix of encryption and signature schemes

f. If inKey -> keyUsage is TPM_KEY_STORAGE

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. sigScheme MUST be TPM_SS_NONE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 58 of257
 TCG PUBLISHED

g. If inKey -> keyUsage is TPM_KEY_IDENTITY

i. algorithmID MUST be TPM_ALG_RSA

ii. Key size MUST be 2048

iii. encScheme MUST be TPM_ES_NONE

h. If the decrypted inKey -> pcrInfo is NULL,

i. The TPM MUST set the internal indicator to indicate that the key is not using any PCR registers.

i. Else

i. The TPM MUST store pcrInfo in a manner that allows the TPM to calculate a composite hash
whenever the key will be in use

ii. The TPM MUST handle both version 1.1 TPM_PCR_INFO and 1.2 TPM_PCR_INFO_LONG structures
according to the type of TPM_KEY structure

8. Perform any processing necessary to make TPM_STORE_ASYMKEY key available for operations

9. Load key and key information into internal memory of the TPM. If insufficient memory exists return error
TPM_NOSPACE.

10. Assign inKeyHandle according to internal TPM rules.

11. Set InKeyHandle -> parentPCRStatus to parentHandle -> parentPCRStatus.

12. If ParentHandle indicates it is using PCR registers then set inKeyHandle -> parentPCRStatus to TRUE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 59 of257
 TCG PUBLISHED

10.6 TPM_GetPubKey
Start of informative comment:

The owner of a key may wish to obtain the public key value from a loaded key. This information may have
privacy concerns so the command must have authorization from the key owner.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.

4 4 TPM_KEY_HANDLE keyHandle TPM handle of key.

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA keyAuth Authorizatoin HMAC key: key.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetPubKey.

4 <> 3S <> TPM_PUBKEY pubKey Public portion of key in keyHandle.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth.

Actions

The TPM SHALL perform the following steps:

1. Validate the command the parameters using keyAuth, on error

a. If keyHandle has TPM_AUTH_PRIV_USE_ONLY ignore the error

b. Otherwise return TPM_AUTHFAIL

2. If keyHandle == TPM_KH_SRK then return TPM_INVALID_PARAMETER

3. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 60 of257
 TCG PUBLISHED

i. Create a digestAtRelease according to the specified PCR registers and compare to keyHandle ->
digestAtRelease and if a mismatch return TPM_WRONGPCRVAL

ii. If specified validate any locality requests

4. Create a TCG_PUBKEY structure and return

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 61 of257
 TCG PUBLISHED

11. Migration

11.1 TPM_CreateMigrationBlob
Start of informative comment:

The TPM_CreateMigrationBlob command implements the first step in the process of moving a migratable key
to a new parent or platform. Execution of this command requires knowledge of the migrationAuth field of the
key to be migrated.

Migrate mode is generally used to migrate keys from one TPM to another for backup, upgrade or to clone a
key on another platform. To do this, the TPM needs to create a data blob that another TPM can deal with.
This is done by loading in a backup public key that will be used by the TPM to create a new data blob for a
migratable key.

The TPM Owner does the selection and authorization of migration public keys at any time prior to the
execution of TPM_CreateMigrationBlob by performing the TPM_AuthorizeMigrationKey command.

IReWrap mode is used to directly move the key to a new parent (either on this platform or another). The TPM
simply re-encrypts the key using a new parent, and outputs a normal encrypted element that can be
subsequently used by a TPM_LoadKey command.

TPM_CreateMigrationBlob implicitly cannot be used to migrate a non-migratory key. No explicit check is
required. Only the TPM knows tpmProof. Therefore it is impossible for the caller to submit an authorization
value equal to tpmProof and migrate a non-migratory key.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either MIGRATE or REWRAP

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization digest.

7 4 4S 4 UINT32 encDataSize The size of the encData parameter

8 <> 5S <> BYTE[] encData The encrypted entity that is to be modified.

9 4 TPM_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

12 20 20 TPM_AUTHDATA parentAuth Authorization HMAC key: parentKey.usageAuth.

13 4 TPM_AUTHHANDLE entityAuthHandle The authorization handle used for the encrypted entity.

 2H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

14 20 3H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

15 1 4H2 1 BOOL continueEntitySession Continue use flag for entity session

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 62 of257
 TCG PUBLISHED

16 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateMigrationBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: parentKey.usageAuth.

11 20 3H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 4H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

12 1 5 H2 1 BOOL entityContinueAuthSession Continue use flag for entity session

13 20 TPM_AUTHDATA entityAuth Authorization HMAC key: entity.migrationAuth.

Description

The TPM does not check the PCR values when migrating values locked to a PCR.

The second authorisation session (using entityAuth) MUST be OIAP because OSAP does not have a suitable
entityType

Actions

1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. Create d1 by decrypting encData using the key pointed to by parentHandle.

3. Validate that entityAuth authorizes the migration of d1. The validation MUST use d1 -> migrationAuth as
the secret.

4. Verify that the digest within migrationKeyAuth is legal for this TPM and public key

5. If migrationType == TPM_MS_MIGRATE the TPM SHALL perform the following actions:

a. Build a TPM_STORE_PRIVKEY structure from the d1 key. This privKey element should be 132 bytes
long for a 2K RSA key.

b. Create k1 and k2 by splitting the privKey element created in step a into 2 parts. k1 is the first 20
bytes of privKey, k2 contains the remainder of privKey.

c. Build m by filling in the usageAuth and pubDataDigest fields within a TPM_MIGRATE_ASYMKEY
structure using data from the d1 key. The privKey field should be set to k2 (step g) and payload
should be set to TPM_PT_MIGRATE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 63 of257
 TCG PUBLISHED

d. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP encoding of m
using OAEP parameters of

i. m = TPM_MIGRATE_ASYMKEY structure (step c)

ii. pHash = d1->migrationAuth

iii. seed = s1 = k1 (step g)

e. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. Return r1 in the
Random parameter.

f. Create x1 by XOR of o1 with r1

g. Copy r1 into the output field “random”.

h. Encrypt x1 with the migration public key included in migrationKeyAuth.

6. If migrationType == TPM_MS_REWRAP the TPM SHALL perform the following actions:

a. Rewrap the key using the public key in migrationKeyAuth, keeping the existing contents of that key.

b. Set randomSize to 0 in the output parameter array

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 64 of257
 TCG PUBLISHED

11.2 TPM_ConvertMigrationBlob
Start of informative comment:

This command takes a migration blob and creates a normal wrapped blob. The migrated blob must be loaded
into the TPM using the normal TPM_LoadKey function.

Note that the command migrates private keys, only. The migration of the associated public keys is not
specified by TPM because they are not security sensitive. Migration of the associated public keys may be
specified in a platform specific specification. A TPM_KEY structure must be recreated before the migrated
key can be used by the target TPM in a LoadKey command.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob.

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can decrypt keys.

5 4 2S 4 UINT32 inDataSize Size of inData

6 <> 3S <> BYTE [] inData The XOR’d and encrypted key

7 4 4S 4 UINT32 randomSize Size of random

8 <> 5S <> BYTE [] random Random value used to hide key data.

9 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

12 20 TPM_AUTHDATA parentAuth The authorization digest that authorizes the inputs and the migration of
the key in parentHandle. HMAC key: parentKey.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ConvertMigrationBlob

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The encrypted private key that can be loaded with TPM_LoadKey

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 65 of257
 TCG PUBLISHED

Action

The TPM SHALL perform the following:

1. Validate the authorization to use the key in parentHandle

2. If the keyUsage field of the key referenced by parentHandle does not have the value TPM_KEY_STORAGE,
the TPM must return the error code TPM_INVALID_KEYUSAGE

3. Create d1 by decrypting the inData area using the key in parentHandle

4. Create o1 by XOR d1 and random parameter

5. Create m1, seed and pHash by OAEP decoding o1

6. Verify that the payload type is TPM_PT_MIGRATE

7. Create k1 by combining seed and the TPM_MIGRATE_ASYMKEY.data field

8. Create d2 a TPM_STORE_ASYMKEY structure by inserting pHash as the migration authorization field. Set
the TPM_STORE_ASYMKEY -> privKey field to k1

9. Create outData using the key in parentHandle to perform the encryption

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 66 of257
 TCG PUBLISHED

11.3 TPM_AuthorizeMigrationKey
Start of informative comment:

This command creates an authorization blob, to allow the TPM owner to specify which migration facility they
will use and allow users to migrate information without further involvement with the TPM owner.

It is the responsibility of the TPM Owner to determine whether migrationKey is appropriate for migration. The
TPM checks just the cryptographic strength of migrationKey.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_AuthorizeMigrationKey

4 2 2S 2 TPM_MIGRATE_SCHEME migrateScheme Type of migration operation that is to be permitted for this key.

4 <> 3S <> TPM_PUBKEY migrationKey The public key to be authorized.

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_AuthorizeMigrationKey

4 <> 3S <> TPM_MIGRATIONKEYAUTH outData Returned public key and authorization digest.

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Action

The TPM SHALL perform the following:

1. Check that the cryptographic strength of migrationKey is at least that of a 2048 bit RSA key. If
migrationKey is an RSA key, this means that migrationKey MUST be 2048 bits or greater

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 67 of257
 TCG PUBLISHED

2. Validate the authorization to use the TPM by the TPM Owner

3. Create a f1 a TPM_MIGRATIONKEYAUTH structure

4. Verify that migrationKey-> algorithmParms -> encScheme is TPM_ES_RSAESOAEP_SHA1_MGF1, and return
the error code TPM_INAPPROPRIATE_ENC if it is not

5. Set f1 -> migrationKey to the input migrationKey

6. Set f1 -> migrationScheme to the input migrationScheme

7. Create v1 by concatenating (migrationKey || migrationScheme || TPM_PERMANENT_DATA -> tpmProof)

8. Create h1 by performing a SHA1 hash of v1

9. Set f1 -> digest to h1

10. Return f1 as outData

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 68 of257
 TCG PUBLISHED

11.4 TPM_CMK_CreateKey
Start of informative comment:

The TPM_CreateWrapRestrictedKey command both generates and creates a secure storage bundle for
asymmetric keys whose migration is controlled by a migration authority.

TPM_CreateWrapRestrictedKey is very similar to TPM_CreateWrapKey, but: (1) the resultant key must be a
migratable key and can be migrated only by TPM_CMK_CreateBlob; (2) the command is Owner authorised.
TPM_CreateWrapRestrictedKey creates an otherwise normal key except that migrationAuth is the digest of
tpmProof, the migration authority, and the new key’s public key (instead of a secret value).

The migration-selection/migration authority is specified by passing in a public key (actually the digest of a
public key).

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 4 TPM_KEY_HANDLE parentHandle Handle of a loaded key that can perform key wrapping.

5 20 2S 20 TPM_ENCAUTH dataUsageAuth Encrypted usage authorization data for the sealed data.

6 <> 3S <> TPM_KEY keyInfo Information about key to be created, pubkey.keyLength and
keyInfo.encData elements are 0. MUST be TPM_KEY12

7 20 4S 20 TPM_DIGEST migrationAuthorityDigest The digest of the public key of the MSA or MA

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for parent key authorization. Must be
an OS_AP session.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth The authorization digest that authorizes the use of the public key in
parentHandle. HMAC key: parentKey.usageAuth.

12 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H2 1 BOOL continueAuthSession Ignored

15 20 TPM_AUTHDATA pubAuth The authorization digest for nputs and owner. HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 69 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateKey

4 <> 3S <> TPM_KEY wrappedKey The TPM_KEY structure which includes the public and encrypted private
key. MUST be TPM_KEY12

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth.

8 20 2H2 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H2 1 BOOL continueAuthSession Continue use flag, fixed at FALSE

10 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:.
ownerAuth.

Actions

The TPM SHALL do the following:

1. Validate the authorization to use the key pointed to by parentHandle. Return TPM_AUTHFAIL on any
error.

2. Validate the session type for parentHandle is OSAP.

3. If the TPM is not designed to create a key of the type requested in keyInfo, return the error code
TPM_BAD_KEY_PROPERTY

4. Verify that parentHandle->keyUsage equals TPM_KEY_STORAGE

5. Verify that parentHandle-> keyFlags-> migratable == FALSE and parentHandle-> encData -> migrationAuth
== tpmProof

6. If keyInfo -> keyFlag -> migratable is FALSE then return TPM_INVALID_KEYUSAGE

7. Validate key parameters

a. keyInfo -> keyUsage MUST NOT be TPM_KEY_IDENTITY or TPM_KEY_AUTHCHANGE. If it is, return
TPM_INVALID_KEYUSAGE

8. If keyInfo -> keyUsage equals TPM_KEY_STORAGE

i. algorithmID MUST be TPM_ALG_RSA

ii. encScheme MUST be TPM_ES_RSAESOAEP_SHA1_MGF1

iii. sigScheme MUST be TPM_SS_NONE

iv. key size MUST be 2048

9. If keyinfo -> tag is NOT TPM_TAG_KEY12 return TPM_INVALID_STRUCTURE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 70 of257
 TCG PUBLISHED

10. Map wrappedKey to a TPM_KEY12 structure

11. Create X1 the SHA-1 of the concatenation of (authHandle -> sharedSecret || authLastNonceEven)

12. Create DU1 the XOR of DataUsageAuth and X1

13. Set continueAuthSession to FALSE

14. Generate asymmetric key according to algorithm information in keyInfo

15. Fill in the wrappedKey structure with information from the newly generated key.

a. Set wrappedKey -> encData -> usageAuth to DU1

b. Set wrappedKey -> encData -> payload to TPM_PT_MIGRATE_RESTRICTED

c. Create thisPubKey, a TPM_PUBKEY structure containing wrappedKey’s public key.

d. Set wrappedKey -> encData -> migrationAuth equal to SHA1(tpmProof || migrationAuthorityDigest ||
thisPubKey)

16. If wrappedKey->PCRInfoSize is non-zero

a. Set wrappedKey -> pcrInfo to a TPM_PCR_INFO_LONG structure

b. Set digestAtCreation to the TPM_COMPOSITE_HASH indicated by creationPCRSelection

c. Set localityAtCreation to TPM_STANY_DATA -> locality

17. Encrypt the private portions of the wrappedKey structure using the key in parentHandle

18. Return the newly generated key in the wrappedKey parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 71 of257
 TCG PUBLISHED

11.5 TPM_CMK_CreateTicket
Start of informative comment:

The TPM_verifySignature command uses a public key to verify the signature over a digest.

TPM_verifySignature returns a ticket that can be used to prove to the same TPM that signature verification
with a particular public key was successful.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 4 TPM_PUBKEY verificationKey The public key to be used to check signatureValue

5 20 2S 20 TPM_DIGEST signedData The data proported to be signed

6 4 3S 4 UINT32 signatureValueSize The size of the signatureValue

7 <> 4S <> BYTE[] signatureValue The signatureValue to be verified

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Ignored

11 20 TPM_AUTHDATA pubAuth The authorization digest for nputs and owner. HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 72 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateTicket

4 20 3S 20 TPM_DIGEST sigTicket Ticket that proves digest created on this TPM

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag

7 20 TPM_AUTHDATA resAuth Authorization. HMAC key:. ownerAuth.

Actions

The TPM SHALL do the following:

1. Validate the TPM Owner authorization to use the command

2. Use verificationKey to verify that signatureValue is a valid signature on signedData, and return error
TPM_BAD_SIGNATURE on mismatch

3. set sigTicket = SHA1(tpmProof || SHA1(verificationKey) || signedData)

4. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 73 of257
 TCG PUBLISHED

11.6 TPM_CMK_CreateBlob
Start of informative comment:

TPM_CMK_CreateBlob command is very similar to TPM_CreateMigrationBlob, except that it: (1) uses an extra
ticket (restrictedKeyAuth) instead of a migrationAuth authorization session; (2) uses the migration options
TPM_MS_RESTRICT_MIGRATE or TPM_MS_RESTRICT_APPROVE.

If the public key in migrationKeyAuth matches migrationAuth in the target key-to-be-migrated, the target can
be migrated without use of restrictedMigrationAuth. Otherwise, the ticket “restrictedKeyAuth” must vouch
for the public key in migrationKeyAuth.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key that can decrypt encData.

5 2 2S 2 TPM_MIGRATE_SCHEME migrationType The migration type, either TPM_MS_RESTRICT_MIGRATE or
TPM_MS_RESTRICT_APPROVE

6 <> 3S <> TPM_MIGRATIONKEYAUTH migrationKeyAuth Migration public key and its authorization digest.

7 20 4S 20 TPM_DIGEST pubSourceKeyDigest The digest of the TPM_PUBKEY of the entity to be migrated

8 4 5S 4 UINT32 restrictTicketSize The size of the restrictTicket parameter

9 <> 6S <> BYTE[] restrictTicket The digests of public keys belonging to the Migration Authorit, the
destination parent key and the key-to-be-migrated.

10 4 7S 4 UINT32 sigTicketSize The size of the sigTicket parameter

11 <> 8S <> BYTE[] sigTicket A signature ticket, generate by the TPM, signalling a valid signature
over restrictTicket

12 9S UINT32 encDataSize The size of the encData parameter

13 10S BYTE[] encData The encrypted entity that is to be modified.

14 4 TPM_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

15 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

16 1 4H1 1 BOOL continueAuthSession Continue use flag for parent session

17 20 20 TPM_AUTHDATA parentAuth The authorization digest for inputs and parentHandle. HMAC key:
parentKey.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 74 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CMK_CreateBlob

4 4 3S 4 UINT32 randomSize The used size of the output area for random

5 <> 4S <> BYTE[] random String used for xor encryption

6 4 5S 4 UINT32 outDataSize The used size of the output area for outData

7 <> 6S <> BYTE[] outData The modified, encrypted entity.

8 20 3H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 4H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

9 1 5H1 1 BOOL continueAuthSession Continue use flag for parent key session

10 20 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters and
parentHandle. HMAC key: parentKey.usageAuth.

Description

The TPM does not check the PCR values when migrating values locked to a PCR.

Actions

1. Validate that parentAuth authorizes the use of the key pointed to by parentHandle.

2. Verify that parentHandle-> keyFlags-> migratable == FALSE and parentHandle-> encData -> migrationAuth
== tpmProof

3. Create d1 by decrypting encData using the key pointed to by parentHandle.

4. Verify that the digest within migrationKeyAuth is legal for this TPM and public key

5. Verify that d1 -> payload == TPM_PT_MIGRATE_RESTRICTED

6. Verify that migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_MIGRATE or
TPM_MS_RESTRICT_APPROVE

7. If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_MIGRATE

a. Verify that [d1 -> migrationAuth] == SHA1(tpmProof || (SHA1[migrationKeyAuth -> migrationKey]) ||
pubSourceKeyDigest) and return error TPM_MA_AUTHORITY on mismatch

8. If migrationKeyAuth -> migrationScheme == TPM_MS_RESTRICT_APPROVE or
TPM_MS_RESTRICT_APPROVE_DOUBLE

a. verify that [d1 -> migrationAuth] == SHA1(tpmProof || (restrictTicket -> migrationAuthorityDigest) ||
(restrictTicket -> sourceKeyDigest)) and return error TPM_MA_AUTHORITY on mismatch

b. verify that [restrictTicket -> destinationKeyDigest] == SHA1[migrationKeyAuth -> migrationKey] and
return error TPM_MA_DESTINATION on mismatch

c. verify that [restrictTicket -> sourceKeyDigest] == pubSourceKeyDigest and return error
TPM_MA_SOURCE on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 75 of257
 TCG PUBLISHED

d. verify that sigTicket == SHA1(tpmProof || (restrictTicket -> migrationAuthorityDigest) ||
SHA1(restrictTicket)) and return error TPM_MA_TICKET_SIGNATURE on mismatch

9. If migrationType == TPM_MS_RESTRICT_MIGRATE or TPM_MS_RESTRICT_APPROVE_DOUBLE, the TPM SHALL
perform the following actions:

a. Build a TPM_STORE_PRIVKEY structure from the d1 key. This privKey element should be 132 bytes
long for a 2K RSA key.

b. Create k1 and k2 by splitting the privKey element created in step a into 2 parts. k1 is the first 20
bytes of privKey, k2 contains the remainder of privKey.

c. Build m by filling in the usageAuth and pubDataDigest fields within a TPM_MIGRATE_ASYMKEY
structure using data from the d1 key. The privKey field should be set to k2 (step g) and payload
should be set to TPM_PT_MIGRATE.

d. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP encoding of m
using OAEP parameters of

i. m = TPM_MIGRATE_ASYMKEY structure (step c)

ii. pHash = d1->migrationAuth

iii. seed = s1 = k1 (step g)

e. Create r1 a random value from the TPM RNG. The size of r1 MUST be the size of o1. Return r1 in the
Random parameter.

f. Create x1 by XOR of o1 with r1

g. Copy r1 into the output field “random”.

h. Encrypt x1 with the migrationKeyAuth-> migrationKey

10. If migrationType == TPM_MS_RESTRICT_APPROVE the TPM SHALL perform the following actions:

a. Rewrap the key using the public key in migrationKeyAuth, keeping the existing contents of that key.

b. Set randomSize to 0 in the output parameter array

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 76 of257
 TCG PUBLISHED

11.7 TPM_CMK_SetRestrictions
Start of informative comment:

This command is used by the Owner to dictate the usage of a restricted-migration key with delegated
authorisation (authorisation other than actual Owner authorisation).

This command is provided for privacy reasons, since creation of a “parent” restricted-migration key may
imply a contractual relationship with an external entity. This command cannot be delegated, because it
controls an aspect of delegation.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 4 2S 4 TPM_CMK_RESTRICTDELEGATE restriction The bit mask of how to set the restrictions on CMK keys

5 4 TPM_AUTHHANDLE authHandle The authorization handle TPM Ownerauthorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest. HMAC key:TPM Owner Auth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_CMK_SetRestrictions

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions

1. If TPM Owner is installed

a. Validate the ordinal and parameters using TPM Owner authorization, return TPM_AUTHFAIL on error

2. Else

a. If no assertion of physical presence the TPM MUST return TPM_BAD_PRESENCE

3. Set TPM_PERMANENT_DATA -> restrictMigrateDelegate = restriction

4. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 77 of257
 TCG PUBLISHED

12. Maintenance Functions (optional)

12.1 TPM_CreateMaintenanceArchive
Start of informative comment:

This command creates the MaintenanceArchive. It can only be executed by the owner, and may be shut off
with the TPM_KillMaintenanceFeature command.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 1 2S 1 BOOL generateRandom Use RNG or Owner auth to generate ‘random’.

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Cmd ordinal: TPM_ORD_CreateMaintenanceArchive

4 4 3S 4 UINT32 randomSize Size of the returned random data. Will be 0 if generateRandom is FALSE.

5 <> 4S <> BYTE [] random Random data to XOR with result.

6 4 5S 4 UINT32 archiveSize Size of the encrypted archive

7 <> 6S <> BYTE [] archive Encrypted key archive.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 78 of257
 TCG PUBLISHED

Upon authorization being confirmed this command does the following:

1. Validates that the TPM_PERMANENT_FLAGS -> AllowMaintenance is TRUE. If it is FALSE, the TPM SHALL
return TPM_DISABLED_CMD and exit this capability.

2. Validates the TPM Owner authorization.

3. If the value of TPM_PERMANENT_DATA -> ManuMaintPub is zero, the TPM MUST return the error code
TPM_KEYNOTFOUND

4. Build a1 a TPM_KEY structure using the SRK. The encData field is not a normal TPM_STORE_ASYMKEY
structure but rather a TPM_MIGRATE_ASYMKEY structure built using the following actions.

5. Build a TPM_STORE_PRIVKEY structure from the SRK. This privKey element should be 132 bytes long for a
2K RSA key.

6. Create k1 and k2 by splitting the privKey element created in step 4 into 2 parts. k1 is the first 20 bytes of
privKey, k2 contains the remainder of privKey.

7. Build m1 by creating and filling in a TPM_MIGRATE_ASYMKEY structure

a. m1 -> usageAuth is set to TPM_PERSISTENT_FIELDS -> tmpProof

b. m1 -> pubDataDigest is set to the digest value of the SRK fields from step 4

c. m1 -> payload is set to TPM_PT_MAINT

d. m1 -> partPrivKey is set to k2

8. Create o1 (which SHALL be 198 bytes for a 2048 bit RSA key) by performing the OAEP encoding of m using
OAEP parameters of

a. m = TPM_MIGRATE_ASYMKEY structure (step 7)

b. P = TPM_PERSISTENT_FIELDS -> ownerAuth

c. seed = s1 = k1 (step 6)

9. If GenerateRandom = TRUE

a. Create r1 by obtaining values from the TPM RNG. The size of r1 MUST be the same size as o1. Set
RandomData parameter to r1

10. If GenerateRandom = FALSE

a. Create r1 by applying MGF1 to the TPM Owner authorization data. The size of r1 MUST be the same
size as o1. Set RandomData parameter to null.

11. Create x1 by XOR of o1 with r1

12. Encrypt x1 with the ManuMaintPub key using the TPM_ES_RSAESOAEP_SHA1_MGF1 encryption scheme.

13. Set a1 -> encData to x1

14. Return a1 in the archive parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 79 of257
 TCG PUBLISHED

12.2 TPM_LoadMaintenanceArchive
Start of informative comment:

This command loads in a Maintenance archive that has been massaged by the manufacturer to load into
another TPM

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

 … … Vendor specific arguments

- 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

- 20 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession The continue use flag for the authorization handle

-- 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 4 TPM_RESULT returnCode The return code of the operation.

 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadMaintenanceArchive

 Vendor specific arguments

- 20 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

- 1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

- 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Descriptions

The maintenance mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

The TPME is not allowed to pre-store or use unique identifiers in the TPM for the purpose of maintenance.
The TPM MUST NOT use the endorsement key for identification or encryption in the maintenance process. The
maintenance process MAY use a TPM Identity to deliver maintenance information to specific TPM’s.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 80 of257
 TCG PUBLISHED

The maintenance process can only change the SRK, tpmProof and TPM Owner authorization fields.

The maintenance process can only access data in shielded locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

The TPM MUST be conformant to the TPM specification, protection profiles and security targets after
maintenance. The maintenance MAY NOT decrease the security values from the original security target.

The security target used to evaluate this TPM MUST include this command in the TOE.

Actions

The TPM SHALL perform the following when executing the command

1. Validate the TPM Owner’s authorization

2. Validate that the maintenance information was sent by the TPME. The validation mechanism MUST use a
strength of function that is at least the same strength of function as a digital signature performed using a
2048 bit RSA key.

3. The packet MUST contain m2 as defined in TODOREF

4. Ensure that only the target TPM can interpret the maintenance packet. The protection mechanism MUST
use a strength of function that is at least the same strength of function as a digital signature performed
using a 2048 bit RSA key.

5. Process the maintenance information and update the SRK and TPM_PERMANENT_DATA -> tpmProof fields.

6. Set the SRK useageAuth to be the same as TPM Owners authorization

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 81 of257
 TCG PUBLISHED

12.3 TPM_KillMaintenanceFeature
Informative Comments:

The KillMaintencanceFeature is a permanent action that prevents ANYONE from creating a maintenance
archive. This action, once taken, is permanent until a new TPM Owner is set.

This action is to allow those customers who do not want the maintenance feature to not allow the use of the
maintenance feature.

At the discretion of the Owner, it should be possible to kill the maintenance feature in such a way that the
only way to recover maintainability of the platform would be to wipe out the root keys. This feature is
mandatory in any TPM that implements the maintenance feature.

End informative Comment

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KillMaintenanceFeature

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

1. Validate the TPM Owner authorization

2. Set the TPM_PERMANENT_FLAGS.AllowMaintenance flag to FALSE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 82 of257
 TCG PUBLISHED

12.4 TPM_LoadManuMaintPub
Informative Comments:

The LoadManuMaintPub command loads the manufacturer’s public key for use in the maintenance process.
The command installs ManuMaintPub in persistent data storage inside a TPM. Maintenance enables duplication
of non-migratory data in protected storage. There is therefore a security hole if a platform is shipped before
the maintenance public key has been installed in a TPM.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected storage.
It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 TPM_NONCE antiReplay AntiReplay and validation nonce

5 <> TPM_PUBKEY pubKey The public key of the manufacturer to be in use for maintenance

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_LoadManuMaintPub

4 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description

The pubKey MUST specify an algorithm whose strength is not less than the RSA algorithm with 2048bit keys.

pubKey SHOULD unambiguously identify the entity that will perform the maintenance process with the TPM
Owner.

TPM_PERMANENT_DATA -> ManuMaintPub SHALL exist in a TPM-shielded location, only.

If an entity (Platform Entity) does not support the maintenance process but issues a platform credential for a
platform containing a TPM that supports the maintenance process, the value of TPM_PERMANENT_DATA ->
ManuMaintPub MUST be set to zero before the platform leaves the entity’s control.

Actions

The first valid TPM_LoadManuMaintPub command received by a TPM SHALL

1. Store the parameter pubKey as TPM_PERMANENT_DATA -> ManuMaintPub.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 83 of257
 TCG PUBLISHED

2. Create “checksum” by concatenating data to form (pubKey||antiReplay) and passing the concatenated
data through a SHA-1 hash process.

3. Export the checksum

4. Subsequent calls to TPM_LoadManuMaintPub SHALL return code TPM_DISABLED_CMD.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 84 of257
 TCG PUBLISHED

12.5 TPM_ReadManuMaintPub
Informative Comments:

The ReadManuMaintPub command is used to check whether the manufacturer’s public maintenance key in a
TPM has the expected value. This may be useful during the manufacture process. The command returns a
digest of the installed key, rather than the key itself. This hinders discovery of the maintenance key, which
may (or may not) be useful for manufacturer privacy.

The command is expected to be used before installation of a TPM Owner or any key in TPM protected storage.
It therefore does not use authorization.

End of Informative Comments

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 TPM_NONCE antiReplay AntiReplay and validation nonce

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadManuMaintPub

4 20 TPM_DIGEST checksum Digest of pubKey and antiReplay

Description

This command returns the hash of the antiReplay nonce and the previously loaded manufacturer’s
maintenance public key.

Actions

The TPM_ ReadManuMaintKey command SHALL

1. Create “checksum” by concatenating data to form (TPM_PERMANENT_DATA -> ManuMaintPub
||antiReplay) and passing the concatenated data through SHA1.

2. Export the checksum

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 85 of257
 TCG PUBLISHED

13. Cryptographic Functions

13.1 TPM_SHA1Start
Start of informative comment:

This capability starts the process of calculating a SHA-1 digest.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Start

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 maxNumBytes Maximum number of bytes that can be sent to TPM_SHA1Update. Must be a
multiple of 64 bytes.

Description

This capability prepares the TPM for a subsequent TPM_SHA1Update, TPM_SHA1Complete or
TPM_SHA1CompleteExtend command. The capability SHALL open a thread that calculates a SHA-1 digest.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 86 of257
 TCG PUBLISHED

13.2 TPM_SHA1Update
Start of informative comment:

This capability inputs complete blocks of data into a pending SHA-1 digest. At the end of the process, the
digest remains pending.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Update

4 4 UINT32 numBytes The number of bytes in hashData. Must be a multiple of 64 bytes.

5 <> BYTE [] hashData Bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Description

This command SHALL incorporate complete blocks of data into the digest of an existing SHA-1 thread. Only
integral numbers of complete blocks (64 bytes each) can be processed.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 87 of257
 TCG PUBLISHED

13.3 TPM_SHA1Complete
Start of informative comment:

This capability terminates a pending SHA-1 calculation.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1Complete

4 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

5 <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, and terminate that thread. hashDataSize MAY have values in the range of 0 through 64, inclusive.

If the SHA-1 thread has received no bytes the TPM SHALL calculate the SHA-1 of the empty buffer.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 88 of257
 TCG PUBLISHED

13.4 TPM_SHA1CompleteExtend
Start of informative comment:

This capability terminates a pending SHA-1 calculation and EXTENDS the result into a Platform Configuration
Register using a SHA-1 hash process.

This command is designed to complete a hash sequence and extend a PCR in memory-less environments.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SHA1CompleteExtend

4 4 TPM_PCRINDEX pcrNum Index of the PCR to be modified

5 4 UINT32 hashDataSize Number of bytes in hashData, MUST be 64 or less

6 <> BYTE [] hashData Final bytes to be hashed

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 20 TPM_DIGEST hashValue The output of the SHA-1 hash.

5 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Description

This command SHALL incorporate a partial or complete block of data into the digest of an existing SHA-1
thread, EXTEND the resultant digest into a PCR, and terminate the thread. hashDataSize MAY have values in
the range of 0 through 64, inclusive.

Actions

1. Map V1 to TPM_STANY_DATA

2. Map L1 to V1 -> localityModifier

3. If TPM_PERMANENT_DATA -> pcrAttrib [PCRIndex]. pcrExtendLocal[L1] is FALSE return
TPM_BAD_LOCALITY

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 89 of257
 TCG PUBLISHED

13.5 TPM_Sign
Start of informative comment:

The Sign command signs data and returns the resulting digital signature

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Sign.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital
signatures.

5 4 2s 4 UINT32 areaToSignSize The size of the areaToSign parameter

6 <> 3s <> BYTE[] areaToSign The value to sign

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the use of keyHandle. HMAC
key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Sign.

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] Sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

Description

The TPM MUST support all values of areaToSignSize that are legal for the defined signature scheme and key
size. The maximum value of areaToSignSize is determined by the defined signature scheme and key size.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 90 of257
 TCG PUBLISHED

In the case of PKCS1v15_SHA1 the areaToSignSize MUST be TPM_DIGEST (the hash size of a sha1 operation -
see 8.5.1 TPM_SS_RSASSAPKCS1v15_SHA1). In the case of PKCS1v15_DER the maximum size of areaToSign is k-
11 octets, where k is limited by the key size (see 8.5.2 TPM_SS_RSASSAPKCS1v15_DER).

Actions

1. The TPM validates the authorization to use the key pointed to by keyHandle.

2. If the areaToSignSize is 0 the TPM returns TPM_BAD_PARAMETER.

3. Validate that keyHandle -> keyUsage is TPM_KEY_SIGN or TPM_KEY_LEGACY, if not return the error code
TPM_INVALID_KEYUSAGE

4. The TPM verifies that the signature scheme and key size can properly sign the areaToSign parameter.

5. If signature scheme is PKCSv15_SHA1 then

a. Validate that areaToSignSize is 20 return TPM_BAD_PARAMETER on error

b. Set S1 to areaToSign

6. Else if signature scheme is PCKSv15_DER then

a. Validate that areaToSignSize is at least 11 bytes less than the key size, return TPM_BAD_PARAMETER
on error

b. Set S1 to areaToSign

7. else if signature scheme is PKCSv15_INFO then

a. Create S1 a TPM_SIGN_INFO structure

b. Set S1 -> fixed to “SIGN”

c. Set S1 -> replay to nonceOdd

d. Set S1 -> dataLen areaToSignSize

e. Set S1 -> data to areaToSign

f. Validate that sizeof(S1) is a size valid to be signed by the key pointed to by keyHandle, return
TPM_BAD_PARAMETER on error

8. Else return TPM_INVALID_KEYUSAGE

9. The TPM computes the signature, sig, using the key referenced by keyHandle using S1 as the value to sign

10. Return the computed signature in Sig

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 91 of257
 TCG PUBLISHED

13.6 TPM_GetRandom
Start of informative comment:

GetRandom returns the next bytesRequested bytes from the random number generator to the caller.

It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG bytes such
that the frequency of bytesRequested being less than the number of bytes available be a infrequent
occurrence.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_GetRandom.

4 4 UINT32 bytesRequested Number of bytes to return

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 randomBytesSize The number of bytes returned

5 <> BYTE[] randomBytes The returned bytes

Actions

1. The TPM determines if amount bytesRequested is available from the TPM.

2. Set randomBytesSize to the number of bytes available from the RNG. This number MAY be less than
randomBytesSize.

3. Set randomBytes to the next randomBytesSize bytes from the RNG

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 92 of257
 TCG PUBLISHED

13.7 TPM_StirRandom
Start of informative comment:

StirRandom adds entropy to the RNG state.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_StirRandom

4 4 UINT32 dataSize Number of bytes of input (<256)

5 <> BYTE[] inData Data to add entropy to RNG state

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

The TPM updates the state of the current RNG using the appropriate mixing function.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 93 of257
 TCG PUBLISHED

13.8 TPM_CertifyKey
Start of informative comment:

The TPM_CERTIFYKEY operation allows a key to certify the public portion of certain storage and signing keys.

A TPM identity key may be used to certify non-migratable keys but is not permitted to certify migratory keys.
As such, it allows the TPM to make the statement “this key is held in a TPM-shielded location, and it will
never be revealed.” For this statement to have veracity, the Challenger must trust the policies used by the
Privacy CA that issued the identity and the maintenance policy of the TPM manufacturer.

Signing and legacy keys may be used to certify both migratable and non-migratable keys. Then the usefulness
of a certificate depends on the trust in the certifying key by the recipient of the certificate.

The key to be certified must be loaded before TPM_CertifyKey is called.

The determination to use TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 is based solely on the locality
restriction. Any key that does not have any locality restrictions will return a TPM_CERTIFY_INFO structure.
This means that both 1.1 and 1.2 version keys with no locality restrictions will return a TPM_CERTIFY_INFO. A
1.2 version key that restricts locality will always return a TPM_CERTIFY_INFO2 structure.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_CertifyKey

4 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to
prevent replay-attacks)

7 4 TPM_AUTHHANDLE certAuthHandle The authorization handle used for certHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA certAuth The authorization digest for inputs and certHandle. HMAC key:
certKey.auth.

11 4 TPM_AUTHHANDLE keyAuthHandle The authorization handle used for the key to be signed.

 2H2 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

12 20 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

13 1 4H2 1 BOOL continueKeySession The continue use flag for the authorization handle

14 20 TPM_AUTHDATA keyAuth The authorization digest for the inputs and key to be signed. HMAC key:
key.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 94 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_CertifyKey

4 <> 3S <> TPM_CERTIFY_INFO certifyInfo TPM_CERTIFY_INFO that provides information relative to keyhandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[] outData The signed public key.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters and
parentHandle. HMAC key: certKey -> auth.

10 20 2H2 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

11 1 4H2 1 BOOL continueKeyAuthSession Continue use flag for target key session

12 20 TPM_AUTHDATA keyAuth The authorization digest for the target key. HMAC key: key.auth.

Actions

1. The TPM validates that the key pointed to by certHandle has a signature scheme of
TPM_SS_RSASSAPKCS1v15_SHA1 or TPM_SS_RSASSAPKCS1v15_INFO

2. The TPM verifies the authorization in certAuthHandle provides authorization to use the key pointed to by
certHandle, return TPM_AUTHFAIL on error

3. The TPM verifies the authorization in keyAuthHandle provides authorization to use the key pointed to by
keyHandle, return TPM_AUTH2FAIL on error

4. If the key pointed to by certHandle is an identity key (certHandle -> keyUsage is TPM_KEY_IDENTITY)

a. If keyHandle -> keyInfo -> migratable is TRUE and keyHandle -> keyInfo -> migrateAuthority is FALSE
return TPM_MIGRATEFAIL

5. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified PCR registers and compare to keyHandle ->
digestAtRelease and if a mismatch return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

b. Compate h2 with keyHandle -> pcrInfo -> digestAtRelease, on mismatch return TPM_WRONGPCRVALUE

c. If pcrInfo -> pcrSelection -> SizeOfSelect is 2

i. This check SHALL only be made when providing backward compatility with 1.1 platforms other
TPM implementations SHALL use the TPM_CERTIFY_INFO2 structure

ii. Create C1 a TPM_CERTIFY_INFO structure

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 95 of257
 TCG PUBLISHED

iii. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle key.

iv. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key.

v. The TPM MUST set c1 -> digestAtCreation to 20 bytes of 0x00.

d. Else

i. Create C1 a TPM_CERTIFY_INFO2 structure

ii. Set C1 -> pcrInfoSize to keyHandle -> pcrInfoSize

iii. Set C1 -> pcrInfo to keyHandle -> pcrInfo

iv. Set C1 -> pcrInfo -> locality to keyHandle -> locality

v. Set C1 -> migrationAuthoritySize to 0

6. Else

a. Create C1 a TPM_CERTIFY_INFO structure

b. Fill in C1 with the information from the key pointed to be keyHandle

c. The TPM MUST set c1 -> pcrInfoSize to 0

7. Create H1 a TPM_DIGEST to the SHA-1 (keyHandle -> pubKey -> key)

8. Set C1 -> pubKeyDigest to H1

9. The TPM copies the antiReplay parameter to the c1 -> data.

10. The TPM creates m1, a message digest formed by taking the SHA1 of c1.

a. The TPM then performs a signature using certHandle -> sigScheme. The resulting signed blob is
returned in outData.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 96 of257
 TCG PUBLISHED

13.9 TPM_CertifyKey2
Start of informative comment:

This command provides the ability to certify a Certifiable Migration Key (CMK). This certification requires
additional parameters and output then the TPM_CertifyKey. This command always uses the TPM_SIGN_INFO2
structure.

All other aspects of the command are the same as TPM_CertifyKey.

The key to be certified must be loaded before TPM_CertifyKey2 is called.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_CertifyKey2

4 4 TPM_KEY_HANDLE certHandle Handle of the key to be used to certify the key.

5 4 TPM_KEY_HANDLE keyHandle Handle of the key to be certified.

6 20 2S 20 TPM_DIGEST migrationPubDigest The digest of the public key of a Migration Authority

7 20 3S 20 TPM_NONCE antiReplay 160 bits of externally supplied data (typically a nonce provided to
prevent replay-attacks)

8 4 TPM_AUTHHANDLE certAuthHandle The authorization handle used for certHandle.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA certAuth The authorization digest for inputs and certHandle. HMAC key:
certKey.auth.

12 4 TPM_AUTHHANDLE keyAuthHandle The authorization handle used for the key to be signed.

 2H2 20 TPM_NONCE keylastNonceEven Even nonce previously generated by TPM

13 20 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

14 1 4H2 1 BOOL continueKeySession The continue use flag for the authorization handle

15 20 TPM_AUTHDATA keyAuth The authorization digest for the inputs and key to be signed. HMAC key:
key.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 97 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_CertifyKey2

4 <> 3S <> TPM_CERTIFY_INFO certifyInfo TPM_CERTIFY_INFO2 relative to keyHandle

5 4 4S 4 UINT32 outDataSize The used size of the output area for outData

6 <> 5S <> BYTE[] outData The signed public key.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with certAuthHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag for cert key session

9 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: certKey -> auth.

10 20 2H2 20 TPM_NONCE keyNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE keynonceOdd Nonce generated by system associated with keyAuthHandle

11 1 4H2 1 BOOL continueKeyAuthSession Continue use flag for target key session

12 20 TPM_AUTHDATA keyAuth The authorization digest for the target key. HMAC key: key.auth.

Actions

1. The TPM validates that the key pointed to by certHandle has a signature scheme of
TPM_SS_RSASSAPKCS1v15_SHA1.

2. The TPM verifies the authorization in certAuthHandle provides authorization to use the key pointed to by
certHandle, return TPM_AUTHFAIL on error

3. The TPM verifies the authorization in keyAuthHandle provides authorization to use the key pointed to by
keyHandle, return TPM_AUTH2FAIL on error

4. If the key pointed to by certHandle is an identity key (certHandle -> keyUsage is TPM_KEY_IDENTITY), the
TPM verifies that the key pointed to by keyHandle is a non-migratory key.

5. The TPM SHALL create a c1 a TPM_CERTIFY_INFO2 structure from the key pointed to by keyHandle

a. Set C1 -> data to antiReplay

b. Set C1 -> pubKeyDigest to the SHA (keyHandle -> pubKey -> key)

c. Copy other keyHandle parameters into C1

6. If certHandle -> payload == TPM_MS_RESTRICT_MIGRATE_AUTH

a. create thisPubKey, a TPM_PUBKEY structure containing the public key corresponding to certHandle

b. Verify that [certHandle -> migrationAuth] == SHA1(tpmProof || migrationPubDigest ||
SHA1(thisPubkey)) and return error TPM_MA_SOURCE on mismatch

c. set migrationAuthority = migrationPubDigest

7. Else (if certHandle -> payload != TPM_MS_RESTRICT_MIGRATE_AUTH)

a. set migrationAuthority = NULL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 98 of257
 TCG PUBLISHED

b. set migrationAuthoritySize =0

8. If keyHandle -> pcrInfoSize is not 0

a. If keyHandle -> keyFlags has pcrIgnoredOnRead set to FALSE

i. Create a digestAtRelease according to the specified PCR registers and compare to keyHandle ->
digestAtRelease and if a mismatch return TPM_WRONGPCRVAL

ii. If specified validate any locality requests on error TPM_BAD_LOCALITY

b. Compate h2 with keyHandle -> pcrInfo -> digestAtRelease, on mismatch return TPM_WRONGPCRVALUE

c. The TPM MUST set c1 -> pcrInfoSize to match the pcrInfoSize from the keyHandle key.

d. The TPM MUST set c1 -> pcrInfo to match the pcrInfo from the keyHandle key

9. Else

a. The TPM MUST set c1 -> pcrInfoSize to 0

10. Set M1 to SHA-1 (C1)

11. Create sig the digital signature of C1 using certHandle -> sigScheme

12. Return sig in outData

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 99 of257
 TCG PUBLISHED

14. Credential Handling
Start of informative comment:

There are two create EK commands. The first matches the 1.1 functionality. The second provides the
mechanism to enable revokeEK and provides FIPS 140-2 compatability.

If the TPM is to be built without FIPS compatability then TPM_CreateEndorsementKeyPair is enabled and
TPM_RevokeEK must not be available.

If the TPM is built for FIPS compatibility then TPM_CreateEKFips is enabled and TPM_RevokeEK must be
available.

End of informative comment.

1. If the TPM enables TPM_CreateEndorsementKeyPair

a. TPM_CreateRevocableEK MUST be disabled

b. TPM_RevokeTrust MUST be disabled

2. If the TPM enables TPM_CreateRevocableEK

a. TPM_RevokeTrust MUST be enabled

b. TPM_CreateEndorsementKeyPair MUST be disabled

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 100 of257
 TCG PUBLISHED

14.1 TPM_CreateEndorsementKeyPair
Start of informative comment:

This command creates the TPM endorsement key. It returns a failure code if an endorsement key already
exists.

End of informative comment.

This is an optional command

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateEndorsementKeyPair

4 20 TPM_NONCE antiReplay Arbitrary data

5 <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 TPM_DIGEST Checksum Hash of pubEndorsementKey and antiReplay

Actions

1. If an EK already exists, return TPM_DISABLED_CMD

2. Validate the keyInfo parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For interoperability the key
length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be comparable to RSA
2048

c. The other parameters of keyInfo (signatureScheme etc.) are ignored.

3. Create a key pair called the “endorsement key pair” using a TPM-protected capability. The type and size
of key are that indicated by keyInfo

4. Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay)

5. Store the PRIVEK

6. Set TPM_PERMANENT_FLAGS -> CEKPUsed to TRUE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 101 of257
 TCG PUBLISHED

14.2 TPM_CreateRevocableEK
Start of informative comment:

This command creates the TPM endorsement key. It returns a failure code if an endorsement key already
exists. The TPM vendor may have a separate mechanism to create the EK and “squirt” the value into the TPM.

The input parameters specify whether the EK is capable of being reset, whether the authorization value to
reset the EK will be generated by the TPM, and the new authorization value itself if it is not to be generated
by the TPM. The output parameter is the new authorization value that must be used when resetting the EK (if
it is capable of being reset).

The command TPM_RevokeTrust must be used to reset an EK (if it is capable of being reset).

Owner authorisation is unsuitable for authorizing resetting of an EK: someone with Physical Presence can
remove a genuine Owner, install a new Owner, and revoke the EK. The genuine Owner can reinstall, but the
platform will have lost its original attestation and may not be trusted by challengers. Therefore if a password
is to be used to revoke an EK, it must be a separate password, given to the genuine Owner.

In v1.2 an OEM has extra choices when creating EKs.

a) An OEM could manufacture all of its TPMs with enableRevokeEK==TRUE.

If the OEM has tracked the EKreset passwords for these TPMs, the OEM can give the passwords to customers.
The customers can use the passwords as supplied, change the passwords, or clear the EKs and create new EKs
with new passwords.

If EKreset passwords are random values, the OEM can discard those values and not give them to customers.
There is then a low probability (statistically zero) chance of a local DOS attack to reset the EK by guessing the
password. The chance of a remote DOS attack is zero because Physical Presence must also be asserted to use
TPM_RevokeTrust.

b) An OEM could manufacture some of its TPMs with enableRevokeEK==FALSE. Then the EK can never be
revoked, and the chance of even a local DOS attack on the EK is eliminated.

End of informative comment.

This is an optional command

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateRevocableEK

4 20 TPM_NONCE antiReplay Arbitrary data

5 <> TPM_KEY_PARMS keyInfo Information about key to be created, this includes all algorithm parameters

6 1 BOOL generateReset If TRUE use TPM RNG to generate EKreset. If FALSE use the passed
value inputEKreset

7 20 TPM_NONCE inputEKreset The authorization value to be used with TPM_RevokeTrust if
generateReset==FALSE

Outgoing Operands and Sizes

PARAM HMAC Type Name Description

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 102 of257
 TCG PUBLISHED

SZ # SZ

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 TPM_DIGEST Checksum Hash of pubEndorsementKey and antiReplay

6 20 TPM_NONCE outputEKreset The authorization value to use TPM_RevokeTrust

Actions

1. If an EK already exists, return TPM_DISABLED_CMD

2. Perform the actions of TPM_CreateEndorsementKeyPair, if any errors return with error

3. Set TPM_PERMANENT_DATA -> enableRevokeEK to TRUE

a. If generateReset is TRUE then

i. Set TPM_PERMANENT_DATA -> EKreset to the next value from the TPM RNG

b. Else

i. Set TPM_PERMANENT_DATA -> EKreset to inputEkreset

4. Return PUBEK, checksum and Ekreset

5. The outputEKreset authorization is sent in the clear. There is no uniqueness on the TPM available to
actually perform encryption or use an encrypted channel. The assumption is that this operation is
occurring in a controlled environment and sending the value in the clear is acceptable.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 103 of257
 TCG PUBLISHED

14.3 TPM_RevokeTrust
Start of informative comment:

This command clears the EK and sets the TPM back to a pure default state. The generation of the
authorization value occurs during the generation of the EK. It is the responsibility of the EK generator to
properly protect and disseminate the RevokeTrust authorization.

This command exists solely to satisfy the FIPS 140 requirement that all keys must be invalidated.

End of informative comment.

This is an optional command

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_RevokeTrust

4 20 TPM_DIGEST EKReset The value that will be matched to EK Reset

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_RevokeTrust

Actions

1. The TPM MUST validate that TPM_PERMANENT_DATA -> enableRevokeEK is TRUE, return
TPM_PERMANENTEK on error

2. The TPM MUST validate that the EKReset matches TPM_PERMANENT_DATA -> EKReset TPM_AUTHFAIL on
error.

3. Ensure that physical presence is being asserted

4. Perform the actions of TPM_OwnerClear (excepting the command authentication)

5. Invalidate the EK and any internal state associated with the EK

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 104 of257
 TCG PUBLISHED

14.4 TPM_ReadPubek
Start of informative comment:

Return the endorsement key public portion. This value should have controls placed upon access as it is a
privacy sensitive value

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadPubek

4 20 TPM_NONCE antiReplay Arbitrary data

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 TPM_DIGEST checksum Hash of pubEndorsementKey and antiReplay

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. If TPM_PERMANENT_FLAGS -> readPubek is FALSE return TPM_DISABLED_CMD.

2. If no EK is present the TPM MUST return TPM_NO_ENDORSEMENT

3. Create checksum by performing SHA1 on the concatenation of (PUBEK || antiReplay).

4. Export the PUBEK and checksum.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 105 of257
 TCG PUBLISHED

14.5 TPM_DisablePubekRead
Start of informative comment:

The TPM Owner may wish to prevent any entity from reading the PUBEK. This command sets the non-volatile
flag so that the TPM_ReadPubek command always returns TPM_DISABLED_CMD.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DisablePubekRead

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

This capability sets the TPM_PERSISTENTFLAGS -> readPubek flag to FALSE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 106 of257
 TCG PUBLISHED

14.6 TPM_OwnerReadInteralPub
Start of informative comment:

A TPM Owner authorized command that returns the public portion of the EK or SRK.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 4 2S 4 TPM_KEY_HANDLE keyHandle Handle for either PUBEK or SRK

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadInternalPub

4 <> 3S <> TPM_PUBKEY publicPortion The public portion of the requested key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

1. Validate the parameters and TPM Owner authorization for this command

2. If keyHandle is TPM_KH_EK

a. Set publicPortion to PUBEK

3. Else If keyHandle is TPM_KH_SRK

a. Set publicPortion to the TPM_PUBKEY of the SRK

4. Else return TPM_INVALID_PARAMETER

5. Export the PUBEK

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 107 of257
 TCG PUBLISHED

15. Identity Creation and Activation

15.1 TPM_MakeIdentity
Start of informative comment:

Generate a new Attestation Identity Key (AIK)

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_MakeIdentity.

4 20 2S 20 TPM_ENCAUTH identityAuth Encrypted usage authorization data for the new identity

5 20 3S 20 TPM_CHOSENID_HASH labelPrivCADigest The digest of the identity label and privacy CA chosen for the new TPM
identity. (SeeTODOREF for details)

6 <> 4S <> TPM_KEY idKeyParams
Structure containing all parameters of new identity key.
pubKey.keyLength & idKeyParams.encData are both 0 MAY be
TPM_KEY12

7 4 TPM_AUTHHANDLE srkAuthHandle The authorization handle used for SRK authorization.

 2H1 20 TPM_NONCE srkLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

9 1 4H1 1 BOOL continueSrkSession Ignored

10 20 TPM_AUTHDATA srkAuth The authorization digest for the inputs and the SRK. HMAC key:
srk.usageAuth.

11 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization. Session type
MUST be OSAP.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession Ignored

14 20 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 108 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_MakeIdentity.

4 <> 3S <> TPM_KEY idKey The newly created identity key. MAY be TPM_KEY12

5 4 4S 4 UINT32 identityBindingSize The used size of the output area for identityBinding

6 <> 5S <> BYTE[] identityBinding Signature of TPM_IDENTITY_CONTENTS using idKey.private.

7 20 2H2 20 TPM_NONCE srkNonceEven Even nonce newly generated by TPM.

 3H2 20 TPM_NONCE srknonceOdd Nonce generated by system associated with srkAuthHandle

8 1 4H2 1 BOOL continueSrkSession Fixed value FALSE

9 20 TPM_AUTHDATA srkAuth The authorization digest used for the outputs and srkAuth session.
HMAC key: srk.usageAuth.

10 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Fixed value FALSE

12 20 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Description

The public key of the new TPM identity SHALL be identityPubKey. The private key of the new TPM identity
SHALL be tpm_signature_key.

Properties of the new identity

Type Name Description

TPM_PUBKEY identityPubKey This SHALL be the public key of a previously unused asymmetric key pair.

TPM_STORE_ASYMKEY tpm_signature_key This SHALL be the private key that forms a pair with identityPubKey and SHALL be
extant only in a TPM-shielded location.

This capability also generates a TPM_KEY containing the tpm_signature_key.

If identityPubKey is stored on a platform it SHALL exist only in storage to which access is controlled and is
available to authorized entities.

Actions

A Trusted Platform Module that receives a valid TPM_MakeIdentity command SHALL do the following:

1. Validate the idKeyParams parameters for the key description

a. If the algorithm type is RSA the key length MUST be a minimum of 2048. For interoperability the key
length SHOULD be 2048

b. If the algorithm type is other than RSA the strength provided by the key MUST be comparable to RSA
2048

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 109 of257
 TCG PUBLISHED

c. If the TPM is not designed to create a key of the requested type, return the error code
TPM_BAD_KEY_PROPERTY

2. Use authHandle to verify that the Owner authorized all TPM_MakeIdentity input parameters.

3. Use srkAuthHandle to verify that the SRK owner authorized all TPM_MakeIdentity input parameters.

4. Verify that idKeyParams -> keyUsage is TPM_KEY_IDENTITY. If it is not, return TPM_INVALID_KEYUSAGE

5. Verify that idKeyParams -> keyFlags -> migratable is FALSE. If it is not, return TPM_INVALID_KEYUSAGE

6. Decrypt the authorization value

a. Create s1 string by concatenating (ownerAuth -> shared secret || authLastNonceEven)

b. Create x1 by performing a SHA1 hash of s1

c. Create A1 by XOR of x1 and identityAuth

7. Set continueAuthSession to FALSE.

8. Determine the structure version

a. If idKeyParms -> tag is TPM_TAG_KEY12

i. Set V1 to 2

ii. Create T1 a TPM_KEY12 structure using idKeyParams as the default values for the structure

b. If idKeyParms -> ver is 1.1

i. Set V1 to 1

ii. Create T1 a TPM_KEY structure using idKeyParams as the default values for the structure

9. Set the digestAtCreation values for pcrInfo

a. For PCR_INFO_LONG include the locality of the current command

10. Create an asymmetric key pair (identityPubKey and tpm_signature_key) using a TPM-protected capability,
in accordance with the algorithm specified in idKeyParams

11. Ensure that the authorization information in A1 is properly stored in the idKey as usageAuth.

12. Attach identityPubKey and tpm_signature_key to idKey

13. Set idKey -> migrationAuth to TPM_PERSISTANT_DATA -> tpmProof

14. Ensure that all TPM_PAYLOAD_TYPE structures identity this key as TPM_PT_ASYM

15. Encrypt the private portion of idKey using the SRK as the parent key

16. Create a TPM_IDENTITY_CONTENTS structure named idContents using labelPrivCADigest and the
information from idKey

17. Sign idContents using tpm_signature_key and TPM_SS_RSASSAPKCS1v15_SHA1. Store the result in
identityBinding.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 110 of257
 TCG PUBLISHED

15.2 TPM_ActivateIdentity
Start of informative comment:

The purpose of TPM_ActivateIdentity is to twofold. The first purpose is to obtain assurance that the
credential in the TPM_SYM_CA_ATTESTATION is for this TPM. The second purpose is to obtain the session key
used to encrypt the TPM_IDENTITY_CREDENTIAL.

This is an extension to the 1.1 functionality of TPM_ActivateIdentity. The blob sent to from the CA can be in
the 1.1 format or the 1.2 format. The TPM determines the type from the size or version information in the
blob.

TPM_ActivateIdentity checks that the symmetric session key corresponds to a TPM-identity before releasing
that session key.

Only the Owner of the TPM has the privilege of activating a TPM identity. The Owner is required to authorize
the TPM_ActivateIdentity command. The owner may authorize the command using either the TPM_OIAP or
TPM_OSAP authorization protocols.

The creator of the ActivateIdentity package can specify if any PCR values are to be checked before releasing
the session key.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ActivateIdentity

4 4 TPM_KEY_HANDLE idKey Identity key to be activated

5 4 2S 4 UINT32 blobSize Size of encrypted blob from CA

6 <> 3S <> BYTE [] blob The encrypted ASYM_CA_CONTENTS or TPM_EK_BLOB

7 4 TPM_AUTHHANDLE idKeyAuthHandle The authorization handle used for ID key authorization.

 2H1 20 TPM_NONCE idKeyLastNonceEven Even nonce previously generated by TPM

8 20 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

9 1 4H1 1 BOOL continueIdKeySession Continue usage flag for idKeyAuthHandle.

10 20 TPM_AUTHDATA idKeyAuth The authorization digest for the inputs and ID key. HMAC key:
idKey.usageAuth.

11 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H2 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

12 20 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H2 1 BOOL continueAuthSession The continue use flag for the authorization handle

14 20 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 111 of257
 TCG PUBLISHED

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ActivateIdentity

4 <> 3S <> TPM_SYMMETRIC_KEY symmetricKey The decrypted symmetric key.

5 20 2H1 20 TPM_NONCE idKeyNonceEven Even nonce newly generated by TPM.

 3H1 20 TPM_NONCE idKeynonceOdd Nonce generated by system associated with idKeyAuthHandle

6 1 4H1 1 BOOL continueIdKeySession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA idKeyAuth The authorization digest used for the returned parameters and
idKeyAuth session. HMAC key: idKey.usageAuth.

8 20 2H2 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H2 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H2 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Description

The command TPM_ActivateIdentity activates a TPM identity created using the command TPM_MakeIdentity.

The command assumes the availability of the private key associated with the identity. The command will
verify the association between the keys during the process.

The command will decrypt the input blob and extract the session key and verify the connection between the
public and private keys. The input blob can be in 1.1 or 1.2 format.

Actions

A Trusted Platform Module that receives a valid TPM_ActivateIdentity command SHALL do the following:

1. Using the authHandle field, validate the owner’s authorization to execute the command and all of the
incoming parameters.

2. Using the idKeyAuthHandle, validate the authorization to execute command and all of the incoming
parameters

3. Validate that the idKey is the public key of a valid TPM identity by checking that idKey -> keyUsage is
TPM_KEY_IDENTITY. Return TPM_BAD_PARAMETER on mismatch

4. Create H1 the digest of the public key in idKey

5. Decrypt blob creating B1 using PRIVEK as the decryption key

6. Determine the type and version of B1

a. If B1 -> tag is TPM_TAG_EK_BLOB then

i. B1 is a TPM_EK_BLOB

b. Else

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 112 of257
 TCG PUBLISHED

i. B1 is a TPM_ASYM_CA_CONTENTS. As there is no tag for this structure it is possible for the TPM to
make a mistake here but other sections of the structure undergo validation

7. If B1 is a version 1.1 TPM_ASYM_CA_CONTENTS then

a. Compare H1 to B1 -> idDigest on mismatch return TPM_BAD_PARAMETER

b. Set K1 to B1 -> sessionKey

8. If B1 is a TPM_EK_BLOB then

a. Compare H1 to B1 -> idDigest on mismatch return TPM_BAD_PARAMETER

b. Validate that B1 -> ekType is TPM_EK_TYPE_ACTIVATE, return TPM_BAD_TYPE if not.

c. Assign A1 as a TPM_EK_TYPE_ACTIVATE structure from B1 -> blob

d. If A1 -> pcrSelection is not NULL

i. Compute a composite hash C1 using the PCR selection A1 -> pcrSelection

ii. Compare C1 to A1 -> compositeHash and return TPM_WRONGPCRVALUE on a mismatch

iii. If pcrInfo specifies a locality ensure that the appropriate locality has been asserted, return
TPM_BAD_LOCALITY on error

e. Set K1 to A1 -> symmetricKey

9. Return K1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 113 of257
 TCG PUBLISHED

16. Integrity Collection and Reporting
Start of informative comment:

This section deals with what commands have direct access to the PCR

End of informative comment.

1. The TPM SHALL only allow the following commands to alter the value of a PCR

a. TPM_Extend

b. TPM_SHA1CompleteExtend

c. TPM_Startup

d. TPM_PCRReset

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 114 of257
 TCG PUBLISHED

16.1 TPM_Extend
Start of informative comment:

This adds a new measurement to a PCR

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Extend.

4 4 TPM_PCRINDEX pcrNum The PCR to be updated.

5 20 TPM_DIGEST inDigest The 160 bit value representing the event to be recorded.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 20 TPM_PCRVALUE outDigest The PCR value after execution of the command.

Descriptions

Add a measurement value to a PCR

Actions

4. Map V1 to TPM_STANY_DATA

5. Map L1 to V1 -> localityModifier

6. If TPM_PERMANENT_DATA -> pcrAttrib [PCRIndex]. pcrExtendLocal[L1] is FALSE return
TPM_BAD_LOCALITY

7. Create c1 by concatenating (PCRindex TPM_PCRVALUE || inDigest). This takes the current PCR value and
concatenates the inDigest parameter.

8. Create h1 by performing a SHA1 digest of c1.

9. Store h1 as the new TPM_PCRVALUE of PCRindex

10. If TPM_PERSISTENT_FLAG -> disable is TRUE

a. Set outDigest to 20 bytes of 0x00

11. Else

a. Set outDigest to h1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 115 of257
 TCG PUBLISHED

16.2 TPM_PCRRead
Start of informative comment:

The TPM_PCRRead operation provides non-cryptographic reporting of the contents of a named PCR.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_PCRRead.

4 4 TPM_PCRINDEX pcrIndex Index of the PCR to be read

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 20 TPM_PCRVALUE outDigest The current contents of the named PCR

Actions

The TPM_PCRRead operation returns the current contents of the named register to the caller.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 116 of257
 TCG PUBLISHED

16.3 TPM_Quote
Start of informative comment:

The TPM_Quote operation provides cryptographic reporting of PCR values. A loaded key is required for
operation. TPM_Quote uses a key to sign a statement that names the current value of a chosen PCR and
externally supplied data (which may be a nonce supplied by a Challenger).

The term "ExternalData" is used because an important use of TPM_Quote is to provide a digital signature on
arbitrary data, where the signature includes the PCR values of the platform at time of signing. Hence the
"ExternalData" is not just for anti-replay purposes, although it is (of course) used for that purpose in an
integrity challenge.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Quote.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can sign the PCR values.

5 20 2S 20 TPM_NONCE extrnalData 160 bits of externally supplied data (typically a nonce provided by a
server to prevent replay-attacks)

6 <> 3S <> TPM_PCR_SELECTION targetPCR The indices of the PCRs that are to be reported.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest for inputs and keyHandle. HMAC key: key ->
usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 117 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUT1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Quote.

4 <> 3S <> TPM_PCR_COMPOSITE pcrData A structure containing the same indices as targetPCR, plus the
corresponding current PCR values.

5 4 4S 4 UINT32 sigSize The used size of the output area for the signature

6 <> 5S <> BYTE[] sig The signed data blob.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: Key ->
usageAuth.

Actions

1. The TPM MUST validate the authorization to use the key pointed to by keyHandle.

2. Validate targetPCR

a. targetPCR is a valid TPM_PCR_SELECTION structure

b. targetPCR -> pcrSelect is non-zero

c. On errors return TPM_INVALID_PCR_INFO

3. Create H1 a TPM_PCR_COMPOSITE using the PCR indicated by targetPCR -> pcrSelect

4. Create Q1 a TPM_QUOTE_INFO structure

a. Set Q1 -> version to 1.1.0.0

b. Set Q1 -> fixed to “QUOT”

c. Set Q1 -> digestValue to H1

d. Set Q1 -> externalData to externalData

5. Sign Q1 using keyHandle as the signature key

6. Return the signature in sig

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 118 of257
 TCG PUBLISHED

16.4 TPM_PCR_Reset
Start of informative comment:

Resets the indicated PCRs. This command uses the locality modifier.

The modifier for a command to indicate locality is a platform specific issue. For the LPC bus the TPM
Interface Specification defines the addresses and signals that make up the locality modifier.

A platform specific specification must define the modifier that indicates locality.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_PCR_Reset

4 <> TPM_PCR_SELECTION pcrSelection The PCR’s to reset

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Descriptions

This command resets PCR values back to the default value. The command MUST validate that all PCR registers
that are selected are available to be reset before resetting any PCR. This command MUST either reset all
selected PCR registers or none of the PCR registers.

Actions

1. Validate that pcrSelection is valid

a. targetPCR is a valid TPM_PCR_SELECTION structure

b. targetPCR -> pcrSelect is non-zero

c. On errors return TPM_INVALID_PCR_INFO

2. Map V1 to TPM_STCLEAR_FLAGS

3. For each PCR selected perform the following

4. If pcrAttrib[pcrIndex].pcrReset is FALSE

a. Return TPM_NOTRESETABLE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 119 of257
 TCG PUBLISHED

5. If pcrAttrib[pcrIndex].pcrResetLocal[V1 -> localityModifier] is FALSE

a. Return TPM_NOTLOCAL

6. For each PCR selected perform the following

a. Reset PCR to default value.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 120 of257
 TCG PUBLISHED

17. Authorization Changing

17.1 TPM_ChangeAuth
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the entity.

TPM_ChangeAuth requires the encryption of one parameter (“NewAuth”). For the sake of uniformity with
other commands that require the encryption of more than one parameter, the string used for XOR encryption
is generated by concatenating the evenNonce (created during the OSAP session) with the session shared
secret and then hashing the result.

The parameter list to this command must always include two authorization sessions, regardless of the state of
authDataUsage for the respective keys.

End of informative comment.

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed at TPM_ORD_ChangeAuth

4 4 TPM_KEY_HANDLE parentHandle Handle of the parent key to the entity.

5 2 2 S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

6 20 3 S 20 TPM_ENCAUTH newAuth The encrypted new authorization data for the entity. The encryption key
is the shared secret from the OS-AP protocol.

7 2 4 S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

8 4 5 S 4 UINT32 encDataSize The size of the encData parameter

9 <> 6 S <> BYTE[] encData The encrypted entity that is to be modified.

10 4 TPM_AUTHHANDLE parentAuthHandle The authorization handle used for the parent key.

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

12 1 4 H1 1 BOOL continueAuthSession Ignored, parentAuthHandle is always terminated.

13 20 TPM_AUTHDATA parentAuth The authorization digest for inputs and parentHandle. HMAC key:
parentKey.usageAuth.

14 4 TPM_AUTHHANDLE entityAuthHandle The authorization handle used for the encrypted entity. The session
type MUST be OIAP

 2 H2 20 TPM_NONCE entitylastNonceEven Even nonce previously generated by TPM

15 20 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

16 1 4 H2 1 BOOL continueEntitySession Ignored, entityAuthHandle is always terminated.

17 20 TPM_AUTHDATA entityAuth The authorization digest for the inputs and encrypted entity. HMAC key:
entity.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 121 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_ChangeAuth

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with parentAuthHandle

7 1 4 H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters and parentHandle.
HMAC key: parentKey.usageAuth.

9 20 2 H2 20 TPM_NONCE entityNonceEven Even nonce newly generated by TPM to cover entity

 3 H2 20 TPM_NONCE entitynonceOdd Nonce generated by system associated with entityAuthHandle

10 1 4 H2 1 BOOL entityContinueAuthSes
sion Continue use flag, fixed value of FALSE

11 20 TPM_AUTHDATA entityAuth The authorization digest for the returned parameters and entity. HMAC
key: newly changed entity.usageAuth.

The parentAuthHandle session type MUST be TCPA_PID_OSAP.

Actions

1. Verify that entityType is one of TCPA_ET_DATA, TCPA_ET_KEY and return the error
TCPA_WRONG_ENTITYTYPE if not.

2. Verify that parentAuthHandle session type is TPM_PID_OSAP return TPM_BAD_MODE on error

3. Verify that entityAuthHandle session type is TPM_PID_OIAP return TPM_BAD_MODE on error

4. The encData field MUST be the encData field from either the TCPA_STORED_DATA or TCPA_KEY
structures.

5. Create s1 string by concatenating (parentAuthHandle -> shared secret || authLastNonceEven)

6. Create x1 by performing a SHA1 hash of s1

7. Create decryptAuth by XOR of x1 and newAuth.

8. parentAuthHandle MUST be built using the parent entity’s authorization data.

9. The TPM MUST validate the command using the authorization data in the parentAuth parameter

10. After parameter validation the TPM creates b1 by decrypting encData using the key pointed to by
parentHandle.

11. The TPM MUST validate that b1 is a valid TPM structure

a. Decrypt b1

b. Check the tag, length and authValue for match, return TPM_INVALIDSTRUCTURE on any mismatch

12. The TPM replaces the authorization data for b1 with decryptAuth created above.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 122 of257
 TCG PUBLISHED

13. The TPM encrypts b1 using the appropriate mechanism for the type using the parentKeyHandle to provide
the key information.

14. The new blob is returned in outData when appropriate.

15. The TPM MUST enforce the destruction of both the parentAuthHandle and entityAuthHandle sessions.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 123 of257
 TCG PUBLISHED

17.2 TPM_ChangeAuthOwner
Start of informative comment:

The TPM_ChangeAuthOwner command allows the owner of an entity to change the authorization data for the
TPM Owner or the SRK.

This command requires authorization from the current TPM Owner to execute.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthOwner

4 2 2S 2 TPM_PROTOCOL_ID protocolID The protocol in use.

5 20 3S 20 TPM_ENCAUTH newAuth The encrypted new authorization data for the entity. The encryption key is
the shared secret from the OSAP protocol.

6 2 4S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 4 TPM_AUTHHANDLE ownerAuthHandle The authorization handle used for the TPM Owner.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag the TPM ignores this value

10 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and ownerHandle. HMAC key:
tpmOwnerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_ChangeAuthOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, fixed value of FALSE

6 20 TPM_AUTHDATA resAuth
The authorization digest for the returned parameters and ownerHandle.
HMAC key: tpmOwnerAuth. This is the new tpmOwnerAuth value if this
command changed that value.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 124 of257
 TCG PUBLISHED

Descriptions

1. A TPM MUST support the TPM_PID_ADCP protocol.

2. In this capability, the SRK cannot be accessed as entityType TPM_ET_KEY, since the SRK is not wrapped
by a parent key.

Actions

1. The ownerAuthHandle session type MUST be TPM_PID_OSAP

2. TPM_PID_ADCP protocol actions

a. Verify that entityType is either TPM_ET_OWNER or TPM_ET_SRK, and return the error
TPM_WRONG_ENTITYTYPE if not.

b. Create s1 string by concatenating (ownerAuthHandle -> shared secret || authLastNonceEven)

c. Create x1 by performing a SHA1 hash of s1

d. Create decryptAuth by XOR of x1 and newAuth.

e. The TPM MUST enforce the destruction of the ownerAuthHandle session upon completion of this
command (successful or unsuccessful). This includes setting continueAuthSession to FALSE

3. Set the authorization data for the indicated entity to decryptAuth

4. If entityType is TPM_ET_OWNER invalidate any OSAP or DSAP sessions connected to the TPM Owner

5. If entityType is TPM_ET_SRK invalidate any OSAP or DSAP sessions connected to the SRK

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 125 of257
 TCG PUBLISHED

18. Authorization Sessions

18.1 TPM_OIAP
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_OIAP.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

Actions

1. The TPM_OIAP command allows the creation of an authorization handle and the tracking of the handle by
the TPM. The TPM generates the handle and nonce.

2. The TPM has an internal limit as to the number of handles that may be open at one time, so the request
for a new handle may fail if there is insufficient space available.

3. Internally the TPM will do the following:

a. TPM allocates space to save handle, protocol identification, both nonces and any other information
the TPM needs to manage the session.

b. TPM generates authHandle and nonceEven, returns these to caller

4. On each subsequent use of the OIAP session the TPM MUST generate a new nonceEven value.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 126 of257
 TCG PUBLISHED

18.1.1 Actions to validate an OIAP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has been
authorized with the OIAP protocol.

Many commands use OIAP authorization. The following description is therefore necessarily abstract.

End of informative comment.

Actions

The TPM MUST perform the following operations:

1. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a valid
session. If it does not, the TPM returns the error code TPM_INVALID_AUTHHANDLE

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and continueAuthSession flag
from the input parameter list, and store it in internal TPM memory with the authSession ‘H’.

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the authorization session H
(authLastNonceEven) computed during the previously executed command.

4. The TPM MUST retrieve the secret authorization data (SecretE, say) of the target entity. The entity and
its secret must have been previously loaded into the TPM.

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input command
parameters and authorization parameters per section TODOREF

6. The TPM SHALL compare HM to the authorization value received in the input parameters. If they are
different, the TPM returns the error code TPM_AUTHFAIL if the authorization session is the first session of
a command, or TPM_AUTH2FAIL if the authorization session is the second session of a command.
Otherwise, the TPM executes the command which (for this example) produces an output that requires
authentication.

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and authorization
parameters to the same entity secret per section TODOREF

9. The TPM returns the return code, output parameters, authorization parameters and authorization digest.

10. If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. Future references to
H will return an error.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 127 of257
 TCG PUBLISHED

18.2 TPM_OSAP
Start of informative comment:

The TPM_OSAP command creates the authorization handle, the shared secret and generates nonceEven and
nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_OSAP.

4 2 TPM_ENTITY_TYPE entityType The type of entity in use

5 4 UINT32 entityValue The selection value based on entityType, e.g. a keyHandle #

6 20 TPM_NONCE nonceOddOSAP The nonce generated by the caller associated with the shared secret.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenOSAP Nonce generated by TPM and associated with shared secret.

Description

1. The TPM_OSAP command allows the creation of an authorization handle and the tracking of the handle by
the TPM. The TPM generates the handle, nonceEven and nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, so the request for
a new handle may fail if there is insufficient space available.

3. The TPM_OSAP allows the binding of an authorization to a specific entity. This allows the caller to
continue to send in authorization data for each command but not have to request the information or
cache the actual authorization data.

4. When TPM_OSAP is wrapped in an encrypted transport session

a. For input the only parameter encrypted is nonceOddOSAP

b. For output the only parameters encrypted are nonceEven and nonceEvenOSAP

Actions

1. The TPM creates S1 a storage area that keeps track of the information associated with the authorization.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 128 of257
 TCG PUBLISHED

2. S1 MUST track the following information

a. Protocol identification

b. nonceEven

i. Initialized to the next value from the TPM RNG

c. nonceEvenOSAP

i. Initialized to the next value from the TPM RNG

d. shared secret

e. Any other internal TPM state the TPM needs to manage the session

3. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC calculation is the
secret authorization data assigned to the key handle identified by entityValue. The input to the HMAC
calculation is the concatenation of nonces nonceEvenOSAP and nonceOddOSAP. The output of the HMAC
calculation is the shared secret which is saved in the authorization area associated with authHandle

4. If entityType = TPM_ET_KEYHANDLE

a. The entity to authorize is a key held in the TPM. entityValue contains the keyHandle that holds the
key.

b. If entityValue is TPM_KH_OPERATOR return TPM_BADHANDLE

5. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored.

6. else if entityType = TPM_ET_SRK

a. The entity to authorize is the SRK. entityValue is ignored.

7. else if entityType = TPM_ET_COUNTER

a. The entity is a montonic counter, entityValue contains the counter handle

8. else if entityType = TPM_ET_NV

a. The entity is a NV index, entityValue contains the NV index

9. End if

10. On each subsequent use of the OSAP session the TPM MUST generate a new nonce value.

11. The TPM MUST ensure that OSAP shared secret is only available while the OSAP session is valid.

12. The session MUST terminate upon any of the following conditions:

a. The command that uses the session returns an error

b. The resource is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt an input parameter
(TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner is executed and this session is attached to the owner authorization

f. The session explicitly terminated with continueAuth, TPM_Reset or TPM_FlushSpecific

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 129 of257
 TCG PUBLISHED

18.2.1 Actions to validate an OSAP session
Start of informative comment:

This section describes the authorization-related actions of a TPM when it receives a command that has been
authorized with the OSAP protocol.

Many commands use OSAP authorization. The following description is therefore necessarily abstract.

End of informative comment

Actions

1. On reception of a command with ordinal C1 that uses an authorization session, the TPM SHALL perform
the following actions:

2. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target entity when the
authorization session was established with TPM_OSAP. The entity and its secret must have been
previously loaded into the TPM.

3. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a valid
session. If it does not, the TPM returns the error code TPM_INVALID_AUTHHANDLE.

4. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according to section TODOREF

5. The TPM SHALL compare HM1 to the authorization value received in the command. If they are different,
the TPM returns the error code TPM_AUTHFAIL if the authorization session is the first session of a
command, or TPM_AUTH2FAIL if the authorization session is the second session of a command., the TPM
executes command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

6. The TPM SHALL generate the latest version of the even nonce (nonceEven).

7. The TPM MUST calculate the HMAC (HM2) of the return parameters according to section TODOREF

8. The TPM returns HM2 in the parameter list.

9. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

10. If the shared secret was used to provide confidentiality for data in the received command, the TPM SHALL
terminate the session and destroy the thread associated with handle H.

11. Each time that access to an entity (key) is authorized using OSAP, the TPM MUST ensure that the OSAP
shared secret is that derived from the entity using TPM_OSAP

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 130 of257
 TCG PUBLISHED

18.3 TPM_DSAP
Start of informative comment:

The TPM_DSAP command creates the authorization handle using a delegated authorization value passed into
the command as an encrypted blob or from the internal delegation table. It can be used to start an
authorization session for a user key or the owner.

Identically to TPM_OSAP, it generates a shared secret and generates nonceEven and nonceEvenOSAP.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_DSAP.

3 2 TPM_ENTITY_TYPE entityType The type of delegation information to use

4 4 TPM_KEY_HANDLE KeyHandle Key for which delegated authority corresponds, or 0 if delegated owner activity.
Only relevant if entityValue equals TPM_DELEGATE_USEKEY_BLOB

5 4 UINT32 entityValueSize The size of entityValue.

5 <> BYTE [] entityValue

TPM_DELEGATE_USERKEY_BLOB or TPM_DELEGATE_OWNER_BLOB or
index MUST not be empty

If entityType is TPM_ET_DEL_ROW then entityValue is a
TPM_DELEGATE_INDEX

6 20 TPM_NONCE nonceOddDSAP The nonce generated by the caller associated with the shared secret.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 TPM_AUTHHANDLE authHandle Handle that TPM creates that points to the authorization state.

5 20 TPM_NONCE nonceEven Nonce generated by TPM and associated with session.

6 20 TPM_NONCE nonceEvenDSAP Nonce generated by TPM and associated with shared secret.

Description

1. The TPM_DSAP command allows the creation of an authorization handle and the tracking of the handle by
the TPM. The TPM generates the handle, nonceEven and nonceEvenOSAP.

2. The TPM has an internal limit on the number of handles that may be open at one time, so the request for
a new handle may fail if there is insufficient space available.

3. The TPM_DSAP allows the binding of a delegated authorization to a specific entity. This allows the caller
to continue to send in authorization data for each command but not have to request the information or
cache the actual authorization data.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 131 of257
 TCG PUBLISHED

4. On each subsequent use of the DSAP session the TPM MUST generate a new nonce value and check if the
ordinal to be executed has delegation to execute. The TPM MUST ensure that the DSAP shared secret is
only available while the DSAP session is valid.

5. When TPM_DSAP is wrapped in an encrypted transport session

a. For input the only parameter encrypted is nonceOddDSAP

b. For output the only parameters encrypted are nonceEven and nonceEvenDSAP

6. The DSAP session MUST terminate under any of the following conditions

a. The command that uses the session returns an error

b. If attached to a key, when the key is evicted from the TPM or otherwise invalidated

c. The session is used in any command for which the shared secret is used to encrypt an input parameter
(TPM_ENCAUTH)

d. The TPM Owner is cleared

e. TPM_ChangeAuthOwner is executed and this session is attached to the owner authorization

f. The session explicitly terminated with continueAuth, TPM_Reset or TPM_FlushSpecific

g. All DSAP sessions MUST be invalidated when any of the following commands execute:

i. TPM_Delegate_ManageTables

ii. TPM_Delegate_IncrementCount

iii. TPM_Delegate_PreLoad

iv. TPM_Delegate_LoadBlobOwner

entityType = TPM_ET_DEL_BLOB

The entityValue parameter contains a delegation blob structure.

entityType = TPM_ET_DEL_ROW

The entityValue parameter contains a row number in the nv Delegation table which should be used for the
authorization value.

Actions

1. If entityType == TPM_ET_DEL_BLOB

a. Map entityValue to B1 a TPM_DELEGATE_OWNER_BLOB

b. Validate that B1 is a valid TPM_DELEGATE_OWNER_BLOB, return TPM_WRONG_ENTITYTYPE on error

c. Locate B1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, return
TPM_BADINDEX if not found

d. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that B1->verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy B1 -> integrityDigest to H2

ii. Set B1 -> integrityDigest to NULL

iii. Create H3 the HMAC of B1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 132 of257
 TCG PUBLISHED

h. Create S1 a TPM_DELEGATE_SENSITIVE by decryptiong B1 -> sensitiveArea using TPM_DELEGATE_KEY

i. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSTIVE

ii. Return TPM_BAD_DELEGATE on error

j. Set A1 to S1 -> authValue

2. Else if entityType == TPM_ET_DEL_ROW

a. Verify that entityValue points to a valid row in the delegation table.

b. Set d1 to the delegation information in the row.

c. Set a1 to d1->authValue.

d. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that row, return
TPM_BADINDEX if not found

e. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

f. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

g. Verify that d1->verificationCount equals FR -> verificationCount.

3. Else if entityType == TPM_ET_DEL_KEY

a. Map entityValue to K1 a TPM_DELEGATE_KEY_BLOB

b. Validate that K1 is a valid TPM_DELEGATE_KEY_BLOB, return TPM_WRONG_ENTITYTYPE on error

c. Locate K1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate that row, return
TPM_BADINDEX if not found

d. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

e. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

f. Verify that K1 -> verificationCount equals FR -> verificationCount.

g. Validate the integrity of the blob

i. Copy K1 -> integrityDigest to H2

ii. Set K1 -> integrityDigest to NULL

iii. Create H3 the HMAC of K1 using tpmProof as the secret

iv. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

h. Validate the K1 -> pubKeyDigest identifies keyHandle, return TPM_KEYNOTFOUND on error

i. Create S1 a TPM_DELEGATE_SENSITIVE by decryptiong K1 -> sensitiveArea using TPM_DELEGATE_KEY

j. Validate S1 values

i. S1 -> tag is TPM_TAG_DELEGATE_SENSTIVE

ii. Return TPM_BAD_DELEGATE on error

k. Set A1 to S1 -> authValue

4. Generate a new authorization session handle and reserve space to save protocol identification, shared
secret, pcrInfo, both nonces, delegated permission bits and any other information the TPM needs to
manage the session.

5. Read two new values from the RNG to generate nonceEven and nonceEvenOSAP.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 133 of257
 TCG PUBLISHED

6. The TPM calculates the shared secret using an HMAC calculation. The key for the HMAC calculation is a1.
The input to the HMAC calculation is the concatenation of nonces nonceEvenOSAP and nonceOddOSAP.
The output of the HMAC calculation is the shared secret which is saved in the authorization area
associated with authHandle.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 134 of257
 TCG PUBLISHED

18.4 TPM_SetOwnerPointer
Start of informative comment:

This command will set a reference to which secret the TPM will use when executing an owner secret related
OIAP or OSAP session.

This command should only be used if legacy code must be enabled for delegation to work.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_ COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetOwnerPointer

4 4 TPM_ENTITY_TYPE entityType The type of entity in use

5 4 UINT32 entityValue The selection value based on entityType,

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_ COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 TPM_RESULT returnCode The return code of the operation

Actions

1. Map TPM_VOLATILE_DATA to V1

2. If entityType = TPM_ET_DEL_ROW

a. This value indicates that the entity is a delegate row. entityValue is a delegate index in the
delegation table.

b. Validate that entityValue points to a legal row within the delegate table stored within the TPM. If not
ok return TPM_BADINDEX.

c. The TPM sets V1-> OwnerReference to entityValue

d. Return TPM_SUCCESS

3. else if entityType = TPM_ET_OWNER

a. This value indicates that the entity is the TPM owner. entityValue is ignored.

b. The TPM sets V1-> OwnerReference to TPM_KH_OWNER

c. Return TPM_SUCCESS

4. Return TPM_FAIL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 135 of257
 TCG PUBLISHED

19. Delegation Commands

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 136 of257
 TCG PUBLISHED

19.1 TPM_Delegate_Manage
Start of informative comment:

TPM_Delegate_Manage is the fundamental process for managing the Family tables, including
enabling/disabling Delegation for a selected Family. Normally TPM_Delegate_Manage must be executed at
least once (to create Family tables for a particular family) before any other type of Delegation command in
that family can succeed.

Delegate_Manage is authorized by the TPM Owner if an Owner is installed, because changing a table is a
privileged Owner operation. If no Owner is installed, Delegate_Manage requires no privilege to execute. This
does not disenfranchise an Owner, since there is no Owner, and simplifies loading of tables during platform
manufacture or on first-boot. Burn-out of TPM non-volatile storage by inappropriate use is mitigated by the
TPM’s normal limits on NV-writes in the absence of an Owner. Tables can be locked after loading, to prevent
subsequent tampering, and only unlocked by the Owner, his delegate, or the act of removing the Owner
(even if there is no Owner).

TPM_Delegate_Manage command is customized by opcode:

(1) TPM_FAMILY_ENABLE enables/disables use of a family and all the rows of the delegate table belonging to
that family,

(2) TPM_FAMILY_ADMIN can be used to prevent further management of the Tables until an Owner is installed,
or until the Owner is removed from the TPM. (Note that the Physical Presence command TPM_ForceClear
always enables further management, even if TPM_ForceClear is used when no Owner is installed.)

 (3) TPM_FAMILY_CREATE creates a new family.

(4) TPM_FAMILY_INVALIDATE invalidates an existing family.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Manage

4 4 2S 4 TPM_FAMILY_ID familyID The familyID that is to be managed

5 4 3s 4 TPM_FAMILY_OPERATION opFlag Operation to be performed by this command.

6 4 4s 4 UINT32 opDataSize Size in bytes of opData

7 <> 5s <> BYTE [] opData Data necessary to implement opFlag

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA ownerAuth HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 137 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_Delegate_Manage

4 4 3S 4 UINT32 retDataSize Size in bytes of retData

5 <> 4S <> BYTE [] retData Returned data

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth HMAC key: ownerAuth.

Action

1. Map PD to TPM_PERMANENT_DATA

2. Map PF to TPM_PERMANENT_FLAGS

3. If TPM Owner is installed

a. Validate the command and parameters using TPM Owner authorization, return TPM_AUTHFAIL on
error

b. If delegated and opFlag = TPM_FAMILY_CREATE

i. The TPM MUST ignore familyID and opData -> familyID

c. Else

i. Validate the command and parameters using Delegation authorisation, then verify that the
current delegation family (familyTable -> FamTableRow -> familyID) == familyID; otherwise
return error TPM_DELEGATE_FAMILY

4. Else

a. If opFlag != TPM_FAMILY_CREATE and (familyTable -> FamTableRow -> flags ->
DELEGATE_ADMIN_LOCK) is TRUE return TPM_DELEGATE_LOCK

b. Validate max NV writes without an owner

i. Set NV1 to PD -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITE

iv. Set PD -> noOwnerNVWrite to NV1

5. If opFlag == TPM_FAMILY_CREATE

a. Validate that sufficient space exists within the TPM to store an additional family and map F2 to the
newly allocated space.

b. Validate that opData is a TPM_FAMILY_LABEL

i. If opDataSize != sizeof(TPM_FAMILY_LABEL) return TPM_BAD_SIZE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 138 of257
 TCG PUBLISHED

c. Map F2 to a TPM_FAMILY_TABLE_ENTRY

i. Set F2 -> tag to TPM_TAG_FAMILY_TABLE_ENTRY

ii. Set F2 -> label to opData

d. Increment TPM_PERMANENT_DATA -> TPM_LAST_FAMILYID by 1

e. Set F2 -> familyID = PD -> TPM_LAST_FAMILYID

f. Set F2 -> count = 1

g. Set F2 -> flags -> TPM_FAMFLAG_ENABLE to FALSE

h. Set F2 -> flags -> DELEGATE_ADMIN_LOCK to FALSE

i. Set retDataSize = 4

j. Set retData = F2 -> familyID

k. Return TPM_SUCCESS

6. Locate familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, return TPM_BADINDEX if
not found

a. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

b. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

c. Invalidate ALL DSAP sessions, active and saved

7. If opFlag == TPM_FAMILY_ADMIN

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set (FR -> flags -> DELEGATE_ADMIN_LOCK) = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

8. If opflag == TPM_FAMILY_ENABLE

a. Validate that opDataSize == 1, and that opData is a Boolean value.

b. Set FR -> flags-> TPM_FAMFLAG_ENABLE = opData

c. Set retDataSize = 0

d. Return TPM_SUCCESS

9. If opflag == TPM_FAMILY_INVALIDATE

a. Invalidate all data associated with familyRow; return TPM_BAD_MODE on failure

b. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 139 of257
 TCG PUBLISHED

19.2 TPM_Delegate_CreateKeyDelegation
Start of informative comment:

This command delegates privilege to use a key by creating a blob that can be used by TPM_DSAP.

These blobs CANNOT be used as input data for TPM_Delegate_Delegation because the internal TPM delegate
table can store owner delegations only.

(TPM_Delegate_CreateOwnerDelegation must be used to delegate Owner privilege.)

End of informative comment

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of
TPM_ORD_Delegate_CreateKeyDelegation.

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key.

5 50 2S 50 TPM_DELEGATE_PUBLIC publicInfo The public information necessary to fill in the blob

6 20 3S 20 TPM_ENCAUTH delAuth The encrypted new authorization data for the blob. The encryption key is
the shared secret from the OSAP protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the use of keyHandle. HMAC
key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of
TPM_ORD_Delegate_CreateKeyDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

5 <> 4S <> TPM_DELEGATE_KEY_BLOB blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSes
sion Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 140 of257
 TCG PUBLISHED

Action

1. Verify authorization for the command and parameters using privAuth

2. If the key authentication is in fact a delegation, then the TPM SHALL ensure that the delegation bits in
PublicInfo do not grant more permissions then currently delegated. Return TPM_BAD_AUTH on failure.

3. Set a1 to be the decryption of delAuth

4. Create h1 the SHA-1 of TPM_STORE_PUBKEY structure of the key pointed to by keyHandle

5. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, return
TPM_BADINDEX if not found

6. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

7. If FR -> flags -> TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

8. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE

b. Set M1 -> authValue to a1

c. The TPM MAY add additional information of a sensitive nature relative to the delegation

9. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

10. Create P1 a TPM_DELEGATE_KEY_BLOB

a. Set P1 -> tag to TPM_TAG_DELG_KEY_BLOB

b. Set P1 -> pubKeyDigest to H1

c. Set P1 -> pub to PublicInfo

d. Set P1 -> integrityDigest to NULL

e. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The information MAY
include symmetric IV, symmetric mode of encryption and other data that allows the TPM to process
the blob in the future.

f. Set P1 -> sensitiveSize to the size of M2

g. Set P1 -> sensitiveArea to M2

11. Calculate H2 the HMAC of P1 using tpmProof as the secret

12. Set P1 -> integrityDigest to H2

13. Ignore continueAuthSession on input set continueAuthSession to FALSE on output

14. Return P1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 141 of257
 TCG PUBLISHED

19.3 TPM_Delegate_CreateOwnerDelegation
Start of informative comment:

TPM_Delegate_CreateOwnerDelegation delegates the Owner’s privilege to use a set of command ordinals, by
creating a blob. Such blobs can be used as input data for TPM_DSAP or TPM_Delegate_LoadOwnerDelegation.

TPM_Delegate_CreateOwnerDelegation includes the ability to void all existing delegations (by incrementing
the verification count) before creating the new delegation. This ensures that the new delegation will be the
only delegation that can operate at Owner privilege in this family. This new delegation could be used to
enable a security monitor (a local separate entity, or remote separate entity, or local host entity) to
reinitialize a family and perhaps perform external verification of delegation settings. Normally the ordinals
for a delegated security monitor would include TPM_Delegate_CreateKeyDelegation (this command) in order
to permit the monitor to create further delegations, and TPM_Delegate_UpdateVerification to reactivate
some previously voided delegations.

If the verification count is incremented and the new delegation does not delegate any privileges (to any
ordinals) at all, or uses an authorisation value that is then discarded, this family’s delegations are all void and
delegation must be managed using actual Owner authorisation.

(TPM_Delegate_CreateKeyDelegation must be used to delegate privilege to use a key.)

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation.

4 1 2S 1 BOOL increment Flag dictates whether verificationCount will be incremented

5 50 3S 50 TPM_DELEGATE_PUBLIC publicInfo The public parameters for the blob

6 20 4S 20 TPM_ENCAUTH delAuth The encrypted new authorization data for the blob. The encryption key is
the shared secret from the OSAP protocol.

7 4 TPM_AUTHHANDLE authHandle The authorization handle TPM Ownerauthorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest. HMAC key:TPM Owner Auth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_CreateOwnerDelegation

4 4 3S 4 UINT32 blobSize The length of the returned blob

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 142 of257
 TCG PUBLISHED

5 <> 4S <> TPM_DELEGATE_USER_BLO
B blob The partially encrypted delegation information.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: TPM
Owner Auth

Action

1. The TPM SHALL authenticate the command using TPM Owner authentication. Return TPM_AUTHFAIL on
failure.

2. If the TPM Owner authentication is in fact a delegation, then the TPM SHALL validate the command and
parameters using Delegation authorisation, then

a. Validate that delegation -> familyID equals publicInfo -> familyID return TPM_DELEGATE_FAMILY or
error

b. If TPM_FAMILY_TABLE.FamTableRow[delegation -> familyID] -> flags -> TPM_FAMFLAG_ENABLED is
FALSE, return error TPM_DISABLED_CMD.

c. Verify that the delegation bits in publicInfo do not grant more permissions then currently delegated.
Otherwise return error TPM_BAD_AUTH.

3. Locate publicInfo -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate the row return
TPM_BADINDEX if not found

a. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

4. If increment == TRUE

a. Increment FR -> count

5. Create a1 the decrypted delAuth parameter

6. Create M1 a TPM_DELEGATE_SENSITIVE structure

a. Set M1 -> tag to TPM_TAG_DELEGATE_SENSITIVE

b. Set M1 -> authValue to a1

c. Set other M1 fields as determined by the TPM vendor

7. Create M2 the encryption of M1 using TPM_DELEGATE_KEY

8. Create B1 a TPM_DELEGATE_OWNER_BLOB

a. If delegated, verify that (B1 -> pub -> familyID) is the current familyID and return error
TPM_DELEGATE_FAMILY otherwise

b. Set B1 -> tag to TPM_TAG_DELG_OWNER_BLOB

c. Set B1 -> pub to publicInfo

d. Set B1 -> sensitiveSize to the size of M2

e. Set B1 -> sensitiveArea to M2

f. Set B1 -> integrityDigest to NULL

g. Set B1 -> verificationCount to FR -> count

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 143 of257
 TCG PUBLISHED

9. The TPM sets additionalArea and additionalAreaSize appropriate for this TPM. The information MAY
include symmetric IV, symmetric mode of encryption and other data that allows the TPM to process the
blob in the future.

10. Create H1 the HMAC of B1 using tpmProof as the secret

11. Set B1 -> integrityDigest to H1

12. Ignore continueAuthSession on input set continueAuthSession to FALSE on output

13. Return B1 as blob

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 144 of257
 TCG PUBLISHED

19.4 TPM_Delegate_LoadOwnerDelegation
Start of informative comment:

This command loads a delegate table row blob into a non-volatile delegate table row.
Delegate_LoadOwnerDelegation can be used during manufacturing or on first boot (when no Owner is
installed), or after an Owner is installed. If an Owner is installed, Delegate_LoadOwnerDelegation requires
Owner authorisation, and sensitive information must be encrypted.

Burn-out of TPM non-volatile storage by inappropriate use is mitigated by the TPM’s normal limits on NV-
writes in the absence of an Owner. Tables can be locked after loading using TPM_Delegate_Manage, to
prevent subsequent tampering.

A management system outside the TPM is expected to manage the delegate table rows stored on the TPM,
and can overwrite any previously stored data.

This command cannot be used to load key delegation blobs into the TPM

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_Delegate_LoadDelegationOwner

4 4 3S 4 TPM_DELEGATE_INDEX index The index of the delegate row to be written

5 4 4S 4 UINT32 blobSize The size of the delegate blob

6 <> 5S <> TPM_DELEGATE_OWNER
_BLOB blob Delegation information, including encrypted portions as appropriate

7 4 TPM_AUTHHANDLE authHandle The authorization handle TPM Ownerauthorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA ownerAuth The authorization digest. HMAC key:TPM Owner Auth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal TPM_ORD_Delegate_LoadDelegationOwner

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 145 of257
 TCG PUBLISHED

1. If TPM Owner is installed

a. Validate the command and parameters using TPM Owner authorization, return TPM_AUTHFAIL on
error

b. If delegated, verify that blob -> familyID matches delegate -> familyID on error return
TPM_DELEGATE_FAMILY

2. Else

a. If blob -> familyID -> flags -> DELEGATE_ADMIN_LOCK) is TRUE return TPM_DELEGATE_LOCK

b. Validate max NV writes without an owner

i. Set NV1 to PD -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITE

iv. Set PD -> noOwnerNVWrite to NV1

3. Map delegate to D1 a TPM_DELEGATE_OWNER_BLOB

4. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, return
TPM_BADINDEX if not found

5. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

6. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

7. Validate that D1 -> tag == TPM_TAG_DELG_OWNER_BLOB

8. If TPM Owner is installed, validate the integrity of the blob

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to NULL

c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

9. If TPM Owner is installed, create S1 a TPM_DELEGATE_SENSITIVE area by decrypting D1 -> sensitiveArea
using TPM_DELEGATE_KEY. Otherwise set S1 = D1 -> sensitiveArea

10. Validate S1

a. S1 -> tag is TPM_TAG_DELEGATE_SENSITIVE

b. Return TPM_BAD_DELEGATE on error

11. Validate that index is a valid value for delegateTable, return TPM_BADINDEX on error

12. Copy pcrInfo, authValue, rowLabel, familyID, verificationCount and permissions from delegate into
delegateTable[index].

a. Invalidate ALL DSAP sessions

13. If authHandle is of type DSAP then continueAuthSession MUST set to FALSE

14. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 146 of257
 TCG PUBLISHED

19.5 TPM_Delegate_ReadTable
Start of informative comment:

This command is used to read from the TPM the public contents of the family and delegate tables that are
stored on the TPM. Such data is required during external verification of tables.

There are no restrictions on the execution of this command; anyone can read this information regardless of
the state of the PCRs, regardless of whether they know any specific authorization value and regardless of
whether or not the enable and admin bits are set one way or the other.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE Ordinal Command ordinal TPM_ORD_Delegate_ReadTable

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation

4 4 UINT32 familyTableSize Size in bytes of familyTable

5 <> BYTE [] familyTable Array of TPM_FAMILY_TABLE_ENTRY elements

6 4 UINT32 delegateTableSize Size in bytes of delegateTable

7 <> TPM_DELEGATE_PUBLIC[] delegateTable Array of TPM_DELEGATE_TABLE_PUBLIC elements

Actions

1. The TPM MUST ensure that this command is not operational when the TPM is disabled or deactivated.

2. Set familyTableSize to the number of valid families on the TPM times
sizeof(TPM_FAMILY_TABLE_ELEMENT).

3. Copy the valid entries in the internal family table to the output array familyTable

4. Set delegateTableSize to the number of valid delegate table entries on the TPM times
sizeof(TPM_DELEGATE_PUBLIC).

5. For each valid entry

a. Write the TPM_DELEGATE_INDEX to the output array

b. Copy the TPM_DELEGATE_PUBLIC to the output array

6. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 147 of257
 TCG PUBLISHED

19.6 TPM_Delegate_UpdateVerification
Start of informative comment:

UpdateVerification sets the verificationCount in an entity (a blob or a delegation row) to the current family
value, in order that the delegations represented by that entity will continue to be accepted by the TPM.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_Update

4 4 2S 4 UINT32 inputSize The size of inputData

5 <> 3S <> BYTE inputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB
or table index

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

 7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA ownerAuth Authorization HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_Delegate_UpdateVerification

4 4 3S 4 UINT32 outputSize The size of the output

5 <> 4S <> BYTE outputData TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Actions

1. Verify the TPM Owner authorizes the command and parameters, on error return TPM_AUTHFAIL

2. Determine the type of inputData (TPM_DELEGATE_TABLE_ROW or TPM_TAG_DELG_OWNER_BLOB or
TPM_DELEGATE_KEY_BLOB) and map D1 to that structure

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 148 of257
 TCG PUBLISHED

3. Locate (D1 -> pub -> familyID) in the TPM_FAMILY_TABLE and set familyRow to indicate row, return
TPM_BADINDEX if not found

4. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

5. If delegated, verify that the current delegation family (FR -> familyID) == (D1 -> pub -> familyID);
otherwise return error TPM_DELEGATE_FAMILY

6. If delegated AND (FR -> flags TPM_FAMFLAG_ENABLED) is FALSE, return TPM_DISABLED_CMD

7. Set D1 -> verificationCount to FR -> verificationCount

8. If D1 is a blob recreate the blob and return it

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 149 of257
 TCG PUBLISHED

19.7 TPM_Delegate_VerifyDelegation
Start of informative comment:

VerifyDelegation loads a delegate blob and returns success or failure, depending on whether the blob is
currently valid.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, TPM_Delegate_SignBlob

4 4 UINT32 delegateSize The length of the delegated information blob

5 <> BYTE[] delegation TPM_DELEGATE_KEY_BLOB or TPM_DELEGATE_OWNER_BLOB

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

1. Determine the type of blob, If delegation -> tag is equal to TPM_TAG_DELG_OWNER_BLOB then

a. Map D1 a TPM_DELEGATE_BLOB_OWNER to delegation

2. Else

a. Map D1 a TPM_DELEGATE_KEY_BLOB to delegation

3. Locate D1 -> familyID in the TPM_FAMILY_TABLE and set familyRow to indicate row, return
TPM_BADINDEX if not found

4. Set FR to TPM_FAMILY_TABLE.FamTableRow[familyRow]

5. If FR -> flags TPM_FAMFLAG_ENABLED is FALSE, return TPM_DISABLED_CMD

6. Validate that D1 -> verificationCount matches FR -> verificationCount, on mismatch return
TPM_FAMILYCOUNT

7. Validate the integrity of D1

a. Copy D1 -> integrityDigest to H2

b. Set D1 -> integrityDigest to NULL

c. Create H3 the HMAC of D1 using tpmProof as the secret

d. Compare H2 to H3 return TPM_AUTHFAIL on mismatch

8. Validate S1 values

a. S1 -> tag is TPM_TAG_DELEGATE_SENSTIVE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 150 of257
 TCG PUBLISHED

b. Return TPM_BAD_DELEGATE on error

9. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 151 of257
 TCG PUBLISHED

20. Non-volatile Storage
Start of informative comment:

This section handles the allocation and use of the TPM non-volatile storage.

End of informative comment.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 152 of257
 TCG PUBLISHED

20.1 TPM_NV_DefineSpace
Start of informative comment:

This establishes the space necessary for the indicated index. The definition will include the access
requirements for writing and reading the area.

The space definition size does not include the area needed to manage the space.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_DefineSpace

4 66 2S 66 TPM_NV_DATA_PUBLIC pubInfo The public parameters of the NV area

5 20 3S 20 TPM_ENC_AUTH encAuth The encrypted authorization, only valid if the attributes require
subsequent authorization

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for ownerAuth

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA ownerAuth The authorization digest HMAC key: TPM Owner auth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_DefineSpace

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA ownerAuth The authorization digest HMAC key: TPM Owner auth

Actions

1. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. The TPM MUST validate the command and parameters using the TPM Owner authorization and
ownerAuth, on error return TPM_AUTHFAIL

b. authHandle session type MUST be OSAP

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 153 of257
 TCG PUBLISHED

c. Create X1 the SHA-1 result of the concatenation of (authHandle session secret || authLastNonceEven)

i. Create A1 the XOR of pubInfo -> encAuth and X1

2. else

a. Validate the assertion of physical presence. Return TPM_BAD_PRESENCE on error.

b. If TPM Owner is present then return TPM_OWNERSET.

c. If pubInfo -> dataSize is 0 then return TPM_BAD_DATASIZE. Setting the size to 0 represents an
attempt to delete the value without TPM Owner authorization.

d. Validate max NV writes without an owner

i. Set NV1 to TPM_PERMENANT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITE

iv. Set TPM_PERMENANT_DATA -> noOwnerNVWrite to NV1

e. Set A1 to encAuth. There is no nonces or authorization to create the encryption string, hence the
authorization value is passed in the clear

3. If pubInfo -> nvIindex is listed in reserved TPM_NV_INDEX table in Part 2 the structure document then
return TPM_BADINDEX

4. If pubInfo -> nvIndex points to a valid previously defined storage area then

a. Map D1 a TPM_NV_DATA_SENSITIVE to the storage area

b. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK then

i. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE then return TPM_AREA_LOCKED

c. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

i. If D1 -> pubInfo -> bWriteSTClear is TRUE then return TPM_AREA_LOCKED

d. Set data area currently pointed to by D1 to 0xFF

e. If pubInfo -> dataSize is 0 then return TPM_SUCCESS

5. Parse pubInfo -> pcrInfoRead

a. Validate pcrInfoRead structure tag on error return TPM_INVALID_STRUCTURE

b. If pcrInfoRead -> pcrInfoSize is 0

i. Set readPCR to FALSE

c. Else

i. Set readPCR to TRUE

d. If pcrInfoRead -> localityAtRelease disallows some localities

i. Set readLocalities to TRUE

e. Else

i. Set readLocalities to FALSE

6. Parse pcrInfoWrite

a. Validate pcrInfoWrite structure tag on error return TPM_INVALID_STRUCTURE

b. If pcrInfoWrite -> pcrInfoSize is 0

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 154 of257
 TCG PUBLISHED

i. Set writePCR to FALSE

c. Else

i. Set writePCR to TRUE

d. If pcrInfoWrite -> localityAtRelease disallows some localities

i. Set writeLocalities to TRUE

e. Else

i. Set writeLocalities to FALSE

7. Validate that the attributes are consistent

a. If TPM_NV_PER_OWNERWRITE is TRUE and TPM_NV_PER_AUTHWRITE is TRUE return
TPM_AUTH_CONFLICT

b. If TPM_NV_PER_OWNERREAD is TRUE and TPM_NV_PER_AUTHREAD is TRUE return
TPM_AUTH_CONFLICT

c. If TPM_NV_PER_PCRREAD is TRUE and readPCR is FALSE return TPM_BAD_ATTRIBUTES

d. If TPM_NV_PER_PCRWRITE is TRUE and writePCR is FALSE return TPM_BAD_ATTRIBUTES

e. If TPM_NV_PER_OWNERWRITE and TPM_NV_PER_AUTHWRITE and TPM_NV_PER_WRITEDEFINE and
TPM_NV_PER_PPWRITE and TPM_NV_PER_PCRWRITE and writeLocalities are all FALSE

i. Return TPM_PER_NOWRITE

f. If TPM_NV_PER_PCRREAD then

i. If pcrInfoRead is NULL return TPM_BAD_ATTRIBUTES

g. If TPM_NV_PER_PCRWRITE then

i. Validate pcrInfoWrite structure tag on error return TPM_INVALID_STRUCTURE

ii. If pcrInfoWrite is NULL return TPM_BAD_ATTRIBUTES

h. Validate nvIndex

i. Make sure that the index is applicable for this TPM return TPM_BAD_INDEX on error

i. If dataSize is 0 return TPM_BAD_SIZE

8. Create D1 a TPM_NV_DATA_SENSITIVE structure

9. Validate that sufficient NV is available to store the data

a. return TPM_NOSPACE if pubInfo -> dataSize is not available in the TPM

10. Ensure that the TPM reserves the space for dataSize

a. Set all bytes in the newly defined area to 0xFF

11. Set D1 -> pubInfo to pubInfo

12. Set D1 -> authValue to A1

13. Set bReadSTClear = FALSE;

14. Set bWriteSTClear = FALSE;

15. Set bWriteDefine = FALSE;

16. Ignore continueAuthSession on input and set to FALSE on output

17. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 155 of257
 TCG PUBLISHED

20.2 TPM_NV_WriteValue
Start of informative comment:

This command writes the value to a defined area. The write can be TPM Owner authorized or unauthorized
and protected by other attributes and will work when no TPM Owner is present.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WRITEVALUE

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the NV Area

6 4 4S 4 UINT32 dataSize The size of the data parameter

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for TPM Owner

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA ownerAuth The authorization digest HMAC key: TPM Owner auth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WRITEVALUE

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA ownerAuth The authorization digest HMAC key: TPM Owner auth

Actions

1. If nvIndex = 0 then

a. Set TPM_STCLEAR_FLAGS -> bGlobalLock to TRUE

b. return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 156 of257
 TCG PUBLISHED

2. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, return TPM_BAD_INDEX on
error

3. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If D1 -> TPM_NV_OWNERWRITE is FALSE return TPM_AUTH_CONFLICT

b. Validate command and parameters using ownerAuth HMAC with TPM Owner authorization as the
secret, return TPM_AUTHFAIL on error

4. Else

a. If D1 -> TPM_NV_PER_OWNERWRITE is TRUE return TPM_AUTH_CONFLICT

b. If no TPM Owner validate max NV writes without an owner

i. Set NV1 to TPM_PERMENANT_DATA -> noOwnerNVWrite

ii. Increment NV1 by 1

iii. If NV1 > TPM_MAX_NV_WRITE_NOOWNER return TPM_MAXNVWRITE

iv. Set TPM_PERMENANT_DATA -> noOwnerNVWrite to NV1

5. Check that D1 -> pcrInfoWrite -> localityAtRelease for TPM_STANY_DATA -> localityModifier is TRUE

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> localityAtRelease ->
TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

6. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is asserted if not
return TPM_BAD_PRESENCE

7. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED

8. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_DATA -> bGlobalLockis TRUE return TPM_AREA_LOCKED

9. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 ->bWriteSTClear is TRUE return TPM_AREA_LOCKED

10. If D1 -> attributes specifies TPM_NV_PER_PCRWRITE then

a. Create P1 a composite hash of the PCR specified by D1 -> pcrSelectionWrite

b. Compate P1 to digestAtRelease return TPM_WRONGPCRVALUE on mismatch

11. If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

12. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. If D1 -> attributes specifies TPM_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 157 of257
 TCG PUBLISHED

13. Set D1 -> bReadSTClear to FALSE

14. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 158 of257
 TCG PUBLISHED

20.3 TPM_NV_WriteValueAuth
Start of informative comment:

This command writes to a previously defined area. The area must require authorization to write. This
command is for using when authorization other than the owner authorization is to be used. Otherwise, you
should use TPM_NV_WriteValue

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_WRITEVALUEAUTH

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the chunk

6 4 4S 4 UINT32 dataSize The size of the data area

7 <> 5S <> BYTE data The data to set the area to

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for NV element authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_WRITEVALUEAUTH

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE NonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA authValue HMAC key: NV element auth value

Actions

1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, return TPM_BAD_INDEX on
error

2. If D1 -> attributes does not specify TPM_NV_PER_AUTHWRITE then return TPM_AUTH_CONFLICT

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 159 of257
 TCG PUBLISHED

3. Validate authValue using D1 -> authValue, return TPM_AUTHFAIL on error

4. Check that D1 -> pcrInfoWrite -> localityAtRelease for TPM_STANY_DATA -> localityModifier is TRUE

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> localityAtRelease ->
TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

5. If D1 -> attributes specifies TPM_NV_PER_PPWRITE then validate physical presence is asserted if not
return TPM_BAD_PRESENCE

6. If D1 -> attributes specifies TPM_NV_PER_PCRWRITE then

a. Create P1 a composite hash of the PCR specified by D1 -> pcrSelectionWrite

b. Compate P1 to digestAtRelease return TPM_WRONGPCRVALUE on mismatch

7. If D1 -> attributes specifies TPM_NV_PER_WRITEDEFINE

a. If D1 -> bWriteDefine is TRUE return TPM_AREA_LOCKED

8. If D1 -> attributes specifies TPM_NV_PER_GLOBALLOCK

a. If TPM_STCLEAR_FLAGS -> bGlobalLock is TRUE return TPM_AREA_LOCKED

9. If D1 -> attributes specifies TPM_NV_PER_WRITE_STCLEAR

a. If D1 -> bWriteSTClear is TRUE return TPM_AREA_LOCKED

10. If dataSize = 0 then

a. Set D1 -> bWriteSTClear to TRUE

b. Set D1 -> bWriteDefine to TRUE

11. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. If D1 -> attributes specifies TPM_PER_WRITEALL

i. If dataSize != D1 -> dataSize return TPM_NOT_FULLWRITE

d. Write the new value into the NV storage area

12. Set D1 -> bReadSTClear to FALSE

13. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 160 of257
 TCG PUBLISHED

20.4 TPM_NV_ReadValue
Start of informative comment:

Read a value from the NV store. This command uses optional owner authorization.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, TPM_ORD_NV_READVALUE

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UINT32 offset The offset into the area

6 4 4S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for TPM Owner aurhorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA ownerAuth HMAC key: TPM Owner authorization

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S TPM_RESULT returnCode The return code of the operation.

4 4 2S UINT32 dataSize The size of the data area

5 <> 3S BYTE data The data to set the area to

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA ownerAuth HMAC key: TPM Owner authorization

Actions

1. Set D1 a TPM_NV_DATA_AREA structure to the area pointed to by nvIndex, if not found return
TPM_BAD_INDEX

2. If tag = TPM_TAG_RQU_AUTH1_COMMAND then

a. If D1 -> TPM_NV_PER_OWNERREAD is FALSE return TPM_AUTH_CONFLICT

b. Validate command and parameters using TPM Owners authorization on error return TPM_AUTHFAIL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 161 of257
 TCG PUBLISHED

3. Else

a. If D1 -> TPM_PER_NV_AUTHREAD is TRUE return TPM_AUTH_CONFLICT

b. If D1 -> TPM_PER_NV_OWNERREAD is TRUE return TPM_AUTH_CONFLICT

4. Check that D1 -> pcrInfoRead -> localityAtRelease for TPM_STANY_DATA -> localityModifier is TRUE

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> localityAtRelease ->
TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

5. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is asserted if not return
TPM_BAD_PRESENCE

6. If D1 -> TPM_NV_PER_READ_STCLEAR then

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

7. If D1 -> TPM_NV_PER_PCRREAD then

a. Create P1 a composite hash of the PCR specified by D1 -> pcrSelectionRead

b. Compate P1 to digestAtRelease return TPM_WRONGPCRVALUE on mismatch

8. If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to NULL

9. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

10. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 162 of257
 TCG PUBLISHED

20.5 TPM_NV_ReadValueAuth
Start of informative comment:

This command requires that the read be authorized by a value set with the blob.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE Ordinal Ordinal, TPM_ORD_NV_READVALUEAUTH

4 4 2S 4 TPM_NV_INDEX nvIndex The index of the area to set

5 4 3S 4 UNIT32 offset The offset from the data area

6 4 5S 4 UINT32 dataSize The size of the data area

7 4 TPM_AUTHHANDLE authHandle authThe auth handle for the NV element authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL authContinueSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA authHmac HMAC key: nv element authorization

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal, TPM_ORD_NV_READVALUEAUTH

4 4 3S 4 UINT32 dataSize The size of the data area

5 <> 4S <> BYTE data The data

6 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE authLastNonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL authContinueSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA authHmacOut HMAC key: nv element authorization

Actions

1. Locate and set D1 to the TPM_NV_DATA_AREA that corresponds to nvIndex, on error return
TPM_BAD_INDEX

2. If D1 -> TPM_NV_PER_AUTHREAD is FALSE return TPM_AUTH_CONFLICT

3. Validate authHmac using D1 -> authValue on error return TPM_AUTHFAIL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 163 of257
 TCG PUBLISHED

4. If D1 -> attributes specifies TPM_NV_PER_PPREAD then validate physical presence is asserted if not return
TPM_BAD_PRESENCE

5. Check that D1 -> pcrInfoRead -> localityAtRelease for TPM_STANY_DATA -> localityModifier is TRUE

a. For example if TPM_STANY_DATA -> localityModifier was 2 then D1 -> pcrInfo -> localityAtRelease ->
TPM_LOC_TWO would have to be TRUE

b. On error return TPM_BAD_LOCALITY

6. If D1 -> attributes specifies TPM_NV_PER_PCRREAD then

a. Create P1 a composite hash of the PCR specified by D1 -> pcrSelectionRead

b. Compate P1 to digestAtRelease return TPM_WRONGPCRVALUE on mismatch

7. If D1 specifies TPM_NV_PER_READ_STCLEAR then

a. If D1 -> bReadSTClear is TRUE return TPM_DISABLED_CMD

8. If dataSize is 0 then

a. Set D1 -> bReadSTClear to TRUE

b. Set data to NULL

9. Else

a. Set S1 to offset + dataSize

b. If S1 > D1 -> dataSize return TPM_NOSPACE

c. Set data to area pointed to by offset

10. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 164 of257
 TCG PUBLISHED

21. Session Management

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 165 of257
 TCG PUBLISHED

21.1 TPM_KeyControlOwner
Start of informative comment:

This command controls some attributes of keys that are stored within the TPM key cache.

OwnerEvict: If this bit is set to true, this key remains in the TPM through all TPM_Startup events. The only
way to evict this key is for the TPM Owner to execute this command again, setting the owner control bit to
false and then executing TPM_FlushSpecific.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_KeyControlOwner

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key.

5 4 2S 4 UINT32 bitName The name of the bit to be modified

6 1 3S 1 BOOL bitValue The value to set the bit to

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

8 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 20 TPM_AUTHDATA ownerAuth HMAC authorization: key TPM Owner authorization

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_ KeyControlOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM.

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth HMAC authorization: key TPM Owner authorization

Descriptions

Set an internal bit within the key cache that controls some attribute of a loaded key.

Actions

1. Validate the authorization using the owner authorization value, on error return TPM_AUTHFAIL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 166 of257
 TCG PUBLISHED

2. Validate that keyHandle refers to a loaded key, return TPM_INVALID_KEYHANDLE on error.

3. Validate that bitName is valid, return TPM_BAD_MODE on error.

4. If bitName == TPM_KEY_CONTROL_OWNER_EVICT

a. If bitValue == TRUE

i. Verify that after this operation at least two key slots will be present within the TPM that can
store any type of key both of which do NOT have the OwnerEvict bit set, on error return
TPM_NOSPACE

ii. Verify that for this key handle, ParentPCR is FALSE and Volatile is FALSE, return
TPM_BAD_PARAMETER on error.

iii. Set ownerEvict within the internal key storage structure to TRUE.

b. Else if bitValue == FALSE

i. Set ownerEvict within the internal key storage structure to FALSE.

5. Return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 167 of257
 TCG PUBLISHED

21.2 TPM_SaveContext
Start of informative comment:

SaveContext saves a loaded resource outside the TPM. After successful execution of the command the TPM
automatically releases the internal memory for sessions but leaves keys in place.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveAuthContext

4 4 TPM_HANDLE handle Handle of the resource being saved.

5 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being saved

6 16 BYTE[16] label Label for identification purposes

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 contextSize The actual size of the outgoing context blob

5 <> TPM_CONTEXT_BLOB contextBlob The context blob

Description

1. The caller of the function uses the label field to add additional sequencing, anti-replay or other items to
the blob. The information does not need to be confidential but needs to be part of the blob integrity.

Actions

1. Map V1 to TPM_STANY_DATA

2. Validate that handle points to resource that matches resourceType, return TPM_INVALID_RESOURCE on
error

3. Validate that resourceType is a resource from the following list if not return TPM_INVALID_RESOURCE

a. TPM_RT_KEY

b. TPM_RT_AUTH

c. TPM_RT_TRANS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 168 of257
 TCG PUBLISHED

4. Locate the correct nonce

a. If resourceType is TPM_RT_KEY

i. If TPM_STCLEAR_DATA -> contextNonceKey is NULLS

(1) Set TPM_STCLEAR_DATA -> contextNonceKey to the next value from the TPM RNG

ii. Map N1 to V1 -> contextNonceKey

iii. If the key has TPM_KEY_CONTROL_OWNER_EVICT set then return TPM_OWNER_CONTROL

b. Else

i. If V1 -> contextNonceSession is NULLS

(1) Set V1 -> contextNonceSession to the next value from the TPM RNG

ii. Map N1 to V1 -> contextNonceSession

5. Set K1 to V1 -> contextKey

6. Create R1 by putting the sensitive part of the resource pointed to by handle into a structure. The
structure is a TPM manufacturer option. The TPM MUST ensure that ALL sensitive information of the
resource is included in R1.

7. Create C1 a TPM_CONTEXT_SENSITIVE structure

a. C1 forms the inner encrypted wrapper for the blob. All saved context blobs MUST include a
TPM_CONTEXT_SENSITIVE structure and the TPM_CONTEXT_SENSITIVE_STRUCTURE MUST be
encrypted.

b. Set C1 -> contextNonce to N1

c. Set C1 -> internalData to R1

8. Create B1 a TPM_CONTEXT_BLOB

a. Set B1 -> tag to TPM_TAG_CONTEXTBLOB

b. Set B1 -> resourceType to resourceType

c. Set B1 -> handle to handle

d. Set B1 -> integrityDigest to NULL

e. Set B1 -> label to label

f. Set B1 -> additionalData to information determined by the TPM manufacturer. This data will help the
TPM to reload and reset context. This area MUST NOT hold any data that is sensitive (symmetric IV
are fine, prime factors of an RSA key are not).

g. Set B1 -> additionalSize to the size of additionalData

h. Set B1 -> sensitiveSize to the size of C1

i. Set B1 -> sensitiveData to C1

9. If resourceType is TPM_RT_KEY

a. Set B1 -> contextCount to 0

10. Else

a. If V1 -> contextCount > 232-2 then

i. Return with TPM_TOOMANYCONTEXTS

b. Else

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 169 of257
 TCG PUBLISHED

i. Increment V1 -> contextCount by 1

ii. Validate that the TPM can still manage the new count value

(1) If the distance between the oldest saved context and the contextCount is too large return
TPM_CONTEXT_GAP

iii. Find contextIndex such that V1 -> contextList[contextIndex] equals 0. If not found exit with
TPM_NOCONTEXTSPACE

iv. Set V1-> contextList[contextIndex] to V1 -> contextCount

v. Set B1 -> contextCount to V1 -> contextCount

c. The TPM MUST invalidate all information regarding the resource except for information needed for
reloading

11. Calculate B1 -> integrityDigest the HMAC of B1 using TPM_PERMANENT_DATA -> tpmProof as the secret

12. Create E1 by encrypting the concatenation of C1 using K1 as the key

a. Set B1 -> sensitiveSize to the size of E1

b. Set B1 -> sensitiveData to E1

13. Set contextSize to the size of B1

14. Return B1 in contextBlob

15. If resourceType is not TPM_RT_KEY release interal rescources

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 170 of257
 TCG PUBLISHED

21.3 TPM_LoadContext
Start of informative comment:

LoadContext loads into the TPM a previously saved context. The command returns the type of blob and a
handle.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadAuthContext

4 1 BOOL keepHandle Indication if the handle MUST be preserved

5 4 TPM_HANDLE hintHandle The hint hand the TPM MAY use to locate a OSAP session tied to a key

6 4 UINT32 contextSize The size of the following context blob.

7 <> TPM_CONTEXT_BLOB contextBlob The context blob

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 TPM_HANDLE handle The handle assigned to the resource after it has been successfully loaded.

Actions

1. Map contextBlob to B1, a TPM_CONTEXT_BLOB structure

2. Map V1 to TPM_STANY_DATA

3. Create M1 by decrypting B1 -> sensitiveData using TPM_PERMANENT_DATA -> contextKey

4. Create C1 and R1 by splitting M1 into a TPM_CONTEXT_SENSITIVE structure and internal resource data

5. Check contextNonce

a. If B1 -> resourceType is NOT TPM_RT_KEY

i. If C1 -> conextNonce does not equal V1 -> contextNonceSession return TPM_BADCONTEXT

ii. Validate that the resource pointed to by the context is loaded (i.e. for OSAP the key referenced is
loaded) return TPM_RESOURCEMISSING

b. Else

i. If C1 -> internalData -> parentPCRStatus is FALSE and C1 -> internalData -> isVolatile is FALSE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 171 of257
 TCG PUBLISHED

(1) Ignore C1 -> contextNonce

ii. else

(1) If C1 -> contextNonce does not equal V1 -> contextNonceKey return TPM_BADCONTEXT

6. Validate the structure

a. Set H1 to B1 -> integrityDigest

b. Set B1 -> integrityDigest to NULL

c. Create H2 the HMAC of B1 using TPM_PERMANENT_DATA -> tpmProof as the HMAC key

d. If H2 does equal H1 return TPM_BADCONTEXT

7. If keepHandle is TRUE

a. Set handle to B1 -> handle

b. If the TPM is unable to restore the handle the TPM MUST return TPM_BADHANDLE

8. Else

a. The TPM SHOULD attempt to restore the handle but if not possible it MAY set the handle to any valid
for R1

9. If B1 -> resourceType is NOT TPM_RT_KEY

a. Find contextIndex such that V1 -> contextList[contextIndex] equals C1 -> savedCount

b. If not found then return TPM_BADCONTEXT

c. Set V1 -> contextList[contextIndex] to 0

10. Process R1 to return the resource back into TPM use

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 172 of257
 TCG PUBLISHED

22. Eviction
Start of informative comment:

The TPM has numerous resources held inside of the TPM that may need eviction. The need for eviction occurs
when the number or resources in use by the TPM exceed the available space. For resources that are hard to
reload (i.e. keys tied to PCR values) the outside entity should first perform a context save before evicting
items.

In version 1.1 there were separate commands to evict separate resource types. This new command set uses
the resource types defined for context saving and creates a generic command that will evict all resource
types.

End of informative comment.

The TPM MUST NOT flush the EK or SRK using this command.

Version 1.2 deprecates the following commands:

• TPM_Terminate_Handle

• TPM_Evict_Key

• TPM_Reset

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 173 of257
 TCG PUBLISHED

22.1 TPM_FlushSpecific
Start of informative comment:

TPM_FlushSpecific flushes from the TPM a specific handle.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_FlushSpecific

4 4 TPM_HANDLE handle The handle of the item to flush

5 4 TPM_RESOURCE_TYPE resourceType The type of resource that is being flushed

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation

Description

TPM_FlushSpecific releases the resources associated with the given handle.

Actions

1. If resourceType is TPM_RT_CONTEXT

a. Treat the handle parameter as a contextCount value that MUST be found in contextList, return
TPM_BAD_PARAMETER if not found

b. Set R1 to the contextCount

c. Validate that R1 points at valid context

2. Else if resourceType is TPM_RT_KEY

a. Set R1 to the key pointed to by handle

b. Validate that R1 points at valid key

c. If R1 -> ownerEvict is TRUE return TPM_KEY_OWNER_CONTROL

3. Else if resourceType is TPM_RT_HASH or TPM_RT_COUNTER

a. Return TPM_INVALID_RESOURCE

4. Else

a. Set R1 to the resource pointed to by handle

b. Validate that resource type and handle point to a valid allocated resource

5. Invalidate R1 and all internal resources allocated to R1

a. Resources include authorization and transport sessions

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 174 of257
 TCG PUBLISHED

23. Timing Ticks
Start of informative comment:

The TPM timing ticks are always available for use. The association of timing ticks to actual time is a protocol
that occurs outside of the TPM. See the design document for details.

The setting of the clock type variable is a one time operation that allows the TPM to be configured to the
type of platform that is installed on.

The ability for the TPM to continue to increment the timer ticks across power cycles of the platform is a TPM
and platform manufacturer decision.

End of informative comment.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 175 of257
 TCG PUBLISHED

23.1 TPM_SetTickType
Start of informative comment:

This is a one time command that sets the TPM clock type when it is installed on a platform during platform
manufacturing.

End of informative comment.

Type

TPM protected capability. The TPM MAY implement this function in manufacturing and not expose the ordinal
to normal operation

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_SetTickType

4 4 TPM_TICKTYPE tickType The clock type to be set

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Descriptions

This command sets the clock type. It is a one-time command that the platform manufacturer uses to indicate
to the TPM how the platform will handle the ability to continue to increment the TPM timer ticks between
power cycles.

The TPM MAY implement this command in a manner that does not require the use of the command data
stream. When implemented in this manner the TPM MUST ensure that the command is only executable once.

Actions

1. If TPM_PERMANENT_DATA -> tickType is NULL

a. Set TPM_PERMANENT_DATA -> tickType

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 176 of257
 TCG PUBLISHED

23.2 TPM_GetTicks
Start of informative comment:

This command returns the current tick count of the TPM.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Ordinal: TPM_ORD_GetTicks

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 36 TPM_CURRENT_TICKS currentTime The current time held in the TPM

Descriptions

This command returns the current time held in the TPM. It is the responsibility of the external system to
maintain any relation between this time and a UTC value or local real time value.

Actions

1. Set T1 to the internal TPM_CURRENT_TICKS structure

2. Return T1 as currentTime.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 177 of257
 TCG PUBLISHED

23.3 TPM_TickStampBlob
Start of informative comment:

This command applies a time stamp to the passed blob. The TPM makes no representation regarding the blob
merely that the blob was present at the TPM at the time indicated.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital
signatures.

5 20 2s 20 TPM_NONCE antiReplay Anti replay value to added to signature

6 20 3s 20 TPM_DIGEST digestToStamp The digest to perform the tick stamp on

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the use of keyHandle. HMAC
key: key.usageAuth

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Ordinal, fixed value of TPM_ORD_TickStampBlob

4 36 3S 36 TPM_CURRENT_TICKS currentTicks The current time according to the TPM

5 4 4S 4 UINT32 sigSize The length of the returned digital signature

6 <> 5S <> BYTE[] sig The resulting digital signature.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

Description

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 178 of257
 TCG PUBLISHED

The function performs a digital signature on the hash of digestToStamp and the current tick count.

It is the responsibility of the external system to maintain any relation between tick count and a UTC value or
local real time value.

Actions

1. The TPM validates the authorization to use the key pointed to by keyHandle.

2. Validate that keyHandle -> keyUsage is TPM_KEY_SIGN, TPM_KEY_IDENTITY or TPM_KEY_LEGACY, if not
return the error code TPM_INVALID_KEYUSAGE.

3. Create T1, a TPM_CURRENT_TICKS structure.

4. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set H1 -> fixed to “TSTP”

b. Set H1 -> replay to antiReplay

c. Create H2 the concatenation of digestToStamp || T1

d. Set H1 -> dataLen to the length of H2

e. Set H1 -> data to H2

5. The TPM computes the signature, sig, using the key referenced by keyHandle, using H1 as the information
to be signed

6. The TPM returns T1 as currentTime parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 179 of257
 TCG PUBLISHED

24. Transport Sessions

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 180 of257
 TCG PUBLISHED

24.1 TPM_EstablishTransport
Start of informative comment:

This establishes the transport session. Depending on the attributes specified for the session this may establish
shared secrets, encryption keys and session logs. The session will be in use for by the TPM_ExecuteTransport
command.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 TPM_KEY_HANDLE encHandle The handle to the key that encrypted the blob

5 <> 2S <> TPM_TRANSPORT_PUBLIC transPublic The public information describing the transport sesion

6 4 3S 4 UINT32 secretSize The size of the secret Area

7 <> 4S <> BYTE secret The encrypted secret area

8 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

9 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

11 20 TPM_AUTHDATA keyAuth Authorizatoin. HMAC key: encKey.usageAuth

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_EstablishTransport

4 4 3S 4 TPM_TRANSHANDLE transHandle The handle for the transport session

5 36 4S 36 TPM_CURRENT_TICKS currentTicks The current tick count

6 20 5S 20 TPM_NONCE transNonce The even nonce in use for subsequent execute transport

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 181 of257
 TCG PUBLISHED

Description

This command establishes the transport sessions shared secret. The encryption of the shared secret uses the
public key of the key loaded in encKey.

Actions

1. If encHandle is TPM_KH_TRANSPORT then

a. If tag is NOT TPM_TAG_RQU_COMMAND return TPM_BADTAG

b. If transPublic -> transAttributes specifies TPM_TRANSPORT_ENCRYPT return TPM_BAD_SCHEME

c. Set A1 to secret. This implies that the secret is a 20 byte authValue.

2. Else

a. encHandle -> keyType MUST be TPM_KEY_STORAGE or TPM_KEY_LEGACY return
TPM_INVALID_KEYUSAGE on error

b. If tag is NOT TPM_TAG_RQU_AUTH1_COMMAND return TPM_BADTAG

c. Using keyAuth validate the authorization to use the key and the parameters to the command

d. Create K1 a TPM_TRANSPORT_AUTH structure by decrypting secret using the key pointed to by
encHandle

e. Validate K1 for tag

f. Set A1 to K1 -> authData

3. Check if the transPublic->keyParms->algorithmnID is suppored if not return TPM_BAD_KEY_PROPERTY

a. If transPublic->keyParms->algorithmnID == TPM_ALG_3DES or TPM_ALG_AESXXX check that
transPublic->keyParms->encScheme is supported if not return TPM_INAPPROPRIATE_ENC

4. Generate nonces

a. Generate transLastNonceEven from the TPM RNG

b. Generate nonceEven from the TPM RNG. This nonce associates with the authorization session in use to
establish the session. This is only necessary if tag = TPM_TAG_RQU_AUTH1_CMD

c. These nonces are separate and do not affect the nonces in use to wrap commands.

5. Create T1 a TPM_TRANSPORT_INTERNAL structure

a. Ensure that the TPM has sufficient internal space to allocate the transport session, return
TPM_NO_SPACE on error

b. Assign a T1 -> transHandle value. This value is assigned by the TPM and may be any value

c. Set T1 -> transDigest to NULL

d. Set T1 -> transAttributes to transPublic -> transAttributes

e. Set T1-> transEven to transNonce

f. Set T1 -> authData to A1

6. If T1 -> transAttributes has TPM_TRANSPORT_ENCRYPT

a. Validate that the TPM can perform the indicated encryption algorithm including mode, on error
return TPM_BAD_MODE

b. Perform any initialization necessary for the indicated algorithm

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 182 of257
 TCG PUBLISHED

7. If TPM_STCLEAR_DATA -> currentTicks is not properly initialized

a. Initialize the TPM_STCLEAR_DATA -> currentTicks

8. Set currentTicks to TPM_STCLEAR_DATA -> currentTicks

9. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L1 a TPM_TRANSPORT_LOG_IN structure

i. Set L1 -> parameters to SHA-1 (transPublic)

ii. Fill other L1 parameters as defined

iii. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L1)

b. Create L2 a TPM_TRANSPORT_LOG_OUT structure

i. Fill in L2 with information from this command

ii. Set L2 -> currentTicks to currentTicks, this MUST be the same value that is returned in the
currentTicks parameter

iii. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || L2)

10. If T1 -> transAttributes has TPM_TRANSPORT_EXCLUSIVE set then TPM_STANY_FLAGS -> transportExclusive
to TRUE

a. Any command, other than TPM_ExecuteTransport or TPM_ReleaseTransportSigned, will cause the
invalidation of this transport session transHandle

11. Return T1 -> transHandle as transHandle

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 183 of257
 TCG PUBLISHED

24.2 TPM_ExecuteTransport
Start of informative comment:

Delivers a wrapped TPM command to the TPM where the TPM unwraps the command and then executes the
command.

ExecuteTransport uses the same rolling nonce paradigm as other authorized TPM commands. The even nonces
start in EstablishTransport and change on each invocation of ExecuteTransport.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 4 2s 4 UINT32 wrappedCmdSize Size of the wrapped command

5 <> 3s <> BYTE[] wrappedCmd The wrapped command

6 4 TPM_TRANSHANDLE transHandle The transport session handle

 2H1 20 TPM_NONCE transLastNonceEven Even nonce previously generated by TPM

7 20 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueTranSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the ExecuteTransport command. This does not reflect
the status of wrapped command.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ExecuteTransport

4 8 3s 8 UINT64 currentTicks The current ticks when the command was executed

5 4 4s 4 UINT32 wrappedCmdSize Size of the wrapped command

6 <> 5s <> BYTE[] wrappedCmd The wrapped command

7 20 2H1 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE transNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueTranSession The continue use flag for the session

9 20 TPM_AUTHDATA transAuth HMAC for transHandle key: transHandle -> authData

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 184 of257
 TCG PUBLISHED

Description

1. This command executes a TPM command using the transport session.

2. Prior to execution of the wrapped command (action 10 below) failure of the transport session MUST have
no effect on the wrapped command. The exception is when the TPM goes into failure mode and return
FAILED_SELFTEST for all subsequent commands.

3. After execution of the wrapped command failure of the transport session MUST have an effect on the
wrapped command resources. The reason for this is that the transport session will be returning an error
code and not reporting any session nonces. The entire wrapped command response is lost so nonces,
handles and such are lost to the caller.

4. Execution of the wrapped command (action 10) SHOULD have no effect on the transport session.

a. The wrapped command SHALL use no resources of the transport session, this includes authorization
sessions

b. If the wrapped command execution returns an error (action 10 below) then the sessions for
ExecuteTransport still operate properly.

c. The exception to this is when the wrapped command causes the TPM to go into failure mode and
return TPM_FAILSELFTEST for all subsequent commands

5. Command representation

a. **

b. TAGet | LENet | ORDet | wrappedCmd | AUTHet

c. **

d. And wrappedCmd looks like

e. ***

f. TAGw | LENw | ORDw | HANDLESw(o) | DATAw | AUTH1w (o) | AUTH2w (o)

g. ***

Actions

1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Calculate pointers

a. Set S1 to DATAw

i. This pointer is ordinal dependent and requires the execute transport command to parse
wrappedCmd

b. Set L1 to the length of DATAw

i. If AUTH1w is present no bytes of AUTH1w are in the area pointed to by S1 and L1

3. If T1 -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If transHandle -> encryptionAlg == MGF1

i. Using the MGF1 function, create string G1 of length L1. The inputs to the MGF1 are
transLastNonceEven, transNonceOdd, “in”, and T1 -> authData. These four values concatenated
together form the Z value that is the seed for the MGF1.

ii. Create C1 by performing an XOR of G1 and wrappedCmd starting at S1.

b. If the encryption algorithm requires an IV calculate the IV values

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 185 of257
 TCG PUBLISHED

i. Using the MGF1 function, create string IV1 with a length set by the block size of the encryption
algorithm. The inputs to the MGF1 are transLastNonceEven, transNonceOdd, and “in”. These
three values concatenated together form the Z value that is the seed for the MGF1. IV1 is also in
use for the output. Note that any terminating characters within the string “in” are ignored, so a
total of 42 bytes are hashed.

ii. IV2 is for the output and uses the same algorithm with the input values of transNonceEven,
transNonceOdd and “out”.

iii. Blocksize for TPM_ALG_DES is 8

iv. Blocksize for TPM_ALG_AESxxx is 16

v. Create C1 by decrypting the wrappedCmd starting at S1

c. TPM_OSAP and TPM_DSAP have special rules as to which parameters are encrypted see the respective
commands for the details

4. Else

a. Set C1 to wrappedCmd

5. Create H1 the SHA-1 of (ORDw || S1).

a. S1 MUST point at the decrypted DATAw area of C1

b. The TPM MAY use this calculation for both execute transport authorization, authorization of the
wrapped command and transport log creation

6. Calculate AUTHet

a. The text field for the HMAC calculation MUST be (ORDet || H1 || transLastNonceEven ||
transNonceOdd || continueTranSession)

b. Validate AUTHet using T1 -> authData as the HMAC key, on errors return TPM_AUTHFAIL

c. Calculate S3 = SHA-1 (RCw || ORDw || DATAOUTw)

i. The TPM MAY use this calculation for execute transport authorization and transport log out
creation

d. S2 for the command is the SHA-1 (RCet || ORDet || currentticks || S3)

e. The AUTHet is the HMAC of (S2 || transNonceEven || transNonceOdd || continueTranSession)

7. If TPM_ExecuteTransport requires auditing

a. Create TPM_AUDIT_EVENT_IN using H1 as the parameters and update auditDigest

b. On any error return TPM_AUDITFAIL_UNSUCCESSFUL

8. If C1 is from the list of following commands return TPM_NO_WRAP_TRANSPORT

a. TPM_EstablishTransport

b. TPM_ExecuteTransport

c. TPM_ReleaseTransportSigned

d. TPM_FlushSpecific

e. TPM_SaveContext

f. TPM_LoadContext

g. Any Deprecated command

9. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 186 of257
 TCG PUBLISHED

a. Create L2 a TPM_TRANSPORT_LOG_IN structure

b. Set L2 -> parameters to the hash of the input parameters of C1

c. Set L2 -> pubKeyHash to NULL

d. If C1 is a command where the first handle is a key then

i. Create K2 the hash of the TPM_STORE_PUBKEY structure of the key pointed to by the first key
handle

ii. If C1 is a command where the second handle is a key then

(1) Create K3 the hash of the TPM_STORE_PUBKEY structure of the key pointed to by the second
key handle

(2) Set K2 to the concatenation K2 || K3

iii. Set L2 -> pubKeyHash to SHA-1 (K2)

10. Send C1 to the normal TPM command parser, the output is C2 and the return code is RC1

a. If C1 is a command that is audited then the TPM MUST perform the input and output audit of the
command as part of action 10

b. The TPM MAY use S1 as the data value in the authorization and audit calculations during the
execution of C1

11. Set CT1 to currentTicks and return CT1 in the currentTicks output parameter

12. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create L3 a TPM_TRANSPORT_LOG_OUT structure

b. Set L3 -> parameters to the output parameters of C2

c. Set L3 -> currentTicks to CT1

d. Set L3 -> returnCode to RC1

e. Set T1 -> transDigest to the SHA-1 (T1 -> transDigest || L3)

13. Create N1 the new transNonceEven for the output of the command

14. Calculate S2 the pointer to the DATAw area of C2

a. Calculate L2 the length of S2 according to the same rules that calculated L1

15. Create H2 the SHA-1 of (ORDw || S2)

16. Calculate AUTHet for output

a. The text field for the HMAC calculation MUST be (RCet || ORDet || currentticks|| H2 ||
transNonceEven || transNonceOdd || continueTranSession)

b. Create AUTHet using T1 -> authData as the HMAC key, on errors return TPM_AUTHFAIL

17. If T1 -> transAttributes has TPM_TRANSPORT_ENCRYPT set then

a. If transHandle -> encryptionAlg == MGF1

i. Using the MGF1 function, create string G1 of length L1. The inputs to the MGF1 are
transNonceEven, transNonceOdd, “out”, and T1 -> authData. These four values concatenated
together form the Z value that is the seed for the MGF1.

ii. Create E1 by performing an XOR of G1 and C2 starting at S1.

b. Else

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 187 of257
 TCG PUBLISHED

i. Create E1 by encrypting C2 starting at S1 using IV2

18. Else

a. Set E1 to C2

19. If continueTranSession is FALSE

a. Invalidate all session data related to transHandle

20. If TPM_ExecuteTranport requires auditing

a. Create TPM_AUDIT_EVENT_OUT using H2 for the parameters and update the auditDigest

b. On any errors return TPM_AUDITFAIL_SUCCESSFUL depending on TPM_AUDITFAIL_SUCCESSFUL
depending on RC1

21. Return E1 in the wrappedCmd parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 188 of257
 TCG PUBLISHED

24.3 TPM_ReleaseTransportSigned
Start of informative comment:

This command completes the transport session. If logging for this session is turned on, then this command
returns a hash of all operations performed during the session along with a digital signature of the hash.

This command serves no purpose if logging is turned off, and results in an error if attempted.

This command uses two authorizations, the key that will sign the log and the authorization from the session.
Having the session authorization proves that the requestor that is signing the log is the owner of the session.
If this restriction is not put in then an attacker can close the log and sign using their own key.

The hash of the session log includes the information associated with the input phase of execution of the
TPM_ReleaseTransportSigned command. It cannot include the output phase information.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 4 TPM_KEY_HANDLE Key The key that will perform the signing

5 20 2s 20 TPM_NONCE antiReplay Value provided by caller for anti-replay protection

6 4 TPM_AUTHHANDLE authHandle The authorization session to use key

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE authNonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA keyAuth The authorization digest that authorizes the use of key. HMAC key: key -
> usageAuth

10 4 TPM_TRANSHANDLE transHandle The transport session handle

 2H2 20 TPM_NONCE tranLastNonceEven Even nonce in use by execute Transport

11 20 3H2 20 TPM_NONCE tranNonceOdd Nonce supplied by caller for transport session

12 1 4H2 1 BOOL tranSession The continue use flag for the authorization handle

13 20 TPM_AUTHDATA tranAuth HMAC for transport session key: tranHandle -> authData

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 189 of257
 TCG PUBLISHED

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH2_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseTransportSigned

4 36 3S 36 TPM_CURRENT_TICKS currentTicks The current ticks when the command executed

5 4 4S 4 UINT32 signSize The size of the signature area

6 <> 5S <> BYTE[] signature The signature of the digest

7 20 2H1 20 TPM_NONCE authNonceEven Even nonce newly generated by TPM

 3H1 20 TPM_NONCE authNonceOdd Nonce generated by caller

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the session

9 20 TPM_AUTHDATA keyAuth HMAC: key -> authData

10 20 2H2 20 TPM_NONCE transNonceEven Even nonce newly generated by TPM

 3H2 20 TPM_NONCE transNonceOdd Nonce generated by caller

11 1 4H2 1 BOOL continueTranSession The continue use flag for the session

12 20 TPM_AUTHDATA transAuth HMAC: tranHandle -> authData

Description

This command releases a transport session and signs the transport log

Actions

1. Using transHandle locate the TPM_TRANSPORT_INTERNAL structure T1

2. Using key -> authData validate the command and parameters, on error return TPM_AUTHFAIL

3. Using tranHandle -> authData validate the command and parameters, on error return TPM_AUTH2FAIL

4. Generate a new authNonceEven and transAuthEven from the TPM internal RNG

5. If T1 -> transAttributes has TPM_TRANSPORT_LOG set then

a. Create A1 a TPM_TRANSPORT_LOG_OUT structure

b. Set A1 -> ordinal to TPM_ORD_ReleaseTransportSigned

c. Set A1 –> parameters to the SHA-1 (ordinal || antiReplay)

d. Set A1 -> currentTicks to TPM_STCLEAR_DATA -> currentTicks

e. Set A1 -> returnCode to 0

f. Set T1 -> transDigest to SHA-1 (T1 -> transDigest || A1)

6. Else

a. Return TPM_BAD_MODE

7. Create H1 a TPM_SIGN_INFO structure and set the structure defaults

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 190 of257
 TCG PUBLISHED

a. Set H1 -> fixed to “TRAN”

b. Set H1 -> replay to antiReplay

c. Set H1 -> data to T1 -> transDigest

d. Sign H1 using the key pointed to by key

8. Invalidate all session data related to T1

9. Create response HMAC

10. Return TPM_SUCCESSFUL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 191 of257
 TCG PUBLISHED

25. Monotonic Counter

25.1 TPM_CreateCounter
Start of informative comment:

This command creates the counter but does not select the counter. Counter creation assigns an authorization
value to the counter and sets the counters original start value. The original start value is the current internal
base value plus one. Setting the new counter to the internal base avoids attacks on the system that are
attempting to use old counter values.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 20 2S 20 TPM_ENCAUTH authData The encrypted auth data for the new counter

5 4 3s 4 BYTE label Label to associate with counter

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 20 TPM_AUTHDATA ownerAuth Authorization TPM Owner authorization.

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CreateCounter

4 4 3s 4 TPM_COUNT_ID countID The handle for the counter

5 10 4S 10 TPM_COUNTER_VALUE counterValue The starting counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag,

8 20 20 TPM_AUTHDATA resAuth Authorization. HMAC key: TPM Owner authorization.

Description

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 192 of257
 TCG PUBLISHED

This command creates a new monotonic counter. The TPM MUST support a minimum of 4 concurrent
counters.

Actions

The TPM SHALL do the following:

1. Using the authHandle field, validate the owner’s authorization to execute the command and all of the
incoming parameters. The authorization session MUST be OSAP.

2. Ignore continueAuthSession on input and set continueAuthSession to FALSE on output

3. Create X1 the SHA-1 result of the concatenation of (authHandle -> sharedSecret || authLastNonceEven)

a. Create A1 the XOR of encAuth and X1

4. Validate that there is sufficient internal space in the TPM to create a new counter. If there is insufficient
space the command returns an error.

5. Increment the internal base counter.

6. Set the counter to the max counter value.

7. Create a countID

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 193 of257
 TCG PUBLISHED

25.2 TPM_IncrementCounter
Start of informative comment:

This authorized command increments the indicated counter by one. Once a counter has been incremented
then all subsequent increments must be for the same handle until a successful TPM_Startup(ST_CLEAR) is
executed.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

4 4 2s 4 TPM_COUNT_ID countID The handle of a valid counter

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for counter authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA counterAuth The authorization digest that authorizes the use of countID. HMAC key:
countID -> authData

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_IncrementCounter

5 10 3S 10 TPM_COUNTER_VALUE count The counter value

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: countID
-> authData

Description

This function increments the counter by 1.

The TPM MAY implement increment throttling to avoid burn problems

Actions

1. If TPM_STCLEAR_DATA -> countID is NULL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 194 of257
 TCG PUBLISHED

a. Set TPM_STCLEAR_DATA -> countID to countID

2. else

a. If TPM_STCLEAR_DATA -> countID does not equal countID

i. Return TPM_BAD_COUNTER

3. Increments the counter by 1

4. Return new count value in count

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 195 of257
 TCG PUBLISHED

25.3 TPM_ReadCounter
Start of informative comment:

Reading the counter provides the caller with the current number in the sequence.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReadCounter

4 4 TPM_COUNT_ID countID ID value of the counter

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 10 TPM_COUNTER_VALUE count The counter value

Description

This returns the current value for the counter indicated. The counter MAY be any valid counter.

Actions

1. Validate that countID points to a valid counter. Return TPM_BAD_COUNTER on error.

2. Return count

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 196 of257
 TCG PUBLISHED

25.4 TPM_ReleaseCounter
Start of informative comment:

This command releases a counter such that no reads or increments of the indicated counter will succeed.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for countID authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce associated with countID

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA counterAuth The authorization digest that authorizes the use of countID. HMAC key:
countID -> authData

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounter

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: countID
-> authData

Actions

The TPM uses countID to locate a valid counter.

1. Authenticate the command and the paramenters using the authorization data pointed to by countID.
Return TPM_AUTHFAIL on error

2. The TPM invalidates all internal information regarding the counter. This includes releasing countID such
that any subsequent attempts to use countID will fail.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 197 of257
 TCG PUBLISHED

25.5 TPM_ReleaseCounterOwner
Start of informative comment:

This command releases a counter such that no reads or increments of the indicated counter will succeed.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 4 2s 4 TPM_COUNT_ID countID ID value of the counter

5 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

8 20 TPM_AUTHDATA ownerAuth The authorization digest that authorizes the inputs. HMAC key: TPM
_owner->authData

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ReleaseCounterOwner

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key: TPM
Owner -> authData

Description

This invalidates all information regarding a counter.

Actions

1. Validate that ownerAuth properly authorizes the command and parameters

2. The TPM uses countID to locate a valid counter. Return TPM_BAD_COUNTER if not found.

3. The TPM invalidates all internal information regarding the counter. This includes releasing countID such
that any subsequent attempts to use countID will fail.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 198 of257
 TCG PUBLISHED

26. DAA commands

26.1 TPM_DAA_Join
Start of informative comment:

TPM_DAA_Join is the process that establishes the DAA parameters in the TPM for a specific DAA issuing
authority.

 End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

4 4 TPM_HANDLE handle Session handle

5 1 2S 1 BYTE stage Processing stage of join

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of JOIN

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of JOIN

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

4 4 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_Join.

5 4 3S 4 UINT32 outputSize Size of outputData

6 <> 4S <> BYTE[] outputData Data produced by this capability

7 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 199 of257
 TCG PUBLISHED

Description

This table summaries the input, output and saved data that is associated with each stage of processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad

0 DAA_count

(used as # repetitions of stage 1)

NULL initialise Session Handle NULL

1 n0 signatureValue rekeying NULL n0

2 DAA_issuerSettings signatureValue issuer settings NULL NULL

3 DAA_count DAA_generic_n1 DAA_join_uo,

DAA_join_u1

NULL NULL

4 DAA_generic_R0 DAA_generic_n P1=R0^f0 modn NULL P1

5 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^f1) modn NULL P2

6 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^u0) modn NULL P3

7 DAA_generic_S1 DAA_generic_n U = P3*(S1^u1) modn U NULL

8 NE NULL U2 U2 NULL

9 DAA_generic_R0 DAA_generic_n P1=R0^r0 modn NULL P1

10 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) modn NULL P2

11 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) modn NULL P3

12 DAA_generic_S1 DAA_generic_n P4 = P3*(S1^r3) modn P4 NULL

13 DAA_generic_gamma w w1 = w^q mod gamma NULL w

14 DAA_generic_gamma NULL E = w^f mod gamma E w

15 DAA_generic_gamma NULL r = r0 + (2^power0)*r1
modq,

E1 = w^r mod gamma

E1 NULL

16 c1 NULL c = hash(c1 || NT) c NULL

17 NULL NULL s0 = r0 + c*f0 s0 NULL

18 NULL NULL s1 = r1 + c*f1 s1 NULL

19 NULL NULL s2 = r2 + c*u0

 mod 2^power1

s2 NULL

20 NULL NULL s12 = r2 + c*u0

>> power1

NULL s12

21 NULL NULL s3 = r3 + c*u1 + s12 s3 NULL

22 u2 NULL v0 = u2 + u0 mod
2^power1

v10 = u2 + u0 >> power1

enc(v0) v10

23 u3 NULL V1 = u3 + u1 + v10 enc(v1) NULL

24 NULL NULL enc(DAA_tpmSpecific) enc(DAA_tpmSpecific) NULL

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 200 of257
 TCG PUBLISHED

Actions

A Trusted Platform Module that receives a valid TPM_DAA_Join command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Join input parameters.

2. Any error return results in the TPM invalidating all resources associated with the join

Stages

0. If stage==0

a. Determine that sufficient resources are available to perform a DAA_Join.

i. The TPM MUST support sufficient resources to perform one (1) DAA_Join. The TPM MAY support
addition DAA_Join sessions

ii. Insufficient resources return TPM_DAA_RESOURCES

b. Set all fields in DAA_issuerSettings = NULL

c. set all fields in DAA_tpmSpecific = NULL

d. set all fields in DAA_session = NULL

e. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputData0 > 0, and return error TPM_DAA_INPUT_DATA0 on mismatch

g. Set DAA_tpmSpecific -> DAA_count = inputData0

h. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific)

i. set DAA_session -> DAA_stage = 1

j. Assign session handle for TPM_Join

k. set outputData = new session handle

l. return TPM_SUCCESS

1. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

c. Verify that sizeOf(inputData0) == TPM_PUBKEY and return error TPM_DAA_INPUT_DATA0 on mismatch

d. If DAA_session -> DAA_scratch == NULL:

i. Set DAA_session -> DAA_scratch = inputData0

ii. set DAA_joinSession -> DAA_digest_n0 = SHA1(DAA_session -> DAA_scratch)

iii. set DAA_tpmSpecific -> DAA_rekey = SHA1(TPM_DAA_TPM_SEED || DAA_joinSession ->
DAA_digest_n0)

e. Else (If DAA_session -> DAA_scratch != NULL):

i. Set signedData = inputData0

ii. Verify that sizeOf(inputData1) == DAA_SIZE_issuerModulus and return error
TPM_DAA_INPUT_DATA1 on mismatch

iii. Set signatureValue = inputData1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 201 of257
 TCG PUBLISHED

iv. Use the RSA key == [DAA_session -> DAA_scratch] to verify that signatureValue is a signature on
signedData, and return error TPM_DAA_ISSUER_VALIDITY on mismatch

v. Set DAA_session -> DAA_scratch = signedData

vi. Set DAA_joinSession -> DAA_digest_n0 = SHA1(DAA_session -> DAA_scratch)

f. Decrement DAA_tpmSpecific -> DAA_count by 1 (unity)

g. If DAA_tpmSpecific -> DAA_count ==0:

i. increment DAA_Session -> DAA_Stage by 1

h. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || DAA_joinSession)

i. set outputData = NULL

j. return TPM_SUCCESS

2. If stage==2

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

c. Verify that sizeOf(inputData0) == sizeOf(TPM_DAA_ISSUER) and return error TPM_DAA_INPUT_DATA0
on mismatch

d. Set DAA_issuerSettings = inputData0. Verify that all fields in DAA_issuerSettings are present and
return error TPM_DAA_INPUT_DATA0 if not.

e. Verify that sizeOf(inputData1) == DAA_SIZE_issuerModulus and return error TPM_DAA_INPUT_DATA1
on mismatch

f. Set signatureValue = inputData1

g. Set signedData = SHA1(DAA_joinSession -> DAA_digest_n0 ||DAA_issuerSettings)

h. Use the RSA key [DAA_session -> DAA_scratch] to verify that signatureValue is a signature on
signedData, and return error TPM_DAA_ISSUER_VALIDITY on mismatch

i. Set DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings)

j. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || DAA_joinSession)

k. Set DAA_session -> DAA_scratch = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS

3. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that sizeOf(inputData0) == sizeOf(DAA_tpmSpecific -> DAA_count) and return error
TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_tpmSpecific -> DAA_count = inputData0

f. Set DAA_generic_n1 = inputData1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 202 of257
 TCG PUBLISHED

g. Verify that SHA-1(DAA_generic_n1) == DAA_issuerSettings -> DAA_digest_n1 and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain random data from the RNG and store it as DAA_joinSession -> DAA_join_u0

i. obtain DAA_SIZE_u11 bytes of random data from the RNG and label them as u11

j. set DAA_joinSession -> DAA_join_u1 = u11 mod (DAA_generic_n1)

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || DAA_joinSession)

n. return TPM_SUCCESS

4. If stage==4,

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. Set X = DAA_generic_R0

i. Set n = DAA_generic_n

j. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

k. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

l. Set DAA_session -> DAA_scratch = (X^f0) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

5. If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 203 of257
 TCG PUBLISHED

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and return error
TPM_DAA_INPUT_DATA0on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. Set X = DAA_generic_R1

i. Set n = DAA_generic_n

j. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

k. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the result f1

l. Set Z = DAA_session -> DAA_scratch

m. Set DAA_session -> DAA_scratch = Z*(X^f1) mod n

n. set outputData = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

6. If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. Set X = DAA_generic_S0

i. Set n = DAA_generic_n

j. Set Z = DAA_session -> DAA_scratch

k. Set Y = DAA_joinSession -> DAA_join_u0

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

7. If stage==7

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 204 of257
 TCG PUBLISHED

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. Set X = DAA_generic_S1

i. Set n = DAA_generic_n

j. Set Y = DAA_joinSession -> DAA_join_u1

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_scratch || DAA_tpmSpecific ->
DAA_count || DAA_joinSession -> DAA_digest_n0)

n. set outputData = DAA_session -> DAA_scratch

o. set DAA_session -> DAA_scratch = NULL

p. increment DAA_session -> DAA_stage by 1

q. return TPM_SUCCESS

8. If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify inputSize0 == DAA_SIZE_NE and return error TPM_DAA_INPUT_DATA0 on mismatch

e. Set NE = decrypt(inputData0, privEK)

f. set outputData = SHA-1(DAA_session -> DAA_digest || NE)

g. set DAA_session -> DAA_digest = NULL

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

9. If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 205 of257
 TCG PUBLISHED

d. Set DAA_generic_R0 = inputData0

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

i. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them Y

j. Set X = DAA_generic_R0

k. Set n = DAA_generic_n

l. Set DAA_session -> DAA_scratch = (X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

10. If stage==10

a. Verify that DAA_session ->DAA_stage==10. Return TPM_DAA_STAGE and flush handle on mismatch h

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1on mismatch

h. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_R1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

11. If stage==11

a. Verify that DAA_session ->DAA_stage==11. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 206 of257
 TCG PUBLISHED

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

12. If stage==12

a. Verify that DAA_session ->DAA_stage==12. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r3 bits from MGF1(“r3”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. Set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

13. If stage==13

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 207 of257
 TCG PUBLISHED

a. Verify that DAA_session->DAA_stage==13. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on mismatch

g. Set w = inputData1

h. Set w1 = w^(DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

14. If stage==14

a. Verify that DAA_session ->DAA_stage==14. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

15. If stage==15

a. Verify that DAA_session ->DAA_stage==15. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 208 of257
 TCG PUBLISHED

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them r0

g. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them r1

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma).

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

16. If stage==16

a. Verify that DAA_session ->DAA_stage==16. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that inputSize0 == sizeOf(TPM_DIGEST) and return error TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. obtain DAA_SIZE_NT bits from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_digest || NT)

h. Set outputData = NT

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

17. If stage==17

a. Verify that DAA_session ->DAA_stage==17. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them r0

e. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest) * f0 in Z

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 209 of257
 TCG PUBLISHED

18. If stage==18

a. Verify that DAA_session ->DAA_stage==18. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them r1

e. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)* f1 in Z

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

19. If stage==19

a. Verify that DAA_session ->DAA_stage==19. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them r2

e. Set s2 = r2 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u0) mod 2^DAA_power1
(Erase all but the lowest DAA_power1 bits of s2)

f. Set DAA_session -> DAA_scratch = s2

g. set outputData = s2

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

20. If stage==20

a. Verify that DAA_session ->DAA_stage==20. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them r2

e. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u0)

f. Shift s12 right by DAA_power1 bit (discard the lowest DAA_power1 bits).

g. Set DAA_session -> DAA_scratch = s12

h. Set outputData = DAA_session -> DAA_digest

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 210 of257
 TCG PUBLISHED

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

21. If stage==21

a. Verify that DAA_session ->DAA_stage==21. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r3 bits from MGF1(“r3”, DAA_session -> DAA_contextSeed), and label them r3

e. Set s3 = r3 + (DAA_session -> DAA_digest)*(DAA_joinSession -> DAA_join_u1) + (DAA_session ->
DAA_scratch).

f. Set DAA_session -> DAA_scratch = NULL

g. set outputData = s3

h. increment DAA_session -> DAA_stage by 1

i. return TPM_SUCCESS

22. If stage==22

a. Verify that DAA_session ->DAA_stage==22. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify inputSize0 == DAA_SIZE_u2 and return error TPM_DAA_INPUT_DATA0 on mismatch

e. Set u2 = inputData0

f. Set v0 = u2 + (DAA_joinSession -> DAA_join_u0) mod 2^DAA_power1 (Erase all but the lowest
DAA_power1 bits of v0).

g. Set DAA_tpmSpecific -> DAA_digest_v0 = SHA-1(v0)

h. Set v10 = u2 + (DAA_joinSession -> DAA_join_u0) in Z.

i. Shift v10 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

j. Set DAA_session ->DAA_scratch = v10

k. Set outputData

i. Fill in TPM_DAA_BLOB with a type of TPM_RT_DAA_V0 and encrypt the v0 parameters

ii. set outputData to the encrypted TPM_DAA_BLOB

l. increment DAA_session -> DAA_stage by 1

m. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || DAA_joinSession)

n. return TPM_SUCCESS

23. If stage==23

a. Verify that DAA_session ->DAA_stage==23. Return TPM_DAA_STAGE and flush handle on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 211 of257
 TCG PUBLISHED

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. Verify inputSize0 == DAA_SIZE_u3 and return error TPM_DAA_INPUT_DATA0 on mismatch

e. Set u3 = inputData0

f. Set v1 = u3 + DAA_joinSession -> DAA_join_u1 + DAA_session ->DAA_scratch

g. Set DAA_tpmSpecific -> DAA_digest_v1 = SHA-1(v1)

h. Set outputData

i. Fill in TPM_DAA_BLOB with a type of TPM_RT_DAA_V1 and encrypt the v1 parameters

j. set outputData to the encrypted TPM_DAA_BLOB

i. Set DAA_session ->DAA_scratch = NULL

ii. increment DAA_session -> DAA_stage by 1

k. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific || DAA_joinSession)

l. return TPM_SUCCESS

24. If stage==24

a. Verify that DAA_session ->DAA_stage==24. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific || DAA_joinSession) and
return error TPM_DAA_TPM_SETTINGS on mismatch

d. set outputData = enc(DAA_tpmSpecific)

e. return TPM_SUCCESS

25. If stage > 24, return error: TPM_DAA_STAGE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 212 of257
 TCG PUBLISHED

26.2 TPM_DAA_Sign
TPM protected capability; user must provide authorizations from the TPM Owner.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes incl. paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DAA_SIGN.

4 4 TPM_HANDLE handle Handle to the sign session

5 1 2S 1 BYTE stage Stage of the sign process

6 4 3S 4 UINT32 inputSize0 Size of inputData0 for this stage of DAA_Sign

7 <> 4S <> BYTE[] inputData0 Data to be used by this capability

8 4 5S 4 UINT32 inputSize1 Size of inputData1 for this stage of DAA_Sign

9 <> 6S <> BYTE[] inputData1 Data to be used by this capability

10 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

11 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

12 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

13 20 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes incl. paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

4 4 2S 4 TPM_COMMAND_CODE ordinal Command ordinal:TPM_ORD_DAA_SIGN.

5 4 3S 4 UINT32 outputSize Size of outputData

6 <> 4S <> BYTE[] outputData Data produced by this capability

7 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Description

This table summaries the input, output and saved data that is associated with each stage of processing.

Stage Input Data0 Input Data1 Operation Output Data Scratchpad

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 213 of257
 TCG PUBLISHED

0 DAA_issuerSettings NULL initialise handle NULL

1 enc(DAA_tpmSpecific) NULL initialise NULL NULL

2 DAA_generic_R0 DAA_generic_n P1=R0^r0 modn NULL P1

3 DAA_generic_R1 DAA_generic_n P2 = P1*(R1^r1) modn NULL P2

4 DAA_generic_S0 DAA_generic_n P3 = P2*(S0^r2) modn NULL P3

5 DAA_generic_S1 DAA_generic_n T = P3*(S1^r4) modn T NULL

6 DAA_generic_gamma w w1 = w^q mod gamma NULL w

7 DAA_generic_gamma NULL E = w^f mod gamma E w

8 DAA_generic_gamma NULL r = r0 + (2^power0)*r1
modq,

E1 = w^r mod gamma

E1 NULL

9 c1 NULL c = hash(c1 || NT) NT NULL

10 b (selector) m or handle to AIK c = hash(c || 1 || m)

or

c = hash(c || 0 || AIK-
modulus)

c NULL

11 NULL NULL s0 = r0 + c*f0 s0 NULL

12 NULL NULL s1 = r1 + c*f1 s1 NULL

13 enc(v0) NULL s2 = r2 + c*v0

 mod 2^power1

s2 NULL

14 enc(v0) NULL s12 = r2 + c*v0

>> power1

NULL s12

15 enc(v1) NULL s3 = r4 + c*v1 + s12 s3 NULL

When a TPM receives an Owner authorized command to input enc(DAA_tpmSpecific) or enc(v0) or enc(v1),
the TPM MUST determine that such data was created by the same TPM and the same Owner. Loading one of
these wrapped blobs does not require authorization, since correct blobs were created by the TPM under
Owner authorization, and unwrapped blobs cannot be used without Owner authorisation. The TPM MUST NOT
restrict the number of times that the contents of enc(DAA_tpmSpecific) or enc(v0) or enc(v1) can be used by
the same combination of TPM and Owner that created them..

Actions

A Trusted Platform Module that receives a valid TPM_DAA_Sign command SHALL:

1. Use ownerAuth to verify that the Owner authorized all TPM_DAA_Sign input parameters.

Stages

0. If stage==0

a. Set DAA_issuerSettings = inputData0

b. Verify that all fields in DAA_issuerSettings are present and return error TPM_DAA_INPUT_DATA0 if
not.

c. set all fields in DAA_session = NULL

d. Assign new handle for session

e. Set outputData to new handle

f. set DAA_session -> DAA_stage = 1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 214 of257
 TCG PUBLISHED

g. return TPM_SUCCESS

1. If stage==1

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle on mismatch

b. Set DAA_tpmSpecific = unwrap(inputData0)

c. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

d. set DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific)

e. obtain random data from the RNG and store it as DAA_session -> DAA_contextSeed

f. set outputData = NULL

g. set DAA_session -> DAA_stage =2

h. return TPM_SUCCESS

2. If stage==2

a. Verify that DAA_session ->DAA_stage==2. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R0 = inputData0

e. Verify that SHA-1(DAA_generic_R0) == DAA_issuerSettings -> DAA_digest_R0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_R0

j. Set n = DAA_generic_n

k. Set DAA_session -> DAA_scratch = (X^Y) mod n

l. set outputData = NULL

m. increment DAA_session -> DAA_stage by 1

n. return TPM_SUCCESS

3. If stage==3

a. Verify that DAA_session ->DAA_stage==3. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_R1 = inputData0

e. Verify that SHA-1(DAA_generic_R1) == DAA_issuerSettings -> DAA_digest_R1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 215 of257
 TCG PUBLISHED

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_R1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

4. If stage==4

a. Verify that DAA_session ->DAA_stage==4. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext = SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S0 = inputData0

e. Verify that SHA-1(DAA_generic_S0) == DAA_issuerSettings -> DAA_digest_S0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_S0

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = NULL

n. increment DAA_session -> DAA_stage by 1

o. return TPM_SUCCESS

5. If stage==5

a. Verify that DAA_session ->DAA_stage==5. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_S1 = inputData0

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 216 of257
 TCG PUBLISHED

e. Verify that SHA-1(DAA_generic_S1) == DAA_issuerSettings -> DAA_digest_S1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set DAA_generic_n = inputData1

g. Verify that SHA-1(DAA_generic_n) == DAA_issuerSettings -> DAA_digest_n and return error
TPM_DAA_INPUT_DATA1 on mismatch

h. obtain DAA_SIZE_r4 bits from MGF1(“r4”, DAA_session -> DAA_contextSeed), and label them Y

i. Set X = DAA_generic_S1

j. Set n = DAA_generic_n

k. Set Z = DAA_session -> DAA_scratch

l. Set DAA_session -> DAA_scratch = Z*(X^Y) mod n

m. set outputData = DAA_session -> DAA_scratch

n. set DAA_session -> DAA_scratch = NULL

o. increment DAA_session -> DAA_stage by 1

p. return TPM_SUCCESS

6. If stage==6

a. Verify that DAA_session ->DAA_stage==6. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gammma = inputData0

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Verify that inputSize1 == DAA_SIZE_w and return error TPM_DAA_INPUT_DATA1 on mismatch

g. Set w = inputData1

h. Set w1 = w^(DAA_issuerSettings -> DAA_generic_q) mod (DAA_generic_gamma)

i. If w1 != 1 (unity), return error TPM_DAA_WRONG_W

j. Set DAA_session -> DAA_scratch = w

k. set outputData = NULL

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

7. If stage==7

a. Verify that DAA_session ->DAA_stage==7. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 217 of257
 TCG PUBLISHED

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

g. Set E = ((DAA_session -> DAA_scratch)^f) mod (DAA_generic_gamma).

h. Set outputData = E

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

8. If stage==8

a. Verify that DAA_session ->DAA_stage==8. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_generic_gamma = inputData0

e. Verify that SHA-1(DAA_generic_gamma) == DAA_issuerSettings -> DAA_digest_gamma and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them r0

g. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them r1

h. set r = r0 + 2^DAA_power0 * r1 mod (DAA_issuerSettings -> DAA_generic_q).

i. Set E1 = ((DAA_session -> DAA_scratch)^r) mod (DAA_generic_gamma)

j. Set DAA_session -> DAA_scratch = NULL

k. Set outputData = E1

l. increment DAA_session -> DAA_stage by 1

m. return TPM_SUCCESS.

9. If stage==9

a. Verify that DAA_session ->DAA_stage==9. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Verify that inputSize0 == sizeOf(TPM_DIGEST) and return error TPM_DAA_INPUT_DATA0 on mismatch

e. Set DAA_session -> DAA_digest = inputData0

f. obtain DAA_SIZE_NT bits from the RNG and label them NT

g. Set DAA_session -> DAA_digest to the SHA-1 (DAA_session -> DAA_digest || NT)

h. Set outputData = NT

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 218 of257
 TCG PUBLISHED

10. If stage==10

a. Verify that DAA_session ->DAA_stage==10. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set selector = inputData0, verify that selector == 0 or 1, and return error TPM_DAA_INPUT_DATA0 on
mismatch

e. If selector == 1, verify that inputSize1 == sizeOf(TPM_DIGEST), and

f. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 1 || inputData1)

g. If selector == 0, verify that inputData1 is a handle to a TPM identity key (AIK), and

h. Set DAA_session -> DAA_digest to SHA-1 (DAA_session -> DAA_digest || 0 || n2) where n2 is the
modulus of the AIK

i. Set outputData = DAA_session -> DAA_digest

j. increment DAA_session -> DAA_stage by 1

k. return TPM_SUCCESS.

11. If stage==11

a. Verify that DAA_session ->DAA_stage==11. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r0 bits from MGF1(“r0”, DAA_session -> DAA_contextSeed), and label them r0

e. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

f. Set f0 = f mod 2^DAA_power0 (erase all but the lowest DAA_power0 bits of f)

g. Set s0 = r0 + (DAA_session -> DAA_digest)*(f0)

h. set outputData = s0

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

12. If stage==12

a. Verify that DAA_session ->DAA_stage==12. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. obtain DAA_SIZE_r1 bits from MGF1(“r1”, DAA_session -> DAA_contextSeed), and label them r1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 219 of257
 TCG PUBLISHED

e. Set f = SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 0) ||
SHA1(DAA_tpmSpecific -> DAA_rekey || DAA_tpmSpecific -> DAA_count || 1) mod DAA_issuerSettings
-> DAA_generic_q.

f. Shift f right by DAA_power0 bits (discard the lowest DAA_power0 bits) and label the result f1

g. Set s1 = r1 + (DAA_session -> DAA_digest)*(f1)

h. set outputData = s1

i. increment DAA_session -> DAA_stage by 1

j. return TPM_SUCCESS

13. If stage==13

a. Verify that DAA_session ->DAA_stage==13. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_private_v0= unwrap(inputData0)

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them r2

g. Set s2 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0) mod 2^DAA_power1 (erase all but the
lowest DAA_power1 bits of s2)

h. Set DAA_session -> DAA_scratch = s2

i. set outputData = s2

j. increment DAA_session -> DAA_stage by 1

k. return TPM_SUCCESS

14. If stage==14

a. Verify that DAA_session ->DAA_stage==1. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_private_v0= unwrap(inputData0)

e. Verify that SHA-1(DAA_private_v0) == DAA_tpmSpecific -> DAA_digest_v0 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. obtain DAA_SIZE_r2 bits from MGF1(“r2”, DAA_session -> DAA_contextSeed), and label them r2

g. Set s12 = r2 + (DAA_session -> DAA_digest)*(DAA_private_v0).

h. Shift s12 right by DAA_power1 bits (erase the lowest DAA_power1 bits).

i. Set DAA_session -> DAA_scratch = s12

j. set outputData = NULL

k. increment DAA_session -> DAA_stage by 1

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 220 of257
 TCG PUBLISHED

l. return TPM_SUCCESS

15. If stage==15

a. Verify that DAA_session ->DAA_stage==15. Return TPM_DAA_STAGE and flush handle on mismatch

b. Verify that DAA_tpmSpecific -> DAA_digestIssuer == SHA-1(DAA_issuerSettings) and return error
TPM_DAA_ISSUER_SETTINGS on mismatch

c. Verify that DAA_session -> DAA_digestContext == SHA-1(DAA_tpmSpecific) and return error
TPM_DAA_TPM_SETTINGS on mismatch

d. Set DAA_private_v1 = unwrap(inputData0)

e. Verify that SHA-1(DAA_private_v1) == DAA_tpmSpecific -> DAA_digest_v1 and return error
TPM_DAA_INPUT_DATA0 on mismatch

f. obtain DAA_SIZE_r4 bits from MGF1(“r4”, DAA_session -> DAA_contextSeed), and label them r4

g. Set s3 = r4 + (DAA_session -> DAA_digest)*(DAA_private_v1) + (DAA_session -> DAA_scratch).

h. Set DAA_session -> DAA_scratch = NULL

i. set outputData = s3

j. increment DAA_session -> DAA_stage by 1

k. return TPM_SUCCESS

16. If stage > 15, return error: TPM_DAA_STAGE

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 221 of257
 TCG PUBLISHED

27. GPIO

27.1 TPM_GPIO_AuthChannel
Start of informative comment:

This command authorizes later use of an IO channel under restricted conditions.

This command builds an authorization block that is later loaded into the TPM for the TPM_GPIO_ReadWrite or
TPM_SetRedirection command. This authorization block includes both an HMAC integrity digest using
tpmProof as the key and an encrypted authorization value if appropriate.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GPIO_AuthChannel

4 20 2S 20 TPM_ENCAUTH ioAuth The encrypted authorization data for the sealed data. The encryption key
is the shared secret from the OSAP protocol.

5 4 3S 4 UINT32 sizeChannel Size in bytes of channel

6 <> 4S <> TPM_GPIO_CHANNEL channel Mode for the command

7 4 TPM_AUTHHANDLE ownerAuthHandle The authorization handle used for the TPM Owner.

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

9 1 4 H1 1 BOOL continueAuthSession Continue use flag, ignored.

10 20 TPM_AUTHDATA ownerAuth Authorization. HMAC key: tpmOwnerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 222 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_GPIO_AuthChannel

4 <> 3S <> TPM_GPIO_AUTHORIZE channelAuth Computed authorization structure for this channel.

4 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

5 1 4 H1 1 BOOL continueAuthSession Always FALSE.

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: tpmOwnerAuth.

Actions

1. Validate owner authorization for the input parameters, return TPM_AUTHFAIL on error

2. Validate that the channel description is consistent

a. Consistency includes busInfo, ps, channelNumber and attr.

b. Validate that the read or write operations described in channel->attributes are legal for this IO
capability

3. Map G1 to a TPM_GPIO_AUTHORIZE structure

4. Copy channel to G1->channel

5. If channel -> attr -> TPM_GPIO_ATTR_AUTH is TRUE

a. Verify that ownerAuthHandle points to an OSAP authorization session

b. Create s1 string by concatenating (ownerAuth -> shared secret || authLastNonceEven)

c. Create x1 by performing a SHA1 hash of s1

d. Fill in G1 -> sensitiveData->authData with the XOR of x1 and ioAuth

e. Set G1 -> additionalData to the appropriate IV

6. Else

a. Set G1 -> sensitiveDataSize to 0 and G1 -> additionalDataSize to 0

7. Set G1 -> integrityDigest to NULL

8. Set G1 -> integrityDigest to the HMAC of G1, using tpmProof as the key.

9. If G1 -> sensitiveDataSize is not 0

a. Encrypt G1->sensitiveData using the tpm encryption key

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 223 of257
 TCG PUBLISHED

27.2 TPM_GPIO_ReadWrite
Start of informative comment:

This command reads and or writes to an IO channel.

The authorization to use this channel is either contained in the PCR state and/or Locality, or is controlled by
an authorization value encrypted and contained in the authorization input.

This command is not owner authorized. The generation of the authorization package requires owner
authorization and the owner controls the use of the IO channel by controlling access to the stored
authorization value.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GPIO_ReadWrite

4 4 2S 4 UINT32 channelAuthSize Size in bytes of channelAuth

5 <> 3S <> TPM_GPIO_AUTHORIZE channelAuth Channel information and authorization

6 4 4S 4 UINT32 readBytes Number of bytes to be read

7 4 5S 4 UINT32 writeBytes Number of bytes to be wriiten; size of writeData

8 <> 6S <> BYTE [] writeData The bytes to be written to the channel

9 4 TPM_AUTHHANDLE ownerAuthHandle The authorization handle used for the TPM Owner.

 2 H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

11 1 4 H1 1 BOOL continueAuthSession Continue use flag.

12 20 TPM_AUTHDATA ownerAuth Authorization HMAC key channel auth -> sensitive data

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 224 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation

4 4 2S 4 TPM_COMMAND_CODE ordinal Command ordinal TPM_ORD_GPIO_ReadWrite

5 4 3S 4 UINT32 readDataSize Number of bytes read from the channel; size of readData

6 <> 4S <> BYTE[] readData Data returned from the channel

7 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with ownerAuthHandle

8 1 4 H1 1 BOOL continueAuthSession Continue use flag.

9 20 TPM_AUTHDATA resAuth Authorization HMAC key channel auth -> sensitive data

Actions

1. Validate that channelAuth->channel->busInfo and channelAuth->channel->channelNum refer to a valid IO
capability on this TPM

2. Validate that the read or write operations described in channelAuth->channel->attributes are legal for
this IO capability.

3. If readBytes is non-zero and channel->attributes -> TPM_GPIO_ATTR_READ is clear, return error.

4. If writeBytes is non-zero and channel->attributes -> TPM_GPIO_ATTR_WRITE is clear, return error.

5. If channelAuth->channel->attributes -> PHYSPRES is set, verify that physical presence is asserted

6. If channelAuth -> channel -> attributes -> TPM_GPIO_ATTR_REDIR_KEY or channelAuth -> channel->
attributes -> TPM_GPIO_ATTR_REDIR is set, return error.

7. If channel is connected to PCRs or localities, verify that they have the correct value.

8. If channelAuth->channel->attributes.TPM_GPIO_ATTR_AUTH is set

a. If tag is not TPM_TAG_RQU_AUTH1_COMMAND return error.

b. If channelAuth->additionalDataSize or channelAuth->sensitiveDataSize are 0 return error.

c. Decrypt channelAuth->sensitiveData, compute the input authorization HMAC using the decrypted
authorization value as the HMAC key.

d. Return error if mismatch.

9. Else

a. If TAG is not TPM_TAG_RQU_COMMAND return error.

10. Set A1 to channelAuth->integrityDigest.

11. Set channelAuth->integrityDigest to NULL, compute A2, the HMAC of channelAuth using tpmProof as the
key.

12. Compare A1 with A2, return error on mismatch

13. Perform read and/or write as requested to the channel and address specified in channel. If both a read
and write are specified, the write occurs before the read.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 225 of257
 TCG PUBLISHED

28. Deprecated commands
Start of informative comment:

This section covers the commands that were in version 1.1 but now have new functionality in other functions.
The deprecated commands are still available in 1.2 but all new software should use the new functionality.

There is no requirement that the deprecated commands work with new structures.

End of informative comment.

1. Commands deprecated in version 1.2 MUST work with version 1.1 structures

2. Commands deprecated in version 1.2 MAY work with version 1.2 structures

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 226 of257
 TCG PUBLISHED

28.1 Key commands
Start of informative comment:

The key commands are deprecated as the new way to handle keys is to use the standard context commands.
So TPM_EvictKey is now handled by TPM_FlushSpecific, TPM_TerminateHandle by TPM_FlushSpecific.

End of informative comment.

28.1.1 TPM_EvictKey
Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_EvictKey

4 4 TPM_KEY_HANDLE evictHandle The handle of the key to be evicted.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Actions

The TPM will invalidate the key stored in the specified handle and return the space to the available internal
pool for subsequent query by TPM_GetCapability and usage by TPM_LoadKey. If the specified key handle does
not correspond to a valid key, an error will be returned.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 227 of257
 TCG PUBLISHED

28.1.2 TPM_Terminate_Handle
Start of informative comment:

This allows the TPM manager to clear out information in a session handle.

The TPM may maintain the authorization session even though a key attached to it has been unloaded or the
authorization session itself has been unloaded in some way. When a command is executed that requires this
session, it is the responsibility of the external software to load both the entity and the authorization session
information prior to command execution.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Terminate_Handle.

4 4 TPM_AUTHHANDLE handle The handle to terminate

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Descriptions

The TPM SHALL terminate the session and destroy all data associated with the session indicated.

Actions

A TPM SHALL unilaterally perform the actions of TPM_Terminate_Handle upon detection of the following
events:

1. Completion of a received command whose authorization “continueUse” flag is FALSE.

2. Completion of a received command when a shared secret derived from the authorization session was
exclusive-or’ed with data (to provide confidentiality for that data). This occurs during execution of a
TPM_ChangeAuth command, for example.

3. When the associated entity is destroyed (in the case of TPM Owner or SRK, for example)

4. Upon execution of TPM_Init

5. When the command returns an error. This is due to the fact that when returning an error the TPM does
not send back nonceEven. There is no way to maintain the rolling nonces, hence the TPM MUST terminate
the authorization session.

6. Failure of an authorization check belonging to that authorization session.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 228 of257
 TCG PUBLISHED

28.2 Context management
Start of informative comment:

The 1.1 context commands were written for specific resource types. The 1.2 commands are generic for all
resource types. So the Savexxx commands are replaced by TPM_SaveContext and the LoadXXX commands by
TPM_LoadContext.

End of informative comment.

28.2.1 TPM_SaveKeyContext
Start of informative comment:

SaveKeyContext saves a loaded key outside the TPM. After creation of the key context blob the TPM
automatically releases the internal memory used by that key. The format of the key context blob is specific
to a TPM.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveKeyContext

4 4 TPM_KEY_HANDLE keyHandle The key which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 UINT32 keyContextSize The actual size of the outgoing key context blob. If the command fails the value
will be 0

5 <> BYTE[] keyContextBlob The key context blob.

Description

1. This command allows saving a loaded key outside the TPM. After creation of the KeyContextBlob, the TPM
automatically releases the internal memory used by that key. The format of the key context blob is
specific to a TPM.

2. A TPM protected capability belonging to the TPM that created a key context blob MUST be the only entity
that can interpret the contents of that blob. If a cryptographic technique is used for this purpose, the
level of security provided by that technique SHALL be at least as secure as a 2048 bit RSA algorithm. Any
secrets (such as keys) used in such a cryptographic technique MUST be generated using the TPM’s random
number generator. Any symmetric key MUST be used within the power-on session during which it was
created, only.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 229 of257
 TCG PUBLISHED

3. A key context blob SHALL enable verification of the integrity of the contents of the blob by a TPM
protected capability.

4. A key context blob SHALL enable verification of the session validity of the contents of the blob by a TPM
protected capability. The method SHALL ensure that all key context blobs are rendered invalid if power
to the TPM is interrupted.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 230 of257
 TCG PUBLISHED

28.2.2 TPM_LoadKeyContext
Start of informative comment:

LoadKeyContext loads a key context blob into the TPM previously retrieved by a SaveKeyContext call. After
successful completion the handle returned by this command can be used to access the key.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadKeyContext

4 4 UINT32 keyContextSize The size of the following key context blob.

5 <> BYTE[] keyContextBlob The key context blob.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 4 TPM_KEY_HANDLE keyHandle The handle assigned to the key after it has been successfully loaded.

Description

1. This command allows loading a key context blob into the TPM previously retrieved by a
TPM_SaveKeyContext call. After successful completion the handle returned by this command can be used
to access the key.

2. The contents of a key context blob SHALL be discarded unless the contents have passed an integrity test.
This test SHALL (statistically) prove that the contents of the blob are the same as when the blob was
created.

3. The contents of a key context blob SHALL be discarded unless the contents have passed a session validity
test. This test SHALL (statistically) prove that the blob was created by this TPM during this power-on
session.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 231 of257
 TCG PUBLISHED

28.2.3 TPM_SaveAuthContext
Start of informative comment:

SaveAuthContext saves a loaded authorization session outside the TPM. After creation of the authorization
context blob, the TPM automatically releases the internal memory used by that session. The format of the
authorization context blob is specific to a TPM.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_SaveAuthContext

4 4 TPM_AUTHHANDLE authandle Authorization session which will be kept outside the TPM

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

4 4 UINT32 authContextSize The actual size of the outgoing authorization context blob. If the command fails
the value will be 0.

5 <> BYTE[] authContextBlob The authorization context blob.

Description

This command allows saving a loaded authorization session outside the TPM. After creation of the
authContextBlob, the TPM automatically releases the internal memory used by that session. The format of
the authorization context blob is specific to a TPM.

A TPM protected capability belonging to the TPM that created an authorization context blob MUST be the only
entity that can interpret the contents of that blob. If a cryptographic technique is used for this purpose, the
level of security provided by that technique SHALL be at least as secure as a 2048 bit RSA algorithm. Any
secrets (such as keys) used in such a cryptographic technique MUST be generated using the TPM’s random
number generator. Any symmetric key MUST be used within the power-on session during which it was created,
only.

An authorization context blob SHALL enable verification of the integrity of the contents of the blob by a TPM
protected capability.

An authorization context blob SHALL enable verification of the session validity of the contents of the blob by
a TPM protected capability. The method SHALL ensure that all authorization context blobs are rendered
invalid if power to the TPM is interrupted.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 232 of257
 TCG PUBLISHED

28.2.4 TPM_LoadAuthContext
Start of informative comment:

LoadAuthContext loads an authorization context blob into the TPM previously retrieved by a SaveAuthContext
call. After successful completion the handle returned by this command can be used to access the
authorization session.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_LoadAuthContext

4 4 UINT32 authContextSize The size of the following authorization context blob.

5 <> BYTE[] authContextBlob The authorization context blob.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

4 4 TPM_KEY_HANDLE authHandle The handle assigned to the authorization session after it has been successfully
loaded.

Description

This command allows loading an authorization context blob into the TPM previously retrieved by a
TPM_SaveAuthContext call. After successful completion the handle returned by this command can be used to
access the authorization session.

The contents of an authorization context blob SHALL be discarded unless the contents have passed an
integrity test. This test SHALL (statistically) prove that the contents of the blob are the same as when the
blob was created.

The contents of an authorization context blob SHALL be discarded unless the contents have passed a session
validity test. This test SHALL (statistically) prove that the blob was created by this TPM during this power-on
session.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 233 of257
 TCG PUBLISHED

28.3 DIR commands
Start of informative comment:

The DIR commands are replaced by the NV storage commands.

The DIR in 1.1 is now index 1 of the NV storage area and is always available for the TPM to use.

End of informative comment.

28.3.1 TPM_DirWriteAuth
Start of informative comment:

The TPM_DirWriteAuth operation provides write access to the Data Integrity Registers. DIRs are non-volatile
memory registers held in a TPM-shielded location. Owner authentication is required to authorize this action.
Version 1 requires only one DIR. If the DIR named does not exist, the TPM_DirRead operation returns
TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth.

4 4 2S 4 TPM_DIRINDEX dirIndex Index of the DIR

5 20 3S 20 TPM_DIRVALUE newContents New value to be stored in named DIR

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for command.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs. HMAC key: ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_DirWriteAuth

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 234 of257
 TCG PUBLISHED

Actions

1. Validate that authHandle contains a TPM Owner authorization to excute the TPM_DirWriteAuth command

2. Validate that dirIndex points to a valid DIR on this TPM

3. Write newContents into the DIR pointed to by dirIndex

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 235 of257
 TCG PUBLISHED

28.3.2 TPM_DirRead
Start of informative comment:

The TPM_DirRead operation provides read access to the DIRs. No authentication is required to perform this
action because typically no cryptographically useful authorization data is available early in boot. TSS
implementors may choose to provide other means of authorizing this action. Version 1 requires only one DIR.
If the DIR named does not exist, the TPM_DirRead operation returns TPM_BADINDEX.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_DirRead.

4 4 TPM_DIRINDEX dirIndex Index of the DIR to be read

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

4 20 TPM_DIRVALUE dirContents The current contents of the named DIR

Actions

1. Validate that dirIndex points to a valid DIR on this TPM

2. Return the contents of the DIR in dirContents

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 236 of257
 TCG PUBLISHED

28.4 Change Auth
Start of informative comment:

The change auth commands can be duplicated by creating a transport session with confidentiality and issuing
the changeAuth command.

End of informative comment.

28.4.1 TPM_ChangeAuthAsymStart
Start of informative comment:

The TPM_ChangeAuthAsymStart starts the process of changing authorization for an entity. It sets up an OIAP
session that must be retained for use by its twin TPM_ChangeAuthAsymFinish command.

TPM_ChangeAuthAsymStart creates a temporary asymmetric public key “tempkey” to provide confidentiality
for new authorization data to be sent to the TPM. TPM_ChangeAuthAsymStart certifies that tempkey was
generated by a genuine TPM, by generating a certifyInfo structure that is signed by a TPM identity. The owner
of that TPM identity must cooperate to produce this command, because TPM_ChangeAuthAsymStart requires
authorization to use that identity.

It is envisaged that tempkey and certifyInfo are given to the owner of the entity whose authorization is to be
changed. That owner uses certifyInfo and a TPM_IDENTITY_CREDENTIAL to verify that tempkey was generated
by a genuine TPM. This is done by verifying the TPM_IDENTITY_CREDENTIAL using the public key of a CA,
verifying the signature on the certifyInfo structure with the public key of the identity in
TPM_IDENTITY_CREDENTIAL, and verifying tempkey by comparing its digest with the value inside certifyInfo.
The owner uses tempkey to encrypt the desired new authorization data and inserts that encrypted data in a
TPM_ChangeAuthAsymFinish command, in the knowledge that only a TPM with a specific identity can
interpret the new authorization data.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart.

4 4 TPM_KEY_HANDLE idHandle The keyHandle identifier of a loaded identity ID key

5 20 2s 20 TPM_NONCE antiReplay The nonce to be inserted into the certifyInfo structure

6 <> 3S <> TPM_KEY_PARMS tempKey Structure contains all parameters of ephemeral key.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for idHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA idAuth Authorization. HMAC key: idKey.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 237 of257
 TCG PUBLISHED

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymStart

7 95 3S 95 TPM_CERTIFY_INFO certifyInfo The certifyInfo structure that is to be signed.

8 4 4S 4 UINT32 sigSize The used size of the output area for the signature

9 <> 5S <> BYTE[] sig The signature of the certifyInfo parameter.

10 4 6s 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier to be used by ChangeAuthAsymFinish for the
ephemeral key

11 <> 7S <> TPM_KEY tempKey Structure containing all parameters and public part of ephemeral key.
TPM_KEY.encSize is set to 0.

12 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

13 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

14 20 TPM_AUTHDATA resAuth Authorization. HMAC key: idKey.usageAuth.

Actions

1. The TPM SHALL verify the authorization to use the TPM identity key held in idHandle. The TPM MUST
verify that the key is a TPM identity key.

2. The TPM SHALL validate the algorithm parameters for the key to create from the tempKey parameter.

3. Recommended key type is RSA

4. Minimum RSA key size MUST is 512 bits, recommended RSA key size is 1024

5. For other key types the minimum key size strength MUST be comparable to RSA 512

6. If the TPM is not designed to create a key of the requested type, return the error code
TPM_BAD_KEY_PROPERTY

7. The TPM SHALL create a new key (k1) in accordance with the algorithm parameter. The newly created
key is pointed to by ephHandle.

8. The TPM SHALL fill in all fields in tempKey using k1 for the information. The TPM_KEY -> encSize MUST be
0.

9. The TPM SHALL fill in certifyInfo using k1 for the information. The certifyInfo -> data field is supplied by
the antiReplay.

10. The TPM then signs the certifyInfo parameter using the key pointed to by idHandle. The resulting signed
blob is returned in sig parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 238 of257
 TCG PUBLISHED

Field Descriptions for certifyInfo parameter

Type Name Description

TPM_VERSION Version TPM version structure; section TODOREF

keyFlags Redirection This SHALL be set to FALSE

 Migratable This SHALL be set to FALSE

 Volatile This SHALL be set to TRUE

TPM_AUTH_DATA_USAGE authDataUsage This SHALL be set to TPM_AUTH_NEVER

TPM_KEY_USAGE KeyUsage This SHALL be set to TPM_KEY_AUTHCHANGE

UINT32 PCRInfoSize This SHALL be set to 0

TPM_DIGEST pubDigest This SHALL be the hash of the public key being certified.

TPM_NONCE Data This SHALL be set to antiReplay

TPM_KEY_PARMS info This specifies the type of key and its parameters.

BOOL parentPCRStatus This SHALL be set to FALSE.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 239 of257
 TCG PUBLISHED

28.4.2 TPM_ChangeAuthAsymFinish
Start of informative comment:

The TPM_ChangeAuth command allows the owner of an entity to change the authorization data for the entity.

The command requires the cooperation of the owner of the parent of the entity, since authorization must be
provided to use that parent entity. The command requires knowledge of the existing authorization
information and passes the new authorization information. The newAuthLink parameter proves knowledge of
existing authorization information and new authorization information. The new authorization information
“encNewAuth” is encrypted using the “tempKey” variable obtained via TPM_ChangeAuthAsymStart.

A parent therefore retains control over a change in the authorization of a child, but is prevented from
knowing the new authorization data for that child.

The changeProof parameter provides a proof that the new authorization value was properly inserted into the
entity. The inclusion of a nonce from the TPM provides an entropy source in the case where the authorization
value may be in itself be a low entropy value (hash of a password etc).

 End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 TPM_KEY_HANDLE parentHandle The keyHandle of the parent key for the input data

5 4 TPM_KEY_HANDLE ephHandle The keyHandle identifier for the ephemeral key

6 2 3S 2 TPM_ENTITY_TYPE entityType The type of entity to be modified

7 20 4s 20 TPM_HMAC newAuthLink HMAC calculation that links the old and new authorization values
together

8 4 5S 4 UINT32 newAuthSize Size of encNewAuth

9 <> 6S <> BYTE[] encNewAuth New authorization data encrypted with ephemeral key.

10 4 7S 4 UINT32 encDataSize The size of the inData parameter

11 <> 8S <> BYTE[] encData The encrypted entity that is to be modified.

12 4 TPM_AUTHHANDLE authHandle Authorization for parent key.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

13 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

14 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

15 20 TPM_AUTHDATA privAuth The authorization digest for inputs and parentHandle. HMAC key:
parentKey.usageAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 240 of257
 TCG PUBLISHED

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_ChangeAuthAsymFinish

4 4 3S 4 UINT32 outDataSize The used size of the output area for outData

5 <> 4S <> BYTE[] outData The modified, encrypted entity.

6 20 5s 20 TPM_NONCE saltNonce A nonce value from the TPM RNG to add entropy to the changeProof
value

7 <> 6S <> TPM_DIGEST changeProof Proof that authorization data has changed.

8 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

10 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
parentKey.usageAuth.

Description

If the parentHandle points to the SRK then the HMAC key MUST be built using the TPM Owner authorization.

Actions

1. The TPM SHALL validate that the authHandle parameter authorizes use of the key in parentHandle.

2. The encData field MUST be the encData field from TPM_STORED_DATA or TPM_KEY.

3. The TPM SHALL create e1 by decrypting the entity held in the encData parameter.

4. The TPM SHALL create a1 by decrypting encNewAuth using the authHandle -> TPM_KEY_AUTHCHANGE
private key. a1 is a structure of type TPM_CHANGEAUTH_VALIDATE.

5. The TPM SHALL create b1 by performing the following HMAC calculation: b1 = HMAC (a1 ->
newAuthSecret). The secret for this calculation is encData -> currentAuth. This means that b1 is a value
built from the current authorization value (encData -> currentAuth) and the new authorization value (a1 -
> newAuthSecret).

6. The TPM SHALL compare b1 with newAuthLink. The TPM SHALL indicate a failure if the values do not
match.

7. The TPM SHALL replace e1 -> authData with a1 -> newAuthSecret

8. The TPM SHALL encrypt e1 using the appropriate functions for the entity type. The key to encrypt with is
parentHandle.

9. The TPM SHALL create saltNonce by taking the next 20 bytes from the TPM RNG.

10. The TPM SHALL create changeProof a HMAC of (saltNonce concatenated with a1 -> n1) using a1 ->
newAuthSecret as the HMAC secret.

11. The TPM MUST destroy the TPM_KEY_AUTHCHANGE key associated with the authorization session.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 241 of257
 TCG PUBLISHED

28.5 TPM_Reset
Start of informative comment:

TPM_Reset releases all resources associated with existing authorization sessions. This is useful if a TSS driver
has lost track of the state in the TPM.

End of informative comment.

Deprecated Command in 1.2

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_ORD_Reset.

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Description

This is a deprecated command in V1.2. This command in 1.1 only referenced authorization sessions and is not
upgraded to affect any other TPM entity in 1.2

Actions

1. The TPM invalidates all resources allocated to authorization sessions as per version 1.1 extant in the TPM

a. This includes structures created by TPM_AuthContextSave and TPM_KeyContextSave

b. Structures created by TPM_Contextxxx (the new 1.2 commands) are not affected by this command

2. The TPM does not reset any PCR or DIR values.

3. The TPM does not reset any flags in the TPM_STCLEAR_FLAGS structure.

4. The TPM does not reset or invalidate any keys

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 242 of257
 TCG PUBLISHED

28.6 TPM_CertifySelfTest
Start of informative comment:

CertifySelfTest causes the TPM to perform a full self-test and return an authenticated value if the test
passes.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the third
party. A TPM-identity key may be suitable.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 TPM_KEY_HANDLE keyHandle The keyHandle identifier of a loaded key that can perform digital
signatures.

5 20 2S 20 TPM_NONCE antiReplay AnitReplay nonce to prevent replay of messages

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the inputs and use of keyHandle.
HMAC key: key.usageAuth

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_CertifySelfTest

4 4 3S 4 UINT32 sigSize The length of the returned digital signature

5 <> 4S <> BYTE[] sig The resulting digital signature.

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

Description

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 243 of257
 TCG PUBLISHED

The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or TPM_KEY_LEGACY or
TPM_KEY_IDENTITY.

Information returned by TPM_CertifySelfTest MUST NOT aid identification of an individual TPM.

Actions

1. The TPM SHALL perform TPM_SelfTestFull. If the test fails the TPM returns the appropriate error code.

2. After successful completion of the self-test the TPM then validates the authorization to use the key
pointed to by keyHandle

3. Create t1 the null terminated string of “Test Passed”

4. The TPM creates m2 the message to sign by concatenating t1 || AntiReplay || ordinal.

5. The TPM signs m2 using the key identified by keyHandle, and returns the signature as sig.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 244 of257
 TCG PUBLISHED

28.7 TPM_OwnerReadPubek
Start of informative comment:

Return the endorsement key public portion. This is authorized by the TPM Owner

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
ownerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_OwnerReadPubek

4 <> 3S <> TPM_PUBKEY pubEndorsementKey The public endorsement key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
ownerAuth.

Description

This command returns the PUBEK.

Actions

The TPM_ReadPubek command SHALL

1. Validate the TPM Owner authorization to execute this command

2. Export the PUBEK

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 245 of257
 TCG PUBLISHED

29. Deleted Commands
Start of informative comment:

These commands are no longer active commands. Their removal is due to security concerns with their use.

End of informative comment.

1. The TPM MUST return TPM_BAD_ORDINAL for any deleted command

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 246 of257
 TCG PUBLISHED

29.1 TPM_GetCapabilityOwner
Start of informative comment:

This is broke in 1.1. It can provide information to TPM_GetCapabilitySigned which may result in a invalid
signature. As such the command is deleted and not deprecated.

TPM_GetCapabilityOwner enables the TPM Owner to retrieve all the non-volatile flags and the volatile flags in
a single operation.

The flags summarize many operational aspects of the TPM. The information represented by some flags is
private to the TPM Owner. So, for simplicity, proof of ownership of the TPM must be presented to retrieve
the set of flags. When necessary, the flags that are not private to the Owner can be deduced by Users via
other (more specific) means.

The normal TPM authorization mechanisms are sufficient to prove the integrity of the response. No additional
integrity check is required.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapbilityOwner

4 4 TPM_AUTHHANDLE authHandle The authorization handle used for Owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

5 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

7 20 TPM_AUTHDATA ownerAuth The authorization digest for inputs and owner authorization. HMAC key:
OwnerAuth.

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

4 4 2S 4 TPM_VERSION version A properly filled out version structure.

5 4 3S 4 UINT32 non_volatile_flags The current state of the non-volatile flags.

6 4 4S 4 UINT32 volatile_flags The current state of the volatile flags.

7 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

9 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
OwnerAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 247 of257
 TCG PUBLISHED

Description

For 31>=N>=0

1. Bit-N of the TPM_PERMANENT_FLAGS structure is the Nth bit after the opening bracket in the definition of
TPM_PERMANENT_FLAGS in the version of the specification indicated by the parameter “version”. The bit
immediately after the opening bracket is the 0th bit.

2. Bit-N of the TPM_STCLEAR_FLAGS structure is the Nth bit after the opening bracket in the definition of
TPM_STCLEAR_FLAGS in the version of the specification indicated by the parameter “version”. The bit
immediately after the opening bracket is the 0th bit.

3. Bit-N of non_volatile_flags corresponds to the Nth bit in TPM_PERMANENT_FLAGS, and the lsb of
non_volatile_flags corresponds to bit0 of TPM_PERMANENT_FLAGS

4. Bit-N of volatile_flags corresponds to the Nth bit in TPM_STCLEAR_FLAGS, and the lsb of volatile_flags
corresponds to bit0 of TPM_STCLEAR_FLAGS

Actions

1. The TPM validates that the TPM Owner authorizes the command.

2. The TPM creates the parameter non_volatile_flags by setting each bit to the same state as the
corresponding bit in TPM_PERMANENT_FLAGS. Bits in non_volatile_flags for which there is no
corresponding bit in TPM_PERMANENT_FLAGS are set to zero.

3. The TPM creates the parameter volatile_flags by setting each bit to the same state as the corresponding
bit in TPM_STCLEAR_FLAGS. Bits in volatile_flags for which there is no corresponding bit in
TPM_STCLEAR_FLAGS are set to zero.

4. The TPM generates the parameter “version”.

5. The TPM returns non_volatile_flags, volatile_flags and version to the caller.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 248 of257
 TCG PUBLISHED

29.2 TPM_GetCapabilitySigned
Start of informative comment:

TPM_GetCapabilitySigned is almost the same as TPM_GetCapability. The differences are that the input
includes a challenge (a nonce) and the response includes a digital signature to vouch for the source of the
answer.

If a caller itself requires proof, it is sufficient to use any signing key for which only the TPM and the caller
have authorization data.

If a caller requires proof for a third party, the signing key must be one whose signature is trusted by the third
party. A TPM-identity key may be suitable.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapabilitySigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 20 2s 20 TPM_NONCE antiReplay Nonce provided to allow caller to defend against replay of messages

6 4 3s 4 TPM_CAPABILITY_AREA capArea Partition of capabilities to be interrogated

7 4 4s 4 UINT32 subCapSize Size of subCap parameter

8 <> 5s <> BYTE[] subCap Further definition of information

9 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

10 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

12 20 TPM_AUTHDATA privAuth The authorization digest that authorizes the use of keyHandle. HMAC
key: key.usageAuth

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetCapabilitySigned

4 4 3S 4 TPM_VERSION version A properly filled out version structure.

5 4 4S 4 UINT32 respSize The length of the returned capability response

6 <> 5S <> BYTE[] resp The capability response

7 4 6S 4 UINT32 sigSize The length of the returned digital signature

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 249 of257
 TCG PUBLISHED

8 <> 7S <> BYTE[] sig The resulting digital signature.

9 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

10 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

11 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth

Description

The key in keyHandle MUST have a KEYUSAGE value of type TPM_KEY_SIGNING or TPM_KEY_LEGACY or
TPM_KEY_IDENTITY.

Actions

1. The TPM validates the authority to use keyHandle

2. The TPM calls TPM_GetCapability passing the capArea and subCap fields and saving the resp field as R1

3. The TPM creates S1 by taking a SHA1 hash of the concatenation (r1 || antiReplay).

4. The TPM validates the authority to use keyHandle

5. The TPM creates a digital signature of S1 using the key in keyHandle and returns the result in sig.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 250 of257
 TCG PUBLISHED

29.3 TPM_GetOrdinalAuditStatus
Start of informative comment:

Get the status of the audit flag for the given ordinal.

End of informative comment.

Incoming Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_GetOrdinalAuditStatus

4 4 TPM_COMMAND_CODE ordinalToQuery The ordinal whose audit flag is to be queried

Outgoing Operands and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 1 BOOL State Value of audit flag for ordinalToQuery

Actions

1. The TPM returns the Boolean value for the given ordinal. The value is TRUE if the command is being
audited.

29.4 Audit Generation
Start of informative comment:

The TPM generates an audit event in response to the TPM executing a function that has the audit flag set to
TRUE for that function.

The TPM maintains an extended value for all audited operations.

Input audit generation occurs before the listed actions and output audit generation occurs after the listed
actions.

End of informative comment.

Description

The TPM extends the audit digest whenever the ordinalAuditStatus is TRUE for the ordinal about to be
executed.

Actions

The TPM will execute the ordinal and perform auditing in the following manner

7. Map V1 to TPM_STANY_DATA

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 251 of257
 TCG PUBLISHED

8. Map P1 to TPM_PERMANENT_DATA

9. If V1 -> auditDigest is NULL

a. Increment P1 -> auditMonotonicCounter by 1

10. Create A1 a TPM_AUDIT_EVENT_IN structure

a. Set A1 -> inputParms to the input parameters from the command

b. Set A1 -> ordinal to the ordinal of the command

c. Set A1 -> auditCount to P1 -> auditMonotonicCounter

d. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A1)

11. Execute command

a. Execution implies the performance of the listed actions for the ordinal.

12. Create A2 a TPM_AUDIT_EVENT_OUT structure

a. Set A2 -> outputParms to the output parameters from the command

b. Set A2 -> returnCode to the return code for the command

c. Set A2 -> ordinal to the ordinal of the command

d. Set A2 -> auditCount to P1 -> auditMonotonicCounter

e. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A2)

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 252 of257
 TCG PUBLISHED

29.5 Effect of audit failing after successful completion of a command
Start of informative comment:

An operation could complete successfully and then when the TPM attempts to audit the command the audit
process could have an internal error that forces the TPM to return an error.

The TPM is unable to return the results of the command that ran and this includes success or failure. To
indicate to the caller the TPM will one of two error codes TPM_AUDITFAIL_SUCCESSFUL and
TPM_AUDITFAIL_UNSUCCESSFUL. These two error codes indicate if the command succeeded or failed. The
purpose of this command is to indicate to the caller what occurred with the command execution.

This is new functionality that changes the 1.1 TPM functionality when this condition occurs.

End of informative comment.

4. When after successful completion of an operation, and in performing the audit process, the TPM has an
internal failure (unable to write, SHA-1 failure etc.) the TPM MUST set the internal TPM state such that
the TPM returns the TPM_FAILEDSELFTEST error.

5. If the command is returning a return code that indicates successful execution of the command the TPM
SHALL change the return code to TPM_AUDITFAIL_SUCCESSFUL. For all other error codes the TPM MUST
return TPM_AUDITFAIL_UNSUCCESSFUL.

6. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST always return
TPM_FAILEDSELFTEST for every command other than TPM_GetTestResult. This state must persist
regardless of power cycling, the execution of TPM_Init or any other actions.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 253 of257
 TCG PUBLISHED

29.6 TPM_GetAuditDigest
Start of informative comment:

This returns the current audit digest. The external audit log has the responsibility to track the parameters
that constitute the audit digest.

This value may be unique to an individual TPM. The value however will be changing at a rate set by the TPM
Owner. Those attempting to use this value may find it changing without their knowledge. This value
represents a very poor source of tracking uniqueness.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE Ordinal Command ordinal: TPM_ORD_GetAuditDigest

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

5 10 TPM_COUNTER_VALUE counterValue The current value of the audit monotonic counter

4 20 TPM_DIGEST auditDigest Log of all audited events

5 4 UINT32 ordSize Size of the ordinal list in bytes

6 <> UINT32[] ordList List of ordinals that are audited.

Actions

5. The TPM sets auditDigest to TPM_STANY_DATA -> auditDigest

6. The TPM sets counterValue to TPM_PERMANENT_DATA -> auditMonotonicCounter

7. The TPM sets ordinalList to a list of all audited functions. This is an unordered array of UINT32 values,
each entry is the ordinal of an audited command.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 254 of257
 TCG PUBLISHED

29.7 TPM_GetAuditDigestSigned
Start of informative comment:

The signing of the audit log returns the entire digest value and the list of currently audited commands.

The inclusion of the list of audited commands as an atomic operation is to tie the current digest value with
the list of commands that are being audited.

The signing functionality of this command could be handled by a signed transport session. The resetting of the
audit log functionality must remain in this command; hence there is no way to remove this ordinal from the
set of active ordinals a TPM must support.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_GetAuditDigestSigned

4 4 TPM_KEY_HANDLE keyHandle The handle of a loaded key that can perform digital signatures.

5 1 2s 1 BOOL closeAudit Indication if audit session should be closed

6 20 3s 20 TPM_NONCE antiReplay A nonce to prevent replay attacks

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for key authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

10 20 TPM_AUTHDATA keyAuth Authorization HMAC key: key.usageAuth.

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 255 of257
 TCG PUBLISHED

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal ordinal: TPM_ORD_GetAuditDigestSigned

4 10 3S 10 TPM_COUNTER_VALUE counterValue The value of the audit monotonic counter

5 20 4S 20 TPM_DIGEST auditDigest Log of all audited events

6 4 5S 4 UINT32 ordSize The size of the ordinal list in bytes

7 <> 6S <> UINT32[] ordinalList The list of ordinals that are being audited

 8 4 7S 4 UINT32 sigSize The size of the sig parameter

9 <> 8S <> BYTE[] sig The signature of the area

10 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

11 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

12 20 TPM_AUTHDATA resAuth Authorization. HMAC key: key.usageAuth.

Actions

1. Call TPM_GetAuditDigest and obtain auditDigest, counterValue, ordSize and ordinalList

2. Create D1 a TPM_SIGN_INFO structure and set the structure defaults

a. Set D1 -> fixed to “ADIG”

b. Set D1 -> replay to antiReplay

c. Create D2 the concatenation of auditDigest || counterValue || ordinalList

d. Set D1 -> dataLen to the length of D2

e. Set D1 -> data to D2

f. Create a digital signature of D1 by using the signature scheme for keyHandle

3. If closeAudit == TRUE and keyHandle->keyUsage is TPM_KEY_IDENTITY

a. TPM_STANY_DATA -> auditDigest MUST be set to NULLS.

4. Else

a. TPM_INVALID_KEYUSAGE

5. Return the signature in the sig parameter

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 256 of257
 TCG PUBLISHED

29.8 TPM_SetOrdinalAuditStatus
Start of informative comment:

Set the audit flag for a given ordinal. This command requires the authorization of the TPM Owner.

End of informative comment.

Incoming Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 4 2S 4 TPM_COMMAND_CODE ordinalToAudit The ordinal whose audit flag is to be set

5 1 3S 1 BOOL auditState Value for audit flag

6 4 TPM_AUTHHANDLE authHandle The authorization handle used for owner authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

9 20 TPM_AUTHDATA ownerAuth Authorization. HMAC key: ownerAuth.

Outgoing Parameters and Sizes

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: TPM_ORD_SetOrdinalAuditStatus

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth Authorization HMAC key: ownerAuth.

Actions

1. Validate the authorization to execute the command and the parameters

2. Validate that the ordinal points to a valid TPM ordinal, return TPM_BAD_INDEX on error

3. Set the non-volatile flag associated with ordinalToAudit to the value in auditState

TPM Main Part 3 Commands TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 257 of257
 TCG PUBLISHED

End of Document – Do Not Delete

	1. Scope and Audience
	1.1 Key words
	1.2 Statement Type
	2. Description and TODO
	3. Admin Startup and State
	3.1 TPM_Init
	3.2 TPM_Startup
	3.3 TPM_SaveState

	4. Admin Testing
	4.1 TPM_SelfTestFull
	4.2 TPM_ContinueSelfTest
	4.3 TPM_GetTestResult

	5. Admin Opt-in
	5.1 TPM_SetOwnerInstall
	5.2 TPM_OwnerSetDisable
	5.3 TPM_PhysicalEnable
	5.4 TPM_PhysicalDisable
	5.5 TPM_PhysicalSetDeactivated
	5.6 TPM_SetTempDeactivated
	5.7 TPM_SetOperatorAuth

	6. Admin Ownership
	6.1 TPM_TakeOwnership
	6.2 TPM_OwnerClear
	6.3 TPM_ForceClear
	6.4 TPM_DisableOwnerClear
	6.5 TPM_DisableForceClear
	6.6 TSC_PhysicalPresence
	6.7 TSC_ResetEstablishmentBit

	7. The GetCapability Commands
	7.1 TPM_GetCapability

	8. Auditing
	8.1 Audit Generation
	8.2 Effect of audit failing after successful completion of a command
	8.3 TPM_GetAuditDigest
	8.4 TPM_GetAuditDigestSigned
	8.5 TPM_SetOrdinalAuditStatus

	9. Administrative Functions - Management
	9.1 TPM_FieldUpgrade
	9.2 TPM_SetRedirection

	10. Storage functions
	10.1 TPM_Seal
	10.2 TPM_Unseal
	10.3 TPM_UnBind
	10.4 TPM_CreateWrapKey
	10.5 TPM_LoadKey
	10.6 TPM_GetPubKey

	11. Migration
	11.1 TPM_CreateMigrationBlob
	11.2 TPM_ConvertMigrationBlob
	11.3 TPM_AuthorizeMigrationKey
	11.4 TPM_CMK_CreateKey
	11.5 TPM_CMK_CreateTicket
	11.6 TPM_CMK_CreateBlob
	11.7 TPM_CMK_SetRestrictions

	12. Maintenance Functions (optional)
	12.1 TPM_CreateMaintenanceArchive
	12.2 TPM_LoadMaintenanceArchive
	12.3 TPM_KillMaintenanceFeature
	12.4 TPM_LoadManuMaintPub
	12.5 TPM_ReadManuMaintPub

	13. Cryptographic Functions
	13.1 TPM_SHA1Start
	13.2 TPM_SHA1Update
	13.3 TPM_SHA1Complete
	13.4 TPM_SHA1CompleteExtend
	13.5 TPM_Sign
	13.6 TPM_GetRandom
	13.7 TPM_StirRandom
	13.8 TPM_CertifyKey
	13.9 TPM_CertifyKey2

	14. Credential Handling
	14.1 TPM_CreateEndorsementKeyPair
	14.2 TPM_CreateRevocableEK
	14.3 TPM_RevokeTrust
	14.4 TPM_ReadPubek
	14.5 TPM_DisablePubekRead
	14.6 TPM_OwnerReadInteralPub

	15. Identity Creation and Activation
	15.1 TPM_MakeIdentity
	15.2 TPM_ActivateIdentity

	16. Integrity Collection and Reporting
	16.1 TPM_Extend
	16.2 TPM_PCRRead
	16.3 TPM_Quote
	16.4 TPM_PCR_Reset

	17. Authorization Changing
	17.1 TPM_ChangeAuth
	17.2 TPM_ChangeAuthOwner

	18. Authorization Sessions
	18.1 TPM_OIAP
	18.1.1 Actions to validate an OIAP session

	18.2 TPM_OSAP
	18.2.1 Actions to validate an OSAP session

	18.3 TPM_DSAP
	18.4 TPM_SetOwnerPointer

	19. Delegation Commands
	19.1 TPM_Delegate_Manage
	19.2 TPM_Delegate_CreateKeyDelegation
	19.3 TPM_Delegate_CreateOwnerDelegation
	19.4 TPM_Delegate_LoadOwnerDelegation
	19.5 TPM_Delegate_ReadTable
	19.6 TPM_Delegate_UpdateVerification
	19.7 TPM_Delegate_VerifyDelegation

	20. Non-volatile Storage
	20.1 TPM_NV_DefineSpace
	20.2 TPM_NV_WriteValue
	20.3 TPM_NV_WriteValueAuth
	20.4 TPM_NV_ReadValue
	20.5 TPM_NV_ReadValueAuth

	21. Session Management
	21.1 TPM_KeyControlOwner
	21.2 TPM_SaveContext
	21.3 TPM_LoadContext

	22. Eviction
	22.1 TPM_FlushSpecific

	23. Timing Ticks
	23.1 TPM_SetTickType
	23.2 TPM_GetTicks
	23.3 TPM_TickStampBlob

	24. Transport Sessions
	24.1 TPM_EstablishTransport
	24.2 TPM_ExecuteTransport
	24.3 TPM_ReleaseTransportSigned

	25. Monotonic Counter
	25.1 TPM_CreateCounter
	25.2 TPM_IncrementCounter
	25.3 TPM_ReadCounter
	25.4 TPM_ReleaseCounter
	25.5 TPM_ReleaseCounterOwner

	26. DAA commands
	26.1 TPM_DAA_Join
	26.2 TPM_DAA_Sign

	27. GPIO
	27.1 TPM_GPIO_AuthChannel
	27.2 TPM_GPIO_ReadWrite

	28. Deprecated commands
	28.1 Key commands
	28.1.1 TPM_EvictKey
	28.1.2 TPM_Terminate_Handle

	28.2 Context management
	28.2.1 TPM_SaveKeyContext
	28.2.2 TPM_LoadKeyContext
	28.2.3 TPM_SaveAuthContext
	28.2.4 TPM_LoadAuthContext

	28.3 DIR commands
	28.3.1 TPM_DirWriteAuth
	28.3.2 TPM_DirRead

	28.4 Change Auth
	28.4.1 TPM_ChangeAuthAsymStart
	28.4.2 TPM_ChangeAuthAsymFinish

	28.5 TPM_Reset
	28.6 TPM_CertifySelfTest
	28.7 TPM_OwnerReadPubek

	29. Deleted Commands
	29.1 TPM_GetCapabilityOwner
	29.2 TPM_GetCapabilitySigned
	29.3 TPM_GetOrdinalAuditStatus
	29.4 Audit Generation
	29.5 Effect of audit failing after successful completion of a command
	29.6 TPM_GetAuditDigest
	29.7 TPM_GetAuditDigestSigned
	29.8 TPM_SetOrdinalAuditStatus

